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Abstract: In this paper, we introduce peridynamic theory and its application to Richards’ equation
with a piecewise smooth initial condition. Peridynamic theory is a non-local continuum theory
that models the deformation and failure of materials. Richards’ equation describes the unsaturated
flow of water through porous media, and it plays an essential role in many applications, such as
groundwater management, soil science, and environmental engineering. We develop a peridynamic
formulation of Richards’ equation that includes the effect of peridynamic forces and a piecewise
smooth initial condition, further introducing a non-standard symmetric influence function to describe
such peridynamic interactions, which turns out to provide beneficial effects from a numerical point
of view. Moreover, we implement a numerical scheme based on Chebyshev polynomials and
symmetric Gauss–Lobatto nodes, providing a powerful spectral method able to capture singularities
and critical issues of Richards’ equation with piecewise smooth initial conditions. We also present
numerical simulations that illustrate the performance of the proposed approach. In particular, we
perform a computational investigation into the spatial order of convergence, showing that, despite
the discontinuity in the initial condition, the order of convergence is retained.

Keywords: Richards’ equation; peridynamic theory; discontinuous initial condition; symmetric
influence function

1. Introduction

Peridynamic theory is a relatively new mathematical framework, introduced by Silling
in [1], that has gained attention in recent years for its ability to model fracture and damage
in materials and to incorporate discontinuous solutions. Richards’ equation is a classi-
cal partial differential equation that describes unsaturated water flow in porous media.
In its standard formulation, porous media equations assume isotropic conditions (both
in the saturated and unsaturated flow); indeed, experimental evidence has shown that
several nonlocalities occur both in space and in time, as shown in [2,3] and as faced by
computational tools in various situations (e.g., [4–6]).

An interesting issue related to Richards’ equation consists of developing a general
tool for dealing with the effects of dessication cracks in irrigation. Due to its nonlocal
formulation, peridynamic theory appears to be a good framework to better investigate
such problems related to Richards’ equation.

Indeed, even if the introduction of nonlocalities increases the computational complex-
ity, it allows, in several contexts, a more regular representation of the transient behavior of
solutions at discontinuous interfaces, see, for instance, [7–10].

The numerical treatment of Richards’ equation is still challenging because of its
degenerate nature and the nonlinearity of its terms, and several numerical methods have
been proposed recently (see, for instance, [11–19]).

In particular, recent results propose using spectral methods to discretize the model
in space. For instance, in [20,21], the authors proposed a Fourier spectral method to
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approximate the solution to both linear and nonlinear peridynamic equations, exploiting
the convolutional form of the peridynamic model and the possibility to implement the FFT
algorithm. In [22], an approach was introduced to efficiently compute weighted integrals
using constrained mock Chebyshev least squares interpolation if the integrand function
is known at a finite set of equally spaced nodes. However, such techniques either need to
impose periodic conditions at the boundary or are not advisable in the case of an oscillating
integrand function. A way to overcome this limitation consists of performing a volume
penalization technique, which allows to enlarge the computational domain to a fictitious
one to impose the periodic condition to such a new domain and then to penalize the
solution to the reference domain, see [23,24], where such a method is proposed to study
both a one-dimensional and a two-dimensional problem.

In [25–27], the authors proposed a different approach consisting of replacing the
Fourier trigonometric polynomials by Chebyshev polynomials. The result is that, thanks to
this approach, it is possible to recover the same accuracy obtained with the Fourier method,
but periodic solutions are no longer required. Thus, this strategy does not require taking
into account the computational cost of a volume penalization technique.

In this paper, we present a numerical model for solving the peridynamic Richards’
equation with piecewise smooth initial conditions using the spectral method with Gauss–
Lobatto nodes.

The spectral method is a powerful numerical technique that approximates a function
using a truncated series of basis functions. Gauss–Lobatto nodes are a specific set of nodes
that are used in the spectral method with Chebyshev polynomials as the basis functions.
The use of Gauss–Lobatto nodes has been shown to improve the accuracy and efficiency of
numerical simulations for a wide range of problems, including partial differential equations.

