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We analyse the effect of a strong perpendicular magnetic field on an intersubband transition in a
disordered doped quantum well strongly coupled to an optical cavity. The magnetic field changes
the lineshape of the intersubband optical transition due to the interface roughness of the quantum
well from a Lorentzian to a Gaussian one. In this regime, a novel form of magnetic-field-induced
cavity protection sets in, which strongly reduces the polariton linewidth to the cavity contribution
only. Implications of our results for fundamental studies of nonlinear polariton dynamics and for
technological applications to polariton lasers are finally highlighted.

Strongly confined quasi two-dimensional (2D) elec-
tronic systems have a long research history [1], and still
remain under the researchers’ spotlight due to their large
importance for both fundamental science and technolog-
ical developments. In recent years, 2D electronic systems
supporting intersubband (ISB) transitions polarized per-
pendicular to the quantum well plane have been com-
bined with good-quality electromagnetic cavities giving
rise to strong light-matter coupling effects and opening
the field of intersubband polaritons [2, 3].

In particular, by adjusting the electronic density it is
possible to vary the dipole moment of the ISB on a quite
broad range, bringing these polaritonic devices from the
usual strong-coupling regime to the more exotic ultra-
strong coupling (USC) regime. This regime was experi-
mentally achieved with ISB and other various solid-state
platforms [4–7] and is of great interest for its strongly
modified ground-state properties [8–10]. More in gen-
eral, the large flexibility of ISB polaritons holds great
promise for the study of a wide range of cavity quantum
electrodynamics (cQED) effects from both a fundamen-
tal [8, 11–13] and an applied perspective [14–16]. Despite
the great achievements reached using ISB polaritonic de-
vices in both the mid-infrared and THz regime, a serious
obstacle hindering a full development of this research pro-
gram is caused by the relatively large linewidth of the ISB
transition [17], mostly due to interface roughness of the
semiconductor quantum well nanostructures [18].

In this article we theoretically investigate a method
to dramatically reduce the ISB polariton linewidth by
suppressing the contribution of interface roughness and
bringing it down to the cavity contribution only. The
idea is to combine a strong light-matter coupling to a
single electromagnetic cavity mode with a strong static
magnetic field, so as to enter a regime of cavity pro-
tection [19]. The strong perpendicular magnetic field
quenches the in-plane kinetic energy of the electrons and
strongly localises them in the disorder potential due to
the interface roughness of the quantum well. As a conse-
quence, the line shape of the ISB transition changes from

a standard Lorentzian shape to an almost Gaussian one.
Due to the fast decay of the Gaussian tails, the strong
coupling to the cavity mode then effectively suppresses
the inhomogenous broadening of the ISB transition, leav-
ing a polariton linewidth which is then only limited by
the cavity component. Differently from previous works
on cavity protection in multi-quantum-well devices [20]
and in various ensembles of emitters in cavity-QED de-
vices [21–26], the magnetic-field-induced cavity protec-
tion mechanism predicted in our work is based on the
in-plane dynamics of electrons in a single quantum well,
which completely changes nature under the effect of the
strong magnetic field. Our calculations anticipate a dra-
matic enhancement of the polariton quality factor, which
opens new perspectives to experimental research in this
field and to technological applications.

The article is organised as follows. In section I we in-
troduce the model used to describe ISB polaritons in the
presence of interface roughness in the quantum well and
calculate the cavity transmittivity in the strong coupling
regime. In section II we characterise the impact of disor-
der on the ISB linewidth in the absence of a surrounding
cavity and we extend the known results to the case of
a strong perpendicular magnetic field. In section III we
translate the concept of cavity protection to our context
of ISB polaritons in strong magnetic field and we show
its implications: the main regimes are characterized and
experimental implementations are discussed. In section
IV we summarize the main results and conclusions of
this work. Additional information on the derivations are
given in the Appendices.

I. MODEL

In this section we introduce the model to describe a
planar quantum well (QW) coupled to the electromag-
netic field of an optical cavity, as represented in Fig.
1(a). Electron motion along the quantum well plane is
typically affected by interface roughness disorder, caused
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FIG. 1. a) Sketch of the system. A semiconductor two-
dimensional quantum well is inserted in a metallic cavity.
The electric field of the cavity mode oscillates along the z-
direction, perpendicular to the quantum well plane. The elec-
tronic intersubband transitions in the quantum well give rise
to an electronic polarization directed along the same direction
of the cavity electric field, realising a strong light-matter cou-
pling regime between the cavity and the quantum well. b-c)
Schematic view of the electronic subbands in the disordered
quantum well in absence/presence of the external magnetic
field perpendicular to the quantum well plane. The lowest
optically-active excitations are transitions between the lowest
two subbands due to the electrons below the Fermi energy
EF . Differently from the clean case, these transitions are not
only fully vertical and each electron can jump to different
eigenstates of the upper subband.

by the fabrication process. The inclusion of this disor-
der forces us to go beyond the standard theory of in-
tersubband transitions based on the bosonization of the
collective ISB electronic excitations [27] and include the
underlying fermionic degrees of freedom. However in the
small disorder, small excitation limit, it is still possible
to derive a sufficiently simple and manageable theory of
light-matter interactions with ISB transitions. This the-
ory captures well the effect of disorder and can be imme-
diately extended with the inclusion of a static external
magnetic field orthogonal to the QW.

A. Electronic states in a disordered quantum well
in the presence of a static magnetic field

We consider here an electronic system strongly con-
fined in the z direction and free in the (x, y)-plane, in
such a way to realise a two dimensional quantum well
(QW) with well defined energy subbands [28]. An ho-
mogeneous magnetic field with amplitude B is pointing
in the z-direction, perpendicular to the two dimensional
QW. Assuming the symmetric gauge for the magnetic

vector potential, ~A(~r) = B/2(−y, x, 0), the single parti-

cle Hamiltonian for each electron reads

He =

(
~p− e ~A

) 2

2m∗
+

p2
z

2m∗
+ U(z, ~r), (1)

where ~p = (px, py), ~r = (x, y) are respectively the elec-
tron’s in-plane momentum and position, m∗ is the elec-
tron effective mass, e its charge and U(z, ~r) is the single
particle confining potential. Under the assumption of a
strong confinement on the z-direction we can employ a
Born-Oppenheimer-like approximation between the dif-
ferent directions, and write the single particle eigenfunc-
tions as

ψ(z, ~r) ≈ ζn(z, ~r)ϕnk(~r), (2)

where the subband wavefunctions ζn(z, ~r) are assumed
to depend only parametrically on the in-plane position ~r
and for each ~r solve the eigenproblem[

p2
z

2m∗
+ U(z, ~r)

]
ζn(z, ~r) = εn(~r)ζn(z, ~r) (3)

along the z direction. Here, n = 1, 2 . . . are integer num-
bers and εn(~r) indicate the Born-Oppenheimer potential
energy interfaces.

For each subband n, the in-plane eigenfunctions
ϕnk(~r) are thus obtained by diagonalising the in-plane
Hamiltonian

Hn =

(
~p− e ~A

) 2

2m∗
+ εn(~r) (4)

and are labeled generically by the quantum number k
(or array of numbers). In the case of a clean QW with

no magnetic field ~A = 0, and no spatial dependence of
the potential interfaces εn(~r) = εn, this index is actu-
ally a pair of numbers representing the wavevector of the
planewave basis. In spatially inhomogenoeus configura-
tions, where translational invariance is broken and εn(~r)
depends on the position, planewaves are no longer eigen-
states of the system. In this case the index k represent
a generic quantum number labeling the true eigenstates
of the system, extracted by exactly diagonalising the full
Hamiltonian.

We assume now that the z-confinement is characterised
by a single length scale Lz = Lz(~r) which depends on
the in-plane position ~r, and that the potential energy
interface depends from the in-plane position only through
this characteristic length εn(~r) = εn(Lz(~r)). Moreover
we assume that Lz(~r) is given by a fixed length over
the whole plane plus a small fluctuating part Lz(~r) =
Lqw + δL(~r) which describes the roughness of the QW
interface. Expanding the potential energy interface at the
first order in δL we arrive to the final expression of the
in-plane electronic Hamiltonian of each subband as Hn ≈
H
‖
n + εqw

n , where the in-plane electronic Hamiltonian is
given by

H‖n =

(
~p− e ~A

) 2

2m∗
+ δUn(~r) , (5)
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εqw
n = εn(Lqw) is the energy of the n subband of the

clean QW, and δUn(~r) = ∂Lεn(Lz) ·δL(~r) is the position-
dependent energy shift due to the disorder.

The effect of the external magnetic field B on the en-
ergy distribution of the in-plane eigenstates is sketched in
Fig. 1(b,c): when the cyclotron frequency ωB = eB/m∗ is
larger than the typical energy width of each potential en-
ergy interface δUn, the electronic dispersion of each sub-
band changes from the usual parabola to discrete Landau
levels.

In our description we completely neglect the effect of
electron-electron interactions. These are known to have
a small effect in the ISB optical linewidth [29], which is
mainly limited by the interface roughness [18, 30, 31]. For
this reason, we chose to avoid further complications and
focus on the single particle dynamics only, so to highlight
in the most transparent way the interplay between rough-
ness disorder and magnetic field. Including the effect of
Coulomb interactions in our description of the in-plane
electron dynamics goes beyond the scope of this paper
and is left for a future work.

In spite of this, it must be kept in mind that the ef-
fect of electron-electron interactions is still present in the
presence of magnetic field [32, 33] and, in particular, the
effect of Coulomb interactions onto the electron motion
along the z-axis is completely unaffected by the magnetic
field along z. As such, it keeps giving an important con-
tribution to the nonlinearity of the ISB response to strong
electromagnetic fields [34]. This implies that our results
are directly applicable to the on-going quest of developing
ISB polaritonic devices with strong optical non-linearities
and polariton lasers, where a reduced polariton linewidth
can be a game-changing improvement [11].

