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Bounding the Classical Capacity of Multilevel Damping
Quantum Channels

Chiara Macchiavello,* Massimiliano F. Sacchi, and Tito Sacchi

A recent method to detect lower bonds to the classical capacity of quantum
communication channels is applied for general damping channels in finite
dimension d > 2. The method compares the mutual information obtained by
coding on the computational basis and on a Fourier basis, which can be
obtained by just two local measurement settings and classical optimization.
The results for large representative classes of different damping structures for
high dimensional quantum systems are presented.

1. Introduction

The complete characterization of quantum communication
channels by quantum process tomography[1–3] becomes demand-
ing in terms of state preparation or measurement settings for in-
creasing dimension d of the system Hilbert space since it scales
as d4. Actually, growing interest has been shown recently for
quantum communication protocols based on larger alphabets,
beyond the binary case with d = 2, since they can offer advan-
tages with respect to the 2D case, from higher information capac-
ity to increased resilience to noise.[4–7] Several physical systems
allow encoding of higher dimensional quantum information,
for example, Rydberg atoms,[8] cold atomic ensembles,[9,10] polar
molecules,[11] trapped ions,[12] NMR systems,[13] photon tempo-
ral modes,[14] and discretized degrees of freedom of photons.[15]

Hence, as the size of quantum devices continues to grow, the
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development of scalable methods to
characterize and diagnose noise is
becoming an increasingly important
problem.
In some situations one is experimentally

interested in characterizing only specific
features of an unknown quantum chan-
nel. Then, less demanding procedures can
be adopted with respect to complete pro-
cess tomography, as for example in the
case of detection of entanglement-breaking
properties[16,17] or non-Markovianity[18] of

quantum channels, or for detection of lower bounds to the quan-
tum capacity.[19–22] In fact, some properties by themselves are not
directly accessible experimentally, as for example the ultimate
classical capacity of quantum channels, which generally requires
a regularization procedure over an infinite number of channel
uses.[23–26] Moreover, by adopting quantum process tomography
to reconstruct just a single use of the channel, we notice that the
evaluation of the classical capacity remains a theoretically hard
task, even numerically.[27–32]

It is therefore very useful to develop efficient means to es-
tablish whether a communication channel can be profitably em-
ployed for information transmission when the kind of noise af-
fecting the channel is not known. For the purpose of detect-
ing lower bounds to the classical capacity a versatile and pro-
ficient procedure has been recently presented in ref. [33]. The
method allows to experimentally detect useful lower bounds to
the classical capacity by means of few local measurements, even
for high-dimensional systems. The core of the procedure is to
efficiently measure a number of probability transition matrices
for suitable input states and matched output projective measure-
ments, and then to evaluate the pertaining mutual information
for each measurement setting. This is achieved by finding the-
oretically or numerically the optimal prior distribution for each
single-letter encoding. Hence, a lower bound to the Holevo ca-
pacity and then a certification of minimum reliable transmission
capacity is achieved.
In this paper we apply the above method to detect lower

bounds to the classical capacity of general damping channels
in dimension d > 2. The form of channels we consider has
been previously investigated in the context of quantum error
correcting codes.[34,35] We will compare the mutual informa-
tion achieved by coding on the computational and a Fourier ba-
sis, which can be obtained by just two local measurement set-
tings and classical optimization. We present the results for large
representative classes of different damping structures for high-
dimensional quantum systems.
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2. The General Method

We briefly review the method proposed in ref. [33]. The clas-
sical capacity C of a noisy quantum channel  quantifies the
maximum number of bits per channel use that can be reliably
transmitted. It is defined[24–26] by the regularized expression C =
limn→∞ 𝜒(⊗n)∕n, in terms of the Holevo capacity

𝜒(Φ) = max
{pi,𝜌i}

{S[Φ(
∑

i pi𝜌i)] −
∑

i piS[Φ(𝜌i)]} (1)

where the maximum is computed over all possible ensembles
of quantum states, and S(𝜌) = −Tr[𝜌 log 𝜌] denotes the von Neu-
mann entropy (we use logarithm to base 2). The Holevo capacity
𝜒() ≡ C1 is a lower bound for the channel capacity, and corre-
sponds to the maximum information when only product states
are sent through the uses of the channel, whereas joint (entan-
gled) measurements are allowed at the output. Then, clearly, the
Holevo capacity is also an upper bound for any expression of the
mutual information.[36–38]

