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ABSTRACT

The aim of this study is to investigate the long term
evolution of the orbital inclination of SIRIO satellite. In
fact, since 1983, SIRIO orbit inclination can no longer be
controlled because of the scarce quantity of fuel remaining
on board. While dts attitude and longitude are still
controlled, the orbit inclination is changing according to
the environmental perturbing forces acting on the satellite.
To evaluate this 1long term effect a simplified model 1is
given. A comparison has been mwmade with results obtained
using more precise, but time consuming computer programs.

The method - presented is applicable to any

pear—geostationary orbit.
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1. SIRIO mission.

SIRIO 1s a geostationary spin stabilized experimental
satellite. It was successfully launched on 27 August 1977
from Cape Canaveral by means of a Thor Delta vehicle under a
NASA=CNR(the Italian National Research Councill) contract.
Launch and flight support was provided by NASA wuntil the
satellite on-station positioning; after that the operative
control was transferred to the Telespazio ground station
located at Fucino which 1s still actively monitoring and
controlling the satellite.

Main objective of SIRIO mission has been to perform
propagation and telecommunication experiments on the 12-17
GHz frequencies; the spacecraft was designed for a minimun
lifetime of ;wo years. Its noﬁinal station point at the
beginning of the mission was at 15§ T 1 deg. of longitude
west and the orbital inclination was costrained to remain
below 0.3 degrees.

Within the above limits, active gstation=-keeping control
Aas been performed ™ through March 1983 (ref. 1-2 o At that
time the experimental extended campaign was completed and,
being the spacecrdft still well performing, it was decided
to accept a request of the People“’s Republic of China for
performing further transmission experiments between Belijing
and Fucino. The on=board remaining fuel was supposed to be
sufficient for woving the satellite to the new station point
located at 65 deg. of Longitude East. The satellite was

successfully positioned at the new station point on May 19,

1983,
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On 11 July 1983, at completion of a north-south
maneuver, the tank system B run out of fuel and since that
time no wmore orbit inclination <corrections have been
performed. The remaining fuel in the tank system A 1s being

used for the attlitude and east—-west manmeuvers.

2. Conslderations on the orbit evolution of uncontrolled

satelllite SIRIO.

The occurrence of the fuel depletion of one tank system
for SIRIO active 'inclination control, «coincided with the
beginning of the natural drifting of the orbit plane caused
by the only environmental forces acting on the satellite; in
fact the orbit inclination variation due to the jets
thrusters dufing east-west and' attitude maneuvers, can be
considered negligible. At the time of on-board complete fuel
depletion (which is foreseen about the 1986), even the S/C
longitude will initiate 1its free drifting. In such

condition a question arises : what will happen to the SIRIO

-t
%

“orbit in the futugg?
And then : what can be exected by knowing in advance the
trajectory of the uncontrolled satellite?

As Dbetter explqined in the next paragraphs, the
satellite will pass %rom the same point at almost regular
time intervals and by predicting the passage time, the
tracking of the satellite makes allowance for evaluating and
eventually adjusting the models used for prediction. It
should be noted that the satellite &t time will be a

"passive object” and its tracking should be accomplished by
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using methods such as optical devices or radars.
Further helpful use of trajectory prediction is the
evaluation of <collision probability between satellites
controlled or wuncontrolled, crossing the same scgments bf
the geostationary orbit.
The selection of the tools for predicting the long term

orbit evolution requires further consideratiohs

- the forces perturbing the state of a geostatlionary
satellite are well known, and therefore 1t is always
possible, in principle, to - integrate numerically the

spacecraft motion equation respect to time;

- methods for the above mentioned 1integration are
usually Qsed for orbit prediction during the operatioﬁal
1ife of a satellite. They have been proved to be very
precise for short-medium term propagations {( 1-6
months ), but on the other ‘hand they require very
expensive computer resources;
-

- the physics and the geometry of the §/C orbit
perturbing forces can be analitically modelled. For
effortable models(from the complexity point of view),

the required computing resources are not relevant;

- being the first geostationary satellite launched on
1963, no experimental results are avallable for
evaluating the performances of orbital propagators over

several tenths of years.
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After the above considerations, it has been decided, for
studing the SIRIO orbilt evolution 1in the next forty years
and more, to realize a quick analytical tool for orbit
prediction. Furthermore a comparative analysis follous
between the analytically and the numerically obtained

results.

2.1 Initial conditions of the study.

The last maneuver for SIRIO orbit inclination

correction, was executed on July.11, 1983. The final orbit

achieved with the maneuver was:

Osculating Xeplerian orbltal elements :

SMA 42164.948 KXnm.
ECC .000233
INC 328 dega
AN 94,067 "
AP 64 .974 "

o
MA 120.153 ”

Epoch : 7/11/1983 19%hh 2mm Sss

Since that time the orbital plane was 1left drifting
according to the environmental perturbations, therefore the

above listed parameters were considered as starting point of

the present study.
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2.2 The orbit perturbations.

