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Abstract—Service-Oriented Architectures (SOAs), and tradi-
tional enterprise systems in general, record a variety of events
(e.g., messages being sent and received between service compo-
nents) to proper log files, i.e., event logs. These files constitute a
huge and valuable source of knowledge that may be extracted
through data mining techniques. To this end, process mining
is increasingly gaining interest across the SOA community.
The goal of process mining is to build models without a
priori knowledge, i.e., to discover structured process models
derived from specific patterns that are present in actual traces
of service executions recorded in event logs. However, in this
work we focus on detecting frequent sequential patterns, thus
considering process mining as a specific instance of the more
general sequential pattern mining problem. Furthermore, we
apply two sequential pattern mining algorithms to a real event
log provided by the Vienna Runtime Environment for Service-
oriented Computing, i.e., VRESCo. The obtained results show
that we are able to find services that are frequently invoked
together within the same sequence. Such knowledge could be
useful at design-time, when service-based application developers
could be provided with service recommendation tools that are
able to predict and thus to suggest next services that should
be included in the current service composition.

I. INTRODUCTION

The vast majority of nowadays software-based systems,
ranging from the simplest, i.e., small-scale, to the most
complex, i.e., large-scale, record massive amounts of data
in the form of logs. Such logs could either refer to the
functioning of the system as well as keep trace of any
possible software or human interaction with the system
itself. For this reason, logs represent a valuable source of
hidden knowledge that can be exploited in order to enhance
the overall performances of any software-based system.

Well-known examples of systems that have started trying
to improve their performances by analyzing event logs
are surely Web Search Engines (SEs). Roughly, SEs are
increasingly exploiting past user behaviors recorded in query
logs in order to better understand people search intents,
thus, for providing users with better search experiences.
Indeed, by accurately recognizing and predicting actual
user information needs, SEs are now able to offer more
sophisticated functionalities (e.g., query suggestion) as well
as better relevant result sets in response to a specific query
(e.g., query diversification).
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Moreover, there are plenty of modern enterprise software
systems that need to operate in highly dynamic and dis-
tributed environments in a standardized way. Such systems
implement their business logic according to the Service-
oriented Architecture (SOA) principles, thus, assembling
their business processes as the composition and orchestration
of autonomous, protocol-independent, and distributed logic
units, i.e., software services.

Service-based systems and applications (SBAs) require
proper run-time environments where their composing ser-
vices can be searched, bound, invoked, monitored and man-
aged. Therefore, SBA’s run-time support might keep track
of what is going on during the whole application lifecycle
by roughly recording all such events to log files, i.e., service
event logs.

Analysis of such service event logs could reveal interest-
ing patterns, which in turn might be exploited for improving
the overall performances of SOA’s run-time frameworks
as well as supporting SBA designers during the whole
application lifecycle.

The main contribution of this work concerns the applica-
tion of data mining techniques to a real-life service event log
collected by the VRESCo0O SOA run-time framework. Our
aim is to analyze the historical events stored on VRESCo
in order to discover software services that are frequently
invoked and composed together, i.e., process mining.

Although traditional process mining refers to a set of
techniques and methodologies whose aim is to distill a
structured process description from a set of actual traces
of executions recorded in event logs, here we treat it as an
instance of the sequential pattern mining problem.

The remaining of the paper is structured as follows. Sec-
tion II describes the information collected by SOA lifecycle
event logs, in particular focusing on the VRESCO run-time
framework. In Section III, we propose how VRESCoO event
log may be analyzed for approaching our research challenge.
Therefore, Section IV shows the experiments we conduct
on a real VRESCO log data set. In Section V, we describe
past work that somehow concerns with service event log
analysis. Finally, Section VI summarizes the contributions
we provide in this work together with any further idea that
could be better investigated as future work.



II. SOA LIFECYCLE EVENT LOGS

In the following, we will discuss SOA lifecycle event logs
as they are used in this paper. We then present the lifecycle
events emitted by the VRESCo0 SOA runtime environment
as a concrete example used in Section III and Section IV of
this paper.

