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Abstract: Nowadays pervasive monitoring of traffic flows in urban environment is a topic of great relevance, since the 

information it is possible to gather may be exploited for a more efficient and sustainable mobility. In this 

paper, we address the use of smart cameras for assessing the level of service of roads and early detect 

possible congestion. In particular, we devise a lightweight method that is suitable for use on low power and 

low cost sensors, resulting in a scalable and sustainable approach to flow monitoring over large areas. We 

also present the current prototype of an ad hoc device we designed and report experimental results obtained 

during a field test. 

1 INTRODUCTION 

Thanks to computer vision techniques, fully 

automatic video and image analysis from traffic 

monitoring cameras is a fast-emerging field based 

with a growing impact on Intelligent Transport 

Systems (ITS). 

Indeed the decreasing hardware cost and, 

therefore, the increasing deployment of cameras and 

embedded systems have opened a wide application 

field for video analytics in both urban and highway 

scenarios. It can be envisaged that several 

monitoring objectives such as congestion, traffic rule 

violation, and vehicle interaction can be targeted 

using cameras that were typically originally installed 

for human operators (Buch et al., 2011). 

On highways, systems for the detection and 

classification of vehicles have successfully been 

using classical visual surveillance techniques such as 

background estimation and motion tracking for some 

time. Nowadays existing methodologies have good 

performance also in case of inclement weather and 

are operational 24/7. On the converse, the urban 

domain is less explored and more challenging with 

respect to traffic density, lower camera angles that 

lead to a high degree of occlusion and the greater 

variety of street users. Methods from object 

categorization and 3-D modelling have inspired 

more advanced techniques to tackle these 

challenges. In addition, due to scalability issues and 

cost-effectiveness, urban traffic monitoring cannot 

be constantly based on high-end acquisition and 

computing platforms; the emerging of embedded 

technologies and pervasive computing may alleviate 

this issue: it is indeed challenging yet definitely 

important to deploy pervasive and untethered 

technologies such as Wireless Sensor Networks 

(WSN) for addressing urban traffic monitoring. 

Based on these considerations, the aim of this 

paper is to introduce a scalable technology for 

supporting ITS-related problems in urban scenarios; 

in particular, we propose an embedded solution for 

the realization of a smart camera that can be used to 

detect, understand and analyse traffic-related 

situation and events thanks to an on-board vision 

logics. Indeed, to suitably tackle scalability issues in 

the urban environment, we propose the use of a 

distributed, pervasive system consisting in a Smart 

Camera Network (SCN), a special kind of WSN in 

which each node is equipped with an image-sensing 

device. Clearly, gathering information from a 

network of scattered cameras, possibly covering a 



 

large area, is a common feature of many video 

surveillance and ambient intelligence systems. 

However, most of classical solutions are based on a 

centralized approach: only sensing is distributed 

while the actual video processing is accomplished in 

a single unit. In those configurations, the video 

streams from multiple cameras are encoded and 

conveyed (sometimes thanks to multiplexing 

technologies) to a central processing unit, which 

decodes the streams and perform processing on each 

of them. With respect to those configurations, the 

need to introduce distributed intelligent system is 

motivated by several requirements, namely 

(Remagnino et al., 2004): 

• Speed: in-network distributed processing is 

inherently parallel; in addition, the specialization of 

modules permits to reduce the computational burden 

in the higher level of the network, in this way, the 

role of the central server is relieved and it might be 

actually omitted in a fully distributed architecture.  

• Bandwidth: in-node processing permits to 

reduce the amount of transmitted data, by 

transferring only information-rich parameters about 

the observed scene and not the redundant video data 

stream. 

• Redundancy: a distributed system may be re-

configured in case of failure of some of it 

components, still keeping the overall functionalities. 

• Autonomy: each of the nodes may process 

the images asynchronously and may react 

autonomously to the perceived changes in the scene. 

