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ABSTRACT Efficiency and efficacy are desirable properties for any evaluation metric having to do with
Standard Dynamic Range (SDR) imaging or with High Dynamic Range (HDR) imaging. However, it is
a daunting task to satisfy both properties simultaneously. On the one side, existing evaluation metrics
like HDR-VDP 2.2 can accurately mimic the Human Visual System (HVS), but this typically comes at
a very high computational cost. On the other side, computationally cheaper alternatives (e.g., PSNR, MSE,
etc.) fail to capture many crucial aspects of the HVS. In this work, we present NoR-VDPNet++, a deep
learning architecture for converting full-reference accurate metrics into no-reference metrics thus reducing
the computational burden. We show NoR-VDPNet++ can be successfully employed in different application

scenarios.

INDEX TERMS Deep Learning, HDR Imaging, Objective Metrics, No-Reference.

. INTRODUCTION

The quality of natural/synthetic images is commonly as-
sessed either through user studies or through objective met-
rics. This step is especially important to assess the quality of
a compression/restoring/enhancing algorithm.

Although a user study is very reliable in terms of the
quality of results, it is rather cumbersome to run since a con-
siderable amount of time (spanning from weeks to months
in some cases) is often required, given that a large number
of participants and images should be involved. Furthermore,
such studies require a careful design to avoid biases, and they
can be very expensive since some money has to be invested in
order to attract the participants’ interest. As a result, objective
metrics are typically preferred for assessing image quality;
the monetary cost is greatly reduced while, at the same time,
these metrics can be employed to evaluate real-time appli-
cations. Although such metrics do not require users, they
represent fairly reliable solutions, especially when these met-
rics take into account different aspects of the human visual
system (HVS) or when they provide an accurate simulation
of relevant aspects of it. An example of this last case is HDR-
VDP 2.2 [32], which is, by now, a well-established metric for
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HDR and SDR imaging used in standardization committees.
Unfortunately, HDR-VDP 2.2 presents two main limitations:
1) its high computational cost prevents its use in real-time
applications or large databases (e.g., standardization); ii) it
requires a reference image, which may not be available in
many cases (e.g., TV live broadcasting). Recently, some
efforts have been paid into designing more computationally
efficient metrics for specific problems. However, the most
popular and reliable metrics, such as TMQI [27], [37] for
assessing the quality of tone-mapped images, still require a
reference image, which is a severe limiting factor.

All the above-mentioned problems make it evident the
necessity of new objective metrics that (i) can be run in
real-time, (ii) do not require a reference image or a ground
truth, and (iii) mimic accurately the original reference-based
metrics. In this paper, we propose NoR-VDPNet++, an effi-
cient deep learning architecture for converting full-reference
accurate metrics into no-reference metrics.

The rest of this paper is organized as follows. In Section II,
we review previous efforts in the field. In Section III, we
explain our NoR-VDPNet++ architecture in detail. In Sec-
tion IV, we turn to describe the dataset and the training
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strategy we use, while in Section V, we report our experi-
ments. In Section VI, we demonstrate how our system fares in
real applications. Finally, Section VII wraps up, also offering
pointers to potential directions for future work.

Il. RELATED WORK

Nowadays, image quality evaluation through the use of
objective metrics has become of high importance. Objec-
tive metrics are not only used for quality assessment in
benchmark studies but are also used to monitor/guide the
performance of algorithms such as 3D renderers, encoders,
enhancement, deep-learning training, etc. In this work, we
consider Image Quality Metrics (IQMs) which predict a
single global quality score for the entire image.

IQMs can be divided into Fully-Reference (FR) and No-
Reference (NR) methods. While FR-metrics receive as input
a pair of images (i.e., the ground truth and the distorted
images), the NR-metrics has only the distorted image as
input. In this section, we will focus on state-of-the-art NR-
based IQMs approaches only, which is the scenario of our
study.

