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Abstract 

As equivalent stiffness and damping of the grinding process dominate cutting stability, their identification is 

essential to predict and avoid detrimental chatter occurrence. The identification of these process constants is 

not easy in large cylindrical grinding machines, e.g. roll grinders, since there are no practical ways to measure 

cutting force normal component. This paper presents a novel frequency domain approach for identifying these 

process parameters, exploiting in-process system response, measured via impact testing. This method adopts 

a sub-structuring approach to couple the wheel-workpiece relative dynamic compliance with a two-

dimensional grinding force model that entails both normal and tangential directions. The grinding specific 

energy and normal force ratio, that determine grinding stiffness and damping, are identified by fitting the 

closed loop FRF (Frequency Response Function) measured during specific plunge-grinding tests. The fitting 

quality supports the predictive capability of the model. Eventually, the soundness of the proposed identification 

procedure is further assessed by comparing the grinding specific energy identified through standard cutting 

power measurements.  
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NOMENCLATURE (Symbols and Abbreviations)  

a [mm] actual infeed  kt [N/mm2] grinding specific energy 

b [mm] grinding (cutting) width  kn [N/mm2] normal force coefficient 

( )jC  [mm3/N2] matrix associated to the 

coefficient identification 

Kg [N/mm],  

Kgd [N·s/mm] 

grinding stiffness and 

grinding damping 

matrices 

( )n jc  [mm3/N2] column of ( )jC  

associated to kn 

LS Least Squares 

( )t jc  [mm3/N2] column of ( )jC  

associated to kt 

LVDT Linear Variable 

Differential Transformer 
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t, n [mm] 

ṫ, ṅ [mm/s] 

small perturbations in 

tangent and normal 

direction 

µ ratio between normal 

and tangential force 

components 

d [mm] vector of displacements 

in normal and tangential 

direction 

M [mm/N] projected compliance 

matrix 

Deq [mm] equivalent diameter m… [mm/N] elements of projected 

compliance matrix M 

Dr [mm] roll diameter MIMO Multi Input Multi 

Output 

Dw [mm] wheel diameter MRR0 [mm2/s] material removal rate in 

the static case 

normalized with respect 

to grinding width 

DoF Degree of Freedom  MRR [mm2/s] Material Removal Rate 

normalized with respect 

to grinding width 

FEM Finite Element Method P set of process DoFs 

Fn [N] normal grinding force Ps0 [W] spindle power without 

material removal 

Ft [N] tangential grinding force Ps [W] overall spindle motor 

output power 

FRF Frequency Response 

Function 

ω [1/s] pulsation 

H [mm/N] overall compliance 

matrix of full system 

dynamics 

rn, rt, wn, wt DoFs components for 

roll (r), wheel (w) in 

normal (n) and 

tangential direction (t) 

CLBAh [mm/N] closed-loop FRF 

identified by 

measurements 

  semi-interval of the 

identified parameters 

hT
BP [mm/N] FRFs vector relating 

input forces at process 

DoFs to the 

displacement at the 

additional output DoF 

B; 

 

sgn Ω sign of wheel velocity 

hPA [mm/N] FRFs vector relating a 

force at the additional 

input DoF A to the 

output displacements at 

the process DoFs; 

( )jt  [mm/N] known terms vector of 

the identification system 

hwn_wn [mm/N] static compliance  VW, VS [m/s] wheel and roll velocities 

 

1. Introduction 

In grinding, multiple abrasive particles of the grinding wheel — with different size, distribution and orientation 

— act together to produce a complex and stochastic grinding force signature [1]. Several force models, ranging 

from physical to empirical/statistical, have been proposed in grinding literature, as reported in this exhaustive 

survey from CIRP [2]. Despite generality of physical approaches is theoretically broader, mixed analytical-

empirical models are mostly used, thanks to their easy calibration in real cases with simple experimental setups. 



Different formulations have been proposed over the years for improving modelling accuracy: those based on 

specific energy concept [3] are the simplest and most used to cope with force estimation and cutting stability 

issues.  

Cylindrical grinding stability is usually strictly related to normal — i.e. radial — dynamic compliance between 

wheel and roll. For this reason, grinding dynamics is often studied reducing system behavior to the solely 

normal direction [4]. Normal force component does not generate cutting power but just a load on machine 

structure that provokes a relative displacement between wheel and workpiece. In regenerative chatter stability 

analysis the cutting process is typically described by means of a “grinding stiffness” (or “cutting stiffness”), 

i.e. the ratio between normal grinding force and actual infeed [5], and a “grinding damping”, relating force to 

vibrational velocity in normal direction.  