In particular, these issues suggest moving a part 

of intelligence towards the camera nodes. In these 

nodes, artificial intelligence and computer vision 

algorithms are able to provide autonomy and 

adaptation to internal conditions (e.g. hardware and 

software failure) as well as to external conditions 

(e.g. changes in weather and lighting conditions). It 

can be stated that in a SCN the nodes are not merely 

collectors of information from the sensors, but they 

have to blend significant and compact descriptors of 

the scene from the bulky raw data contained in a 

video stream.  

This naturally requires the solution of computer 

vision problems such as change detection in image 

sequences, object detection, object recognition, 

tracking, and image fusion for multi-view analysis. 

Indeed, no understanding of a scene may be 

accomplished without dealing with some of the 

above tasks. As it is well known, for each of such 

problems there is an extensive corpus of already 

implemented methods provided by the computer 

vision and the video surveillance communities. 

However, most of the techniques currently available 

are not suitable to be used in SCN, due to the high 

computational complexity of algorithms or to 

excessively demanding memory requirements. 

Therefore, ad hoc algorithms should be designed for 

SCN, as we will explore in the next sections. In 

particular, after describing the possible role of SCN 

in urban scenarios, we present in Section 3 a sample 

application, namely the estimation of vehicular 

flows on a road, proposing a lightweight method 

suitable for embedded systems. Then, we introduce 

the sensor prototype we designed and developed in 

Section 4. In Section 5 we report the experimental 

results gathered during a test field and we finally 

conclude the paper in Section 6. 

. 

2 SCN IN URBAN SCENARIOS 

According to (Buch et al., 2011), there has been 

an increased scope for the automatic analysis of 

urban traffic activity. This is partially due to the 

additional numbers of cameras and other sensors, 

enhanced infrastructure and consequent accessibility 

of data. In addition, the advances in analytical 

techniques for processing video streams together 

with increased computing power have enabled new 

applications in ITS. Indeed, video cameras have 

been deployed for a long time for traffic and other 

monitoring purposes, because they provide a rich 

information source for human understanding. Video 

analytics may now provide added value to cameras 

by automatically extracting relevant information. 

This way, computer vision and video analytics 

become increasingly important for ITS.  

In highway traffic scenarios, the use of cameras 

is now widespread and existing commercial systems 

have excellent performance. Cameras are used 

tethered to ad hoc infrastructures, sometimes 

together with Variable Message Signs (VMS), RSU 

and other devices typical of the ITS domain. Traffic 

analysis is often performed remotely by using 

special broadband connection, encoding, 

multiplexing and transmission protocols to send the 

data to a central control room where dedicated 

powerful hardware technologies are used to process 

multiple incoming video streams (Lopes et al., 

2010). The usual monitoring scenario consists in the 

estimation of traffic flows distinguished among 

lanes and vehicles typologies together with more 

advanced analysis such as detection of stopped 

vehicles, accidents and other anomalous events for 

safety, security and law enforcement purposes. 



 

By converse, traffic analysis in the urban 

environment appears to be much more challenging 

than on highways. In addition, several extra 

monitoring objectives can be supported, at least in 

principle, by the application of computer vision and 

pattern recognition techniques. For example these 

include the detection of complex traffic violations 

(e.g. illegal turns, one-way streets, restricted lanes) 

(Guo et al., 2011; Wang et al. 2013), identification 

of road users (e.g. vehicles, motorbikes and 

pedestrians) (Buch et al., 2010) and of their 

interactions understood as spatiotemporal 

relationships between people and vehicle or vehicle-

to-vehicle (Candamo et al., 2010). For these reasons, 

it is worthwhile to apply the wireless sensor network 

approach to the urban scenario.  

Generally, we may identify four different scopes that 
can be targeted thanks to video-surveillance based 
systems, namely i) safety and security, ii) law 
enforcement, iii) billing and iv) traffic monitoring 
and management. Although in this chapter we focus 
mostly on the latter, we give a brief overview of 
each of them. 