B. Intersubband transitions and cavity-polaritons

After having characterized the single-particle eigen-
states of electrons, we consider here that the two dimen-
sional QW is placed inside a cavity enclosed within a pair
of metallic plates parallel to the QW (x, y)-plane, as rep-
resented in Fig. 1. We assume that the electronic ISB
transitions mostly couple to a single TM-polarized cavity
mode, which, in the long-wavelength approximation, can
be taken to be homogeneous along the plane, with fre-
quency ωc and zero-field amplitude E0 =

√
~ωc/(2ε0V )

directed in the z-direction and determined by the cavity
volume V .

The light-matter Hamiltonian is then given by the
dipole-gauge Hamiltonian [27],

Hint ≈
∫
dzd2r ~P (~r, z) · ~Ecav(~r, z) , (6)

where ~P is the electronic polarization of the QW and
~Ecav ≈ ~uzE0(a + a†) is the electric field of the cav-
ity. Assuming we are below the ultra-strong light-matter

coupling regime, we can for simplicity discard the ∼ ~P 2-
term [35, 36]. Under this assumptions we can also neglect

higher-order boundary effects, such as the presence of im-
age charges on the plates, which are only manifested in
the ultra-strong coupling regime and they only provided
a renormalization of the overall frequency scales [35, 37].
In this respect we can argue that the thickness of the cav-
ity and the distance between the QW and the metallic
plates does not really play any role. This is specially the
case of cavities used for ISB polaritons where the field
is mostly homogeneous along the growth direction [38].
For these reasons the size of the cavity will not enter as
a physical parameter in our description.

Introducing the creation/annihilation spinless elec-
tronic operators Ψ(~r, z), satisfying the Fermionic anti-
commutation relation {Ψ(~r, z)†,Ψ(~r ′, z′)} = δ(z −
z′)δ(2)(~r − ~r ′) we can rewrite the electronic polarization

as ~P (~r, z) ≈ ezΨ†(~r, z)Ψ(~r, z)~uz [27], where e is the elec-
tron charge. The second quantized light-matter coupled
Hamiltonian reads

Htot = ~ωca†a+

∫
dz d2rΨ†(~r, z)HeΨ(~r, z)+

+ e

∫
dz d2r zΨ†(~r, z)Ψ(~r, z) · E0(a+ a†).

(7)

Restricting ourselves to QWs with a fixed number of elec-
trons Ne, we define the plasma frequency of the electronic
transitions as

ωP =

√
e2

ε0m∗
Ne
V
. (8)

The lowest QW intersubband frequency transition and
its z-direction oscillator strength are defined as

~ωqw = εqw
2 − ε

qw
1 fqw =

2m∗ωqwz
2
21

~
, (9)

in terms of the dipole matrix element z2
nn′ =

| 〈ζn|z|ζn′〉 |2 between the n, n′ single particle eigenfunc-
tions defined in Eq. (2). To avoid complications stem-
ming from the implicit parametric dependence of the ma-
trix elements znn′ ∼ Lqw +δL(~r) on the in-plane position
~r, we consider an average value z2

nn′ over the (x, y)-plane,
neglecting its dependence on the fluctuating QW thick-
ness. This assumption is well justified within the weak
disorder assumption and corrections are of higher order
in δL(~r).

We then re-express the electron field operator in
terms of the single particle eigenfunctions Ψ(~r, z) =∑
nk ζn(z, ~r)ϕnk(~r)cnk, where the creation operators

cnk labelled by the subband n and in-plane k in-

dices satisfy Fermionic commutation rules {cnk, c†n′ k′} =
δn,n′δk,k′ . Within a rotating wave approximation, we ne-
glect the counter-rotating terms in the light-matter in-
teraction and we restrict our attention to the lowest in-
tersubband transition between n = 1 and n = 2. In this
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way, we obtain the cavity-plasma Hamiltonian

Htot ≈ ~ωca†a+
∑

n=1,2 k

(
εqw
n + ~ω‖n(k)

)
c†nkcnk

+
~ΩR

2

a ·∑
k,k′

Λk k′c
†
2 kc1 k′ + h.c.

 ,

(10)

where the strength of the light-matter coupling is quan-
tified by the Rabi frequency

ΩR = ωP

√
fqw

ωc
ωqw

. (11)

Here, ω
‖
n(k) are the eigenfrequencies of H

‖
n as defined in

Eq. (5) and the k, k′ transition matrix element is given
by the in-plane wavefunction overlap between states in
the two different subbands

Λk k′ =
〈ϕ2 k|ϕ1 k′〉√

Ne
. (12)

Note that the use of the dipole gauge allows us to trun-
cate the Hilbert space to the two lowest subbands without
introducing potentially dangerous spurious effects [39].

C. Cavity transmission and quantum well optical
density

Assuming that the cavity is resonant with the low-
est QW intersubband transition ωc ∼ ωqw, we can use
the cavity-plasma Hamiltonian in Eq. (10) to derive the
input-output equations for the system [40] and then the
cavity optical transmission of a weak probe of frequency
ω at normal incidence (see App. A for further details on
the derivation ),

Tc(ω) = − γc/2

ω − ωc + iγc2 +
Ω2
R

4 χqw(ω)
, (13)

where γc is the cavity loss rate and microscopic details
of the QW are summarized by the optical response

χqw(ω) = −
∑

k′≤k′F ,k

|Λk,k′ |2

ω − ωqw − ω‖k k′ + iκ
. (14)

Here ω
‖
k k′ +ωqw = ω

‖
2(k)−ω‖1(k′) +ωqw is the frequency

of the (1, k′)→ (2, k) transition, κ is a small phenomeno-
logical energy loss rate introduced to regularize the re-
sponse, and the sum over initial states k′ is restricted to
the occupied states below the Fermi level k′F of the lowest
subband.

Using the Sokhatsky identity limκ→0 Im [1/(ω + iκ)] =
−πδ(ω) we can introduce the so-called QW optical den-
sity

ρqw(ω) = lim
κ→0

1

π
Im [χqw(ω)]

=
∑

k′≤k′F ,k

|Λk,k′ |2 δ(ω − ωqw − ω‖k k′).
(15)

This quantity is normalised to one
∫
dω ρqw(ω) = 1, as

can be verified by considering that 1 =
∑
k |ϕnk〉〈ϕnk|

and using again the Sokhatsky identity, and is equiva-
lent to the density of states typically used in the liter-
ature [41], which is derived from the electronic Green’s
function, as it is shown in App. B. The QW optical
response can be rewritten only in terms of the optical
spectral density as

χqw(ω) = −
∫
dω′

ρqw(ω′)

ω − ω′ + iκ
, (16)

making this quantity the central object of our investiga-
tion.

II. LINEWIDTH BROADENING DUE TO
ROUGHNESS DISORDER

To understand the behaviour of the cavity trasmission
Tc(ω) in the different regime, we first need a clear un-
derstanding of the QW optical response χqw(ω), which
represents the optical susceptibility of the QW to an ex-
ternal probe with incident frequency ω. This reduces to
study how the optical density ρqw(ω) is modified by the
disorder and the external magnetic field.

In a clean sample, or when the disorder is exactly the
same in the two subbands the transition matrix is Λk k′ =
δk k′ and all transition frequencies coincide, so to have

ω
‖
k k′ = 0. From Eq. (15), it then follows that the QW

optical density is a delta function centered at the QW
frequency ρqw(ω) ∼ δ(ω − ωqw).

In this section we will examine how this picture is de-
stroyed by the disorder and, successively, what is the
interplay between disorder and magnetic field. To be
concrete we keep the discussion in the simple, paradig-
matic, example of the QW with infinite well confinement.
However, in order to make our results general and inde-
pendent from the precise shape of the confining potential
in the z-direction, we will introduce a set of natural units
to express all the quantities in adimensional form. In this
way all the results of this section applies as well to any
other type of z-confinement after providing the appropri-
ate rescaling of variables.

A. Simple model for the interface roughness
disorder

When the system is instead affected by the interface
roughness giving a different disorder potential δUn for
each subband, several k′ → k transitions contribute to
the QW optical density ρqw(ω) and, in the large-system
limit, this becomes a smooth continuous distribution,
broadened around ωqw, with a Lorentzian linewidth Γqw.
The quality factor of the QW ISB transition is then given
by Qqw = ωqw/Γqw.

Specifically, we focus here on the case of an infinite
well (or square box) confinement in the z-direction. In
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FIG. 2. a) Spatial profile of a single realisation of the disorder
potential δUn(~r) for the n = 1 subband. b) Fourier transform

of the same disorder potential δŨn(~k) as a function of the

wavenumber ~k. Disorder parameters: ηdis ≈ 0.06, ξc/lqw =√
2. The numerical methods and the integration parameters

are discussed in the Appendix C.

this way we have that

εn(L) =
~2(πn)2

2mL2
. (17)

We also introduce a reference length scale that depends
only from the QW effective electron mass and central
frequency

lqw =

√
~

m∗ωqw
. (18)

In the case of an infinite well with length Lqw, where
the central frequency is given by the lowest transition
lqw =

√
2/3Lqw/π ≈ Lqw/4. From now on we will give

all the lengths in units of this length scale.
For simplicity, we specialise on the case of a Gaussian-

distributed interface roughness, for which δL(~r) = 0,

and δL(~r)δL(~r ′) = ξ2
0/(2π) exp

[
−|~r − ~r ′ |2/ξ2

c

]
. Here

the overline bar indicates the disorder average and ξ0
is the roughness amplitude, while ξc is its correlation
length. We can then define a dimensionless parameter
which controls the disorder amplitude also in the gen-
eral case of an arbitrary confinement and an arbitrary
disorder roughness

ηdis =
|∂Lε1(Lqw)|ξ0

~ωqw
=

(
2

3

)3/2
ξ0
πlqw

≈ 1

6

ξ0
lqw

, (19)

where the last equality holds for the specific case of the
infinite square box potential (see App. C for major de-
tails). The disorder potential for each subband n reads

δUn(~r)/ωqw = n2ηdis∆(~r), (20)

where ∆(~r) = δL(~r)/ξ0. In Fig. 2(a) an example of the
disorder potential is reported together with its Fourier
transform in Fig. 2(b). Here the parameter’s choice is
inspired by the typical values found in GaAs/AlGaAs
systems, see for instance [18].