Typically, NR IQMs are based on statistical information
derived from the distorted image [19], [31], [35], [40]. For
example, NIQE [31] first computes 36 highly regular natural
scene statistics from an input image, to then compute the
distance from these and a multi-variate data-driven Gaus-
sian fit. Recently, NR metrics based on machine learning
made their appearance. Mittal et al. [30] proposed to ex-
tract locally normalized luminance coefficients (LNLCs) to
quantify possible losses of naturalness in the image due to
the presence of distortions. Subsequently, a support vector
regressor (SVR) is trained to predict, from LNLCs, a proxy of
human perception called BRIQUE index. Similarly, Kundu et
al. [26] introduced Higrade, an NR-metric for tone-mapped
images based on the extraction of log-domain gradients and
an SVR. Regarding convolutional neural networks (CNNs),
Kang et al. [22] proposed one of the first approaches where
they presented a simple NR CNN architecture for predicting
quality scores that correlate with user experiments. Kottayil
et al. [24] introduced an NR-IQA deep learning scheme
for HDR images that correlates with mean opinion scores.
Kim and Lee [23] deal with the absence of ground truth
by employing local quality maps derived by FR-IQMs as
intermediate regression targets. This approach requires pre-
training the FR-IQM model on data where the ground truth
is available. The approach by Bosse et al. [11] is purely data-
driven and does not rely on hand-crafted features or other
types of prior domain knowledge about the HVS or image
statistics. Zhu et al. [39] proposed MetalQA to improve
the prediction capabilities of a CNN-based metric through
pre-trained architectures. Here the meta-knowledge shared
by people during the evaluation of the quality of images
with various distortions is learned and adapted to unknown
distortions.

Recently, CNN-based architectures have been employed
to transfer the knowledge of an algorithm into the param-
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eters of a convolutional network able to produce real-time
predictions. This was achieved for both the FR scenario
[2] (i.e., DIQM which mimics HDR-VDP 2.2 [32] and
DRIIM [5] with uses a reference) and the NR scenario [9]
(i.e., NoRVDPNet which mimics HDR-VDP 2.2 without a
reference).

In this work, we present NoR-VDPNet++, an improved
variant of NoR-VDPNet [9] that achieves higher accuracy
while maintaining its real-time nature. In particular, we
present the following contributions with respect to previous
art:

o NoR-VDPNet++ is a NR version of FR CNN-based

metric [2], which distills HDR-VDP 2.2 and DRIIM
[5] with high accuracy and efficiency. In this work, we
extend NoR-VDPNet architecture testing normalization
layers.

« We apply NoR-VDPNet and NoR-VDPNet++ to obtain
a no-reference TMQI [37] to assess the quality of tone-
mapped images and a no-reference HDR-VDP 2.2 to
assess the quality of inverse tone-mapped images.

« We present two novel datasets: the former composed of
tone-mapped HDR images using different tone mapping
operators, and the latter composed of inverse tone-
mapped images using different inverse tone mapping
operators.

lll. DISTILLING IMAGE QUALITY METRICS

NoR-VDPNet [9] accomplishes the conversion of HDR-
VDP 2.2 [32] into a NR model encoded as a CNN. This
is attained by training a CNN architecture (see the left-
most architecture in Figure 1) using a medium dataset (e.g.,
more than 50,000-100,000 examples with/without reference)
of SDR/HDR images for different scenarios such as SDR
distortions detection (blur, noise, quantization, etc.), JPEG-
XT [3] compression artifacts, tone/inverse tone mapping
evaluation, etc. Each example pair consists of a distorted
image and the ground truth quality value that HDR-VDP 2.2
or TMQI calculates using its reference; see Figure2. Note
that the key for distilling HDR-VDP 2.2 or TMQI into a no-
reference metric comes down to omitting the reference during
training.

In this work, we explore techniques aimed at improving
the stability of the training phase of the previous version
NoR-VDPNet and increasing accuracy at inference time. The
resulting model, which we dub NoR-VDPNet++, comes in
two flavors, one that uses Batch Normalization [21] as a way
to counter the internal covariate shift, and another that instead
uses the more recent ReZero [6] normalization layer to speed
up training convergence. We experiment with both variants
and discuss the merits of each.

Batch Normalization [21] has been shown to effectively
help reduce the covariate shift between layers and to allow
for faster and more robust training. Batch Normalization
comes down to independently re-centering and re-scaling the
dimensions of data tensors by using an approximation of
the mean and standard deviation computed on the batch of
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FIGURE 1: The network architecture of NoR-VDPNet (left) and NoRVDPNet++ (right): Batch Normalization or ReZero are

added to each convolution layer.
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FIGURE 2: The process for creating a sample for our NR
datasets. We use a FR metric for computing the quality value
between the ground truth and the distorted images. Then, the
sample is created by discarding the ground truth; the input
for the network is the distorted image and the target output to
minimize is the computed quality value Q.
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examples. Equation 1 describes the computation for the kth
dimension of a vector x = (z(), ... z(™); pg) and og)
stand for the sample mean and sample standard deviation,

respectively, as computed on the batch of examples B.

k
2 ®) — )

2

(7") +
ReZero [6], on the other hand, was recently proposed as
a novel way for reducing the problems of vanishing and
exploding gradients typical of deep learning training with
residual layers. As a residual block, it allows deep archi-
tectures to become deeper while at the same time being
much more efficient than other normalization techniques.
The computation of ReZero between two subsequent layers
(!l and [ 4 1) is described by Equation 2 and comes down to

a residual connection with a trainable parameter (¢;) used to
modulate the transformation F' of the data tensor.