A two DoFs (degrees of freedom) process model — that considers also the tangential force component and the 

corresponding displacement — has been proposed in [6] to deal with cutting instability generated by damping 

forces acting on vibration modes involving both radial and tangent displacements. Then, an additional 

coefficient is needed: the ratio between normal and tangential force components. 

Relying on this 2D model, this paper characterizes the coupled machine-process behavior in the frequency 

domain and performs a reverse identification of grinding stiffness, grinding damping and normal/tangential 

ratio by a sub-structuring method. The adopted approach is the well known RCSA method (Receptance 

Coupling Substructure Analysis) that predicts frequency responses of a specific system, combining its 

substructures responses [7]-[12]. Schmitz and Donalson [7] were the first to propose RCSA for tool-tip FRF 

identification. Park et al. [8] presented an improved receptance coupling technique for the same purpose: the 

end mill was modeled numerically as a cylindrical beam, and spindle-tool-holder system FRF was identified 

by means of impact testing on two different blank cylinders — used as calibration tools — clamped on the 

tool-holder. Calibration tools were adopted to determine rotational responses using IRCSA (Inverse RCSA), 

by conducting additional experiments. In general, several authors adopt IRCSA to solve the reverse problem 

of joint identification between two substructures [13]-[15].  However, in all these works, the joint is modeled 

as a pure mechanical impedance, namely, a “joint dynamic stiffness matrix” [14]. Conversely, in the present 

study, the “joint” is represented by the grinding process. The grinding process exerts a force that depends on 

relative displacements and velocities of the connection points but, basing on the developed physical process 

model, a specific structure of the two by two stiffness and damping matrices is assumed, reducing the number 

of parameters to be identified down to two real unknowns. For this reason, the proposed mathematical 

elaboration is basically new in the literature and allows an easy characterization of the cutting dynamic 

behavior of medium/large cylindrical grinders — such as traverse/roll grinders — without making use of direct 

cutting force measurements. 

Excitation of closed-loop process dynamics was implemented in [16], where an electro-dynamic shaker and a 

bearing connection were used to excite the workpiece during the grinding process. The aim of the authors was 

to test the effect of a random excitation on chatter occurrence but no cutting parameter identification was 

performed. In a similar way, in [17] workpiece dynamic compliance was measured in open and closed loop 



conditions — during a plunge grinding operations. The authors found a significant difference in the resonance 

peaks for the two situations and they explained it as a mere closure of the mechanical loop originated by the 

mechanical contact between wheel and workpiece. Indeed, as the following paragraph will explain, they likely 

saw the effects of dynamic coupling produced by grinding force field, coupled to system states, i.e. relative 

position and velocity. For sake of clarity, some misleading statements are worth to by cited: “The stiffness 

increase is probably from the extra support of the wheel to the flexible workpiece, i.e., a change of boundary 

condition, while the damping increase […] is possibly due to the porous structure of the vitrified grinding”. 

As shown in the present work, the closed loop analysis should consider the force field produced by the grinding 

process as a dynamic coupling between the mechanical elements constituted by the grinding wheel and the 

workpiece. 

Grinding stiffness and its coupling with machine dynamic stiffness have a predominant effect on system 

stability. In [18] grinding tests with variable workpiece dynamics were executed and compared to numerical 

simulations, in predicting cutting stability. In this scenario, process constants identification is important and 

can also support advanced schemes for wheel and workpiece waviness monitoring during chatter onset [19]. 

Identification of grinding force models usually requires measurement of grinding power/forces and actual 

material removal. Specific energy is estimated relating the grinding power — which is the product of tangential 

cutting force and cutting speed — to the specific material removal rate (MRR). In most of the literature, specific 

energy increases with a decreasing radial infeed, that reduces the equivalent chip thickness. Several researchers 

explain this phenomenon through the so-called “size-effect”, related to the ploughing power component, and 

assume a constant ploughing force per contact width ratio. Conversely, sliding power is usually modeled as 

proportional to wear flats area on wheel surface [20]. Whereas these two latter components exist even without 

material shear and chip formation, their importance decreases as chip thickness increases, generating a process 

non-linearity, associated with the transition of the removal mechanism from plowing to chip formation [21]. 

Simplified methodologies to determine cutting stiffness in plunge grinding were presented in [22] and [23]: 

they were based on the identification of the structural elastic recovery time constant, which defines the 

exponential decay of actual infeed after an initial nominal infeed. This methodology entails the knowledge of 

wheel-workpiece relative stiffness, whose identification requires accurate force/displacement measurements. 