It is worth to highlight that the use of energy, length
units and disorder amplitude in terms of ~ωqw, lqw and

a) b)Lorentzian fit
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0.49
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FIG. 3. a) Optical density ρqw(ω) (blue solid line) and
Lorentzian fit (black dashed line). b) Optical density ρqw(ω)
calculated for increasing values of the Fermi energy EF . Dis-
order parameters: ηdis ≈ 0.06, ξc/lqw =

√
2. In a) the Fermi

energy is fixed to EF /~ωqw ≈ 0.6, while in b) a range of values
is used as indicated in the legend.

ηdis (as detailed in the Appendix C) is important to
keep our description as general as possible and to make
it independent from the specific shape of the confining
QW potential in the direction of the ISB transition (z-
direction). For instance, the use of these units makes
the application to harmonic z-confinement case straight-
forward. The only difference is in how the results are
re-parametrised in the disorder ξ0 and correlation ξc
lengths. Specifically, we will have that ηdis = 2ξ0/lqw and
δUn(~r)/ωqw = n ηdis∆(~r). Notice the more favourable
scaling of the harmonic confinement ∼ n.

B. Intersubband linewidth at B = 0

In the absence of magnetic field, B = 0, the QW op-
tical density is approximatively given by a Lorentzian
distribution [41, 42],

ρqw(ω) ≈ 1

2π

Γqw

(ω − ωqw)
2

+ Γ2
qw/4

, (21)

where Γqw is its full width at half maximum (FWHM).
This behaviour is confirmed looking at Fig. 3(a),

but we also notice some additional features. The long
tails of the distribution decay somehow faster than a
proper Lorentzian; moreover the optical density ρqw(ω)
is not completely symmetric and its asymmetry can be
increased or reduced by changing the Fermi energy EF ,
see Fig. 3(b). In particular reducing the Fermi energy
reduces the extension of the low energy tail (on the left
side of the peak). All these effects can be understood
considering that the left tail is due to the electrons that
jump to an energy level of the second subband which has

lower energy than their initial level, so to have ω
‖
k k′ < 0.

Assuming the Fermi energy larger than the disorder en-
ergy scale, we have that the lowest value of the in-plane
electronic transition is approximately given by the Fermi

energy
[
ωqw + ω

‖
k k′

]
min
≈ ωqw−EF /~. On contrary the

value of the Fermi energy has no influence on the tail on
the right side of the peak, since the electrons have no
limitation in jumping toward higher energies.
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FIG. 4. a) Plot of the FWHM Γqw of the ISB optical density
ρqw as a function of the disorder strength ηdis (blue solid
dots). b) Plot of Γqw as a function of the disorder correlation
strength ξc. Disorder parameters: ξc/lqw = 0.5 (in panel a),
ηdis = 0.4 (in panel b). Fermi energy EF /~ωqw ≈ 0.5. In both
panels, the red dashed line is the Unuma-linewidth given by
Eq. (23). To numerically implement Eq.(15) we used a finite-
width delta function, with small linewidth γδ/ωqw ≈ 0.002,
which is then subtracted from the numerical data.

As we can see from Fig. 4, the FWHM Γqw scales
quadratically both in the disorder strength and in the
correlation length [18, 41, 43]

Γqw/ωqw ∼ η2
dis , ξ

2
c/l

2
qw, (22)

as long as the Fermi length is much longer than the dis-
order correlation length ξckF � 1.

Following the semi-analytical approach developed
in [18] by Unuma et al., it is possible to derive an an-
alytic expression for the ISB linewidth which holds in
the zero energy limit of the electronic scattering against
the disorder

Γqw,U

ωqw
≈ 9

2

ξ2
c

l2qw

η2
dis. (23)

As we can see from Fig. 4 this formula, that we call
Unuma-linewidth, fits very well the ISB linewidth ex-
tracted from the numerical simulations in the regime of
small ξckF � 1.

C. Intersubband linewidth at B 6= 0

When the magnetic field is turned on, B 6= 0, the sit-
uation changes drastically. In particular when the cy-
clotron frequency ωB = eB/m∗ exceeds the energy scale
of disorder ωdis = ωqwηdisξc/lqw we can no longer think
about the electrons in terms of free particles diffusing in
a disordered landscape, but instead we need to switch to
a description in terms of Landau levels. Having this in
mind we can define a reference magnetic field that ap-
proximatively sets the border of this transition

B0 = ηdis
m∗ωqw

e

ξc
lqw

= ηdis
ξc
lqw

~ωqw

2µ∗B
(24)

Here, µ∗B = e~/(2m∗) is the effective Bohr magneton
relative to the effective mass m∗ of the electron. In the
rest of the article we will give all magnetic fields expressed
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FIG. 5. a) Plots of the optical density ρqw(ω) for increasing
values of the magnetic field B/B0 = 1, 4.5, 7 (red solid lines).
Blue lines show the same quantity in the absence of magnetic
field. Disorder parameters: ηdis = 2/15 ≈ 0.13, ξc/lqw = 0.5.
Fermi energy EF /~ωqw = 0.5. For this choice, the quality fac-
tor of the intersubband transition in the absence of magnetic
field is numerically found to be Qqw ≈ 40. b) Plots of the op-
tical density ρqw(ω) with fixed magnetic field B/B0 = 2.5 for
increasing values of the Fermi energy EF = 0, ωB , 2ωB . Here
the lowest Landau level is set to be at zero energy, such that
the Fermi energy falls in the middle of the disorder-broadened
`1 = 0, 1, 2 Landau level. The vertical dashed line highlights
the asymmetry of the central Gaussian. Disorder parameters:
ηdis = 0.08, ξc/lqw = 1.

in this rescaled unit. In the last part we will give a more
precise analysis on the quantitative conditions to achieve
the regime of cavity protection.

For a completely filled Landau level, the Lorentzian
optical density is broken into a series of equispaced Gaus-
sian peaks, as we can see from Fig. 5(a). The cen-
tral peak represents all transitions from a given Lan-
dau level `1 below the Fermi energy in the 1-th sub-
band, to the same respective Landau level in the 2nd
subband, `1 = `2. The side peaks represent instead
transitions to other Landau levels of the upper subband,
`2 6= `1. For partially filled bands, the peaks corre-
sponding to transitions starting from the uppermost pop-
ulated Landau level become asymmetric, yet with no
qualitative consequence on the overall conclusions of our
study. In Fig. 5(b) we plot the optical density with fixed
magnetic field when the Fermi energy falls in the mid-
dle of the zeroth/first/second broadened Landau level,
EF = 0, ωB , 2ωB . We see that the asymmetry is more
prominent when the Fermi energy is in the lowest Lan-
dau level, and then is progressively washed out when EF
is in the higher Landau levels.

The spectral distance between neighbouring Gaussian
is approximately given by the cyclotron frequency, ∼ ωB ,
as a consequence of the transitions between neighbouring
Landau levels. Focusing on the properties of the central
Gaussian, centered on ωqw, we call its linewidth ΓB . Con-
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FIG. 6. a) Gaussian linewidth (FWHM) ΓB of the central peak of the optical density as a function of the disorder strength ηdis
for a constant value of the magnetic field B. The red squares/green dots are the numerical data corresponding to increasing

values of B, that is B/B̃0 = 0.2, B/B̃0 = 0.6. The disorderless reference magnetic field is defined as B̃0 = ~ωqw/(2µ
∗
B).

The red/green dashed lines are given by the Hikami linewidth ΓB,H/ωqw while the black solid line is the Unuma linewidth
Γqw,U/ωqw. Disorder parameters: ξc/lqw = 0.5. b) Gaussian linewidth ΓB (purple dots) extracted from numerical simulations
of the optical density as a function of the magnetic field B. The dashed red line is given by the Hikami linewidth ΓB,H/ωqw,

while the dashed-dotted line is given by the small disorder expansion of the Hikami linewidth Γ
(1)
B,H. Disorder parameters as

in Fig. 5: ηdis = 2/15 ≈ 0.13 and ξc/lqw = 0.5. c) Same plot as in b) but with different parameters in order to highlight the
saturation of the linewidth at high magnetic field. The red dashed line is given by the Hikami-linewidth ΓB,H/ωqw. The purple
dotted line is the saturation value of the Hikami linewidth given by Γ∞B,H/ωqw ≈ 0.094. Disorder parameters: ηdis = 1/30 ≈ 0.03
and ξc/lqw = 4. In all plots the Fermi energy is EF = 1.5~ωB , in such a way that the central Gaussian is determined by only
the two lowest Landau levels. To numerically implement Eq.(15) we used a finite-width delta function, with small linewidth
γδ/ωqw ≈ 0.003, which is subtracted from the numerical data.

trary to the non magnetic case, discussed in the previous
section, here we expect that the linewidth of each of these
Gaussian lobes scales linearly with the disorder strength
ΓB/ωqw ∼ ηdis. This can be understood from the fact
that the disorder plays the role of a small perturbation
on a degenerate system, bringing corrections at the linear
order instead of the usual second order.

As in the non-magnetic case, the disorder correlation
length ξc plays an important role in determining the
width of each Gaussian, but in contrast to the non-
magnetic case, here the system has an intrinsic length
scale, given by the magnetic length

lB =

√
~
eB

. (25)

We then expect that the FWHM of each Gaussian de-
pends non-trivially on ξc/lB .

Our aim is now to have more quantitative insights on
the dependence between the width of the Gaussian lobes
and the system parameters. In order to do so we start
from the observation that not all the transitions are im-
portant in this regime of strong magnetic field. Indeed,
considering the central Gaussian lobe of the optical den-
sity, we realise that only the intra-Landau-level transi-
tions with the same kn are actually relevant. This is
justified by the fact that the disorder landscape is the
same in the two subbands, and differs only in its ampli-
tude. Specifically, in the 2-subband it is 4 times larger

than in the 1-subband. The system is then strongly lo-
calised but each state in the ground subband can over-
lap only with the state in the upper subband localised
in the same region. So, in Eq. (15), we can approxi-
mate Λ(`1k1),(`2,k2) ≈ δ`1`2δk1k2 . The energy difference of
each transition from a state (`1, k1) in the 1-subband to
the corresponding state (`2, k2) in the 2-subband is then

given by ωqw + ω
‖
(`2k2)(`1k1) ≈ ωqw + 3(ω`1k1 − ωB`1),

where ω`1k1 is the k1-th eigenenergy of the `1-th Landau
level of the 1-subband.