A. Lifecycle Events

Events and complex event processing [11] (CEP) are
frequently used tools to document and track the lifecycle of
applications in various domains. For instance, in the business
domain the idea of business activity monitoring [9] (BAM)
uses events to monitor business process performance. Anal-
ogously, technical implementations of business processes on
top of SOAs (service compositions) are often monitored
using CEP. To this end, many service composition engines
can be configured to track their current state in event logs.
For instance, the Apache ODE WS-BPEL engine triggers a
rich model of execution events!. Similarly, service compo-
sitions implemented using Windows Workflow Foundation
can use the .NET tracking service’ to persist event logs.
However, tracking system state via event logs in SOA is
not confined to composition engines. For instance, The
Vienna Runtime Environment for Service-Oriented Comput-
ing (VRESCO) [4] uses events to track not only service
compositions, but all entities and interactions in a SOA
(services, users, compositions, metadata and interactions).

In its most general form, an event log £ consists of a
sequence of n recorded events, i.e., £ = (e1,€9,...,€,).
Each event e; € & usually contains at least an unique
identifier, an event timestamp, the publisher of the event
(e.g., the BPEL engine), the subject of the event (e.g., the
composition instance that triggered the event), and the event
type. Depending on the concrete event type, more detailed
information is available. This type-specific information can-
not be describe generally, i.e., it is different from event
type to event type as well as from system to system. In
the following we describe the event types triggered by the
VRESCO system as an example of the possibilities provided
by event logs.

B. SOA Event Log: VRESCo

VRESCO is an experimental runtime environment de-
veloped at Vienna University of Technology. VRESCoO is
being developed under an open source license, and can be
accessed via the project Web page®. The project aims at
solving some of the research problems identified in [15],
e.g., dynamic selection of services based on Quality-of-
Service (QoS), dynamic rebinding and service composition,
service metadata and event-based services computing.

Ihttp://ode.apache.org/ode-execution-events.html
Zhttp://msdn.microsoft.com/en-us/library/ms735887(v=vs.85).aspx
3http://www.infosys.tuwien.ac.at/prototypes/ VRESCo/

In the following we focus on the latter aspect. The
foundations of event-based service-oriented computing have
been discussed in [3], [5]. In a nutshell, the goals of this
earlier work were to track what is going on in a service-
based application by constantly triggering events and using
CEP to construct meaningful information from those events.
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Figure 1. VRESCoO Event Type Classes

In a VRESCoO system, events of various types are
triggered. A simplified taxonomy of event type classes is
depicted in Figure 1. As can be seen, events are triggered
when services are queried, bound and invoked. Additionally,
events indicate if the data or metadata about services changes
(e.g., the QoS is changed, new operations are available).
Each of the concrete event type classes (those with non-italic
name) in turn contains a number of concrete event types that
can be triggered. For full details on all events refer to [3].

Events in VRESCO can be triggered either on client- or
server-side. While events concerning metadata are triggered
by the VRESCo server, all querying and invocation events
are triggered by clients and only processed throughout the
VRESCoO event engine. These client-triggered events are
listed in more detail in Table I. In the table, we provide the
condition that triggers each event along with the event type
and event type class of the event. All of these events provide
the basic information discussed above (sequence number,
timestamp, ...). In addition, events generally provide some
type-specific additional information, which we also summa-
rize in the table. For reasons of brevity, we have omitted
composition events. Composition events in VRESCO are
of comparable expressiveness as the events triggered by
Apache ODE.

The VRESCO event engine stores triggered events in an
event log. Therein, events are serialized as XML and can be
accessed and analyzed via a RESTful service interface. In
Listing 1 we provide an example event serialized to XML.
Evidently, the event reflects a service invocation with a very
simple input message (<order>) as payload.