In this works, force measurement systems based on displacement sensors were adopted: a LVDT transducer 

mounted at workpiece headstock [22], and a capacitive sensor embedded in work spindle [23]. Direct cutting 

force measurement is simple in surface grinding machines by installing a dynamometric table onto the machine 

table [24]. However, both these solutions become complex and not suitable in case of medium/large industrial 

roll grinders: sensors placement might foresee machine components reworking — e.g., sensors embedded in 

the spindle — while external solutions could imply the design of large auxiliary structures for sensor support. 

An experimental procedure that does not requires cutting force measurements for evaluating grinding stiffness 

in cylindrical grinding has been patented in recent years [25]. It is based on spiral grinding tests and on spiral 

marks measurements on the workpiece (width and depth). All these methods require the knowledge of machine 



structural stiffness — therefore prescribing a static compliance measure — and neglect grinding process 

damping — which indeed is necessary to predict chatter occurrence [4]. 

Moreover, grinding system behavior changes along production time because of wheel wear, change in 

workpiece mass, lubrication condition, etc. Being able to estimate in real-time grinding constants is another 

paradigm that was addressed [26], which provides a real-time estimation of grinding process parameters 

through recursive identifications (Extended Kalman Filter and least-squares), hinged at model-based control 

of grinding dynamics. Again, this approach requires experiments involving direct/indirect force measurements 

through force sensors (strain-gauge and piezoelectric type) and radial displacement sensor (eddy current 

probe). 

Those remarks and the above mentioned scientific/industrial needs motivate the present paper, aiming at 

identifying a grinding process force model that is inherently suited to stability study in medium/large 

cylindrical grinding machines, without requiring force and displacement measurements. 

The paper is structured as follows. First, grinding force model is presented, together with its interaction with 

system dynamics; then, equations for process parameters identification, starting from out-of-process and in-

process dynamic compliances, are introduced. Then, a section describes tap testing setup for measuring the in-

process FRF. Eventually, specific energy identification trough FRFs is compared to identification based on 

classical power measurements during grinding tests. Discussion and conclusions complete the article. 

 

2. Methodology description  

The identification of a 2D grinding force model, able to reproduce process excitations in both normal and 

tangential directions, is herewith proposed to analyze machine-process dynamic interaction in roll grinding. 

The adopted model is based on a minimal set of parameters: specific energy and grinding stiffness. Parameters 

identification is performed without requiring force measurements during grinding tests, but considering how 

process forces affect machine dynamics.  

Coupling process model with machine dynamics, it is possible to predict how the dynamic compliance 

measured at rest (i.e. out-of-process) changes during grinding (i.e. in-process). Dually, this difference can be 

exploited to identify the two process parameters. Considering the reduced number of parameters, a good 

matching between predicted and experimental in-process dynamic compliance (for a significant frequency 

range) is not trivial and demonstrates by itself the validity of the model.  

A substructuring technique is adopted to predict the effect of process forces on machine dynamics, in particular 

on workpiece dynamic compliance in normal direction (the FRF selected for the identification, see par. 5.3).  

The process model applies forces to the out-of-process wheel-workpiece relative dynamics: the resulting 

oscillations, in turn, affect the actual infeed. This dependency closes a dynamic loop through the process: for 

this reason, the out-of-process FRFs are also indicated as open-loop FRFs, while the in-process FRFs become 

closed-loop FRFs. 



The closed-loop FRFs more suited for the identification are those mostly influenced by the process. In this 

study, a single closed-loop FRF has been used: the dynamic compliance at workpiece (namely, roll or cylinder) 

in normal direction. 

 

The methodology can be synthetized in the following steps: 

 

- Development of the grinding force model; 

- Determination of the equations for the machine-process closed loop dynamics and for parameters 

identification; 

- Measurement of the dynamic compliances necessary to feed the identification system: wheel-

workpiece in tangential and normal direction, roll side in normal direction open-loop, roll side in 

normal direction closed-loop; 

- Parameters identification via Least Squares (LS) solution in a proper frequency range. 

 

3. Machine-process dynamic interaction 

3.1. Grinding process model 

As recalled in the introduction, in most of the literature, the grinding power is assumed to be a monotonic 

function of the material removal rate (MRR). Then, the tangential grinding force Ft associated to that power 

can be determined knowing the wheel velocity, while the normal component Fn is usually considered 

proportional to the tangential one. These components are expressed with respect to a reference frame located 

at the ideal contact point between wheel and workpiece (see, in Figure 1, the grinding forces, applied to the 

wheel). 