The considerations above are particularly important
when we restrict each band to only include the low-
est Landau level (LLL). This is well justified when the
Fermi energy is smaller than the cyclotron frequency,
EF < ~ωB , and it is a crucial assumption in order to
carry on the calculation analytically. However, we will
see that the result extracted in the LLL remains a very
good approximation also in the more general case. Call-
ing the linewidth of the LLL ΓLLL we arrive to con-
clude that the linewidth of the optical density is ap-
proximately three times the linewidth of the 1-subband
LLL, ΓB ≈ 3 ΓLLL. In [44] we can find an exact expres-
sion for ΓLLL extracted from the density of states of a
non-interacting 2-dimensional electron gas in presence of
a Gaussian-correlated random potential in the limit of
large correlation length ξc/lB � 1 (a very similar result
can be derived also for the case of Gaussianly distributed
short-range scatters, see [41, 45, 46]). A brief summary
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of the calculation is reported in the Appendix D. Since
the resulting density of state is Gaussian, the FWHM
reads

ΓLLL

ωqw
= 2

√
log(2)

π

ξc/lB√
ξ2
c/l

2
B + 2

ηdis. (26)

The FWHM of the central Gaussian peak of the ISB op-
tical density is thus given by

ΓB,H
ωqw

≈ 6

√
log(2)

π

ξc/lB√
ξ2
c/l

2
B + 2

ηdis. (27)

This formula, that we call Hikami-linewidth, fits ex-
tremely well the optical density’s FWHM extracted nu-
merically as we can see from Fig. 6, even in the case
in which higher Landau level contribute to the optical
density.

As expected the width of the central Gaussian scales
linearly with the disorder strength ∼ ηdis, which is is
perfectly captured from Eq. (27), see Fig. 6(a). In this
plot we also included the corresponding values from the
Unuma linewdith Γqw,U from Eq. (23), which gives an
estimate of the ISB linewidth without the magnetic field.
It is worth noticing that at this stage the effect of the
magnetic field is actually to broaden the ISB transitions
and so to worsen the quality factor of our bare QW. In
the next section we will see that an opposite result occurs
when the QW is embedded in a cavity.

For small values of the magnetic field we also found a
linear scaling for the width in ∼ ξc/lB , which means a

square-root scaling in the magnetic field intensity ∼
√
B,

as can be seen from Fig. 6(b). Quite surprisingly we
realise that the Hikami formula gives an accurate esti-
mation of the linewidth even in this regime of moderate
correlation length, where ξc . lB . Expanding it at low-
est order in ξc/lB we recover the square-root behaviour
in the magnetic field strength. Using Eq. (23) we can
re-express the small disorder expansion of the Hikami
linewidth in a nice and compact expression

ΓB,H
ωqw

≈
Γ

(1)
B,H

ωqw
= 2

√
log(2)

π

√
2µ∗BB

~ωqw

√
Γqw U

ωqw
. (28)

In Fig. 6(b) we see that both Eqs. (27)-(28) fits very well
the numerical data in our regime of interest. It is worth
noticing once again the broadening effect of the magnetic
field, by comparing the Hikami linewidth to the Unuma

linewidth Γ
(1)
B,H/Γqw,U = 2

√
log(2)/π

√
ωB/ωqw

√
Qqw.

Even if the typical magnetic field that we are using
through this work is such that ωB/ωqw ∼ 0.1 − 0.5, the
ISB quality factor is always taken to be Qqw & 10, in
order to fulfil the condition of small disorder, and so

Γ
(1)
B,H/Γqw,U & 1.

In Fig. 6(c) instead the behaviour at larger values
of ξc/lB is reported, and we see how the linewidth satu-
rates for large magnetic field, approaching the asymptotic

0 2 4 6-2-4-6 0 2 4 6-2-4-6

0
2
4
6
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-4
-6 0

0.2

0.4

FIG. 7. Illustrative examples of the real-space wavefunction
of a n = 1 subband eigenstate in the presence of disorder
in the B = 0 (left) and B/B0 = 0.5 (right) cases. These
eigenstates are obtained via exact diagonalisation, as detailed
in App. C, of a square system with lateral size Lx,y/lqw = 14.
Other parameters: EF /(~ωqw) = 0.5, ηdis ≈ 0.03, ξc/lqw ≈ 4.

value

Γ∞BH

ωqw
≈ 6

√
log(2)

π
ηdis. (29)

D. Discussion

As we have seen in the previous discussion, there is a
large difference in the optical properties of the ISB QW
between the non-magnetic and the strong magnetic case.
In particular the magnetic field turns the shape of the op-
tical density from a Lorentzian to a Gaussian (a central
Gaussian separated from a series of smaller Gaussian side
lobes), and sensibly broadens the ISB transition. These
differences can be traced back to the localisation prop-
erties of the electrons in the disordered potential due to
the interface roughness.

Without the magnetic field the electronic states are
partially localised due to the interplay of multiple scat-
tering and interference processes on the complex land-
scape of the disorder potential. The Lorentzian shape of
the optical density can be then understood in terms of
the finite effective lifetime that the scattering on disorder
gives to the electronic coherence.

When the magnetic field is turned on the kinetic energy
is completely quenched and we switch to a new regime
of strong spatial localisation in Landau levels, where the
localisation length is set by the magnetic length lB . In
Fig. 7 we can see an example how eigenfunctions at sim-
ilar eigenenergies localize in a very different way in the
two cases. An alternative, possibly more intuitive under-
standing of this physics can be obtained within a semi-
classical picture: in the strong magnetic field regime with
lB � ξc, the electrons follow the semi-classical guiding
center trajectories along the equipotential lines of the
disorder of each subband[47]. Their energy levels are
approximately given by ~ω` k ∼ ~ωB` + δU(~rk), where
for each value of the quantum number k labelling the
states, one has to pick a different representative real-
space position ~rk along the orbit. Since according to
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FIG. 8. Logarithmic colorplot of the cavity transmission as a function of the Rabi coupling ΩR and the external incident
frequency ω for various values of the magnetic field B in the resonant regime ωc = ωqw. Disorder parameters as in Fig. 5:
ηdis = 2/15 ≈ 0.13, ξc/lqw = 0.5. Fermi energy EF /~ωqw = 0.5.The ISB quality factor (without cavity) in the three panels is
numerically found to be Qqw ≈ 40, 12, 10, from left to right. An extreme value of the cavity quality factor Qc = 105 is taken
for illustrative purposes, more realistic values will be considered in the next figures. In physical units, for a QW of thickness
Lz = 26 nm and m∗ ≈ 0.067me, these adimensional parameters correspond to ~ωqw ≈ 25 meV and a reference magnetic field
B0 ≈ 1 T. In the central panel we thus have B ≈ 4.4 T while in the right panel B ≈ 6.9 T.

(20) the disorder potential felt by the two subbands are
proportional to each other, the electronic transitions are
only between states with the same localization pattern
(as described in the last section) and their frequencies
are effectively sampling the values of the disorder poten-
tial, which follows a Gaussian distribution. This gives
a basic intuitive explanation why the resulting optical
density is Gaussian-distributed with a linewidth set by
the width of the disorder potential. Despite the much
larger linewidth, it is the much faster decay of the tails
of the Gaussian distribution compared to the ones of a
Lorentzian distribution which will be at the heart of our
developments in the next sections.

III. INTERSUBBAND POLARITONS AND
CAVITY PROTECTION

In this section we show how the dramatic change in
the shape of the QW optical density ρqw(ω) due to the
magnetic field that was displayed in Fig. 5 can be used
to sensibly improve the properties of the ISB cavity po-
laritons. It is in fact a well-known fact that a sufficiently
strong coupling of a collection of emitters with an over-
all Gaussian optical density to a single-mode cavity may
give rise to polaritonic peaks whose linewidth is only lim-
ited by the cavity losses [19]. On contrary, the linewidth
of the polariton peaks resulting from an emitter with a
Lorentzian-shaped optical density is set by the average
of the cavity and emitter linewidths. The physical mech-
anism underlying these two different behaviours goes un-
der the name of cavity protection [21, 22], and is a general
feature of polaritonic systems independently of their ma-
terial realization [20, 23–26].

A. Magnetic-field-induced cavity protection

We consider here the case in which the magnetic field is
strong and exceeds the disorder strength, B > B0. Since
in a clean sample the polariton frequencies are given by
ω± = ωc±ΩR/2, when the Rabi frequency becomes com-
parable with the cyclotron frequency ΩR ∼ ωB , the po-
lariton modes sit in between a pair of Gaussian peaks
of the optical density. Here, the optical density has a
much smaller value than in the standard non-magnetic
case, ρqw(ω±)|B 6=0 � ρqw(ω±)|B=0. If we think of the
system in terms of the clean polariton eigenstates cou-
pled to another continuum of states given by the disor-
der, we can apply the standard Weisskopf-Wigner theory,
expecting that the polaritonic linewidth Γ± is propor-
tional to the optical density calculated at the polariton
frequency, Γ± ∼ ρqw(ω±). If the optical density drops
in correspondence of the polariton frequencies a strong
linewidth-narrowing effect is expected.

This behaviour is indeed clearly visible in the numer-
ical results shown in Fig. 8, where we plot the cavity
transmission Tc(ω) defined in Eq. (13) as a function of
the transmitted frequency ω and the Rabi frequency ΩR.
It is clear that, for a sufficiently large value of B/B0 and
for a Rabi frequency comparable to the cyclotron fre-
quency ΩR ≈ ωB , the polaritonic transmission linewidth
is several order of magnitude smaller than the B = 0 case
and is only limited by the cavity linewidth.