I(X ;Y) =
∑
x,y

pxp(y|x) log p(y|x)∑
x′ px′p(y|x′) (2)

where the transition matrix p(y|x) corresponds to the conditional
probability for outcome y in an arbitrary measurement at the out-
put for a single use of the channel with input 𝜌x, and px denotes
an arbitrary prior probability, which describes the distribution of
the encoded alphabet on the quantum states {𝜌x}.
In order to detect a lower bound to the classical capacity when

the number of measurement settings is smaller than the one
needed for complete process tomography, the following strategy
can be adopted. Prepare a bipartite maximally entangled state|𝜙+⟩ = 1√

d

∑d−1
k=0 |k⟩|k⟩ of a system and an ancilla A with the same

dimension d; send |𝜙+⟩ through the unknown channel  ⊗ A,
where  acts on the system alone; finally, measure locally a num-
ber of observables of the formXi ⊗ X 𝜏

i , where 𝜏 denotes the trans-
position w.r.t. to the fixed basis defined by |𝜙+⟩.
By denoting the d eigenvectors of Xi as {|𝜙(i)

n ⟩} and using the
identity[39]

Tr[(A⊗ B𝜏 )( ⊗ R)|𝜙+⟩⟨𝜙+|] = 1
d
Tr[A(B)] (3)

the measurement protocol allows to reconstruct the set of con-
ditional probabilities p(i)(m|n) = ⟨𝜙(i)

m |(|𝜙(i)
n ⟩⟨𝜙(i)

n |)|𝜙(i)
m ⟩. We can

then write the optimal mutual information for the encoding-
decoding scheme by the observable Xi as

I(i) = max
{p(i)n }

∑
n,m

p(i)n p
(i)(m|n) log p(i)(m|n)∑

l p
(i)
l p

(i)(m|l) (4)

Then, the following chain of inequalities holds

C ≥ C1 ≥ CDET ≡ max
i
{I(i)} (5)

whereCDET is the experimentally accessible bound to the classical
capacity, which depends on the chosen set of measured observ-
ables labeled by i.

Notice that such a detection method based on the measure-
ments of the local operators does not necessarily require the use
of an entangled bipartite state at the input. Actually, each condi-
tional probability p(i)(m|n) can be equivalently obtained by testing
only the system, i.e. preparing it in each of the eigenstates of Xi,
and measuring Xi at the output of the channel.
The maximisation over the set of prior probabilities {p(i)n } in

Equation (4) for each i can be achieved by means of the Blahut–
Arimoto recursive algorithm,[40–42] given by

g(i)n [r] = exp

(∑
m

p(i)(m|n) log p(i)(m|n)∑
l p

(i)
l [r]p

(i)(m|l)
)

p(i)n [r + 1] = p(i)n [r]
g(i)n [r]∑

l p
(i)
l [r]g

(i)
l [r]

(6)

Starting from an arbitrary prior probability distribution {p(i)n [0]},
this guarantees convergence to an optimal prior {p̄(i)n }, thus pro-
viding the value of I(i) for each i with the desired accuracy. A mi-
nor modification of the recursive algorithm (6) can also accom-
modate possible constraints, for example the allowed maximum
energy in lossy bosonic channels.[43]

We remind that for some special forms of transition matri-
ces p(i)(m|n) there is no need for numerical maximization, since
the optimal prior is theoretically known. This is the case of a
conditional probability p(i)(m|n) corresponding to a symmetric
channel,[44] where every column p(i)(⋅|n) [and row p(i)(m|⋅)] is a
permutation of each other. In fact, in such a case the optimal prior
is the uniform p̄(i)n = 1∕d, and the pertaining mutual information
is given by I(i) = log d −H[p(i)(⋅|n)], whereH({xj}) = −

∑
j xj log xj

denotes the Shannon entropy and therefore H[p(i)(⋅|n)] is the
Shannon entropy of an arbitrary column (since all columns have
the same entropy).