 

Figure 1. Grinding forces components 

 

SupportsWorkpiece

Wheel

Neckrests
Wheelhead

Ω+



Based on these definitions, the following force model is considered, which can be generalized for any kind of 

wheel-workpiece engagement (see [27],[6]): 

 

sgnt
t

n s

F MRR
bk

F V

     
=    

    
 (1) 

 

where: 

• b: grinding width; 

• kt: specific energy associated to material removal; 

• µ: ratio between normal and tangential force components; 

• VS: grinding velocity (that basically coincides with the wheel peripheral velocity); 

• “sgn Ω”: sign of wheel velocity (positive according to arrow in Figure 1); 

• MRR: Material Removal Rate, normalized with respect to grinding width. 

 

In the static case (namely, without vibrations), the MRR is given by the following expression: 

 

0 wMRR aV=  (2) 

 

where a is the actual infeed and Vw the workpiece velocity. A general expression for the MRR - taking into 

account also dynamic displacement components - can be obtained linearizing the expression of the material 

flow through the contact arc when wheel-workpiece relative position and velocity are subject to small 

perturbations in tangent and normal direction, denoted with t, ṫ, n, ṅ: 

 

( )( ) 0w eq w eqMRR V t a n n aD MRR a t V n n aD      + + + = + + +  (3) 

 

where Deq is the equivalent diameter given by DwDr/(Dw+Dr), with Dw and Dr wheel and roll diameters 

respectively. 

Finally, Eq.(3) can be substituted into Eq.(1) to express force perturbation around the equilibrium: 
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  

 (4) 



 

Let the following equivalent grinding stiffness and damping matrices be defined: 

 

sgn sgn0 sgn
;          

0

def def eqt w t
g gd

s s eq

a aDbk V bk

V V a aD  

     = =    
 

K K  (5) 

 

Then Eq.(4) can be rewritten as follows: 

 

t
gd g

n

F tt

F nn
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     
= +     
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K K  (6) 

 

Since the identification methodology encompasses the in-process measurement of roll dynamics via tap testing, 

the grinding operation considered for the experiment must exhibit a stable behavior. This assumption entails 

the possibility to neglect, in the determination of the actual infeed, wheel and workpiece regeneration loops, 

which are modeled by many authors to explain the origin of grinding chatter [4]. Therefore, the proposed 

model does not consider any time delay: only the current instantaneous value of the states is supposed to affect 

grinding forces. 

3.2. Machine model 

The machine model must describe wheel and cylinder relative dynamics, providing the relative 

displacements/velocities involved in the grinding forces expression, i.e. Eq.(4). Wheel/workpiece dynamic 

behavior is usually rather linear and can be represented by a set of FRFs displacement over force. The grinding 

force acts on both wheel and cylinder, both in tangential and normal direction, while being influenced by the 

relative displacement along the same directions. Thus, the minimal dynamics to be described for studying the 

grinding process is represented by a MIMO system defined by a 4x4 compliance matrix (for sake of 

compactness the dependence on frequency is hidden):   

 

_ _ _ _

_ _ _ _

_ _ _ _

_ _ _ _

wt wt wt wn wt rt wt rn

def wn wt wn wn wn rt wn rn

pp
rt wt rt wn rt rt rt rn

rn wt rn wn rn rt rn rn

h h h h

h h h h

h h h h

h h h h

 
 
 

=  
 
 
 

H  (7) 

 

where subscript “w” stays for “wheel side”, “r” for “roll side”, “t” for “tangential direction” and “n” for 

“normal direction”, while “P” indicates the set of the above-mentioned DoFs (process DoFs): P={p1, p2, p3, 

p4}={“wt”, “wn”, “rt”, “rn”}. 



For the closed-loop FRF required by the identification system any other DoF of the machine can be used. Once 

defined such additional input/output DoF pair (A,B), which can even coincide with one of the process DoF, 

the overall compliance matrix describing the full system dynamics is defined as follows: 

 

 

def
PP PA

T
BP BAh

 
=  
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H h
H

h
 (8) 

 

where 

• hPA (5x1) is the FRFs vector relating a force at the additional input DoF A to the displacements at the 

process DoFs; 

• hT
BP (1x5) is the FRFs vector relating input forces at process DoFs to the displacement at the additional 

output DoF B; 

• hBA is the FRF relating a force at the additional input DoF A to the displacement at the additional output 

DoF B. 

 

The elements of matrix H are identified experimentally via tap testing procedure, as described in par. 4. 

 

3.3. Coupled model 

The dynamic coupling between machine and process was attained by connecting wheel-workpiece relative 

dynamics with the grinding forces that depends on wheel-workpiece relative displacements. This connection 

corresponds to a structural modification that realizes a closed loop in the structure: coherently with the 

treatment exposed in par. 3.1 — namely, Eq. (4) — this load is given by the dynamic component of grinding 

force associated to nominal process parameters. Substructuring techniques can be profitably exploited to carry 

out such a structural modification [28]. 