Three principal perturbative effects are present in the
long term evolution of a geostationary satellite.

Earth”“s oblateness and gravitation attractions of the
Sun and the Moon cause a long periodiec motion (about 53
years) of the orbital polar vector.

A longitude drift motion coupled with osecillations in
semi-major axis 1is due to the resonance situation arising
from the commensurabllity of the satellite angular motion
with the Earth®s rotation rate. The period of this pendulunm
like oscillation around the nearest stable point, 1s about
820 days.

At last the solar radiation pressure ahd, at a lesser
degree, the~lunar parallatic éerm, move the eccentricity
vector in an almost closed loop over the period of one year.

With a good approximation these effects may be treated
independently; in fact the eccentricity of a geostationary
orbit 1s close to =zero {circular dorbit) and the second
harmonic of thees terrestrial gravitational field has no
secular effect on the eccentricity of a circular orbit.
Furthermore only the  higher harmonics of the 1lunar
gravitational field, which become more important as the
orbital radius is greater than 10 Earth’s radii, change the
eccentricity of a circular orbit. 1In the light of these
considerations the semi-major axis and the eccentricity can
be considered constant in this study;, which has the scope of
investigating the first effect, 1.e. the long term evolution

of the orbital pole for a geostationary satellite.
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3. The model description.

3.1 Equation of motion and disturbing function.

The temporal evolution of the orbital plane of an
uncontrolled circular geostationary satellite is governed by
the Lagrange equations, which take the vectorial forn

(ref. 3):

St (D)
K=Ffx Ve R(F)
=g
where A’ i1s the unit vector associated with the orbital

pole (along the angular womentum of the satellite), /?*//i?)
is a functlon related to disturbing (or perturbing) function
AD according to the relatiomnship
#¥= p/1n5%)
( /7 , the satellite mean uiotion, and & » its semimujor axis
are constant in the long period wotion) and the vectorial
et
operator D&? represents the diffetentiatiog with respect to
vecto; i?, (ref. 4). el .
Using this vectorial approach it 1is simple to express
the disturbing function, which includes the sechd zonal
harmonic of the Earth”s gravitational field and the lowest
order term of the gravitational attraction oi.the Sun and
Moon, in terms of F and then to esplicitate V;?p* in (1).
The perturbing effect on a terrestrial satellite P due

to the gravitational effect of a third body AQf (fig. 1) is

given by
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wherel",{) indicate the positions of the satellite and the

disturbing body relative to the center of the Eartih 0 and/y‘
is the body gravitational constant.

From fig.l it results that:

V4
el Pl 2‘
I/'-/‘J-I:(/‘z-;-‘//‘-z—ny 50-",5') (3)

Since f'«{;' We can retain only the lowest=-order terms of
4

the expansion of l/"—/"/') in a series of Legendre
polynomials and obtain, subtracting the tern -:é the
s
perturbing function
= Lpb? ‘£-7)
'6"2 27°(3 cos 3’5 (4)

where @ -'://.L.‘g'/;i.s the wmean motion of the disturbing body
with respectj to the Earth.

Since the predicted long period xﬁotion of the orbital
plane; should be reasonably long, compared®with the periods
of the disturbing bod:l:s (Sun and Moon), it is pétmissible
to average R over the mean anomalies of the sartel‘lite and of
the bodies. In this approach  the satellite-daily,
lunar-monthly and solar-yearly fluctuations will be ouitted.

If 2/’ and_@-indicate the positio-n of the satellite
orbital pole respect to the orbital plane of the j=th
perturbing body (£fig.2), we have from the spherical triangle

I*‘J/' P I"/
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(0s f; = (05 V cw/z;- ~A2;)+ 510 v 512 /z'// -12;) os f (5)

where v and Yj are anomalies measured for the satellite from

the ascending nodal crossing N/-and for the body from the

X=axls.
J

Squaring (5) and averaging over v and y it results

IS e ¢ 3 6
s 5 7 [/+//( Z// J (6)
and, being r=a= constant , eq. (4) becomes

§ -4 7230 Z) 7]

Including the effect. of the sccond harwonic in the
Earth®s gravitational field, the cqmplete double-averaged

disturbing function may be written

b

2
s 2 i .
T

~

wanpn g i ) .
where ZO,Z, and Zz are the wunit vectors normal to the

equatorial plane and to the solar and lumar orbital plane

respectively and

2 2
7, .
wo_.:zé/y ]2-/€9 ; C()/='-3' -7 /:/)Z
| 92 4 n
where J2 is the _second zonal tharmonic in the Earth’s

gravitational fleld and -Reis the mean - equatorial radius.
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For a geostationary satellite it vresults Q%=h.89 ,&4=4L738)
&é=ﬂdéll degs/year .