A further increase of ΩR makes the polaritonic trans-
mission to broaden again as in the weak Rabi frequency
case. This happens specifically when the polariton fre-
quencies correspond to one of the side Gaussians of the
optical density, that is for ΩR ∼ 2n·ωB , with n = 1, 2 . . . .
This behaviour is well captured following the theory
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FIG. 9. a) Plot of the electronic contribution to the polariton
linewidth estimated using Eq. (30) as a function of Rabi
coupling ΩR, left (right) parts corresponding to the upper
(lower) polariton. The blue and red lines refer to the B = 0
and B = 4.5B0 cases, respectively. b) Three examples of the
cavity transmission Tc(ω) given by Eq. (13) as a function of
the incident frequency ω in the presence/absence of magnetic
field (blue and red lines, respectively) for increasing values of
the Rabi coupling ΩR (from left to right) as indicated by he
dashed, dotted and dashed-dotted lines in panel a). c) The
quality factor of the lower (light) and upper (dark) polaritons
Q± = ω±/Γ± as a function of the Rabi frequency ΩR. Blue
and red lines refer to the cases in the absence/presence of
magnetic field B/B0 = 0, 4.5. The black dotted and black
dashed-dotted lines indicate the usual upper/lower polariton
quality factors obtained averaging between cavity and ISB
linewidths, Q±, std = 2(ωc±ΩR/2)/(γc+Γqw). The light/dark
red dashed lines indicate the upper bound to the polariton
quality factor set by the cavity losses as defined in Eq. (32).
Same system parameters as in Fig.8 except for the realistic
value Qc = 150 of the cavity quality factor.

developed by Diniz et al. [22], where the polaritonic
linewidth can be estimated using the following formula

Γ± ≈
1

2

[
γc +

π

2
Ω2
Rρqw

(
ωc ±

ΩR
2

)]
, (30)

where γc is the cavity linewidth. This formula holds
in the strong coupling regime, when ΩR � γc,Γqw (see
App. E for more details). Having ΩR > γc,Γqw means
that the polaritonic linewidth Γ± is determined by the
shape of the tails of the QW optical density. If ρqw has
a Lorentzian shape, as in the regular non-magnetic case,

we have that π/2 Ω2
Rρqw (ωc ± ΩR/2) ≈ Γqw and the re-

sulting polaritonic linewidth is the average between the
cavity and ISB linewidths, Γ± ≈ (γc + Γqw)/2. On con-
trary, if the QW optical density has a Gaussian shape
(or, more generally, decays faster than 1/ω2), we have
that π/2 Ω2

Rρqw (ωc ± ΩR/2) ≈ 0 and the resulting po-
laritonic linewidth is only given by the contribution due
to the cavity linewidth Γ± ≈ γc/2.

In Fig. 9(a) we plot the result of (30) in the two
cases of B = 0 and B ≈ 4.5B0. When the vacuum
Rabi coupling ΩR is comparable to the QW linewidth
Γqw the polaritonic peaks have similar linewidth in both
the non-magnetic and magnetic cases, Fig. 9(b) left
panel. Instead, when the strong coupling regime is fully
reached the mechanism behind the cavity protection sets
in: the contribution of the ISB transition to the polari-
ton linewidth drops to zero, as shown in Fig 9(a), and
the linewidth is only given by half the cavity linewidth.
In Fig. 9(b) central panel, we illustrate the cavity pro-
tection effect for a cavity quality factor Qc ≈ 150 close
to the typical experimental values. However, as pointed
out at the beginning of the section, this is true only when
the polariton frequency is located in a gap between two
Gaussian peaks, i.e. when ΩR ∼ ωB : when the polariton
frequency reaches the next Gaussian peak, at ΩR = 2ωB
the linewidth is again broadened to its non protected
value, see the right panel of Fig. 9(b).

In Fig. 9(c) we plot the quality factors of the lower
and upper polaritons defined as

Q± =
ω±
Γ±

, (31)

as a function of the Rabi frequency, in the presence and
in the absence of the magnetic field. As in the other
plots of Fig 9, we set ωc = ωqw, we take the cavity qual-
ity factor as Qc = ωc/γc = 150 and, when it is on, the
magnetic field is set to B/B0 = 4.5. We extract numer-
ically the polaritonic frequencies ω± and the linewidths
Γ± as, respectively, the peak frequencies of the cavity
transmission Tc(ω), and the FWHM of each peak. When
the magnetic field is on, the polaritonic quality factor
increases sensibly (the light and dark solid lines in Fig.
9(c)), reaching its limiting value

Q±max = 2
ωc ± ΩR/2

γc
, (32)

marked by the light and dark red dashed lines. For in-
stance, when ΩR/ωqw ≈ 0.3 we have that the polaritonic
quality factors increase by a factor between 3 and 4. Of
course, the improvement factor would be far more dra-
matic for higher values of the cavity quality factors Qc
as shown in Fig.8. Such improvements are presently the
subject of intense research [48–51].

Moreover, we have to notice that even in the absence of
magnetic field both lower and upper polaritonic quality
factors Q± might display a slight increase as a function of
the Rabi frequency ΩR (light and dark blue solid lines in
Fig. 9(c)). This is a side effect due to the non-perfectly
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FIG. 10. a-b) Logscale color plot of the cavity transmission
Tc(ω) as a function of the magnetic field B/B0 and the ex-
ternal incident frequency ω/ωqw. In a) ΩR/ωqw = 0.15, in b)
ΩR/ωqw = 0.4. c) Quality factor of the upper polariton as a
function of the magnetic field B/B0. The green and red solid
lines refer to the Ω/ωqw = 0.15 and 0.4 values used in panel
a) and b), respectively. Parameters for all plots: ωc = ωqw,
ηdis = 0.1, ξc/lqw = 1, Fermi energy EF /~ωqw = 0.5. For
these parameters, the ISB quality factor (without cavity) is
found to be Qqw ≈ 22, while the cavity quality factor is set
to the realistic value Qc = 200.

Lorentzian and asymmetric shape of the QW optical den-
sity ρqw(ω). However this is a rather marginal effect if
compared to the dramatic linewidth suppression that is
induced by the magnetic field.

As a final point we investigate the behaviour of the cav-
ity transmission Tc(ω) as a function of the external mag-
netic field B, keeping the Rabi frequency ΩR constant.
In Fig. 10(a-b) we respectively choose ΩR/ωqw = 0.15
and ΩR/ωqw = 0.4 and we sweep the magnetic field in
the range B/B0 ≈ 0.5−5. In order to have a better read-
ability of the figure, the magnetic-field-dependence of the
quality factors of the upper polariton in the two cases is
summarized in the bottom panel Fig. 10(c) – the qual-
ity factors of the lower polaritons follow a very similar
trend, so, for clarity, are not reported. When the Rabi
frequency is small, e.g. the ΩR/ωqw = 0.15 value used in
Fig. 10(a), the magnetic-field-induced cavity protection
competes against the magnetic linewidth broadening of
the ISB transition, calculated in Eq. (27). As a result,
the polaritonic quality factor Q+ increases with the mag-
netic field to a maximum and then decreases again to its
minimum value, see the green solid line in Fig. 10(c).
On the other hand, for a larger value of the Rabi fre-
quency, e.g. the ΩR/ωqw = 0.4 value used in Fig. 10(b),
the polaritonic quality factor Q+ saturates to its maxi-
mum value, forming a plateau that extends for a rather
wide range of magnetic fields, see the red solid line in
Fig. 10(c). We also notice that in this regime of large
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FIG. 11. Log-scale contour-plot of the cavity-protection mag-
netic field Bcp as defined in (37) as a function of the intersub-
band frequency ωqw and the disorder correlation length ξc.
Here, Bcp is given in units of Tesla, ~ωqw is given in meV,
and ξc in nm. The disorder amplitude is kept constant to
ξ0 = 0.3 nm. The effective Bohr magneton corresponding to
the effective mass of electrons in GaAs is used, µ∗B ≈ 0.86 meV
/ T. The purple star indicates the position of the setup in-
spired by [18] described in the text.

Rabi frequency, additional oscillations are visible in the
polaritonic quality factor for smaller values of magnetic
fields. Here, the maxima correspond to values of the Rabi
frequency matching the gap between two higher Landau
levels.

B. Experimental implementations

In this section we discuss the actual experimental fea-
sibility of the magnetically induced cavity protection for
ISB polaritons. In doing this, we will focus on the min-
imal values of the magnetic field and of the Rabi fre-
quency that are needed to observe the effect. We restrict
to devices operating in the THz or mid-infrared regime,
mainly focusing on the parameters reported in [17]. A
typical size for a QW in this regime is Lz ∼ 8 − 40 nm.
Using the GaAs electron’s effective mass m∗ ≈ 0.067me,
where me is the free electron mass, we have that the en-
ergy range for the fundamental ISB transition is given
by

~ωqw ∼ 10− 250 meV. (33)

The typical roughness fluctuation scale is around ξ0 ∼
0.1 − 1 nm and its typical correlation length is ξc ∼
1 − 10 nm. The typical quality factor of the bare ISB
transitions in these devices is in the range Qqw ∼ 10−50.

In order to estimate the typical magnetic field and Rabi
frequency needed to quench the linewidth, there are two
conditions that we need to satisfy:

1. We need to break the Lorentzian optical density in
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well separated Gaussians. This is achieved when

ωB > ΓB . (34)

2. We need to have a Rabi frequency that is large
enough to overcome the linewidth of the central
Gaussian of the optical density and, thus, reach
the strong-coupling regime. This condition is max-
imally fulfilled when the polariton frequency falls
in the middle of a gap between two Landau levels.
This occurs when

ΩR = ωB . (35)

Because of the very fast decay of the Gaussian tails of
the magnetic optical density, the first condition can be
considered fulfilled already when ωB = 2 ΓB , from which
we define the cavity-protection magnetic field value

Bcp =
~ΓB
µ∗B

. (36)

Using the Hikami-linewidth Eq. (27), we can derive an
analytical expression for this quantity,

Bcp =
~
eξ2
c

[
1 +

144 log(2)

π

(
ηdis

eξ2
c

~
~ωqw

2µ∗B

)2
]1/2

− ~
eξ2
c

.