(k) —

(D

2)

Both variants of NoR-VDPNet++ achieve a lower predic-
tion error than the original NoR-VDPNet and still preserve
real-time performance. When equipped with the ReZero
connections, NoR-VDPNet++ produces lower errors in some
scenarios; Figure 1 shows NoR-VDPNet before (left) and
after (right) these changes.

Xi+1 =X+ alF(Xl).

VOLUME 4, 2016

IV. DATASETS AND TRAINING
We trained NoR-VDPNet++ for different scenarios:

o SDR-D: Estimating HDR-VDP2.2 [32] quality value at
different SDR distortions; e.g., blur, noise, quantization,
etc. In this case, we converted 8-bit values into display
referred values.

o TMO: Estimating TMQI [37] score under different tone
mapping operators (TMOs).

« HDR-C: Estimating HDR-VDP2.2 [32] quality value at
different JPEG-XT [4] quality settings.

o ITMO: Estimating HDR-VDP2.2 [32] score under dif-
ferent inverse tone mapping operators (TMOs).

For HDR-C, TMO, and ITMO datasets, we employed
1,478 HDR images or Iypr: HDR Survey [14], Stanford
HDR Dataset [36], the 100-sample from the Laval HDR
Panorama dataset [18], Funt et al’s HDR Dataset [16],
Akyliiz’s Dataset [1], the UBC HDR video dataset [7], and
Stuttgart HDR Video dataset [15].

For the TMO dataset, we applied 18 TMOs (see Figure 6)
to all images in Iypg using the HDR Toolbox [8]. Then, we
ran TMQI using the original HDR images and their tone-
mapped versions, storing the TMQI score as the target output.
The no-reference dataset comprises the tone-mapped images
stored at 8-bit per color channel in the SRGB color space and
its TMQI score.

Regarding ITMO, we applied six inverse tone mapping
operators (ITMOs) to the SDR versions (i.e., with a f-stop
that maximizes the total well-exposed pixels) of the HDR
images in Iypr. These operators are: Akyuz et al. [1], Huo
et al. [20], Kovaleski and Oliveira [25], and Masia et al. [29],
Eilertsen et al. [13], and Santos et al. [33]. We ran HDR-
VDP 2.2 between the original HDR images and their inverse
tone-mapped one storing the HDR-VDP 2.2 Q value. The
no-reference dataset comprises inverse tone-mapped images
stored at 32-bit per color channel in the SRGB color space
and its HDR-VDP 2.2 score. To further stress-test different
input conditions, we applied an exposure augmentation; i.e.,
we applied a +1.5-stop and a 3.0-stop increase from a well-
exposed input image (with only clipped highlights); see
Figure 5.

Given that the same HDR image is tone/inverse tone
mapped with different TMOs/ITMOs, this is actually equiv-
alent to performing data augmentation. Therefore, for each
image, all different tone/inverse tone mapped images are
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FIGURE 3: Scatter plots for the test datasets of all scenarios where we compute the Pearson coefficient of correlation, p. From
the top to the bottom: HDR-C, ITMO, SDR-D, and TMQI.
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FIGURE 4: Histograms plots of the error between the predicted Q value and its ground truth for images belonging to the test
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(a) O-stop (b) 1.5-stop

(c) 3.0-stop

FIGURE 5: An example of the exposure augmentation of the
input images for generating expanded HDR images for the
ITMO dataset: (a) The well-exposed reference HDR image
using Gallo et al.’s histogram method [17]. (b) The same
image with the exposure set to +1.5-stop. (c¢) The same image
with the exposure set to +3.0-stop.

placed either in the training set, in the evaluation set, or in
the test set.

Note that for HDR-C and SDR-D, we extended Scenario
1 and Scenario 2 from Artusi et al.’s work [2] by increasing
the number of samples by 3.8 times and 7 times, respectively.
We achieved that using images from [12] for SDR-D, and the
new images from Iypg for HDR-C.