Substituting the obtained double averaged expression (7)

in (1) we obtainﬁ

£ = Fx %(Féjg | (8)

1f only one of the term of the right-hand side of (8)
were present, the unit Qector E would’simply regress around
the corresponding 25’ at a constanﬁ rate Q&'(E~?}). Then the
long term motion of the orbital pole of a geostationary
satellite 1s a combination of regressions around three
different axes, Wgereas the solar appﬁrent orbit describes a
fixed plane (ecliptic plane), the Moon®s orbital pole is
itself regressiﬁg“around the ecliptic with a period of 18.61
years at an almost constant inclihation,of %”=5.145 deg. to
the ecliptic. The longitude of the mean ascending node of

the lunar orbit in the ecliptic from the mean equinox of
o

date is given by:
‘JQAV =2259.183275-0.05295392 D (degrees) (9)

being D the number of ‘ephemeris days since 1900 January

0,12h Ephemeris Time (ref. 5 ).
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3.2 Solutions for fixed positions of the lunar pole.

When the lunar pole is assumed fixed in the space, the
simultaneous precessions arec about fixed axes and eq.(8) can
be solved exactly. Two integrals can be found for it; the

ey
first one gives the known condition that K is a unit vector
whilst the second Iimplies that R* is a constant of the
motion. In fact, if we consider the infinitesimal variation

#
of R with respect to time, it results:

dRY = ¥ >
dt = Ve k£ (10)

being BT =¥ (¥).

Remembering the expression (1) for X ,we have:

O//Q* — *_*_—* *
5/_?—:%’2’/(-)(7/(7/@ =0

which, according to eq.(7), leads to:

‘ 2

02‘_/. w/(/{;»z';*)f____ conslant' = L, O an

the value of Lo depending upon the initial conditions of the
satellite orbital pole.

Eq.(11), referred to a generical rectangular frame (e.g.
the geo;entric equatorial frame with Y-axis = vernal
equinox), represents a quadric surface, inch can be reduced
in canonical form by means of a matrix [vT] that transforms

the matrix [A], assoclated to the quadric, to diagonal form.
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The columns of the orthogonal watrix [T] are the
elpgenvectors relative to [A]. The eigenvalues 1, of [A] are
positive, then the quadric surface results an ellipsoide.

In the semplified case of lunar orbit coincident with
the ecliptic (M2E, fig.3), one of the eigenvalues 1s zero
and the ellipsoild degenerates to an elliptic <cylinder. In
this case the matrix [T} corresponds to a simple rotation é
around the Y-axds (vernal equinox) from ON (fig.3) and its
numerical value, 7.38 degrees, is obtained from the

relationship:

(W, + wy ) sin 2a
W, + (W, + W, ) cos2al

‘ -7
J: %\/9 (12)
where d 1s the angle between the equatorial plane and the
ecliptic. This particular frame 1s derived following a
procedure first 1introduced by Laplace in order to explain
the behaviour of the Qrbitél plane of Iapetus (ref.6) and it
will be <considered hereinafter as inertial reference frame

XYZ (fig.3).

et
3

fhe orbital pole ag. moves on a spherical ellipse,
intersection of the ellipsoid (or elliptic cyliﬁder) with
the unit sphere and 1ts temporal evolution can bte completely
defined by only one of the Jacobi”s elliptic functions, that
are solutions of the vectorial eq.(8).

The dimenslons of the spherical ellipse depend upon the
initial position of the orbital pole (1.e. orbital

inclination i and longitude ascending node 12, fige3). 1In

~fact its semlaxes can be expreésed by the following
relationships : 7,
Z -1, |7
S — Z3"Za . Ky —- 3 o
mAx =5 S

I3~ 1 | ly -1,
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being 11,12,15 the eigenvalues of the quadrie surface
arranged 1n ascending order and L defined in eq.(11}). In
our case L can assume values which satisfy the inequality:

1,<1 <LQ<13

772

When the initial conditions are such that Lc=l the

3
spherical ellipse reduces to the intersection point of the
unit sphere with the eigenvector corresponding to 13o

For any fixed position of the 1lunar pole, the time
required for K to perform the ‘motion on the spherical
ellipse 1is given by a complete elliptic integral of the
first kind. If we éonsider the approximation that the lunar

orbit 1lies in the ecliptic, the estimated period for a

geosynchronous satellite is about 52.9 years.
3.3 The general solution

For the long term ‘orbital evolution of a satellite it is
often assumed that the lunar orbit lies in the ecliptic or
that the lunar orbital pole 1is fixed 1in a time—-averaged
;position. Because of the significant errors introduced with
this assumptions,@it is necessary to take into account the
lunar ©pole regression, which leads to a time-varying
geometricvconfigufation. In particular the principal axes
g,?,;tﬁfthe quadric, 1in its canonical form, rotate around
the cérresponding princiéal axes szrobtained when the lunar
orbital plane coincides with the ecliptic (figs.3-4),

TheCf-axis motion around Z has a period equal to that

one of lunar regressionm around the ecliptic pole at an

inclination slightly greater than 1 deg. respect to Z. The
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4.The numerical propagation.