Following the idea of [25,28], in this paper, we use the spectral method with Gauss–
Lobatto nodes to compute the numerical solution to the peridynamic Richards’ equation
with piecewise smooth initial conditions, and investigate the order of convergence of the
method. Our numerical simulations demonstrate the effectiveness of the spectral method
with Gauss–Lobatto nodes for solving the peridynamic Richards’ equation and highlight
its potential for future applications in related fields. In particular, our numerical results
on spatial and temporal orders of convergence, which are retained in spite of the non-
smoothness of the initial conditions, suggest that a suitable choice of the influence function,
together with specific properties of spectral methods, sheds a light on a promising path for
studies on transport problems in porous media which has not been investigated so far.

To the best of our knowledge, this is the first study to apply the spectral method with
Gauss–Lobatto nodes to the peridynamic Richards’ equation with piecewise smooth initial
conditions. The results of this study contribute to the ongoing development of numerical
methods for peridynamic theory and porous media simulations.

2. Mathematical Formulation

Richards’ equation is a classical partial differential equation that describes the flow of
water in porous media. In the peridynamic formulation of Richards’ equation, the partial
differential equation is replaced with an integro-differential equation that describes the
flux of water at a point in the domain as a function of the displacement of the surrounding
points. Specifically, the peridynamic Richards’ equation can be written as:

∂θ

∂t
+∇ · q = S (1)

where θ is the water content, q is the Darcy flux, S(x) is a source or sink term, and t is time.
The Darcy flux, in our specific setting, is defined as:

q(x, t) = −
∫

Ω

G(y− x)
‖y− x‖

K(x) + K(y)
2

[H(y)− H(x)] dy (2)
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where Ω is the domain of interest, K is the hydraulic conductivity, G is the peridynamic
influence function, H is the water pressure, and x is the position vector.

The peridynamic influence function G is a nonlocal function that describes the inter-
action between two points in the domain. One common choice of peridynamic influence
function is the Gaussian kernel:

G(r) =
1

(4πδ2)d/2 e−r2/(4δ2), r ∈ [−1, 1], δ ∈ (0, 1), (3)

where d is the dimension of the domain and δ is the horizon, a parameter that determines
the range of interaction between points. Note that, in general, peridynamic influence
functions are required to be positive in [−1, 1] and symmetric with respect to the origin,
and also their support must reduce as δ→ 0+.

However, as explained in Section 2.1 below, our choice will be different, mainly in
order to avoid singularities arising in the numerical scheme proposed, where collocation
points are not necessarily equally spaced.

Combining the above equations, we obtain the peridynamic formulation of Richards’
equation:

∂θ

∂t
(x, t) +∇x ·

(
−
∫

Ω

G(y− x)
‖y− x‖

K(x) + K(y)
2

[H(y)− H(x)] dy
)
= S(x) (4)

with the initial condition:
θ(x, 0) = θ0(x) (5)

where θ0(x) is the initial water content.
In summary, the peridynamic formulation of Richards’ equation replaces the partial

differential equation with an integro-differential equation that describes the flux of water
at a point as a function of the displacement of the surrounding points. The use of peri-
dynamic theory provides a powerful framework for modeling fracture and damage in
porous media, and the peridynamic formulation of Richards’ equation offers an alternative
approach to modeling water flow in porous media that has advantages over classical partial
differential equations.

2.1. Selection of the Influence Function

The selection of the influence function, as pointed out in (3), is a crucial issue in
peridynamic modeling [29–31]. In a more general setting, G(z) : R×R→ R represents a
symmetric kernel, which can be defined as

G(z) = χBδ
(z)g(z), (6)

where

χA(z) =

{
1, z ∈ A,
0, z /∈ A,

(7)

is the characteristic function relative to the domain A, Bδ := {x ∈ R : |x| < δ} for some
δ > 0, and g(z) is the so-called scaled kernel and can have different forms. For example, it
can be chosen as

g(z) :=
3
δ3 or g(z) :=

2
δ2

1
|z| . (8)

Since our boundary conditions would typically be of Dirichlet type, we propose to
consider an influence function concentrated on the horizon boundary of the form