3. Multilevel Damping Channels

We apply the general method summarized in the previous sec-
tion to quantum channels of the Kraus form

(𝜌) =
d−1∑
k=0

Ak𝜌A
†
k (7)

with

Ak =
d−1∑
r=k

cr−k,r|r − k⟩⟨r| (8)

The trace preserving condition
∑d−1

k=0 A
†
kAk = I corresponds to the

following constraints

r∑
k=0

|cr−k,r|2 = 1 for all r (9)

The above channels represent a generalization of damping chan-
nels for d-dimensional quantum systems, where each level can
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populate only its lower-lying levels, and no reverse transition can
occur. This form of channel can thus accommodate different de-
cay processes, from multilevel atoms to dissipative bosonic sys-
tems (see refs. [45, 46]). The customary amplitude damping chan-
nel for qubits is recovered for d = 2 and c0,0 = 1, c0,1 =

√
𝛾 and

c1,1 =
√
1 − 𝛾 .

Typically, for a fixed value of r each column vector cr−k,r will
depend on a set of damping parameters such that in a suitable
limit for all values of r one has cr−k,r = 𝛿k,0 (or cr−k,r = 𝛿k,0e

i𝜓r ).
In this way, for such a limit one obtains the noiseless iden-
tity map (𝜌) = 𝜌 (or noiseless unitary map (𝜌) = U𝜌U† where
U =

∑d−1
r=0 e

i𝜓r |r⟩⟨r|).[47] Notice also that if the number of allowed
jumps in the level structure is limited to S, one will always have
cr−k,r = 0 for k > S.
We consider the simplest case where only two projective mea-

surements are used to bound the classical capacity, namely the
two mutually unbiased bases

B = {|n⟩, n ∈ [0, d − 1]} (10)

B̃ =

{|ñ⟩ = 1√
d

(∑d−1
j=0 𝜔

nj|j⟩) , n ∈ [0, d − 1]

}
(11)

with 𝜔 = e2𝜋i∕d. The corresponding transitionmatrices for “direct
coding” (with basis B) and “Fourier coding” (with basis B̃) are
given by

Q(m|n) = ⟨m|(|n⟩⟨n|)|m⟩ (12)

Q̃(m|n) = ⟨m̃|(|ñ⟩⟨ñ|)|m̃⟩ (13)

respectively. As we have seen, each of these transition matrices
can be experimentally reconstructed by preparing a bipartitemax-
imally entangled state and performing two separable measure-
ments at the output of the channel (which acts just on one of the
two systems), or equivalently by testing separately the ensemble
of basis states with the respective measurement at the output.
The detected lower bound CDET to the classical capacity of the
channel then corresponds to the larger value between I(B) and
I(B̃), which are obtained by Equation (4).
The present study is inspired by a specific case of damping

channel for qutrits studied in ref. [33], where a transition between
two different encodings has been observed as a function of the
damping parameters. For increasing dimension, the number of
parameters characterizing the channel increases and the solution
can become quite intricate. We remind that for the customary
qubit damping channel no transition occurs, and the Fourier ba-
sis always outperforms the computational basis.[33]

From Equations (7) and (8) one easily obtains the identity

⟨m|(|n⟩⟨l|)|s⟩ = cm,nc
∗
s,l𝛿l−s,n−m (14)

Then, one has

Q(m|n) = |cm,n|2 (15)

and

Q̃(m|n) = 1
d2

d−1∑
l=0

l∑
s=0

d−1−l+s∑
t=0

cs,lc
∗
t,l−s+t 𝜔

(t−s)(m−n) (16)

Notice that Q̃(m|n) just depends on (m − n) mod d and hence it
has the form of a conditional probability pertaining to a symmet-
ric channel. As noticed in the previous section, in this case the
optimal prior distribution achieving the maximization in Equa-
tion (4) is always the uniform one, and the correspondingmutual
information is given by I(B̃) = log d −H[Q̃(⋅|n)].
On the other hand, the optimal prior distribution {p̄n} for

the direct-basis coding can be obtained by the algorithm (6).
In this case, as a global measure of the non-uniformity of {p̄n}
one can consider its Shannon entropy H({p̄n}). Clearly, one has
0 ≤ H({p̄n}) ≤ log d.
Notice that for the direct basis, all channels considered here

are such that the output states commute with each other. Since
the Holevo bound to the accessible information is saturated for
sets of commuting states,[48] the detected capacity for the direct
basis coincides with the Holevo quantity, namely