Safety and security relate to the prevention and 
prompt notification both of proper traffic events and 
of roadside events typical of urban environment. 
Law enforcement is based on the detection of 
unlawful acts and to their documentation for 
allowing the emission of a fine. Besides well-known 
and established technologies e.g. for streetlight 
violations, vision based systems might allow for 
identification of more complex behaviour e.g. illegal 
turns or trespassing on a High Occupancy Vehicle 
(HOV) lane. Documentation of unlawful acts is 
usually performed by acquiring a number of images 
sufficient for representing the violation, combined 
with automatic number plate recognition (ANPR) 
for identifying the offender vehicle. ANPR is also a 
common component of video-based billing and 
tolling. In addition, in this case there are a number of 
established technologies provided as commercial 
solutions by many vendors (Digital Recognition, 
2014). A peculiarity of urban billing systems with 
respect to highways is the non-intrusiveness 
requirement: it is not possible to alter the normal 
vehicular flow but a free-flow tolling must be 
implemented. Technologies satisfying this 
requirement are already available and used in cities 
such as London, Stockholm and Singapore but their 
actual cost prevents their massive deployment in 
medium-size or low-resource cities. Nevertheless, 
the availability of such billing technologies at a 
lower cost may pave the way to the collection of 
fine-grained data analytics of vehicular flows, road 
usage and congestions, allowing for the 

implementation of adaptive Travel Demand 
Management (TDM) policies aimed at a more 
sustainable, effective and socially acceptable 
mobility applied to urban and metropolitan contexts.  
Finally, traffic monitoring and management is 
related to extraction information from urban 
observed scenes that might be beneficial in several 
contexts. For instance, real-time vehicle counting 
might be used to assess level of service on a road 
and detecting possible congestions. Such real-time 
information might then be used for traffic routing; 
either by providing directly suggestion to user (e.g. 
by VMS) of by letting a trip planner deploys these 
data to search for an optimal path. Finally, statistics 
on vehicular flows may be used to understand 
mobility patterns and help stakeholders to improve 
urban mobility. Usually, vehicle count is performed 
by inductive loops, which provide precise 
measurements and some vehicle classification. The 
major drawback of inductive loops is that they are 
very intrusive in the road surface and therefore 
require a rather long and expensive installation 
procedure. Furthermore, maintenance also requires 
intervention on the road pavement and therefore is 
not sustainable in most urban scenarios. Radar-based 
sensing systems are also used for vehicle counting 
and simple analytics but in cases of congestions, 
they generally exhibit deteriorated performance. In 
the last years there has been interest in video-based 
counting system based on imaging devices, also 
embedded. Some solutions, such as (Traficam, 
2014), are commercially available and provide 
vehicle count in several lanes at an intersection. A 
version of Traficam working in the infrared 
spectrum is also available. Besides vehicle counting, 
traffic management can include the extraction of 
other flow parameters, e.g. discriminating the 
components of flow generated by different vehicle 
classes (car, track, buses, bike and motorbikes) and 
assessing the transit speed of each detected vehicle.  

From this brief survey of urban scenario 
applications, we might argue that pervasive 
technologies based on vision turn out to be of 
interest when i) there is some semantics to be 
understood that cannot be acquired solely on the 
basis of scalar sensors, ii) there is no possibility or 
no sufficient revenue in actuating installation of 
tethered technologies, such as intrusive sensor or 
high-end devices and iii) there is the need of a 
scalable architecture, capable of covering a 
metropolitan area. Since computer vision is not 
application specific, an additional feature of a SCN 
is represented by the fact that it can be re-adapted to 
the changing urban environment and reconfigured 
even for supporting new scene understanding tasks 
by  just updating the vision logics hosted in each 



 

sensor. On the converse, scalar sensors (like 

inductive loops) and specific sensors like radar have 

no flexibility in providing information different form 

the one they were built for. 