To further increase the size of the dataset, we performed
further data augmentation by applying 90°/180°/270° rota-
tions and horizontal/vertical image flips. Note that HDR-
VDP 2.2 requires physical values in order to obtain meaning-
ful results, so images were converted from relative values to
display-referred values. For the SDR-D dataset, the reference
display had the characteristics of nowadays standard 8-bit
display; i.e., the display peak brightness and black level were,
respectively, set to 250 cd/m? and 0.5 cd/m?. Regarding
ITMO and HDR-C datasets, the reference HDR display was
the DisplayHDR1400 standard' with a peak luminance of
1,400 cd/m? and a black level of 0.02 cd/m?. The TMO
dataset had no reference display because TMQI [37] works
on normalized values for both the HDR and tone-mapped
images.

Dataset  Training Validation Test Total

SDR-D 80,244 10,025 10,044 100,313
T™MO 106,290 13,320 13,320 132,930
HDR-C 49,602 6,216 6,216 62,034
ITMO 106,290 13,320 13,320 132,930

TABLE 1: The size (number of images) of each dataset
employed in this paper.

Our training machine was an NVIDIA DGX Server 5.2.0
machine equipped with four AMD Epyc 7742 (64-core)
CPUs with 1 TB of memory, and we used a NVIDIA
A100 GPU with 40 GB of memory (CUDA 11.3). For
implementing NoR-VDPNet++2, we modified the publicly
available code of NoR-VDPNet® that uses PyTorch 1.3.1

"https://displayhdr.org/
Zhttps://github.com/banterle/NoR-VDPNetpp
3https://github.com/banterle/NoR-VDPNet

Method\Dataset SDR-D TMO HDR-C ITMO
NoR 2.177E-04  1.598E-04  7.887E-04  4.097E-03
NoR++BN 2289E-04 5.321E-04 6.364E-04!  2.375E-03
NoR++RZ 1.822E-04 1.270E-04  4.802E-04  3.748E-03
ResNet-18 3.075E-04  5312E-03  8.150E-04  3.739E-03

TABLE 2: Performance evaluation in terms of MSE (lower is
better). Boldface indicates the best method overall for each
scenario. Superscripts I denotes the method (if any) whose
MSE score is not statistically significantly different from the
best one in terms of a two-tailored t-test in the differences in
performance: symbol } indicates 0.01 < p—value; i.e., the
methods behave similarly with very high confidence.

deep-learning framework. For ResNet-18, we employed the
PyTorch implementation using its original weights and fine-
tuning weights using SDR-D, TMO, HDR-C, and ITMO
training sets. During training, we employed Adam as the
optimizer with default parameters and learning rate initial-
ized to 10~°; we halved the learning rate whenever a plateau
was reached. We trained all our networks for 100 epochs and
certified that the optimization search converged in all cases.
Typically, convergence is reached after 60 or 70 epochs.

V. RESULTS

In order to assess the quality of the predictions that our new
NR model yields, we compared the Mean Squared Error
(MSE) of the predictions against the FR target quality values
(as produced by HDR-VDP 2.2) for the test datasets of SDR-
D, HDR-C, TMO, and ITMO.

Table 2 reports performance comparisons in terms of MSE
between the original NoR-VDPNet [9], ResNet-18, and the
new variants NoR-VDPNet++ when equipped with Batch
Normalization (BN) or with ReZero (RZ), for SDR-D, HDR-
C, TMO, and ITMO. Statistical significance of the averaged
scores is tested according to a two-tailored t-test at different
confidence levels (o = 0.01 and o = 0.001).

These results reveal some interesting facts. First of all,
there is a clear advantage (i.e., a statistically significant
improvement), in terms of error score, when equipping the
network with sophisticated normalization layers, when com-
pared to the classical NoR variant; see Table 2. Another
interesting aspect that jumps to the eye, is that NoR++BN and
NoR-++RZ both perform substantially better, in a statistically
significant sense, than ResNet-18 in terms of error score.
Interestingly enough, this improvement does not come at an
extra cost. Indeed, ResNet-18 requires 58 hours for training
on the SDR-D dataset, while NoR++RZ requires only 11
hours on the same dataset.

Figure 4 shows the error distributions for the test-
ing datasets. Note that, amongst all methods, NoR-
VDPNet++RZ displays the narrowest histogram centered
around O for the majority of scenarios.

For a clearer picture, Figure 3 shows the scatter plots
between the predicted value Q and its ground truth @ by also
reporting the Pearson correlation coefficient p. The scatter
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FIGURE 6: An example of the 18 TMOs from the HDR Toolbox [8] applied to the So- de-soto HDR image.