III. LIFECYCLE EVENT LOG MINING

In this work, we are interested in exploring how event
log collected by the VRESCo0 framework, i.e., service event



Table T
CLIENT-TRIGGERED VRESCO EVENTS

Event Type Class | Event Type

Event Condition

Additional Event Information

ServiceInvokedEvent
BindingInvocationEvent | ServicelnvocationFailedEvent

ProxyRebindingEvent

Specific service is invoked
Service invocation failed

Service proxy is (re-)bound to a new service

Message sent to service
Invoking user

Message sent to service
Triggered fault

Old service

New service

RegistryQueriedEvent

QueryingEvent ServiceFoundEvent

NoServiceFoundEvent

Registry is queried
Specific service is found by a query

No services are found by a query

Query string
Query string
Query results
Query string

~
| <ServicelInvokedEvent xmlns="http://www.vitalab.tuwien.

ac.at/vresco/usertypes">
<Priority>0</Priority>
<Publisher>guest</Publisher>
<PublisherGroup>GuestGroup</PublisherGroup>
<UserName>a007b09b-8c23-4fac-af30-0142a61£3795</
UserName>
6 <SegNum>74006756-64£f1-40cb-858e-565d4bc6a94c:24</
SegNum>
7 <Timestamp>2010-11-09T09:58:49</Timestamp>
8 <CurrentRevisionId>180</CurrentRevisionId>
9 <CurrentRevisionWsdl>
10 http://localhost:60000/AssemblyAtomicServices/
IAssemblingPlanningService?wsdl
11 </CurrentRevisionWsdl>
12 <FeatureName>GetPartFeature</FeatureName>
13 <InvocationInfo>

woE W

14 <service_input>
15 <order><partl>text</partl></order>
16 </service_input>

17 </InvocationInfo>
18 </ServiceInvokedEvent>

Listing 1. Serialized Invocation Event

log, could be harnessed for better supporting service-based
applications during their whole lifecycle.

Roughly, analysis of VRESCO event log data is finalized
to the discovery of sequences of services that are frequently
invoked together, thus, to detect processes, or part of those,
as result of the compositions of highly co-invoked services.

This knowledge could be useful for improving the overall
performances of the VRESCO run-time framework as well
as supporting SBA designers during the whole application
lifecycle. As an example, service-based application devel-
opers could be provided with service recommendation tools
that are able to predict and, thus, to suggest next services
that should be included in the current service composition
at design-time.

Due to the huge amount of data collected in the VRESCo
event log, data mining techniques represent a suitable ap-
proach for addressing our research challenge. In the fol-
lowing, we describe how processes may be mined from the
VRESCo event log, namely how sequences of co-invoked
services that frequently appear in the event log may be
discovered and exploited.

A. Process Mining

According to van der Aalst et al. [19], the term process
mining, also referred to as workflow mining, describes a set
of techniques and methodologies whose aim is to distill a
structured process description from a set of actual traces of
executions recorded in event logs.

In our vision, a service log might be viewed as a database
consisting of sequences of events that change with time, i.e.,
a time-series database [8]. Such kind of database records
the valid time of each data set. For example, in a time-
series database that records service invocation transactions,
each transaction includes the unique identifier of the invoked
service as well as an extra time-stamp attribute indicating
when the event happened [24].

Several kinds of patterns can be extracted from various
types of time-series data. In this work, we are interested
in finding sequences of services that are frequently invoked
together in a specific order, i.e., sequential patterns [2].

Each process instance recorded on event logs might be
expressed as an unrolled trace of invoked services. Thus, let
S = {s1,82,...,5n} be a set of services and let S7 C S
be an itemset of services invoked at the same time (or

within a small time window), i.e., Sj = {851,580y 154, )
Therefore, a process p; = (51,83,...,5], ) has a
J

unique identifier and represents a sequence of service item-
sets, chronologically-ordered according to their time-stamps.
Globally, a process database is a sequence database P =
{p1,p2,...,pn} of executed and recorded processes.