 

3 TRAFFIC FLOW ANALYSIS 

In this Section, a sample ITS applications based 

on computer vision over SCN is reported. It regards 

the estimation of vehicular flows and is based on a 

lightweight computer vision pipeline that is 

dissimilar form the conventional one used on 

standard architectures.  

More precisely, the analysis of traffic status and 

the estimation of level of service are usually 

obtained by extracting information on the vehicular 

flows in terms of passed vehicles, their speed and 

typology. Conventional pipelines start with i) 

background subtraction and move forward to ii) 

vehicle detection, iii) vehicle classification, iv) 

vehicle tracking and v) final data extraction. On 

SCN, instead, it is convenient to adopt a lightweight 

approach; in particular, data only in Region of 

Interest (RoI) is processed, where the presence of a 

vehicle is detected. On the basis of these detections, 

then, flow information is derived without making 

explicit use of classical tracking algorithms. 

 

4.1 Background subtraction 

More in detail, background subtraction is 

performed only on small quadrangular RoIs. Such 

shape is sufficient for modelling physical rectangles 

under perspective skew. In this way, when low 

vision angles are available (as common in urban 

scenarios), it is possible to deal with a skewed scene 

even without performing direct image rectification, 

which can be computationally intensive on an 

embedded sensor. The quadrangular RoI can be used 

to model lines on the image (i.e. a 1 pixel thick line) 

either. 

On such RoI, lightweight detection methods are 

used to classify a pixel as changed (in which case it 

is assigned to the foreground) or unchanged (in 

which case it is deemed to belong to the 

background). Such decision is obtained by 

modelling the background. Several approaches are 

feasible. The simplest one is represented by 

straightforward frame differencing. In this approach, 

the frame before the one that is being processed is 

taken as background. A pixel is considered changed 

if the frame difference value is bigger than a 

threshold. Frame differencing is one of the fastest 

methods but has some cons in ITS applications; for 

instance, a pixel is considered changed two times: 

first when a vehicle enters and, second, when it exits 

from the pixel area. In addition, if a vehicle is 

homogeneous and it is imaged in more than one 

frame, it might be not detected in the frames after 

the first. Another approach is given by static 

background. In this approach, the background is 

taken as a fixed image without vehicles, possibly 

normalized to factor illumination changes. Due to 

weather, shadow, and light changes the background 

should be updated to yield meaningful results in 

outdoor environments. However strategies for 

background update might be complex; indeed it 

should be guaranteed that the scene is without 

vehicles when updating. To overcome these issues, 

algorithms featuring adaptive background are used. 

Indeed this class of algorithms is the most robust for 

use in uncontrolled outdoor scenes. The background 

is constantly updated fusing the old background 

model and the new observed image. There are 

several ways of obtaining adaptation, with different 

levels of computational complexity. The simplest is 

to use an average image. In this method, the 

background is modelled as the average of the frames 

in a time window. Online computation of the 

average is performed. Then a pixel is considered 

changed if it is different more than a threshold from 

the corresponding pixel in the average image. The 

threshold is uniform on all the pixels. Instead of 

modelling just the average, it is possible to include 

the standard deviation of pixel intensities, thus using 

a statistic model of the background as a single 

Gaussian distribution. In this case, both the average 

and standard deviation images are computed by an 

online method on the basis of the frames already 

observed. In this way, instead of using a uniform 

threshold on the difference image, a constant 

threshold is used on the probability that the observed 

pixel is a sample drawn from the background 

distribution, which is modelled pixel by pixel as a 

Gaussian. Gaussian Mixture Models (GMM) are a 

generalization of the previous method. Instead of 

modelling each pixel in the background image as a 

Gaussian, a mixture of Gaussians is used. The 

number k of Gaussians in the mixture is a fixed 

parameter of the algorithm. When one of the 

Gaussian has a marginal contribution to the overall 

probability density function, it is disregarded and a 

new Gaussian is instantiated. GMM are known to be 

able to model changing background even in cases 

where there are phenomena such as trembling 



 

