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Supplementary Materials A Further
Schematics and
Photographs of
the Setup

Since the gravitational coupling is small, great care was taken to shield the
experiment from magnetic and electric forces. The heat- and vacuum shields
of the cryostat are made of several millimeters of gold plated copper, providing
a high level of shielding with respect to electrical forces. Several layers of
aluminium foil were wound around the heat shields that achieve temperatures
below the critical temperature of aluminium (namely, the 1K shield, and the
50mK shield). This was done in an effort to provide some basic shielding
from stray magnetic forces. Further magnetic shielding was incorporated in
the holder of the experiment, as shown in figure S1.
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Fig. S1: Close-up of the experiment holder in Fig. 1. The SQUID
detection chip is housed in a niobium can (respectively, Magnicon CAR-1
Two-Stage SQUID and NC-1 Can) that provides shielding from AC magnetic
fields through the Meissner effect. The niobium can is screwed into the larger
aluminium holder, which similarly provides AC magnetic shielding to the trap
through the Meissner effect. The tantalum trap is capped with a PEEK coil-
shape, placed offset from the center of the trap, around which the pick-up
loop is wound. Additional shielding from DC magnetic fields is provided by
several layers of mu-metal foil wrapped around the aluminium holder. This
shielding was added under the assumption that stray magnetic fields influence
the position of the magnetic particle within the trap and otherwise would get
‘frozen-in’ to the superconductors as they cool down.

In figure S2 we show a schematic to further elucidate the axial system
used in the gravitational measurements, showing the longitudinal direction,
the vertical direction and the wheel phase over which the wheel was displaced.



The factor n follows from the detection by the laser-photodiode combination
not distinguishing between masses.
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Fig. S2: Schematic depicting the phase angle of the wheel, as used to
define the phase of maximal response in figure 3. Here, n refers to the amount
of masses on the wheel, in this case three. This factor follows from the detection
not distinguishing between the different masses.

In figure S3 are some photographs of critical elements of the experiment.
Namely, (part of) the vibration isolation, the coil used to detect the motion
of the particle, the transformer used to calibrate the coupling, the tantalum
trap, and the wheel used to source the gravitational signal.
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Fig. S3: Photos of the the experimental apparatus of Fig.1.
A: The mass-spring system and the silver wire used for thermalisation of the
masses and the experiment, with at the bottom the holder on a small triangular
platform to attach the springs.B : The coil after the first two layers of five loops
were wound around it, with the rest of the cap above. The final pick-up loop
consisted of four layers. C : A close-up of the calibration transformer, before
aluminium shielding was added around it. D : The tantalum trap, with the
elliptical shape and milling marks visible. E : The ‘mass-wheel’ as used in the
experiments to show gravitational coupling. The three brass masses are placed
in an equilateral triangle. Not shown is the laser-photodiode combination used
to read out the frequency of the masses. The wheel is surrounded with one
centimeter thick steel plates and is attached to a bridge made out of MK-
profiles, which is used to control the elevation and positioning of the wheel in
the lab relative to the trap inside the cryostat.



Supplementary Materials B Determination of
decay time,
damping factor,
and the quality
factor of the
mechanical modes

The exponential decay time (τ) of each mode was determined through ring-
down measurements at high amplitude. At low vibrational amplitude, the
measured τ increases, as is expected from non-linearities in the trapping poten-
tial. High amplitude measurements were taken to provide a lower bound on τ
with a high signal-to-noise ratio. We focus on the 27Hz mode, as this is the
mode we used to detect our gravitational signal. As discussed in section 2, this
mode corresponds most closely to the theoretically expected z-mode frequency.
Furthermore, it showed the highest degree of vibrational isolation, which is
also as expected given our implemented vibration isolation functions predom-
inantly in z. From the response in phase and amplitude shown in section 2
this is further verified, matching closely to the expected scaling of the z-mode
gravitational coupling (both amplitude and phase) under translation of the
gravitational source.