I(B) = 𝜒B ≡ S[(
∑

n p̄n|n⟩⟨n|)] −∑
n p̄nS[(|n⟩⟨n|)]

= H[
∑

n p̄nQ(⋅|n)] −∑
n p̄nH[Q(⋅|n)] (17)

where {p̄n} denotes the optimal prior obtained by the Blahut–
Arimoto algorithm. On the other hand, the detected capacity for
the Fourier basis I(B̃) will be bounded by the Holevo quantity,
namely

I(B̃) ≤ 𝜒B̃ ≡ S[
(∑

n
1
d
|ñ⟩⟨ñ|)] −∑

n
1
d
S[(|ñ⟩⟨ñ|)]

= S
(1
d
∑

n �̃�n

)
− 1
d
∑

n S(�̃�n) (18)

where

�̃�n = (|ñ⟩⟨ñ|) (19)

= 1
d

d−1∑
m,s=0

|m⟩⟨s| d−1−s+m∑
t=m

cm,tc
∗
s,s+t−m 𝜔n(m−s)

Notice that∑d−1
n=0 �̃�n =

∑d−1
m=0 |m⟩⟨m| (∑d−1

t=m |cm,t|2) (20)

and hence the first term in Equation (18) is just given by

S
(1
d
∑

n �̃�n

)
= H({wm}) (21)

with

wm = 1
d
∑d−1

t=m |cm,t|2 (22)

Clearly, the maximum between the two Holevo quantities (17)
and (18) provides a better lower bound than CDET to the ultimate
classical capacity, but for an unknown quantum channel their
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Figure 1. Detected classical capacity CDET (achieved by the Fourier basis
B̃) for a bosonic dissipation channel versus dimension d and damping
parameters 𝛾n = 𝛾 .

evaluation needs complete process tomography. We will consider
the values of 𝜒B and 𝜒B̃ in order to compare the results of the
proposed method with a theoretical bound, since the damping
channels in dimension d > 2 are theoretically poorly studied and
largely unexplored.
In the following we present numerical results for different

multilevel damping channels, which explore many illustrative
scenarios. For simplicity, we will fix the matrix elements of cm,n
as real. This restriction is always irrelevant as regards the di-
rect basis. For arg cm,n = f (n −m), this also holds for the Fourier
basis.

3.1. Bosonic Dissipation

For a bosonic system with energy dissipation the damping struc-
ture is typically governed by Binomial distributions, namely

Q(m|n) = (
n
m

)
𝛾n−mn (1 − 𝛾n)

m (23)

In principle, notice that each level can be characterized by its own
damping parameter 𝛾n ∈ [0, 1]. For this model of noise the classi-
cal capacity is known[49] for infinite dimension withmean-energy
constraint and 𝛾n = 𝛾 for all values of n. The mean and variance
of these distributions are given by

𝜇n = n(1 − 𝛾n) (24)

𝜎2n = n𝛾n(1 − 𝛾n) (25)

In Figures 1–3 we present the results of the optimization for the
simplest case of 𝛾n = 𝛾 for all values of n. We notice that for all
values of 𝛾 and any dimension d the detected classical capacity
CDET depicted in Figure 1 is achieved by the Fourier encoding B̃.
In Figure 2, for d = 8, we also report the best theoretical lower
bound given by the Holevo quantity 𝜒B̃ of Equation (18) and the
looser bound obtained by the direct basis B.

Figure 2. Detected classical capacity CDET for a bosonic dissipative chan-
nel versus damping parameters 𝛾n = 𝛾 for d = 8 (solid line, achieved by
the Fourier basis B̃). The looser bound in dashed line corresponds to the
direct basisB. The dotted line represents the theoretical lower bound given
by the Holevo quantity 𝜒B̃ of Equation (18).

Figure 3. Rescaled difference Δ between the theoretical Holevo quantity
𝜒B̃ and the detected classical capacity CDET for a bosonic dissipation chan-
nel versus dimension d and damping parameters 𝛾n = 𝛾 .

In Figure 3 we plot the rescaled difference

Δ =
𝜒B̃ − CDET

log d
(26)

in order to compare the detected capacity with the Holevo quan-
tity 𝜒B̃.