shadows and tree foliage (Stauffer and Grimson, 

1999). Indeed, in those cases pixels clearly exhibit a 

multimodal distribution. However, GMM are 

computationally more intensive than a single 

Gaussian. Codebooks (Kim et al., 2004) are another 

adaptive background modelling techniques 

presenting computational advantages for real-time 

background modelling with respect to GMM. In this 

method, sample background values at each pixel are 

quantized into codebooks, which represent a 

compressed form of background model for a long 

image sequence. That allows to capture even 

complex structural background variation (e.g. due to 

shadows and trembling foliage) over a long period 

of time under limited memory.  

Several ad hoc procedures can be envisaged 

starting with the methods just described. In 

particular, one important issue concerns the policy 

by which the background is updated or not. In 

particular, if a pixel is labelled as foreground in 

some frame, we might want that this pixel does not 

contribute in updating the background or that it 

contributes to a lesser extent. Similarly, if we are 

dealing with a RoI, we might want to fully update 

the background only if no change has been detected 

in the RoI; if a change has been detected instead, we 

may decide not to update any pixel in the 

background. 

4.2 Transit detection 

 

The transit detection procedure starts taking in 

input one or more RoIs for each lane suitably 

segmented in foreground/background by the 

aforementioned methods. When processing the 

frame acquired at time t, the algorithm decides if a 

vehicle occupies the RoI Rk or not. The decision is 

based on the ratio of pixels changed with respect to 

the total number of pixels in Rk, i.e. ak(t)=#(changed 

pixels in Rk)/ #(pixels in Rk). Then ak(t) is compared 

to a threshold  in order to evaluate if a vehicle was 

effectively passing on Rk. If ak(t) > and at time t-1 

no vehicle was detected, then a new transit event is 

generated. If a vehicle was already detected instead 

at time t-1, no new event is generated but the time 

length of the last created event is incremented by 

one frame. When finally at a time t+k no vehicle is 

detected (i.e. ak(t) <) , the transit event is declared 

as accomplished and no further updated. Assuming 

that the vehicle speed is uniform during the 

detection time, the number of frames k in which the 

vehicle has been observed is proportional to the 

vehicle length and inversely proportional to its 

speed. In the same way, it is possible to use two 

RoIs R1 and R2, lying on the same lane but translated 

by a distance , to estimate the vehicle speed. See 

Figure 1.1. Indeed, if there is a delay of  frames, the 

vehicle speed can be estimated as v=/(*) where  

is the frame rate. The vehicle length can in turn be 

estimated as l=k/v. Clearly, the quality of these 

estimates varies greatly with respect to several 

factors, and is in particular due to a) frame rate and 

b) finite length of RoIS. Indeed, the frame rate 

generates a quantization error, which leads to the 

estimation of the speed range; therefore, the 

approach cannot be used to compute the 

instantaneous speed. For what regards b), an ideal 

detection area is represented by a detection line 

having length equal to zero. Otherwise, a 

localization error affects any detection, i.e. it is not 

know exactly where the vehicle is inside the RoI at 

detection time. The use of a 1-pixel thick RoIs 

alleviates the problem but it results in less robust 

detections. This problem introduces some issues 

both in vehicle length and speed computations, 

because in both formulas we use the nominal 

distance  and not the precise (and unknown) 

distance between the detections. This is the 

drawback in not using a proper tracking algorithm in 

the pipeline, which would require however 

computational resources not usually available on 

embedded devices. Nevertheless, it is possible to 

provide a speed and size class for each vehicle. For 

each speed and vehicle class a counter is used to 

accumulate the number of detections. Temporal 

analysis on the counter is sufficient for estimating 

traffic typologies, average speed and analysing the 

level of service of the road, early identifying 

possible congestions.   