The diagram of Figure 2 represents such a coupling, where the input are wheel-workpiece relative nominal 

displacements in tangential (usually null) and normal directions (radial infeed). 

 



 

 

Figure 2. Dynamic model of grinding process 

 

  

The incident matrix L appearing in the scheme generates two opposite grinding forces — for both normal and 

tangential components — on wheel and roll, and the input force F, which is the excitation for the closed-loop 

impact testing, on the selected DoF A: 
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On the other side, LT provides the summation of wheel and roll responses in tangential and normal directions 

in order to get the relative displacement; moreover, the further row produces B DoF displacement (denoted 

with the variable O), that is the output of the closed-loop impact testing.  

Now, let d be the vector of displacements in normal and tangential direction, namely: 

 

def t
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Then, the closed-loop equation of dynamic equilibrium can be written: 

( )
1 0

0 1

0 0

T
g gds

F O

  
     

− + =     
       

0 d
L HL K K d  (11) 

[Kg]

s*[Kgd]

-
+

+

+

roll wheel

Displ. Norm.

Force Norm.

H

F

L L

O

T

Force Tan. Displ. Tan.

Tangential displ.

Infeed displ.

Force 

Input in A 

[Kg]

s*[Kgd]

-
+

+

+

roll wheel

Displ. Norm.

Force Norm.

H

F

L L

O

T

Force Tan. Displ. Tan.

Tangential displ.

Infeed displ.

Position 

Output in B 

Machine Dynamics 

 
Stiffness  

 
Damping 

  

Grinding 

 Process 

tangential 

radial 

(infeed) 

wheel-workpiece  

rel.displacement  

DoF selection DoF selection 



 

Let matrix M and its partition be defined as follows: 
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Then, Eq.(11) can be solved, after substituting M, w.r.t. the closed-loop FRF, that is the ratio O/F: 
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(13) 

Since ( ),g g tk =K K  and ( ),gd gd tk =K K , then ( ),
CL CLBA BA th h k = . Thus tk and   can be obtained 

solving the following functional equation: 

( ),
CL CLBA t BA meah k h =  (14) 

 

 

where 
CLBA meah is the closed-loop FRF identified by measurements (see par. 4.2). 

Posing 
def

n tk k= , Eq.(14) becomes linear in the unknowns tk and nk . Substituting the expressions of Kg and 

Kgd (obtained in par 3.1) into 
CLBAh , the identification equation can be made explicit as follows: 
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Eq.(15) entails a scalar equation for each value of frequency ‘ω’, that is the independent parameter of the 

transfer functions in matrix M. 



Since the actual infeed is usually significantly smaller than the arc of contact between wheel and workpiece, 

it can be stated that wa aD and wa V  : i.e. all terms having the actual infeed as factor can be neglected. 

Additionally, we note that, if the dynamical behavior in tangent and normal direction is decoupled, implying 

, , , 0nt tn Bt tAm m m m  , Eq.(15) becomes: 

 

( ) ( )( ) 0
CL CL CLnn BA nn BA Bn nA eq BA nn BA nn w n BA BA

s

b
m h m m m m aD i h m m m V k h m

V
− + + − + − =   (16) 

 

and tk becomes unidentifiable. Therefore, the full identification of process model can be attained only if 

dynamics in normal and tangential direction are someway coupled, by slanted vibration modes in the frequency 

range of interest.  

 

3.4. Model parameters identification 

Knowing the open loop FRFs, i.e. the elements of matrix M, Eq.(15) establishes a functional relationship 

between coefficients kn and kt and the “in-process” FRF relating force input A to displacement output B. This 

functional relationship can be sampled in a system of N equations by evaluating the dynamic compliances for 

N frequencies ωj in a proper frequency range; then, the system can be solved for kn and kt.  

Let the following vectors/matrix be defined: 
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Then, Eq.(15) becomes: 

( ) ( )n

j j

t

k

k
 

 
= 

 
C t   (18) 



 

As real values for kn and kt are wanted, being ( )jC and ( )jt  complex numbers, Eq.(18) can be rewritten in 

real form as follows (as suggested in [14]):  
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C t

C t
  (19) 

 

Finally, Eq.(19) can be solved in the Least Squares sense. 

 

4. Experimental campaign 

An experimental campaign was conducted on a commercial middle-sized roll grinding machine, with a wheel 

spindle of 15 kW and maximum roll length of 3000 mm. Supplementary grinding tests with spindle power 

measurements were performed to identify kt with the classical approach based on specific energy, to compare 

the result with the one obtained by the proposed approach. 