(37)
Using some typical values such as ξ0 = 0.75 nm, ξc =
5 nm and Lz = 8 nm [18], and considering the typical
effective Bohr magneton µ∗B ≈ 0.86 meV / T for the GaAs
electron’s effective mass, we obtain ~ωqw ≈ 262 meV, and
Bcp ≈ 33.4 T, which looks like a quite extreme value for
the magnetic field. Already for a slightly smaller value
for the QW height fluctuations, for instance ξ0 = 0.3 nm,
we however obtain a much smaller and accessible result
Bcp ≈ 7.6 T. A complete plot of Bcp in unit of Tesla,
as a function of the ISB frequency ωqw and the disorder
correlation length ξc in the typical range for THz-MIR
ISB polaritons is displayed in Fig. 11 for a fixed value of
the QW length fluctuations ξ0 = 0.3 nm.

Since the values of ξ0 and ξc are hardly accessible to di-
rect measurement, it is useful to derive an expression for
Bcp as a function of quantities that are directly accessible
to experiments, like the central ISB frequency ωqw and
the bare QW quality factor Qqw. This can be achieved
by expanding Eq. (37) to lowest order in the small dis-
order limit, and combining it with the Unuma-linewidth
in Eq. (23)

B(1)
cp ≈

16 log(2)

π

1

Qqw

~ωqw

2µ∗B
. (38)

This expression is plotted in Fig. 12, where we can clearly
identify the regime of interest for THz-MIR devices, in
the range of magnetic field between B ∼ 1 − 10 T. It is
important to stress that these values of magnetic field are
already within reach of current experiments, as also sug-
gested by recent works on similar devices [54–56]. Note
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FIG. 12. Log-scale contour-plot of the cavity-protection mag-

netic field B
(1)
cp as predicted by Eq.(38) as a function of the

intersubband frequency ~ωqw and the QW quality factor Qqw

(in log-scale). Here, B
(1)
cp is given in units of Tesla and ~ωqw

in meV. The red hexagon and green circle mark the position
of, respectively, typical THz [7, 52, 53] and MIR [11] devices.

that for the realistic parameters of disorder considered

here, the actual values of B
(1)
cp and B0 are quite close,

with the approximated relation B
(1)
cp ≈ 7/

√
QqwB0.

As a final point, we need to address the second condi-
tion for cavity protection, regarding the Rabi frequency
ΩR. Combining Eq. (35) with Eq. (38) we obtain

~ΩR = 2µ∗BB
(1)
cp =

16 log(2)

π

1

Qqw
~ωqw. (39)

For the range of quality factors estimated above, we ob-
tain a range for the minimal Rabi frequency necessary to
implement the magnetic-induced cavity protection in the
order of

ΩR
ωqw

∼ 0.05− 0.5. (40)

From this simple estimation it appears that the required
Rabi frequency is not far from the ISB transition fre-
quency, ΩR ∼ ωqw, pushing the system from the strong-
coupling towards the ultra-strong coupling (USC) regime.
Given the complexities of the theoretical description of
the USC regime [9, 10] we have chosen to restrict here
our attention to the strong coupling physics and we leave
a specific investigation of the USC features to a future
work.

As a final point, it is important to comment on the
role of other processes that, in addition to the scattering
on disorder potential, may contribute to the linewidth of
the ISB [18]. While all decoherence channels stemming
from static external potentials are tamed by the cavity
protection mechanism discussed here for interface rough-
ness, e.g. alloy disorder and ionized impurity, a special
attention must be paid to phonon scattering processes.
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Longitudinal acoustic (LA) phonons typically have low
frequencies, much lower than the intrinsic broadening of
polaritons: as such, they can be considered as quasi-static
and the virtually elastic LA phonon scattering thus fall
in the same category of static potentials.

Longitudinal optical (LO) phonons have instead a
much higher energy ELO on the order of a few ten meV in
typical materials and their contribution to the linewidth
is small but sizable in many cases, giving a lower bound to
the achievable linewidth on the order of 1meV for tran-
sitions in the MIR according to [18]. Still there exist
regimes, e.g. THz ISB transitions with ω21 < ELO and
a low electron density such that EF < ELO for which
LO phonon emission is kinematically not allowed and the
lower bound disappears.

IV. CONCLUSIONS

In this work, we have proposed and characterized a
strategy to dramatically improve the quality factor of
intersubband polaritons in semiconductor-based devices.

By applying a strong magnetic field perpendicular to
the quantum well plane, the dominant Lorentzian broad-
ening of the intersubband transition due to scattering
of electrons onto interface roughness disorder turns into
a Gaussian one due to the strong electron localization
in the disorder potential. When strongly-coupled to the
cavity mode, a cavity protection mechanism sets in which
removes the Gaussian linewidth, leaving only the cavity
contribution to the polariton linewidth.

In combination with higher-Q cavity configurations,
our proposal has the potential to lead to polariton de-
vices with unprecedented performances. Based on avail-
able experimental evidence, we anticipate that a narrower
polariton linewidth will be a game-changing step in view
of technological applications of intersubband polaritons,
including nonlinear polariton devices [34] and polariton
lasing [11, 17]. On a longer perspective, our proposal
highlights intersubband polariton physics in the presence
of magnetic fields as a novel arena where to study the in-
terplay between light-matter interaction with quantum
Hall physics [56–62].
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Appendix A: Input-output theory of the cavity
plasma Hamiltonian in the weak excitation regime

Consider the cavity-plasma Hamiltonian defined in Eq.
(10). Since we are looking only at its low energy excita-

tions we can truncate the electronic Hilbert space keeping
only the unperturbed Fermi sea state |FS〉 and its lowest
single-electron-hole-pair excitations between the first two
subbands, given by

|k0 q1〉 = c0 kc
†
1 q|FS〉, (A1)

where k ≤ kF , with kF the Fermi momentum. All the
Fermionic operators in Eq. (10) are then replaced by
Pauli matrices, each of them representing a transition
between the Fermi sea and one electron-hole state (~ = 1)

Htot ≈ ωca†a+
∑
~λ

(
ωqw + ω

‖
~λ

)
s
~λ
z

+
ΩR
2

a ·∑
~λ

Λ~λs
~λ
+ + h.c.

 .

(A2)

Here every couple ~λ = (k, k′) identify a single two-level

system and s
~λ
z , s

~λ
−, s

~λ
+ are the usual spin-1/2 operators.

The range of the vectorial index ~λ is limited to the semi-
rectangular area (−∞,∞)× [−kF , kF ].

We then derive the usual quantum Langevin equations
[40] assuming a two-sided cavity and a generic bath for
the ISB transitions. We have

i∂ta =
(
ωc − i

γc
2

)
a+

ΩR
2

∑
~λ

Λ~λs
~λ
− +

√
γ

2
αin(t) + bc,

(A3)

i∂ts
~λ
− = (ωqw + ω

‖
~λ
)s
~λ
− − ΩRΛ~λs

~λ
za+

+ i2κs
~λ
z s
~λ
− − 2s

~λ
z b~λ,

(A4)

i∂ts
~λ
z =

ΩR
2

(
Λ∗~λs

~λ
+a− Λ~λs

~λ
−a
†
)

+

− i2κs~λz − iκ+ b~λs
~λ
+ − b

†
~λ
s
~λ
−.

(A5)

Here γc is the cavity loss rate, κ is the ISB transition
relaxation rate, bc and b~λ are respectively the cavity
and ISB transition quantum noise operators. αin(t) =
α0

ine
−iωt is the coherent input field , assumed to be

monochromatic at a given frequency ω. The input αin,
reflected αr, transmitted αt and cavity field a are related
by the following input-output formulas

αr = αin +
√
γc/2a,

αt =
√
γc/2a.

(A6)

We now consider the mean-field and weak driving regime.

We then replace the operators a, s
~λ
−, s

~λ
z in Eqs. (A3)-

(A4)-(A5) with their respective expectation values (for
simplicity in the notation we still keep the same notation
for the operators and their mean value). The quantum
noise operators drop out since that at temperature T = 0
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they have zero mean value. Because of the weak drive we

can also approximate s
~λ
z ≈ −1/2.

In the rotating frame at the input frequency ω, the
mean-field Langevin equations take the form of a driven
dissipative system of coupled harmonic oscillators

i∂ta =
(
ωc − ω − i

γc
2

)
a+

ΩR
2

∑
~λ

Λ~λs
~λ
−+

√
γ

2
αin, (A7)

i∂ts
~λ
− = (ωqw + ω

‖
~λ
− ω)s

~λ
− +

ΩR
2

Λ~λa− iκs
~λ
−. (A8)

Solving these equations for the steady state, and defining
the optical transmission through the cavity as

Tc(ω) =
αt

αin
, (A9)

we immediately arrive to Eq. (13).

Appendix B: Electronic response and subband
Green’s function

The electronic optical response defined in Eq. (14) can
be rewritten within a Green’s function formalism. We
start from the initial formula

χqw(ω) = −
∑

k,k′≤kF

|Λk,k′ |2

ω − ωqw − ω‖k k′ + iκ

=

∫
d2x d2y

Ne

∑
k,k′≤kF

〈y|ϕ2 k〉 〈ϕ2 k|x〉 〈x|ϕ1 k′〉 〈ϕ1 k′ |y〉
ω − ωqw − ω‖k k′ + iκ

(B1)

Using the Sokhatsky identity

lim
ε→0

Im

[
1

ω − ωk + iε

]
= −πδ(ω − ωk) (B2)

we can write

χqw(ω) =∫
dω′dω′′

d2xd2y

π2Ne

Im [G2(y, x, ω′)] Im [G1(x, y, ω′′)]F (ω′′)

ω − (ω′ − ω′′) + iκ
(B3)

where the Green’s function is defined in the Lehman rep-
resentation as

Gn(x, y, ω) = lim
ε→0

∑
k

〈x|ϕnk〉 〈ϕnk|y〉
ω − ωn,k + iε

, (B4)

ωn,k = εqw
n /~+ω

‖
n(k) and F (ω) is the Fermi distribution.

The QW optical spectral density is then given by

ρqw(ω) = lim
κ→0

1

π
Im [χqw(ω)]

=

∫
dω′

d2xd2y

Ne
ρ2(y, x, ω − ω′)ρ1(x, y, ω′)F (ω′)

(B5)

where

ρn(x, y, ω) = − 1

π
Im [Gn(x, y, ω)] (B6)

is the local spectral density of a single n-subband.