 

 
Figure 1. RoI configuration for traffic flow analysis 

 

4 SENSOR PROTOTYPE 

In this section the design and development of a 

sensor node prototype based on SCN concepts is 

presented. This prototype is particularly suited for 



 

urban application scenarios. In particular, the 

prototype is a sensor node having enough 

computational power to accomplish the computer 

vision task envisaged for urban scenarios as 

described in the previous section. For the design of 

the prototype an important issue to follow has been 

the use of low cost technologies. The node is using 

sensors and electronic components at low cost, so 

that once engineered, the device can be 

manufactured at low cost in large quantities. In the 

design and planning of the architectural side, an 

important issue is represented by the ease of 

installation of the device, thus the protective shield 

that has been considered for the sensor node is 

compact but able to accommodate all components of 

the device. 

Going into detail, the single sensor node has a 

main board that manages both the vision tasks and 

the networking tasks thanks to an integrated wireless 

communication module (RF Transceiver). 

Other components of the sensor node are given 

by the power supply system that controls charging 

and permits to choose optimal energy savings 

policies. The power supply system includes the 

battery pack and a module for harvesting energy, 

e.g. through photovoltaic panel. See Figure 2. 

Architecture of the sensor node 

 
Figure 2. Architecture of the sensor node 

4.1 The main board 

For the realization of the vision board, an 

embedded Linux architecture has been selected in 

the design stage for providing enough computational 

power and ease of programming. A selection of 

ready-made Linux based prototyping boards had 

been evaluated with respect to computing power, 

flexibility / expandability, price/performance ratio 

and support. They were all find to have as common 

disadvantages high power consumption and the 

presence of electronic parts which are not useful for 

the tasks of a smart camera node. 

It has been therefore decided to design and 

realize a custom vision component by designing, 

printing and producing a new PCB. The new PCB 

(see Figure 3) was designed in order to have the 

maximum flexibility of use while maximizing the 

performance / consumption ratio. A good 

compromise has been achieved by using a Freescale 

CPU based on the ARM architecture, with support 

for MMU -like operating systems GNU / Linux.  

This architecture has the advantage of 

integrating a Power Management Unit (PMU), in 

addition to numerous peripherals interface, thus 

minimizing the complexity of the board. In addition, 

the CPU package of type TQFP128 helped us to 

minimize the layout complexity, since it was not 

necessary to use multilayer PCB technologies for 

routing. Thus, the board can be printed also in a 

small number of instances. The choice has 

contributed to the further benefit of reducing 

development costs, in fact, the CPU only needs an 

external SDRAM, a 24MHz quartz oscillator and an 

inductance for the PMU. 

It has an average consumption, measured at the 

highest speed (454MHz), of less than 500mW. 

The system includes an on-board step-down 

voltage regulator type LM2576 featuring high 

efficiency to ensure a range of voltages between 6 

and 25V, making it ideal for battery-powered 

systems, in particular for power supply by lithium 

batteries (7.2 V packs) and lead acid batteries (6V, 

12V, 24V packs). 
The board has several communication interfaces 

including RS232 serial port for communication with 
the networking board, SPI, I2C and USB 

For radio communication, a transceiver 
compliant with IEEE 802.15.4 has been integrated in 
line with modern approaches to IoT. A suitable glue 
has been used to integrate the transceiver with the 
IPv6 stack, also containing the 6LoWPAN header 
compression and adaptation layer for IEEE 802.15.4 
links. Therefore, the operating system is well 
capable of supporting ETSI M2M communications 
over the SCN.  

 

4.2 Sensor, energy harvesting and 
housing 

Figure 3. Design of the PCB and main features 



 

For the integration of a camera sensor on the 

vision board, some specific requirements were 

defined in the design stage for providing easiness of 

connection and to the board itself and management 

through it, and capability to have at least a minimal 

performance in difficult visibility condition, i.e. 

night vision. Thus, the minimal constraints were to 

be compliant with USB Video Class device (UVC) 

and the possibility to remove IR filter or capability 

of Near-IR acquisition. Moreover, the selection of a 

low cost device was an implicit requirement 

considered for the whole sensor node prototype.  