3.2. Hypergeometric Channel

We consider here a damping channel with decay structure char-
acterized by hypergeometric distributions, namely

Q(m|n) = (M
m

)(L−M
n−m

)
(L
n

) (27)

with integerM and L, with 0 ≤ M ≤ L (in principle, bothM and
L could vary for different values of n). This distribution is related
to the probability ofm successes in n draws without replacement
from finite samples of L elements, differently from the binomial
distribution where each draw is followed by a replacement. The
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Figure 4. Detected classical capacity CDET for a damping channel with hy-
pergeometric decay versus parameter M, with 0 ≤ M ≤ L = 12, and di-
mension d = 8. The detected capacity is achieved by the Fourier basis
(solid line) for M ≥ 6, and by the direct basis B (dashed line) for M ≤ 5.
The dotted line represents the theoretical lower bound given by the Holevo
quantity 𝜒B̃ of Equation (18).

correspondence with the customary binomial distribution is ob-
tained forM∕L = 1 − 𝛾 . In fact, the mean and variance are given
by[50]

𝜇 = nM
L

(28)

𝜎2 = nM
L

(
1 − M

L

)L − n
L − 1

(29)

Notice that the variance is shrunk by the factor L−n
L−1

with re-
spect to the binomial distribution. For M,L → ∞ with M∕L =
p one recovers the binomial distribution. We also observe that
the support of the distribution is given by m ∈ {max(0, n +M −
L),min(n,M)}. For M∕L = 1 the channel is lossless, that is,
cm,n = 𝛿m,n.
In Figure 4 we report the result of the optimization for d = 8

and L = 12 versus M. Differently from the case of bosonic dis-
sipation, one can observe a transition from the Fourier basis B̃
to the direct basis B in providing the best detected capacity, for
increasing value of the damping parameter (i.e., for decreasing
value ofM for fixed L).
Typically, for increasing values of damping the optimal prior

distribution for direct encoding shows holes of zero or negligible
probability, as depicted in Figure 5 for the case M = 5 and L =
12, with d = 8. This can be intuitively understood since in the
presence of strong damping it becomesmore convenient to use a
smaller alphabet of well-spaced letters in order to achieve a better
distinguishability at the receiver.

3.3. Negative Hypergeometric Channel

We consider now a damping channel with decay structure char-
acterized by negative hypergeometric distributions, namely

Q(m|n) = (m+M−1
m

)(L−M−m
n−m

)
(L
n

) (30)

Figure 5. Optimal prior distribution for the encoding on the direct basis
B for a damping channel with hypergeometric decay (M = 5 and L = 12),
in dimension d = 8. Among the eight possible input states, just four (n =
0, 2, 3, 7) are used for the encoding. The corresponding detected capacity
is given by CDET ≃ 1.074 bits.

Figure 6. Detected classical capacity CDET for a damping channel with
negative-hypergeometric decay for dimension d = 8 and parameter L = 32
versus M. The detected capacity is achieved by the Fourier basis B̃ (solid
line), which outperforms the direct basis B (dashed line). The dotted line
represents the theoretical lower bound given by the Holevo quantity 𝜒B̃ of
Equation (18).

with positive integers M and L such that n ≤ L −M (here
also both M and L could vary for different values of n). This
distribution is related to the probability of m successes until
M failures occur in drawing without replacement from finite
samples of L elements. The mean and variance are given by
ref. [51].

𝜇 = n M
L − n + 1

(31)

𝜎2 = 𝜇

(
1 − 𝜇

n

) L + 1
L − n + 2

(32)

Notice that the variance is larger with respect to the binomial dis-
tribution. In the limitM, L → ∞ withM∕L = 1 − 𝛾 one recovers
the binomial distribution.
For this class of channels we generally find that the detected

capacity is achieved by the Fourier basis B̃. The results for d = 8
and L = 32 versusM are reported in Figure 6.
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Figure 7. Detected classical capacity CDET for a beta-binomial decay chan-
nel with d = 8 versus parameters 𝛼 and 𝛽. In the present region the bound
is provided by the Fourier encoding B̃.

Figure 8. Detected classical capacity CDET for a beta-binomial decay chan-
nel with d = 8 versus parameters 𝛼 and 𝛽. In the region below the depicted
line the bound is provided by the direct encoding B.