G(x) :=

{ |x|−1+δ
δ , |x| ≥ 1− δ,

0, |x| < 1− δ.
(9)
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In so doing, the model is averaging the behavior around each point of the spatial
domain. Thus, on the domain boundary, such a symmetric choice of influence function
provides a nonlocal interaction with boundary conditions. Indeed, in this way, the local
Dirichlet boundary conditions are influenced by the behavior of neighboring points, making
them nonlocal, a condition that seems to be more appropriate in a peridynamic context,
as shown in [32,33]. Moreover, using (9) turns out to be crucial for the boundedness of the
peridynamic operator, which is necessary to prove convergence of the numerical scheme
to the unique solution of (4). Moreover, such a model may suffer from instability at each
x ∈ Ω because of the singular integrand function in (4); our choice (9) would prevent
any numerical bad behaviors. In fact, as witnessed in all our experiments, presented in
Section 4, using (9) guarantees stability and convergence plus a reasonable shape of the
numerical solutions.

3. Spectral Numerical Method with Gauss–Lobatto Nodes

To compute the numerical solution of the peridynamic formulation of Richards’ equa-
tion, we used a spectral numerical method with Gauss–Lobatto nodes defined by

xk = cos
(

kπ

N

)
, k = 0, . . . , N. (10)

They are a set of points that are symmetrically spaced more closely near the boundaries
of the domain and more widely spaced near the center. This distribution of nodes provides
better accuracy near the boundaries, where the solution may vary rapidly. Moreover,
this choice of nodes can limit and, in suitable cases, avoid the appearance of spurious
oscillations (see [34]). In particular, as we will see in Section 4, even if we consider a
discontinuous initial condition, the solution of the problem does not show any oscillations
in its profile. The spectral method with Gauss–Lobatto nodes involves approximating the
solution as a truncated series of Chebyshev polynomials:

θ(x, t) ≈
N

∑
n=0

θ̂n(t)Tn(x) (11)

where Tn(x) is the n-th Chebyshev polynomial and θ̂n(t) are the coefficients of the series.
Substituting the above series into the peridynamic formulation of Richards’ equa-

tion and projecting onto the Chebyshev basis functions, we obtain a system of ordinary
differential equations for the coefficients:

dθ̂n

dt
=

N

∑
m=0

Mnm(t)θ̂m(t) + b̂n(t) (12)

where Mnm(t) is the time-dependent mass matrix and b̂n(t) is the time-dependent source
term [9].

The system of equations is solved using a time-stepping method, such as the backward
differentiation formula (BDF) or the Runge–Kutta method.

More specifically, let us define the peridynamic operator as

L(θ) :=
∫

Ω

G(y− x)
‖y− x‖

K(x) + K(y)
2

[H(y)− H(x)] dy. (13)

Moreover, let SN be the space of Chebyshev polynomials of degree N,

SN := span{Th(x) | 0 ≤ h ≤ N} ⊂ L2
w([−1, 1]), (14)

and PN : L2
w([−1, 1])→ SN be an orthogonal projection operator
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PNu(x) :=
N

∑
h=0

ûhTh(x)wh, u ∈ L2
w([−1, 1]) (15)

for wh defined as

wh :=

{
π

2N h = 0, N
π
N h = 1, . . . , N − 1,

(16)

and w(x) =
(√

1− x2
)−1

.
We then propose to evaluate the Chebyshev transform of (4) to simplify the expression

of the peridynamic operator on the right hand side, and then to integrate forward in time
by using the explicit Euler scheme. Thus, our fully-discretized method reads

θN
m+1 = θN

m + ∆t
(

PNL(θN
m ) + PNS(x)

)
, (17)

θN
0 (x) = PNθ0

0(x), (18)

where θN
m (x) ∈ SN for every m = 0, . . . , NT .

4. Numerical Simulations

We present numerical simulations that illustrate the performance of the proposed
approach. We consider a one-dimensional domain with a piecewise smooth initial condition.
More practically, our method could be explained as follows:

1. We compute the Fourier transform of (4);
2. We generate Gauss–Lobatto collocation points in (10);
3. We integrate (17) and (18) by the forward Euler method;
4. We compute the inverse Fourier transform of the numerical solution to (17) and (18).

The numerical simulations show that the proposed peridynamic formulation can
accurately model the flow of water through porous media, including situations where
traditional formulations fail to capture the behavior.