Fig. S4: A typical ringdown of the 27Hz mode, as performed after
a magnetic drive through the calibration transformer. The decay time (τ) is
extracted from an exponential fit.

The high amplitude τ provides a lower bound to the low amplitude τ of the
system. We observe a significant difference in τ for high and low amplitude,
which is explained by a duffing non-linearity in the equations of motion of
the resonator. From ringdown measurements, we obtain a lower bound to the
decay time of τ = 1.09 · 105 s. The error on the fit of this value is 14.7 seconds.
At the moment, our understanding of this decay time of individual modes is
that it depends strongly on the amplitudes in other modes due to a coupling



frequency [Hz] tau [s] Q factor

15.9 3.65·104 1.82 · 106
26.7 1.09·105 9.13 · 106
40.6 1.43·104 1.82 · 106
55.1 3.37·104 5.84 · 106
129 0.214·104 8.70 · 105
147 0.152·104 6.98 · 105

Table S1: Tabulated values of the resonator mode parameters. Again,
these values are truncated at at three decimals, since the fit significance of these
values is much higher than the actual stability of these values with respect
to mode amplitude, as touched upon in the texts. The spring stiffness of the
26.7Hz mode was calculated to be 12mN/m.

of the non-linearities. This understanding is limited currently, and a further
understanding would require further measurements. To minimise the effect of
this false sense of precision (versus accuracy) in the current publication, we
will instead truncate the values at three decimals. With the quality factor (Q)
of the resonator defined as

Q = πfτ (S1)

and a frequency of the mode f = 26.7Hz, we obtain a quality factor of
Q = 9.06 · 106. From τ we can also determine the damping coefficient of the
resonator, which is defined as

γ =
2

τ
(S2)

which gives a damping in the 27Hz mode of γ = 1.84 · 10−5 s−1, or a
linewidth of γ/2π = 2.92µHz.



Supplementary Materials C Analysis and
Calibration of the
Single-Stage
Particle Readout
Circuit and
Energy Coupling

The motion of the particle, and the resulting force noise of the particle modes,
can be calibrated from flux to RMS motion by injecting a magnetic drive
through the calibration transformer. The amount of magnetic flux injected
is then directly quantised by the SQUID. By measuring the flux induced by
the particle response and using the inductance in the circuit and the spring
stiffnes, we find a calibration of magnetic flux to motion.
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Fig. S5: Schematic circuit of the single-stage readout circuit for the
magnetic particle . The transformer used to couple in the external flux used
to calibrate the circuit is depicted at the top, with the particle and pick-up
loop on the left, and the input coil and SQUID on the right.

This calibration can be intuitively derived from the energy coupling, β2.
The energy coupling is defined as the fraction of the energies in two coupled
oscillating systems, i.e. the amount of energy that couples from one system
to the other. This energy coupling is similar to the quality factor of a single
system, which is defined as the fraction of energy lost per cycle with respect to
the total energy in the system, or equivalently, a measure for the damping of
the system. Conversely, the quality factor provides a measure for the maximal
energy stored in the resonator as a fraction of the input energy when driven at
resonance for a time T ≫ τ , that is to say: the energy at which the fractional
energy loss per cycle is equal to the energy put in each cycle by the resonant
drive.

For our system, with a mechanical resonator in the form of the trapped
magnetic particle, and a driving magnetic field coupled in through the cali-
bration transformer and coupled to the particle through the pick-up loop, we
get



β2 ≡ LtotalI
2

kx2
(S3)

with x any spatial coordinate. Going to the limit of infinitesimal displace-
ment, and using k = mω2 and using LtotalI

2 = Φ2/Ltotal, we obtain

β2 =

(
dΦ
dx

)2
Ltotal ·mω2

(S4)

from which it is evident that the energy coupling can be used to determine
the absolute motion of the magnetic particle from the flux measured in the
SQUID.