In order to perforuc an accurate orbital clcement
propagation the Ephem program of  Coddard Trajectory
Determination System (GTDS; version 3.5, Jay 80) lhas been

used; this version, implemented at CHNUCE-Pisa, is currently
utilized for SLRIO orbit determination and propacation
(ref. 7).

In the following we provide the characteristics of the
coordinate systems chosen for the input, cthe output and the
motion integration; we also describe brivfly the force model

and the orbital propagator.

K ot o i e 2 o 2 e e e e 2 e S e o o o e o oo e e *
I COORDINATE REFERENCE SYSTE:iS 1
L it bt e T PP e i i
1 : 1
I INPUT/LOUTPUT HHOTLON EQUAT. INTECRATION I
I 1
T ORBITAL KEPLERIAR TRUL oF DafL i
I ELEMENTS L
I I
I COORDINATE RECTANG. CART. THERTIAL=-HEAN LQUAT. 1
1 SYSTEH POS. AND VELOC. 1950.0 1
1 1
I CENTRAL BODY EARTH EaRTH I
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K i r on o m w  can o w wn t E n Gm  n e in  ea n r n w 0r G i e o v ot oo o o e o oo som o o A
1 FORCE HODEL 1
L e e e e e e e e e e 1
I 1
I 1) EARTH GRAVITY FIELD MONOPOLE TERM I
1 1
I 2) NO-SPHERICAL POTENTIAL OF THE LARTH: GEM21 1
1 (MAX ORDER AND DEGREE = 5) 1
1 I
I 3) SUN AND HMOON GRAVITATIONAL PERTURBATION I
1 1
I 4) SOLAR RADIATION PRESSURE (SPHERICAL HYPOTESIS; CiROSS 1
I SECTION = .1479E=5 KMSQ; MASS = 212.5 KC) 1
K o i ot o e o o 1 D > e i e A e e A B e e T o A < O e S e < o S 5o > S o 2 o ot o o o 2o e e e *
K o o o o e e D S o D e D S 2 o S 8 " o G S P S 0B S i 2 < CHD e o e A s i o o o 7 e 0 e eom o e *
1 PROPACATOR 1
o e e e e e e e e e e e e e e e 1
I o 1
I ORBIT GENERETOR TYDPEL HUMERICAL IWNTEGRATIGH OF COWELL 1
1 EQUATION OF MOTIOH 1
1 1
I NUMERICAL INTEGRATOR 12-TH ORRER SUUHED COWLLL/ADAMS I
I TYPE FOK STATE PROPA- PREDICT-PARTLAL CORRECT 1
I GATION 1
1 1
I INTEGRATION STEP MODE FIXED 1
1 I
I INTEGRATION STEP SIZE - - 800 SEC. 1
K o oo o w2 2 e 0 o 2 o o 2 o o e o o S R o 2 o P o i e S 8 2 e 2 o A m 2 o0 o o s *
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5. Comparison and conclusions.

The 40-year orbital pole evolution for SIRIO satellite,
obtained by the simplified model, has Dbeen plotted along
with the corresponding accurate numerical results
(figs. 9-10). The achieved accuracy with the simplified
model proposed in this paper 1is easlly retrieved from these
comparative curves. In fact, 1t 1s possible to evaluate a
maximum deviation of 0.2 degrees for the orbital inclination
(fig. 9) whilst the maximum difference for the longitude of
ascending node 1is limited within 2 degrees (fig. 10).

An enlargment of the temporal i evolution, limited to
the flrst five years, allows to assess in the GTDS curve the
small perturping solar-yearly fluctuation which has a period
of six months (fig. 11). This effect cannot be present in
the simplified model that assumes an averaged disturbing

function (sec. 3.1).
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fig.l

fig.2 Geometrical rposition of the satellite and

of a generical perturbing body.




fig.3 Definition of the inertial refercnce frake
~

X Y Z and position of the <considered orbital

poles. The angles are so defined: { = 22 . 2} = 2;,
2; = 22; the unit vectors relative to the
e o wngpa
Zo z, and Zz

directions OnL, OE, and Ol are .

respectively.
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fig.4
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