The previously described boards and camera are 

housed into an IP66 shield. Another important 

component of the node is the power supply and 

energy harvesting system that controls charging and 

permits to choose optimal energy savings policies. 

The power supply system includes the lead (Pb) acid 

battery pack and a module for harvesting energy 

through photovoltaic panel. 

In Figure 4, the general setup of a single node 

with the electric connections for the involved 

components is shown. 

 

 
Figure 4. General setup of a single node 

5 EXPERIMENTAL RESULTS 

For the traffic flow, the set-up consists in a small 

set of SCN nodes, which are in charge of observing 

and estimating dynamic real-time traffic related 

information, in particular regarding traffic flow and 

the number and direction of the vehicles, as well as 

giving a rough estimate about the average speed of 

the cars in the traffic flow. 
 
Two versions of the algorithm were 

implemented. In the first, the solutions uses frame 
differencing as a background subtraction method, 
obtaining a binary representation of the moving 
objects in the RoI frame. In the second, an adaptive 
background modelling based on Gaussian 
distribution has been employed using a weighted 
mixture of previous backgrounds. This means that 
previous backgrounds are used with a heavier weight 
in case of no-event occurring (i.e. no transit of car), 
while they are used with light or no-weight in case 
there is an event of transit occurring. 

Test sequences have been acquired under real 
traffic conditions and then used for testing both 
algorithms. The ground-truth total for these 
sequences was the following: 

- 124 vehicles transited, 
having the following length estimation subdivision: 

- 11 with length between 0 and 2 metres 
- 98 (between 2 and 5 metres) 
- 15 (5 and more metres) 
 
In the following figure a view from the sensor on 

the testing scenario is shown. 
 

Figure 5. Sample of frame from one of the test 
sequences (in black and white are shown the RoIs). 

 
Moreover, the algorithms yield a speed class 

estimate, but for this type of data there is no ground 
truth available. 

The total classification results are shown in the 
following table: 

 

 Ground-
truth 

Alg.1 
Frame diff. 

Alg.2 
Adaptive 

Total 
transited 
vehicles 

124 140 121 



 

Correctly identified 
vehicles 

124 
(100%) 

118 
(95.2%) 

False positive 
16 

(12.9%) 
3 

(2.4%) 

 
The first algorithm based on frame differencing 

has a significant number of false positives but it 
reaches a 100% identification rate, while the second 
adaptive algorithm has an acceptable rate of 
identification with a very low false positive rate. As 
a further step, in the following two tables are shown 
the classification estimates for the speeds and 
lengths classes for each of the implemented 
algorithms. 

 

Algo 1 
Frame 
Diff. 

Speed 
<20 

Km/h 

Sp. Betw. 
20-35 
Km/h 

Speed 
>35 

Km/h 
TOT 

L. 0-2 m. 10 8 2 20 

L. 2-5 m. 29 27 8 64 

L. 5+ m. 0 10 46 56 

TOT 39 45 56 140 

 

Algo 2 
Adaptive 

Speed 
<20 

Km/h 

Sp. Betw. 
20-35 
Km/h 

Speed 
>35 

Km/h 
TOT 

L. 0-2 m. 25 1 1 27 

L. 2-5 m. 27 35 3 65 

L. 5+ m. 8 15 6 29 

TOT 60 51 10 121 

 
For a correct evaluation of these tables, it has to 

be taken into account the fact that length estimates 
were made roughly by an observer by sight, while 
there is no estimate at all on the ground truth 
regarding the speeds. Furthermore, for the first 
algorithm all the false positive were detected in the 
class of length 5 or more metres with fastest speed, 
and have been identified as bugs related to the 
camera and its automatic setting of balance and 
contrast. All these issues and deeper analysis are 
under studying and will provide more detailed 
results. 