3.4. Beta-Binomial Channel

We consider a damping channel with decay probabilities given
by

Q(m|n) = (
n
m

)
B(m + 𝛼, n −m + 𝛽)

B(𝛼, 𝛽)
(33)

where 𝛼, 𝛽 > 0, and B(𝛼, 𝛽) = Γ(𝛼)Γ(𝛽)∕Γ(𝛼 + 𝛽) denotes the beta
function. This family of distributions arises in binomial trials
with success probability that is not known, but distributed accord-
ing to the beta function. We remind that this distribution can be
bimodal (U-shaped), i.e. it can present two peaks when both 𝛼

and 𝛽 are smaller than 1. The mean and variance are given by
ref. [52].

𝜇 = n𝜉 (34)

𝜎2 = n𝜉(1 − 𝜉)
𝛼 + 𝛽 + n
𝛼 + 𝛽 + 1

(35)

with 𝜉 = 𝛼

𝛼+𝛽
. We have then overdispersion with respect to the

binomial distribution with 𝜉 = 1 − 𝛾 . This binomial is recovered
for 𝛼, 𝛽 → ∞ with 𝜉 = 1 − 𝛾 .
In Figures 7 and 8 we plot the results of the detected capacity

CDET for dimension d = 8 as a function of 𝛼 and 𝛽. We notice that

Figure 9. Rescaled differenceΔ between the Holevo quantity 𝜒B̃ and CDET
represented in Figure 7.

Figure 10. Detected classical capacity CDET for geometric damping chan-
nel vs dimension d and decay parameters 𝛾n = 𝛾 , achieved by the Fourier
basis B̃.

CDET is achieved by the Fourier basis B̃ (Figure 7), except for a tiny
region corresponding to very small values of 𝛼 and 𝛽 (Figure 8).
In Figure 9 we also report the rescaled difference Δ between the
Holevo quantity 𝜒B̃ and CDET .

3.5. Geometric Damping

We consider a channel where the decaying conditional probabil-
ities are given by

Q(m|n) = 1 − 𝛾n

1 − 𝛾n+1n

𝛾n−mn (36)

with 𝛾n ≥ 0.
The results in the simplest case of 𝛾n = 𝛾 for all values of n

are depicted in Figure 10, where the detected capacity is always
achieved by the Fourier basis B̃, for all values of 𝛾 and for any
dimension d. In Figure 11 we report the rescaled difference with
respect to the Holevo quantity 𝜒B̃.

Adv. Quantum Technol. 2020, 3, 2000013 © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim2000013 (6 of 9)
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Figure 11. Rescaled difference Δ between the theoretical Holevo quan-
tity 𝜒B̃ and the detected classical capacity CDET for a geometric damping
channel vs dimension d and damping 𝛾n = 𝛾 .

Figure 12. Detected classical capacity CDET for a constant-ratio decay
channel versus allowed values of damping parameter 𝛾n = 𝛾 , for d =
2, 3, 4, 5 (from bottom to top). The solid (dashed) lines are referred to the
Fourier B̃ (direct B) basis.

3.6. Constant Ratio for Adjacent Levels

We consider here a damping channel with constant ratio between
the decay probabilities pertaining to adjacent levels, namely we
study the case

Q(m|n) = 𝛾n−mn (1 − 𝛿m,n) +
1 − 2𝛾n + 𝛾n+1n

1 − 𝛾n
𝛿m,n (37)

with suitable positive values for 𝛾n. The result for 𝛾n = 𝛾 for all
values of n is reported in Figure 12 for values of the dimension
d = 2, 3, 4, and 5.[53] We notice that, except for the qutrit case
d = 3 with strong decay, the Fourier basis provides a better lower
bound to the channel capacity.

3.7. Two-Jump Limited Damping

The following is an example of a damping channel where each
level decays at most by two jumps:

Q(0|0) = 1,

Q(m|1) = 1
1 + 𝛾1

(𝛿m,1 + 𝛾1𝛿m,0),

Figure 13. Detected classical capacity CDET for a two-jump limited de-
cay channel with d = 8 versus parameters 𝛾1 and 𝛾2. Inside (outside)
the enclosed region the bound is achieved by the Fourier basis B̃ (direct
basis B).