To measure β2, we further consider the motion of the resonator as
a simple resonantly driven harmonic oscillator, with the Ansatz x(t) =
A(t)eiωt; A(t) = F

2mω · t, from which we obtain a damping force

Fdamping

(
= 2mζω0

dx

dt
= γmv

)
= γm · ω · x (S5)

The quality factor Q is equivalently defined as Q = 1
2ζ , thus γm = mω

Q . In
our calibration procedure, we inject a flux through the calibration transformer.
This flux then results in a current through the detection circuit. This current is
detected as a flux by the SQUID, with known dI

dϕ calibration from the SQUID
parameters. We refer to this current as the the crosstalk current Icrosstalk.
This current also leads to a flux through the pick-up loop, which gives rise
to a magnetic force on the particle of the form Fdrive = α · Icrosstalk. Here,
α is a coupling constant of units [N/A] that contains a geometrical factor
determined by both the relative positioning of the particle with respect to the
pick-up coil, and the physical sizes of this coil and particle. As the particle is
driven, the motion of the particle will in turn induce a current in the detection
circuit. This induced current has the form Iinduced = δ ·x where δ is a coupling
constant with units [A/m], which is by symmetry effected through the pick-up
coil-particle geometry in the same way that α is.
Combining these results, and noting that for the steady state solution the
driving force must be equal to the damping force

Iinduced
Icrosstalk

=
δ · x

Fdrive/α
=

δ · α · x
γm · ω · x

= Q · α · δ
mω2

= Q · α · δ
k

(S6)

Since some of our decay times are rather long, in our experiments we work
with a Qeff = πfT , where T is the time during which the drive is applied.
Whilst this is not the steady state, this discrepancy is fully absorbed in our
definition of Qeff :

Iinduced
Icrosstalk

=
δ · x

Fdrive/α
=

δ · α · x
γeff · ω · x

= Qeff · α · δ
mω2

= Qeff · α · δ
k

(S7)



From this derivation, we have found that the fraction of the currents in
our detection circuit contains all the coupling constants in our system. In fact,
looking at the units, we find

α · δ
k

=

[
N
A

]
·
[
A
m

][
N
m

] (S8)

Furthermore, for small displacements in x, the flux change through the
pick-up loop can be treated as linear. The resultant current in the detection
circuit must then be Iinduced = dΦ

dx · x · 1
Ltotal

or δ = dΦ
dx · 1

Ltotal
=̂
[
A
m

]
.

As noted before, δ contains the same geometric scaling as α. From the
symmetry, we recognise that α = dΦ

dx ([Wb/m] = [N/A]). Combining these
results, we find

α · δ
k

=

(
dΦ
dx

)2
Ltotal ·mω2

= β2 (S9)

This final results gives us a measurable result for β2, or, conversely, the
proportionality constant dΦ

dx that equates our measured flux to an absolute
motion. The calibration measure is then found from

dΦ

dx
=

√
Ltotal ·mω2 · β2 =

√
Ltotal ·mω2 · Iinduced

Q · Icrosstalk
(S10)

Noting that both Iinduced and Icrosstalk are converted equally by the
SQUID, the measured voltage can be inserted for the current through the
detection circuit, which provides our sensitivity as

dΦ

dx
=

√
Ltotal ·mω2 · ∆Vdrive

Q · Vcrosstalk
(S11)

Here Φ is the flux through the pick-up loop. Since we detect this using the
SQUID, we need to convert this value to the flux through the SQUID, which
is done by dividing by the total inductance of the circuit and multiplying by
the mutual inductance of the SQUID input loop and the SQUID loop. As a
final step, this value can be related directly to the voltage measures made by
taking the SQUID gain value as measured.

dV

dx
=

dV

dΦSQ
· dΦSQ

dI
· dI
dΦ

· dΦ
dx

=
dV

dΦSQ
·Min,SQ · 1

Ltotal
· dΦ
dx

(S12)