Appendix C: Technical details on the numerical
calculation

Here we consider the Hamiltonian as defined in Eq.
(5), including the presence of the homogeneous magnetic

field via the symmetric-gauge vector potential ~A(~r) =
B/2(−y, x, 0),

H‖n =

(
~p− e ~A(~r)

) 2

2m∗
+ δUn(~r) . (C1)

Here, the disorder potential is

δUn(~r) = ∂Lεn(Lqw) · δL(~r), (C2)

in terms of the energy εn(Lqw) of the electronic state
trapped in the QW in the z-direction. The QW interface
roughness δL is a random variable, in general with non-
trivial spatial correlations. We can thus write

δL(~r)δL(0) = ξ2
0C(~r), (C3)

where ξ0 quantifies the magnitude of the fluctuations of
the QW thickness and C(~r) is an arbitrary correlation
function normalised to have C(0) = 1/(2π). We can
then introduce the adimensional random variable ∆(~r) =
δL(~r)/ξ0.

We then rescale the position and the momenta as

~r 7−→ ~r · lqw ~p 7−→ ~p · ~/lqw (C4)

in terms of an equivalent harmonic-oscillator length
within the QW

lqw =

(
~

m∗ωqw

)1/2

. (C5)

Defining ~a = (−y, x)/2, and considering the usual cy-
clotron frequency as ωB = eB/m∗, we have

H‖n = ~ωqw

[
(~p− ηB~a)

2

2
+ gnηdis∆(~r)

]
, (C6)

where we introduced the two adimensional energy mag-
nitudes

ηB =
ωB
ωqw

ηdis =
∂Lε1(Lqw)ξ0

~ωqw
, (C7)

and the numerical coefficients

gn =
∂Lεn(Lqw)

∂Lε1(Lqw)
. (C8)
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In the specific case of an infinite box potential gn = n2,
while in the harmonic oscillator case gn = n− 1/2, with
n = 1, 2 . . . .

In our numerical calculations, the adimensional dis-
order is generated by sampling ∆(~r) from a Gaussian
distribution with unit variance at every position ~r. We
then take its Fourier transform and we impose a Gaussian
cut-off

∆̃(~k) 7−→ ξc√
2
e−ξ

2
ck

2/8∆̃(~k). (C9)

After transforming back to real-space, we are left with
the desired correlator

∆(~r)∆(~r ′) =
e−|~r−~r

′
|2/ξ2c

2π
. (C10)

We then proceed to diagonalize the rescaled Hamilto-
nian Eq. (C6) on a given basis. When the magnetic field
is not present B = 0 we consider a finite box of lengths
Lx, Ly whose basis wave functions are

ϕnx,ny (~r) =
2√
LxLy

sin(
πnx
Lx

x) sin(
πny
Ly

y), (C11)

with nx, ny = 1, 2 . . .. Same results are obtained con-
sidering a periodic system and considering a planewave
eigenbasis.

In the presence of a finite magnetic field B 6= 0, we
first need to fix a gauge for the vector potential. For
instance, in the symmetric gauge where ~a = (−y, x)/2. In
order to simulate an infinite system with open boundary
conditions we use the basis set

ϕ`k(~r) =
1√

2πlB

√
`!

k!
ξk−`e−|ξ|

2/2Lk−`` (|ξ|2), (C12)

where ξ = (x+ iy)/(
√

2lB) and Lα` (x) are the generalised
Laguerre polynomials. Since these states are concentric
circles, centered in the origin, we include as many states
as possible to fill the spatial extension of the system,
cutting the basis right before touching the border of the
numerical space grid. If the total extension of all basis
states Lbasis is such that Lbasis � lB , ξc, averaging over
many realisations is then approximately similar to con-
sider a very large system, where every realisation is a
smaller patch of the whole system.

In order to compute the matrix elements on a given
basis we consider a two dimensional spatial grid Nx×Ny,
where we typically use a number of grid points in the
range Nx = Ny = 100 − 150, with a grid step in the
range ∆r/Lz = 0.1 − 0.5, dependently from the chosen
values of ξc and lB . All final results are typically averaged
over Ndis ∼ 20− 100 realisations.

Notice that we do not include the edge states in our
calculation. This is motivated by the quantitative small-
ness of their contribution, which is completely negligible
in an extended system. Indeed in a very large system
the edge modes represents a much smaller fraction of the

whole system, and, since the dipole moment along z is
the same for every electron, localised or non-localised,
their contribution is negligible with respect to the total
number of bulk states.

Appendix D: Lowest Landau level disordered
density of state

In this section we briefly review the calculation of the
disordered density of states in the lowest Landau level
(LLL) contained in [44]. For simplicity we work in adi-
mensional units where ωqw = 1.

The calculation starts from the identity in Eq. (B6).
What we need to calculate is the Green’s function for the
disordered Schrödinger equation, projected in the LLL
and averaged over the disorder. To do so we introduce
a quantum field theory representation of the Schrödinger
Green’s function in terms of complex scalar field path
integral [63]

G(x, y, ω) = 〈x| 1

ω −H
|y〉 =

1

i

∫
DφDφ∗ei

∫
d2x′[φ(x′)∗(ω−H)φ(x′)]φ(x)φ∗(y)∫

DφDφ∗ei
∫
d2x′[φ(x′)∗(ω−H)φ(x′)]

.

(D1)

We then use the relation between path integral and func-
tional determinant to transform the Bosonic path integral
in the denominator into a Grassmannian path integral
following the so-called super-symmetric approach [64]

1∫
DφDφ∗ei

∫
d2x′[φ(x′)∗(ω−H)φ(x′)]

= det [ω −H] =

=

∫
DηDη̄ei

∫
d2x′[η(x′)(ω−H)η̄(x′)].

(D2)

Here η(x) is an anticommuting Grassmann field. Con-

sidering our Hamiltonian composed by kinetic energy T̂
and disorder potential δU terms

〈x| 1

ω −H
|y〉 =

1

i

∫
DφDφ∗DηDη̄ φ(x)φ∗(y)×

× exp

[
i

∫
d2x′

[
φ∗
(
ω − T̂

)
φ+ η

(
ω − T̂

)
η̄
]]
×

× exp

[
−i
∫
d2x′δU(x′) (φ∗φ+ ηη̄)

]
.

(D3)

We now take the average over the disorder. Since we
are considering a Gaussian disorder, we can safely apply
the second cumulant expansion,

exp

[
−i
∫
d2x′δU(x′)f(x′)

]
=

= exp

[
−1/2

∫
d2x1d

2x2δU(x1)δU(x2)f(x1)f(x2)

]
.

(D4)
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where · · · indicates the average over many disorder re-
alisations. We then introduce the disorder correlator as
δU(x1)δU(x2) = C(x1−x2). In the case of infinite range
correlations (ξc →∞) we have C(x1−x2) = C0, and the
averaged Green’s function reads

〈x| 1

ω −H
|y〉 =

1

i

∫
DφDφ∗DηDη̄ φ(x)φ∗(y)×

× exp

[
i

∫
d2x′

[
φ∗
(
ω − T̂

)
φ+ η

(
ω − T̂

)
η̄
]]
×

× exp

[
−C0

2

(∫
d2x′ (φ∗(x′)φ(x′) + η(x′)η̄(x′))

)2
]
.

(D5)

We now project the fields over the LLL considering
φ(x) =

∑
k ϕ0 k(x)ak and η(x) =

∑
k ϕ0, kbk, where ϕ`,k

is the wave function of the k-th state in the `-th Landau
level. We also insert in the integral an identity operator
using a delta function and we shift ω 7→ ω − ωB/2.

The Green’s function then reads

〈x| 1

ω −H
|y〉 =

1

i

∫ +∞

−∞
dσ e−

C0
2 σ2+iωσD(x, y, σ) (D6)

with

D(x, y, σ) =
∑
k

ϕ0 k(x)ϕ∗0 k(y)Ik(σ), (D7)

and

Ik(σ) =

∫
Πk′ d

2ak′d
2bk′ a

∗
kak δ

(
σ −

∑
k

(a∗kak + b∗kbk)

)

= lim
ε→0

∫
dt

2π

∫
Πk′ d

2ak′d
2bk′ a

∗
kake

itσ−i(t−iε)
∑
k(a∗kak+b∗kbk)

=

∫
dt

2πi

eitσ

t− iε
= Θ(σ)

(D8)

in terms of the step function Θ(σ).
To get the density of states, we need to set x = y,

integrate over the whole area A of the system and fi-
nally normalise over the total electron number. Since∑
k |ϕ0 k(x)|2 = 1/(2πl2B) we get a factor A/(2πl2B) from

the spatial integration. In a finite system the total num-
ber of states in the LLL is NLLL ∼ A/(2πl2B) [47]. Com-
pleting the square, performing the Gaussian integral in
Eq. (D6) and using Eq. (B6) we finally find the density
of states for the LLL in the infinite correlation-length
approximation

ρ∞LLL(ω) ≈ 1

ηdis
e
−πω2

η2
dis , (D9)

where we considered that C0 = η2
dis/(2π). From this dis-

tribution we extract the Hikami linewidth in the infinite
correlation-length case Γ∞BH defined in Eq.(29).

In order to include information about the finite cor-
relation length, we expand the correlator in series as
C(x) ≈ C0(1 − x2/ξ2

c ). In Eq. (D5) we need to add
to the argument of the exponential in the last line the
following term

C0

2

∫
d2x1d

2x2
|x1 − x2|2

ξ2
c

(φ∗(x1)φ(x1) + η(x1)η̄(x1))×

× (φ∗(x2)φ(x2) + η(x2)η̄(x2))

≈ 2l2B
ξ2
c

[∑
k

(a∗kak + b∗kbk).

]2

.

(D10)

We see that this term contributes only by a shift of C0

which is replaced by C0 − 2C0l
2
B/ξ

2
c . We then re-sum

all the terms similar to this one from the higher order
correlator expansion considering that C0 − 2C0l

2
B/ξ

2
c ≈

C0/(1 + 2l2B/ξ
2
c ).