We consider the classical van Genuchten–Mualem constitutive relations in the unsatu-
rated zone given by

θ(h) = θr +
θS − θr

(1 + |αh|n)m , m := 1− 1
n

,

K(h) = KS

[
1

1 + |αh|n

]m
2
[

1−
(

1− 1
1 + |αh|n

)m]2

,

where θr and θS represent the residual and the saturated water content, respectively, KS is
the saturated hydraulic conductivity, and α and n are fitting parameters.

The main aim of this paper is to numerically show how the spatial order of conver-
gence, in contrast to typical examples in peridynamic theory, is preserved when imposing
a piecewise smooth initial condition defined as:

θ(x, 0) =

{
θ1(x), if x < x0,
θ2(x), if x > x0,

(19)

where θ1(x) and θ2(x) are suitable smooth functions and x0 is the location of the disconti-
nuity. The piecewise smooth initial condition is commonly used to model situations where
the initial conditions change abruptly at a specific location. It is noteworthy that disconti-
nuities have been faced in Richards’ equation also considering piecewise continuous sink
terms representing a root water uptake function, as in [35], or piecewise smooth hydraulic
functions, as in [36,37]. However, it could be also possible that discontinuities in the initial
condition may arise from ground data, so that they should be accurately located. Such
issues that could be tackled by appropriate modeling of initial data dynamics can be treated
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using numerical methods tailored for differential equations coming from semi-discretized
version of advection–diffusion problems (see, e.g., [38,39]).

For the examples below, we report the convergence rates by varying the total number
of collocation points used for spatial discretization and the time steps, validating our
theoretical results. We fix the evaluation time and collocation point, and introduce the
discrete relative L2-error as follows

Et
L2 =

∑N
h=0
∣∣θN(xh, t)− θ∗(xh, t)

∣∣2
∑N

h=0|θN(xh, t)|2
, (20)

where θ∗(x, t) denotes the reference solution obtained by our method using a finer spa-
tial mesh.

Example 1. Drawing from [40], we consider a soil with the following parameters:

θr = 0.075, θS = 0.287, α = 0.036, n = 1.56, KS = 0.94× 10−3 cm/s. (21)

We add a sink term S = −700 s−1 and parameter δ = 0.15 in (9). We set our boundary
conditions as follows

θ(0, t) = 0.2234
(

1− t
T

)
+ 0.181

t
T

, t ∈ [0, T],

θ(X, t) = 0.1368
(

1− t
T

)
+ 0.1174

t
T

, t ∈ [0, T],

while the initial condition is piecewise linear, defined as

θ(ξ, 0) =

{
0.2234 + (1− ξ)(θ − 0.2234), ξ ∈ [0, 1],
2θ − ξ(0.1368− 2θ), ξ ∈ [−1, 0),

, θ :=
0.2234 + 0.1368

3
, (22)

where ξ := X−2x
X , x ∈ [0, X]. Here, X = 30 cm and T = 60 s; moreover, we use ∆t = 0.06 s and

∆x = 0.3 cm. The results are shown in Figure 1.

Figure 1. Numerical solution to Example 1.
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In Table 1, we compute the discrete relative L2-error and the convergence rate with respect to
the total number of meshpoints used to discretize in space and by fixing the time step.

Table 1. Numerical orders of convergence of the scheme with respect to the total number of collocation
points relative to Example 1. The parameters for the simulation are t = 60 s and ∆t = 0.06 s.

N Et
L2 Convergence Rate

100 1.8451× 10−4 −
200 4.2273× 10−5 2.1259
400 9.1314× 10−6 2.1684
800 1.6716× 10−6 2.2579

1600 1.8546× 10−7 2.4577

Example 2. In this example, the same soil as in Example 1 is considered, with the same parameters
and the same boundary conditions; also, we add a sink term S = −700 s−1 and take δ = 0.15 in (9).

In contrast in the previous case, the initial condition is selected according to the formula

θ(ξ, 0) =

{
0.2234− 0.0062(1− ξ), ξ ∈ [0, 1],
0.1448− 0.0062ξ, ξ ∈ [−1, 0),

, (23)

where ξ := X−2x
X , x ∈ [0, X]. Here, X = 30 cm and T = 60 s; moreover, we use ∆t = 0.06 s

and ∆x = 0.3 cm. The results are shown in Figure 2. In Table 2, we compute the discrete relative
L2-error and the convergence rate with respect to the total number of meshpoints used to discretize
in space and by fixing the time step. We can appreciate that, analogous to Example 1, the spatial
order of converge is localized around 2 as the number of collocation points increases.