Method\Dataset SDR-D TMO HDR-C ITMO
NoR 343 426 215 450
NoR++BN 542 657 314 675
NoR++RZ 405 552 244 566
ResNet-18 2297 2693 1378 2787

TABLE 3: Training time per epoch in seconds.

plots exhibit a linear relationship between the inputs and the
predicted values that tend to lie close to the main diagonal.
From these plots, we can notice that ITMO is the most
difficult case overall. This is due to the fact that an inverse
tone mapping operator (both classic methods and especially
deep-learning-based ones) applies many different processing
operations at the same time on the same image.

Training times are reported in Table 3. It is worth noting
that NoR++RZ displays comparable training times to NoR,
while yielding better performance in terms of quality; see
Table 2. In terms of computational efficiency at inference
time, the new architectures maintain real-time performance;
i.e., both variants BN and RZ can issue predictions for 4-
MPixel images in less than 24ms; see Figure 7. In our
implementation, RZ is 44% faster than BN at high resolutions
(i.e., >2-MPixel) because the implementation of Equation 1
is computationally more expensive than that of Equation 2.
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FIGURE 7: Timings at inference time for all different tested
architectures.

VI. APPLICATIONS

NoR-VDPNet++ is a real-time metric, meaning that it can
be employed in several optimization-based applications in
which the parameters need to be optimized for a specific
quality metric. A straightforward application of our work
is the selection of high-quality images from an image col-
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FIGURE 8: An example in which NoR-VDPNet++ is used to
choose high-quality images from an image collection. NoR-
VDPNet++ predicts a high @)-score (i.e., @ > 70) for sharp
images, and a low one (i.e., @ < 60) for blurred images.

lection; see Figure 8. This might be particularly useful
for sorting vacation photographs or eliminating low-quality
images in computer vision applications such as Structure-
from-Motion [10] (e.g., removing blurred frames in a 3D
reconstruction). Another interesting application is to use our
metric trained on TMQI to optimize tone mapping operators
parameters. To prove this possibility, we made an application
that try to optimize the parameter of this sigmoid TMO:

L, Cu\”
o= () La, 3)

L =
d Lya+p Ly,

where C, and Cy are, respectively, a HDR and a SDR color
channel; L,, and L, are, respectively, the HDR and SDR
luminance; o and p are tone-curve parameters, and -y is
a color saturation parameter. Figure 9 shows tone mapped
images using this optimization process, displaying the TMQI
predicted by the network and its corresponding real value.

The proposed tone mapping optimization can be also
employed for selecting TMO parameters for JPEG-XT [28]
compression using HDR-C results. In a similar way, our
metric trained on ITMO can be employed to optimize inverse
tone mapping operators (be them relying on neural or non-
neural implementations).

VIl. DISCUSSION AND CONCLUSIONS
We have shown that CNN architectures can successfully
distill the knowledge of existing reference metrics like HDR-
VDP 2.2 [32] and TMQI [37]. In this work, we have
presented NoR-VDPNet++, an improved variant of NoR-
VDPNet [9]. This variant achieves more reliable results
in general, and also in a newly introduced scenario, i.e.,
the evaluation of inverse tone mapped images. We also
showed NoR-VDPNet++ outperforms other comparatively
more complex networks like ResNet-18, while at the same
time requiring less time to train, and being faster at inference
time.

NoR-VDPNet++ maintains real-time performance, allow-
ing it to be employed in any real-time constrained applica-
tions such as optimization processes for parameter selections
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like tone mapping, image selection from collections of pho-
tographs, or Structure-from-Motions tasks, to name a few.

Recent efforts have been paid in order to better understand
how intermediate feature maps of pre-trained CNNs can be
used to predict image distortion similarly to how humans do.
For example, Zhang et al. [38] show a systematic study on
how to evaluate feature maps across different CNN archi-
tectures, obtaining important improvements with respect to
classical objective metrics. Tariq et al. [34], have shown the
existing correlation between the capabilities of pre-trained
CNN features in optimizing the perceptual quality, with their
accuracy in capturing basic human visual perception charac-
teristics. This altogether suggests that more efforts have to
be devoted to better understanding the potential benefits that
using feature maps from pre-trained CNNs as an objective
metric can bring to bear in image/video evaluation. In future
work, we plan to carry out a systematic study in this direction,
analyzing ways for employing these feature maps in NoR-
VDPNet++ in an effective manner.
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