Roughly, a sequential pattern is a sequence of ser-
vice itemsets that occur frequently in P according to
a specific order, i.e., appear as subsequence of a large
percentage of sequences of P. More formally, a se-
quence p' = (S51,55,...,5.) is a subsequence of p” =
(S7,85,...,80), ie., p =< p”, if there exists integers
1< <...< 1, <wv such that VlSjSuS;. - S;;

Then we may define the support supp(p’) of a sequence
of service itemsets p’ as the proportion of processes in the
database P that contains p’ as its subsequence, that is:

Hpj | p' = ps}]

supp(p’) = P



Therefore, sequential pattern mining is the process of ex-
tracting certain sequential patterns whose support exceed a
predefined minimal support threshold min_supp.

To this end, as a first approach we apply one of the more
efficient sequence pattern mining algorithm to the VRESCo
event log, namely PrefixSpan [16].

Furthermore, we extend our first approach in order to
exploit the temporal information associated with each ser-
vice invocation in a different way. Indeed, in traditional
sequential pattern mining, event time-stamps are only used
for establishing the chronological order between service
invocations, i.e., for simply stating that service s; is invoked
before service s;. However, observing that s; and s; are
invoked really closed to each other, e.g., within 5 seconds,
rather than noting that s; and s; are farther away from each
other, e.g. 5 minutes, could lead to different conclusions.
Thus, we apply another sequential pattern mining algorithm,
which is able to deal with this issue, i.e., MiSTA [7].

Finally, in Section IV, we describe the different results
we obtain on the VRESCoO event log when using the two
approaches described above.

IV. EXPERIMENTATION

In order to test our claim about finding frequent sequential
patterns inside service event logs, we use a real-life log of
events collected by the VRESCO runtime framework.

This event log consists of 89 transactions. Each trans-
action is in turn composed of several events according to
the ones described in Table I (e.g., ServicelnvokedEvent,
ServicelnvocationFailedEvent, etc.).

For the sake of our purposes, namely for discovering
sequences of services that frequently are invoked together,
we only consider the list of ServicelnvokedEvent for each
transaction.

Firstly, we run the PrefixSpan algorithm [16] on the
VRESCo data set. We use several thresholds on the min-
imum support of the sequential patterns to be extracted,
ranging from 20% to 100%. However, the maximum support
for frequent sequences found in our data set is 66%.

The following figures show the distribution of the lengths
of extracted sequence patterns, i.e., the number of invoked
services that are inside a frequent sequence. In particular,
Figure 2, Figure 3, and Figure 4 show the results obtained
by using a minimum support threshold of 25%, 50%, and
66%, respectively.

As one would expect, independently from the minimum
support chosen, 2-length sequences are the most popular
since for each k-length frequent sequences (K > 2) any
i-length subsequence, ie., 2 < ¢ < k, is also frequent
by definition. Moreover, as the minimum support thresh-
old increases, the maximum length of frequent sequences
decreases as well from 17 to 11, and, also, most popular
frequent sequences result to be globally shorter.

Finally, on average frequent sequences are composed of
5.86, 4.60, and 4.07 services for minimum support values
of 25%, 50%, and 66%, respectively.
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Figure 3. PrefixSpan [min_supp = 50%]: Pattern length distribution.

As a second step of our experimental phase, we also run
the MiSTA algorithm [7] on the VRESCO event log. This
algorithm differs from classical sequential pattern mining
algorithms like PrefixSpan because it also takes care of the
time gaps between consecutive items in a sequence. In other
words, MiSTA extracts frequent sequences by considering
not only the minimum support but also another parameter,
i.e., 7, which basically represents a threshold on the time-
gap between pairs of consecutive items.

In our experiments, we use several combinations of such
two parameters, namely min_supp and 7. In the following,
we describe the distribution of frequent sequence size ob-
tained by using two values for the minimum support, i.e.,
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Figure 4. PrefixSpan [min_supp = 66%]: Pattern length distribution.

20% and 32%, and three values for the time threshold T,
i.e., 5, 60, and 300 seconds, which are shown in Figure 5,
6,7, 8,9, 10, respectively.

The total number of frequent sequences found when
min_supp = 20% is 33, both for 7 = 5 and 7 = 60,
whereas it reaches the value of 35 when 7 = 300. Moreover,
when min_supp = 32% the total amount of frequent
sequences is 20, both for 7 = 5 and 7 = 60, whereas it
reaches the value of 27 when 7 = 300.