The experimental campaign was structured as follows:  

 

- Open-loop FRFs measurements at rest, via tap testing on wheel and cylinder; 

- Selection of the best in-process measurement DoF A and B; 

- Closed-loop FRFs measurements during a plunge grinding operation (in the same wheel position along 

the cylinder as for the open-loop FRFs measurement); 

- Traverse grinding tests at different infeed, wheel and roll speed, with wheel spindle power 

measurements, for classic specific energy identification. 

 

5. Results  

5.1. Process identification from FRFs fitting 

5.1.1. Open loop FRFs measurement 

Open loop machine dynamics was characterized by impact testing measuring wheel and roll requires absolute 

compliances, with standard instrumented hammer and accelerometers, and computing the relative 

compliances, in both radial and tangential directions. Other DOFs can be added, for off-line and in-process 

measurements. In the present study, to minimize the experimental burden, the already mentioned wheel and 

roller DOFs were candidate also for in-process measurement.  

The FRFs composing the compliance matrix H were measured with the setup illustrated in Figure 3. Machine 

axes controller were active during the open-loop FRFs measurement in order to better represent in-process 

conditions. 



 

 

Figure 3. Setup for open-loop FRF measurement 

 

The excitations were exerted at cylinder surface along normal and tangential direction. Force and acceleration 

signals were acquired via NI™ USB 9234 Data Acquisition System, with a sampling rate of 4096 Hz. 

Exponential and Hanning windows have been applied to impulsive force and acceleration signals respectively. 

As acceleration measurements were expected to be affected by parasitic environmental vibration, the FRFs 

were computed via H1 estimator [29], which minimizes the error due to output noise. Even if the excitation 

point in normal direction does not coincide with the measuring point, due to the extreme rigidity of the cylinder 

portion in between, the corresponding FRF can be considered co-located, as no decoupling eigenmodes are 

evident —  as a matter of fact, the FRFs do not show any resonance beyond 400 Hz. The wheel carriage (Z-

axis) was positioned in the middle of the stroke (about 3000 mm), that is in the middle of the cylinder. 

Regarding wheel tap testing, to avoid complex excitation in tangential direction on the wheel boundary and 

accelerometer placement on the abrasive material, the exciting force and corresponding response have been 

injected and measured at wheel hub. Wheel body compliance is therefore not represented in the measure. As 

literature unanimously claims that wheel stiffness plays an important role in determining grinding dynamics 

[30], its effect was estimated by adding a proper static compliance to hwn_wn, i.e. the co-located FRF at wheel 

boundary, in normal direction.   

The stiffness value was estimated via FEM, taking into account the dimension and the material of the wheel, 

which is a Tyrolit™ 47ACI202 with a nominal diameter of 600 mm and a width of 50 mm. The Young module 

of the wheel was estimated by matching the first 3 natural frequencies measured via tap testing, in free-free 

conditions, with the corresponding frequencies computed by the FEM for the first 3 mode shapes. Then, wheel 

was modelled in contact with an infinitely rigid cylinder with a diameter of 250 mm, loaded with a 1 kN radial 

force and the resulting approach computed (Figure 4). The result is a 524 N/mm stiffness. 

 

 

Tangential direction
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accelerometer



 

Figure 4. Wheel FEM for stiffness estimation 

 

The elements of the compliance matrix M defined in Eq.(12) are depicted in Figure 5. 

 

Figure 5. Elements of compliance matrix M 

 

 

 



5.1.2. Closed-loop FRF measurement and selection  

The choice of the proper closed-loop FRF is very important for the quality of process parameters identification. 

In order to minimize the effect of uncertainties on the Euclidean norm of the solution vector, the input/output 

pair has to minimize the ||•||2-condition number of the identification matrix in Eq. (19). Since the condition 

number reflects the influence of the input excitation on the grinding process, the most suited input/output 

candidates are the process DoFs: the co-located FRFs — when input and output DoFs are the same — usually 

entail the maximum displacement amplitude. Then, the condition number of the four systems obtained by 

posing A≡B≡rn,wn,rt,wt were compared (see following table): the lowest value corresponds to the DoFs pair 

A≡B≡rn, because the cylinder is more compliant then the wheel side. Therefore, the closed-loop FRF to be 

measured during a grinding test is at cylinder side, in normal direction. 