In this way, we arrive to the LLL density of states in
the case of a finite correlated disorder potential

ρLLL(ω) ≈ 1√
2πγLLL

e
− ω2

2γ2
LLL , (D11)

where

γLLL =
ηdisξc/lB√

2π (ξ2
c/l

2
B + 2)

. (D12)

The FWHM reported in Eq. (26) is then equal to ΓLLL =

2
√

2 log(2) γLLL.

Appendix E: Rabi splitting and polaritonic linewidth

Here we summarise the results contained in [22] re-
garding the cavity protection effect.

The poles of the cavity transmission Eq. (13) give
the system’s resonant frequencies and their linewidth,
through the equation T−1

c (ω) = 0.
In a perfectly clean system or when the disorder po-

tential is identical for the two subbands, we have Λk k′ =
δkk′ . We thus obtain the standard cavity transmission
modified by the coupling to the QW

T clean
c (ω) = − γc/2

ω − ωc + iγc2 +
Ω2
R

4 χclean(ω)
, (E1)

where

χclean(ω) = − 1

ω − ωqw + iκ2
(E2)

is the resonant response of the QW. Assuming the light-
matter resonance condition ωc ∼ ωqw in the strong
coupling regime Ω2

R/(γcκ) � 1, we have that the cav-
ity transmission has two resonant peaks, corresponding
with the polaritonic frequencies ω± ≈ ωc ± ΩR/2. The
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linewidth of these two peaks is the same and is given by
the average between the cavity and the QW linewidths
Γ ≈ (γc + κ)/2.

In a situation of small disorder we still expect to have
the two polariton peaks around the frequencies ω± but
with a modified linewidth. In order to derive this new
linewidth we split the QW optical response in real and
imaginary part χ(ω) = χR(ω) + iχI(ω), considering that
χI = πρ(ω). We also work in a rotating frame, such that
ω − ωc 7−→ ω, with ωc = ωqw. The poles of the cavity
transmission are then given by

ω +
Ω2
R

4
χR(ω) +

i

2

(
γc +

π

2
Ω2
Rρ(ω)

)
= 0. (E3)

Assuming the strong coupling regime, where ΩR is much
larger than the linewidth of ρ(ω)

χR(ω) = −
∫
dω′

ρ(ω′)

ω − ω′
≈ − 1

ω
, (E4)

and we approximate

ρ(ω) ≈ ρ(ω±) , (E5)

From these relations we immediately obtain the approx-
imated pole equation, valid only in the proximity of
ω ∼ ω±

ω2 − Ω2
R

4
+ +i

(γc
2

+
π

4
Ω2
Rρ(ω±)

)
ω = 0. (E6)

Solving it we find

ω = ±ΩR
2

√
1−

Γ2
±

2Ω2
R

− iΓ±
2
, (E7)

where the polaritonic linewidth is given by

Γ± =
γc + π

2 Ω2
Rρ(ω±)

2
(E8)
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and A. Auffèves, Strongly coupling a cavity to inhomo-
geneous ensembles of emitters: Potential for long-lived
solid-state quantum memories, Phys. Rev. A 84, 063810
(2011).

[23] S. Putz, D. O. Krimer, R. Amsüss, A. Valookaran,
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[44] S. Hikami and E. Brézin, Anderson localization in a spa-
tially correlated random potential under a strong mag-
netic field, Journal de Physique 46, 2021 (1985).

[45] T. Ando, Y. Matsumoto, and Y. Uemura, Theory of Hall
Effect in a Two-Dimensional Electron System, Journal of
the Physical Society of Japan 39, 279 (1975).

[46] T. Ando, Electron Localization in a Two-Dimensional
System in Strong Magnetic Fields. I. Case of Short-
Range Scatterers, Journal of the Physical Society of
Japan 52, 1740 (1983).

[47] B. Huckestein, Scaling theory of the integer quantum Hall
effect, Rev. Mod. Phys. 67, 357 (1995).

[48] D. R. Abujetas, N. van Hoof, S. ter Huurne, J. G. Rivas,
and J. A. Sánchez-Gil, Spectral and temporal evidence of
robust photonic bound states in the continuum on tera-
hertz metasurfaces, Optica 6, 996 (2019).

[49] F. Pisani, S. Zanotto, and A. Tredicucci, Highly resolved
ultra-strong coupling between graphene plasmons and in-
tersubband polaritons, J. Opt. Soc. Am. B 37, 19 (2020).

[50] S. Chalimah, Y. Yao, N. Ikeda, K. Kaneko,
R. Hashimoto, T. Kakuno, S. Saito, T. Kuroda,
Y. Sugimoto, and K. Sakoda, Midinfrared Dispersion
Relations in InP-Based Photonic Crystal Slabs Re-
vealed by Fourier-Transform Angle-Resolved Reflection
Spectroscopy, Phys. Rev. Applied 15, 064076 (2021).

[51] N. J. J. van Hoof, D. R. Abujetas, S. E. T. ter Huurne,
F. Verdelli, G. C. A. Timmermans, J. Sánchez-Gil, and
J. G. Rivas, Unveiling the Symmetry Protection of Bound
States in the Continuum with Terahertz Near-Field Imag-
ing, ACS Photonics, ACS Photonics 8, 3010 (2021).

[52] C. Deimert, P. Goulain, J.-M. Manceau, W. Pasek,
T. Yoon, A. Bousseksou, N. Y. Kim, R. Colombelli, and
Z. R. Wasilewski, Realization of Harmonic Oscillator Ar-
rays with Graded Semiconductor Quantum Wells, Phys.
Rev. Lett. 125, 097403 (2020).

[53] J. Raab, C. Lange, J. L. Boland, I. Laepple, M. Furth-

http://dx.doi.org/10.1103/PhysRevA.83.053852
http://dx.doi.org/10.1103/PhysRevA.84.063810
http://dx.doi.org/10.1103/PhysRevA.84.063810
http://dx.doi.org/10.1038/nphys3050
http://dx.doi.org/10.1038/nphys3050
http://dx.doi.org/ 10.1038/ncomms14107
http://dx.doi.org/ 10.1038/ncomms14107
http://dx.doi.org/ 10.1038/s41534-017-0041-3
http://dx.doi.org/ 10.1038/s41534-017-0041-3
http://dx.doi.org/10.48550/ARXIV.2208.12088
http://dx.doi.org/ 10.1103/PhysRevB.85.045304
https://books.google.it/books?id=MBxRAAAAMAAJ
https://books.google.it/books?id=MBxRAAAAMAAJ
http://dx.doi.org/10.1103/PhysRevB.64.041306
http://dx.doi.org/ 10.1103/PhysRevLett.79.4633
http://dx.doi.org/ 10.1103/PhysRevLett.87.037402
http://dx.doi.org/ 10.1103/PhysRevLett.87.037402
http://dx.doi.org/ 10.1103/PhysRevLett.88.226803
http://dx.doi.org/ 10.1103/PhysRevLett.88.226803
http://dx.doi.org/ 10.1103/PhysRevB.68.085302
http://dx.doi.org/ 10.1103/PhysRevA.97.043820
http://dx.doi.org/ 10.1103/PhysRevA.97.043820
http://dx.doi.org/10.1088/1361-6455/aa9c99
http://dx.doi.org/10.1088/1361-6455/aa9c99
http://dx.doi.org/10.1088/1361-6455/aa9c99
http://dx.doi.org/ 10.1103/PhysRevB.91.125409
http://dx.doi.org/ 10.1103/PhysRevB.91.125409
http://dx.doi.org/10.1364/OE.18.013886
http://dx.doi.org/10.1364/OE.18.013886
http://dx.doi.org/ 10.1103/PhysRevA.98.053819
http://dx.doi.org/ 10.1007/BF01312871
http://dx.doi.org/ 10.1007/BF01312871
http://dx.doi.org/10.1063/1.4766192
http://dx.doi.org/10.1063/1.4766192
http://dx.doi.org/ 10.1103/PhysRevApplied.13.044062
http://dx.doi.org/ 10.1103/PhysRevApplied.13.044062
http://dx.doi.org/10.1051/jphys:0198500460120202100
http://dx.doi.org/10.1143/JPSJ.39.279
http://dx.doi.org/10.1143/JPSJ.39.279
http://dx.doi.org/10.1143/JPSJ.52.1740
http://dx.doi.org/10.1143/JPSJ.52.1740
http://dx.doi.org/ 10.1103/RevModPhys.67.357
http://dx.doi.org/10.1364/OPTICA.6.000996
http://dx.doi.org/10.1364/JOSAB.37.000019
http://dx.doi.org/10.1103/PhysRevApplied.15.064076
http://dx.doi.org/10.1021/acsphotonics.1c00937
http://dx.doi.org/10.1103/PhysRevLett.125.097403
http://dx.doi.org/10.1103/PhysRevLett.125.097403


19

meier, E. Dardanis, N. Dessmann, L. Li, E. H. Linfield,
A. G. Davies, M. S. Vitiello, and R. Huber, Ultrafast
two-dimensional field spectroscopy of terahertz intersub-
band saturable absorbers, Opt. Express 27, 2248 (2019).

[54] G. Scalari, S. Blaser, J. Faist, H. Beere, E. Linfield,
D. Ritchie, and G. Davies, Terahertz Emission from
Quantum Cascade Lasers in the Quantum Hall Regime:
Evidence for Many Body Resonances and Localization Ef-
fects, Phys. Rev. Lett. 93, 237403 (2004).

[55] S. Uji, H. Shinagawa, T. Terashima, T. Yakabe,
Y. Terai, M. Tokumoto, A. Kobayashi, H. Tanaka, and
H. Kobayashi, Magnetic-field-induced superconductivity
in a two-dimensional organic conductor, Nature 410, 908
(2001).

[56] F. Appugliese, J. Enkner, G. L. Paravicini-Bagliani,
M. Beck, C. Reichl, W. Wegscheider, G. Scalari, C. Ciuti,
and J. Faist, Breakdown of topological protection by cavity
vacuum fields in the integer quantum Hall effect, Science
375, 1030 (2022).

[57] S. Smolka, W. Wuester, F. Haupt, S. Faelt, W. Wegschei-
der, and A. Imamoglu, Cavity quantum electrodynamics
with many-body states of a two-dimensional electron gas,

Science 346, 332 (2014).
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