6 CONCLUSIONS 

In this paper, we have presented technologies 
based on computer vision for supporting urban 
mobility, envisaging a number of applications of 
interest. Then, as a sample, we introduced a 
specially-designed lightweight pipeline for traffic 
flow analysis that is suitable for embedded system 
with constrained memory and computational power. 
Such method has been tested on a prototype sensor 

we designed and developed and whose main features 
are also reported in this paper. The sensor, being low 
cost and equipped with a wireless transceiver, is a 
very good candidate for becoming the key ingredient 
of a scalable and pervasive smart camera network 
for the urban environment. Its good functionalities 
are proved by the set of experimental results that 
were collected on the field in realistic conditions. In 
the future, besides refining the procedure for vehicle 
characterization in term of speed and size, we plan 
to extend the class of vision logics to address further 
applications to mobility. 

 

ACKNOWLEDGEMENTS 

This work has been partially supported by POR 
CReO 2007-2013 Tuscany Project “SIMPLE” – 
Sicurezza ferroviaria e Infrastruttura per la Mobilità 
applicate ai Passaggi a LivEllo.  

REFERENCES 

Buch; Orwel ; Velastin, 2010. Urban road user detection 

and classification using 3D wire frame models IET 

Computer Vision, Volume 4, Issue 2, p. 105 – 116 

Buch N., S.A. Velastin and J. Orwell, 2011. A review of 

computer vision techniques for the analysis of urban 

traffic. IEEE Transactions on Intelligent 

Transportation system, Vol. 12, N°3, pp. 920-939. 

Candamo, Shreve, Goldgof, Sapper, Kastur, 2010. 

Understanding transit scenes: A survey on human 

behavior-recognition algorithms, IEEE Trans. ITS, 

vol. 11, no. 1, pp.206 -224. 

Digital Recognition, 2014. Available at: 

http://www.digital-recognition.com/ (Last retrieved 

October 28, 2014) 

Guo, Wang, B. Yu, Zhao, X. Yuan, 2011. TripVista: 

Triple Perspective Visual Trajectory Analytics and Its 

Application on Microscopic Traffic Data at a Road 

Intersection. Pacific Visualization Symposium 

(PacificVis), 2011 IEEE: 163-170  

Kim K., Chalidabhongse T., Harwood D. and Davis L., 

2004. Background modeling and subtraction by 

codebook construction, IEEE International Conference 

on Image Processing (ICIP), 2004, pp. 2-5 

Lopes J., J. Bento, E. Huang, C. Antoniou and M. Ben-

Akiv, 2010. Traffic and mobility data collection for 

real-time applications, Proc. IEEE Conf. ITSC,  

pp.216 -223.  

Magrini M., Moroni D., Pieri G., Salvetti O, 2012. Real 

time image analysis for infomobility. Lecture Notes in 

Computer Science, vol. 7252, 207 – 218, 2012. 

Remagnino P., A. I. Shihab, and G. A. Jones, 2004. 

Distributed intelligence for multi-camera visual 

surveillance. Pattern Recognition, 37(4):675–689. 



 

Stauffer C. and Grimson W.E., 1999. Adaptive 

background mixture models for real-time tracking, 

Proceedings of the Conference on Computer Vision 

and Pattern Recognition, Fort Collins, CO, USA: 

1999, pp. 2: 246-252 

Traficam, 2014. Available at: http://www.traficam.com/ 

(Last retrieved October 28, 2014) 

Wang; Min Lu; X. Yuan; J. Zhang; Van De Wetering, H., 

2013. Visual Traffic Jam Analysis Based on 

Trajectory Data, Visualization and Computer 

Graphics, IEEE Transactions on, On page(s): 2159 - 

2168 Volume: 19, Issue: 12.  