 

 

Table 1. Condition number evaluation 
I/O DoF Condition number 

wt - wt 13.6 

rt - rt 9.8 

rn - rn 8.8 

wn - wn 14.9 

 

Since during a grinding operation the cylinder is rotating, an auxiliary steady surface, constrained to the 

cylinder surface in normal direction only, was created by propping a steel plate against the cylinder surface, 

with a preload contact force sufficient to prevent loss of contact under tapping and process forces (Figure 6). 

Both measuring point (accelerometer) and excitation point are on the metal plate. In order to be sure to hit and 

measure on the contact line, minimizing excitations of plate eigenmodes, a narrow metal stripe was 

correspondently welded to the plate (Figure 6); a thin Teflon™ film was glued on the plate on the side facing 

the cylinder to decrease sliding friction, without adding a significant compliance. 

It should be pointed out that the theoretical degree of freedom pertaining the closed-loop FRF should 

correspond to normal direction at contact point between wheel and cylinder that it is located at the opposite 

side of actual point. Nevertheless, whereas the cylinder is rather stiff and massive, a local eigenmode 

decoupling the dynamics of the actual measurement point and the theoretical one is negligible and the 2 points 

can be confused with each other.  

 

 

 

 



 

Figure 6. Setup for closed-loop FRF measurement. The metal plate is fixed on the machine structure 

 

The plunge grinding operation executed during closed-loop FRF measurement is described in Table 2. In order 

to guarantee the coincidence between actual and nominal infeed value, the measurement was executed after a 

proper dwell time, when the spindle power reached the steady state.  

 

 
Vs [m/s] Vw [m/s] Infeed vel. [mm/s] 

41.6 0.737 0.003 

 

Table 2. Grinding parameters for in-process tap-testing 

 

Given the cylinder diameter and the selected infeed velocity, the infeed for turn a, required to compute process 

matrices Kg and Kgd, is: 

 

0.003 mmw

w

a
a D

V
= =   (20) 

 

The measured closed-loop FRF is depicted in Figure 7, that shows also the coherence, indicating an acceptable 

linear correlation between input force and output acceleration. 

      



 

Figure 7. Closed-loop (in-process) FRF 

 

The closed-loop FRF magnitude and phase exhibit a sawed gait due to the periodic disturbances produced by 

wheel and roll rotation. While the effect of roll rotation (a peak each 1 Hz, in this case) is limited in amplitude, 

the disturbance ascribable to wheel rotation (a peak every 22 Hz) is rather disruptive, as clearly shown by the 

corresponding coherence tumbles. Such periodic disturbances are not represented in the adopted machine 

model and therefore should not be included in the fitting data: for this reason, a 4 Hz interval around each of 

these latter peaks has been excluded by the identification procedure. 

 

5.1.3.  Parameters identification in frequency domain 

Now, it is possible to solve the system of Eq.(17) for kt and kn. The selected frequency range, i.e. (20120 Hz), 

corresponds to an acceptable coherence of the FRF and a significant amplitude, necessary to get a good 

numerical conditioning and a limited variance of the estimated parameters (see Figure 7). It yields: 

 

3 328.6 J/mm ;    56.0 J/mm      t nk k= =   (21) 

 

Theoretical closed-loop FRF, computed exploiting the identified parameters, is plotted against its experimental 

counterpart, together with the corresponding open-loop FRF in Figure 8, to assess fitting quality. 

 



 

Figure 8 . Closed-loop fitting 

 

The square root of the residual variance over the considered frequency range is equal to 6.7e-9 m/N and the 

2 intervals for the identified parameters, corresponding to a confidence level of 95%, are: 

3 32 8.5 J/mm ;    2 1.4 J/mm      
t nk k = =   (22) 

 

While the confidence interval associated with kn is rather good, that one associated with kt reflects a significant 

lack of observability. This circumstance is ascribable to the weak coupling between dynamic compliance in 

tangential and normal direction for the machine under investigation, which makes the identification system 

partially ill conditioned — as pointed out at the end of par. 3.3. Indeed, the most significant eigenmode in the 

identification frequency range, at 50 Hz, moves the wheel and the roll mostly in radial direction. 

 

5.2. Specific energy identification from power measurement during grinding tests 

The proposed identification methodology can be furtherly assessed by comparing the kt , obtained in the 

previous paragraph, with its estimation identified from spindle power measurements during grinding tests. 

Spindle power measurement is rather simple and does not require any special equipment, as its value is 

provided directly by the motor drive and sent to the machine supervisor system. 

The adopted relationship between specific energy and spindle power is: 

 

0s t sP k MRR P= +  (23) 



    

where Ps is the overall spindle motor output power and Ps0 is the spindle power component for a null MRR 

(mainly due to spindle internal friction and wheel rubbing effect).   