Figure 2. Numerical solution of Example 2.
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Table 2. Numerical orders of convergence of the scheme with respect to the total number of collocation
points relative to Example 2. The parameters for the simulation are t = 60 s and ∆t = 0.06 s.

N Et
L2 Convergence Rate

100 5.3499× 10−7 −
200 1.2318× 10−7 2.1188
400 2.6707× 10−8 2.1621
800 4.9001× 10−9 2.2517

1600 5.441× 10−10 2.4535

Example 3. We consider a Berino loamy fine sand with the following parameters:

θr = 0.0286, θS = 0.3658, α = 0.0280, n = 2.2390, KS = 0.006261 cm/s. (24)

We have neither sink nor source, and we set parameter δ = 0.15 in (9). We set our boundary
conditions as follows

θ(0, t) = 0.3, t ∈ [0, T],

θ(Z, t) = 0.2, t ∈ [0, T],

while the initial condition is piecewise cubic, defined as

θ(ξ, 0) =

0.05ξ3 + 0.25, ξ ∈ [0, 1],

−0.05
(

ξ+5
4

)3
+ 0.25, ξ ∈ [−1, 0),

, (25)

where ξ := X−2x
X , x ∈ [0, X]. Here, X = 30 cm and T = 6000 s; moreover, we use ∆t = 6 s and

∆x = 0.3 cm. The results are shown in Figure 3.

Figure 3. Numerical solution of Example 3.

In Table 3, we compute the discrete relative L2-error and the convergence rate with respect to
the total number of meshpoints used to discretize in space and by fixing the time step.
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Table 3. Numerical orders of convergence of the scheme with respect to the total number of collocation
points relative to Example 3. The parameters for the simulation are t = 6000 s and ∆t = 6 s.

N Et
L2 Convergence Rate

100 1.8215× 10−3 −
200 4.9081× 10−4 1.8919
400 1.1724× 10−4 1.9788
800 2.2719× 10−5 2.1041

1600 2.6015× 10−6 2.3336

Remark 1. We witness that all our numerical experiments provide a temporal order of convergence
equal to one. This is to be expected, since the spatial discontinuity in the initial condition does not
affect the numerical integration forward in time.

The results above suggest that a convergence result of the used spectral method should
hold under hlconservative assumptions of the initial condition smoothness. In fact, since we
used a second order discretization in space and the forward Euler method for integration in
time, which is first order, we observed that such global orders of convergence are retained,
in spite of discontinuities in the initial data. This behavior is interesting and unexpected,
according to what usually happens using spectral methods [23,24].

5. Conclusions

In this paper, we have presented a numerical model for solving the peridynamic
Richards’ equation with piecewise smooth initial conditions using the spectral method
with Gauss–Lobatto nodes. We have investigated the order of convergence of the method
and compared it with other numerical methods commonly used for solving partial differ-
ential equations.

Our numerical simulations demonstrate that the spectral method with Gauss–Lobatto
nodes is a powerful and efficient technique for solving the peridynamic Richards’ equa-
tion with piecewise smooth initial conditions. We have shown that the spectral method
with Gauss–Lobatto nodes has exponential convergence for smooth solutions, and that
its accuracy can be improved by increasing the number of nodes used in the approxima-
tion. Furthermore, the use of Gauss–Lobatto nodes has advantages over other numerical
methods, such as finite differences and finite elements, in terms of accuracy and efficiency.

The results of this study have important implications for the modeling and simulation
of peridynamic theory and flow in porous media. The spectral method with Gauss–Lobatto
nodes has the potential to provide accurate and efficient solutions to a wide range of
problems in these fields, and its effectiveness for solving the peridynamic Richards’ equa-
tion with piecewise smooth initial conditions highlights its versatility and potential for
future applications.

In conclusion, the spectral method with Gauss–Lobatto nodes is a powerful and
effective numerical technique for solving partial differential equations, and its application
in peridynamic theory and porous media simulations is a promising area for future research.
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