Q(m|n) = 1
1 + 𝛾1 + 𝛾2

(𝛿m,n + 𝛾1𝛿m−1,n + 𝛾2𝛿m−2,n)

for 2 ≤ n ≤ d − 1 (38)

with 𝛾1, 𝛾2 ≥ 0. The results of the detected capacity for dimension
d = 8 are reported in Figure 13. We observe a transition from the
Fourier to the direct basis in achieving the optimal detection for
sufficiently large values of 𝛾1 and 𝛾2.

3.8. 𝚲-Channels

In this kind of damping channels only the uppermost level inter-
acts with each lower-lying level. Clearly, many variants are possi-
ble, and we consider the following case

Q(m, d − 1) = 1 − 𝛾

1 − 𝛾d
𝛾d−1−m,

Q(m|n) = 𝛿m,n for 0 ≤ n < d − 1 (39)

with 𝛾 ≥ 0. Indeed, this is a particular form of geometric channel,
where also the ratio of the transition probabilities pertaining to
adjacent levels is constant.
The solution for d = 4 is depicted in Figure 14. We notice that

the detected capacity is achieved by the direct basis B, for all val-
ues of 𝛾 . Interestingly, except for the qubit case d = 2 (equivalent
to the customary qubit damping channel), we have numerical ev-
idence that the direct basis always provides a better lower bound
than the Fourier basis for any 𝛾 and d.

3.9. V-channels

In this last example the lowest level is linked to a succession of
higher-lying levels, hence

Q(m|n) = (1 − 𝛾n)𝛿n,n + 𝛾n𝛿n,0 (40)

Adv. Quantum Technol. 2020, 3, 2000013 © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim2000013 (7 of 9)
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Figure 14. Detected classical capacity CDET for a Λ-channel versus damp-
ing parameter 𝛾 for d = 4 (solid line, achieved by the direct basis B). The
looser bound in dashed line corresponds to the Fourier basis B̃. Since three
levels are noise-free CDET > log2 3 ≃ 1.585 bits. The Shannon entropy of
the optimized prior probability {p̄n} is depicted in dot-dashed line.

Figure 15. Detected classical capacity CDET for a V-channel versus damp-
ing parameter 𝛾 for d = 2, 3, 4, 8 (from bottom to top). The solid (dashed)
lines are refereed to the Fourier B̃ (direct B) basis.

with 𝛾n ∈ [0, 1]. We considered the simplest case where 𝛾n = 𝛾 for
all values of n, and the detected capacity is plotted in Figure 15 for
values of the dimension d = 2, 3, 4, and 8.We notice that for d = 2
and 3 the values of the detected capacity of ref. [33] are recovered.
For increasing dimension d we observe a transition: except for
the qubit case, where for any 𝛾 the best basis is the Fourier B̃,
for d > 2 the direct basis B rapidly outperforms B̃ for increasing
values of 𝛾 .

4. Conclusions

We have applied a recently proposed general method[33] to de-
tect lower bounds to the classical capacity of quantum commu-
nication channels for general damping channels in dimension
d > 2. A number of illustrative examples has been considered in
the simplest scenario of just two testing measurement settings,
namely the direct coding on the computational basis and on a
Fourier basis. When the Fourier basis B̃ outperforms the com-
putational basis B, this gives an indication that in such cases the
accessible information for a single use of the channel restricted
to orthogonal input states and projective output measurements
can be improved by coding on non-classical states with respect
to the classical coding. As a rule of thumb, we observe that the

Fourier basis provides a better lower bound to the classical capac-
ity as long as the variances of the conditional probabilitiesQ(m|n)
pertaining to the direct coding are sufficiently large. The present
application to high-dimensional channels strongly supports the
use of ourmethod especially when quantum complete process to-
mography is unavailable or highly demanding, since, as we have
shown, remarkable results can be obtained by employing just two
measurement settings. In general, by increasing the number of
allowed testing measurements, tighter bounds may be obtained.
The method we employed is developed for unknown quantum
channels. Clearly, when some prior knowledge about the struc-
ture of the channel is available, this could be taken into account
in the choice of selecting a limited number of suited measure-
ment settings.
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