Grinding tests consisted in traverse grinding passes without overlapping with a fixed wheel speed of 37 m/s 

and two different roll speeds. The continuous infeed was set automatically by the machine, having imposed a 

reference wheel spindle power through a supplementary position control loop on the infeed axis. Wheel type 

and roll were the same of the plunge grinding operations executed during closed-loop FRF measurement, so 

that the specific energy identified with the two approaches must coincide.  

For each combination of wheel and roll velocity, six passes were executed. The MRR was computed 

multiplying the roll velocity by the grinding width — equal to wheel width, i.e. 50 mm — and the average 

actual infeed, calculated by measuring roll diameter exploiting a caliper integrated in the machine, before and 

after the 6 grinding passes. 

Table 3 resumes the grinding tests variable parameters with the resulting MRR and the measured wheel power. 

 

Vw [m/s] a [mm] MRR [mm3/s] Wheel power [W] 

0.980 0.00144 70.4 5340.8 

0.490 0.00345 84.6 5110.3 

0.490 0.00320 78.7 5088.3 

0.980 0.00123 61.9 4965.2 

0.490 0.00070 17.2 3585.6 

0.490 0.00148 36.3 3488.6 

0.490 0.00120 27.4 3327.9 

0.490 0.00130 31.6 3258.0 

0.490 0.00002 0.6 3211.6 

 

Table 3. Grinding parameters for in-process tap-testing 

 

Since Eq. (18) must hold for each row of Table 3, an over-determined linear equations system in kt and Ps0 is 

solved in LS sense, yielding: 

0

3 3
029.24 J/mm ,  9.33 J/mm ;       2824.3 W,  496.6 W

t s
st k Pk P 

− −

= = = =  (24) 

  

Figure 9 gives a graphical representation of the quality of the fitting. Both kt nominal value and the 95% 

confidence interval are very close to those obtained according to the sub-structuring procedure described in 

the previous paragraph, confirming the validity of the proposed dynamic model. 

  



 

Figure 9. Specific energy kt identified via power measurements and by sub-structuring. 
 

5.3. Sensitivity analysis  

The identification procedure is based on a linearization of the force model of Eq. (1) around the nominal infeed. 

When vibration occurs, the actual infeed differs from the nominal one; thus, a sensitivity analysis was carried 

out to evaluate the impact of this approximation on the identification result. 

The kn and kt identification was repeated considering several values of infeed, spanning an interval of -/+ 10% 

of the nominal value. The results are reported in Figure 10. 

It can be noted that kt coefficient exhibits the largest variation — around 17 % — of the nominal value: similar 

uncertainty is reported in the literature [31]. 

 

 

Figure 10. Sensitivity analysis of force model linearization 

 



6. Discussion and Conclusions 

A force model describing machine-process interaction in cylindrical grinding was proposed. It is based on two 

parameters, i.e. grinding specific energy and grinding stiffness, and models the cutting forces in both tangential 

and normal directions. 

The presented methodology for parameters identification — that does not require direct cutting force 

measurements — is based on the effect that the process has on roll dynamic compliance in normal direction. 

The model predicts how the dynamic compliance measured at rest (i.e. out-of-process) changes when the 

process is active (i.e. in-process).  

The proposed identification procedure requires first a dynamic compliance measurement (via tap-testing) at 

wheel and workpiece in rest condition for both tangential and normal directions. Then an in-process dynamic 

compliance is measured at cylinder side in normal direction, by means of the developed original setup.  

The model well predict the in-process dynamic behavior and provides an estimation of the grinding stiffness 

in both tangential and normal direction — or, equivalently, the ratio between tangential and normal grinding 

force components. Due to the poor coupling showed by the examined machine between normal and tangential 

dynamics of wheel and cylinder for the targeted frequency range, the identification of grinding specific energy 

resulted more uncertain than the normal force coefficient. The specific energy was identified also exploiting 

wheel spindle power measurements in standard grinding tests. The comparison of the two identification 

methodologies — limited to the sole specific energy — confirmed the good performance provided by the 

proposed method based on tap testing and frequency domain fitting. 

The proposed model properly describes the dynamic interaction between grinding process and machine, 

including the dynamic coupling between tangential and normal directions. Moreover, the original calibration 

procedure, based on in-process and out-of-process tap testing measurements, allows the exploitability of the 

model even when the grinding force measurements are unpractical, like in case of large roll grinders. Then, 

the calibrated model can be effectively exploited in advanced model-based control schemes for grinding chatter 

avoidance as implemented by the authors in [32]. Future works will be carried out to furtherly improve the 

technique for in-process FRF measurements, trying to attenuate the disturbances induced by wheel and roll 

rotation during grinding. 
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