Finally, the maximum size of frequent sequences is 7,
whereas the average ranges from a minimum of 2.80 to
a maximum of 3.07. These results show that, by taking
into account the time gap between service invocations using
MiSTA instead of PrefixSpan, we are able to detect less and
shorter frequent sequences on average.

We argue that MiSTA could provide better results if we
previously analyze how time gaps are distributed across
consecutive service invocations, and we leave this as a
possible future work.

V. RELATED WORK

In this paper, we present a use case for event log
mining in service-based systems. This idea bears some
resemblance to the established idea of business activity
management [9] (BAM). BAM considers the event-driven
governance of business processes, and is, hence, mostly
a term from the business domain. Technically, BAM is
enabled by monitoring runtime monitoring of services and
their interactions within company SOAs. To this end, event-
based monitoring approaches [22], [21], [6] produce a steady
stream of low-level lifecycle events, similarly to the lifecycle
events discussed in Section II-B and to the event logs
produced by VRESCo. These low-level events need to be
aggregated so that real business information can be gained
from them. Existing techniques to do this include SLA
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Figure 5. MiSTA [min_supp = 20%, T =5 sec.]: Pattern length distribution.
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MiSTA [min_supp = 20%, T = 60 sec.]: Pattern length

aggregation [18] or event-based SLA monitoring [17], [13].
Related to the ideas of BAM is research work by [14], which
considers event-based monitoring of business compliance.
Our research, specifically mining for invocation sequences
that lead to failed service invocations, is complementary to
BAM. While BAM is mostly concerned with discovering
failures, our research can be used to identify or predict them
in advance.

In literature, events emitted by service-based applications
have found various other uses. For instance, [12] uses
eventing information (along with various other data sources)
to generate visualizations of the past behavior and quality of
Web services, mostly to ease management and selection of
services for other uses. This is related to our work, which
identifies services which have in the past been used together,
mostly to suggest suitable services for new uses. [23],
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Figure 8. MiSTA [min_supp = 32%, T =5 sec.]: Pattern length distribution.

[10] have used SOA events to generate predictions of SLA
violations. This is done by training machine learning models
from the collected event data, and using runtime event
information as input to those models.

Finally, our research is related to the idea of process
mining [20], [1], [19]. Generally speaking, process mining
considers discovering structures (mostly business processes)
from traces of earlier executions of information systems.
This also includes making implicit processes (that people
are subconsciously following) explicit, so that they can be
optimized using the techniques of business process reengi-
neering. Our work is different to process mining in the sense
that we do not suggest new processes from event logs. In-
stead, we rather give recommendations which combinations
of services have in the past been used together (indicating
that it might make sense to use them in combination).
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VI. CONCLUSIONS AND FUTURE WORK

Service-Oriented Architectures (SOAs), and traditional
enterprise systems in general, record a variety of events
(e.g., messages being sent and received between service
components) to proper log files, i.e., event logs. These files
constitute a huge and valuable source of knowledge that may
be extracted through data mining techniques.

In this work, we focus on process mining as a specific
instance of the more general sequential pattern mining
problem. Basically, our aim is to detect frequent sequential
patterns that might be present in actual traces of service
executions recorded in event logs. To this end, we apply
two sequential pattern mining algorithms to a real event log
provided by the Vienna Runtime Environment for Service-
oriented Computing, i.e., VRESCo.



The obtained results show that we are able to find
services that are frequently invoked together within the
same sequence. Such knowledge could be useful at design-
time, when service-based application developers could be
provided with service recommendation tools that are able
to predict and thus to suggest next services that should be
included in the current service composition.

Finally, as a future work, we aim at discovering possible
sequences of invoked services, which frequently lead to
failures or unexpected behaviors. This knowledge could be
exploited either for preventing SBA designers to deploy
possible faulty service compositions as well as for devis-
ing novel run-time adaptation mechanisms in response to
undesired events.
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