The values for the inductances in Ltotal = LPU+LTP +Linput+Lcalibration

are: LPU = 2.9·10−7 H the inductance of the pick-up loop, LTP = 1·10−7 H the
inductance of the 10 cm superconducting twisted-pair connecting the SQUID
input to the pick-up loop, Linput = 4 · 10−7 H the inductance of the input coil
of the two-stage SQUID device, and Lcalibration = 2 · 10−9 H the inductance of
the small calibration transformer coil. For the mutual inductance, the SQUID



is calibrated to a value of M−1
in,SQ = 0.5µA/Φ0. The SQUID voltage gain is

measured as dV/dΦ0 = 0.43V/Φ0. These values, combined with measures of
these ring-up’s, gives us a value of dV

dx = 0.16 V
µm for the 27Hz mode, with a

relative error of 7%, which is dominated by the error in the voltage calibration
measurement.



Supplementary Materials D Comparison to
basic
Optomechanical
Quantities

Given the vast previous work in the field of optomechanics, we aim to provide
a rough outline of how the work presented in this paper compares to quantities
in optomechanical experiments, in this appendix. For a more complete treatise
of optomechanics and specifically a comparison to magneto-mechanics, we refer
to (29).

We note that the resonance frequency of our levitated particle corresponds
to the frequency of the mechanical oscillator in an optomechanics experiment.
At present, our experiment lacks the equivalent of the optical cavity and the
light sent to the cavity. It could be added to the experiment, by changing the
readout of our experiment. Currently, we use a SQUID based read-out, that
relies on DC signals. We could read out the SQUID at higher frequencies (using
a GHz cavity). In that case the inductance of the SQUID, which depends on
the flux in the SQUID, would provide frequency tuning to a LC resonator,
with typical resonance frequencies of 2-20 GHz.

We adopted ω to be the frequency of the mechanical resonator, this in
contrast to optomechanics, in which Ω is nominally adopted for the mechan-
ical frequency, with ω reserved for the optical frequency. In the rest of this
appendix, we will refer to the optical frequency as used in optomechanics as
ωopt to avoid confusion. In the context of optomechanics, the optomechanical
coupling, g, is given by the infinitesimal change in wavelength as a function of
the change in position of the mechanical oscillator:

gopt =
dωopt

dx
(S13)

This is an important quantity that provides a measure on how well the
mechanical and optical systems are coupled. Often the value is quoted in terms
of the zero-point-motion (xzpm) of the resonator, as g0. In the case of magnetic

levitation, a translation from dΦ
dx to

dωopt

dx can be made through the realization

that the inductance of the SQUID LJ = Φ0

2πIc(Φ) depends on the flux through

the SQUID. This change in inductance changes the resonance frequency of the
LC resonator, ωLC , that could be used to readout our SQUID in the future.
In the same way that the resonance frequency of an optical cavity depends on
the position of a membrane, we also see that the resonance frequency of the
LC circuit that the SQUID is part of, depends on the position of our levitated
magnetic particle.

Combining this with equation S10, we find:

gmag =
dωLC

dΦ

dΦ

dx
=

dωLC

dΦ

√
Ltotal ·mω2 · β2 (S14)



Evidently, this is the equivalent to gopt for our SQUID detected system.
Implicit in the term Ltotal is the coupling loss from parasitic inductances. Since
the detection is not resonant, like it would be in an optical cavity system,
this remains a negligible loss. Expressing g in terms of the resonator zero-
point-motion can be done similar to how it is often derived in optomechanical
systems, from equating the energy of the bosonic system at zero occupation
to the kinetic energy at zero point motion:

xzpm =

√
ℏ

2 ·meff · ωm
(S15)

Where meff is the effective mass of the mechanical oscillator and ωm is the
frequency of the mechanical oscillator. In our case the meff is just the mass of
the levitated particle and ωm is the eigenfrequency of the measurement. Filling
in the mass and frequency used in the gravity measurements, a zero point
motion of xzpm = 0.86 fm can be calculated. Combining this with our measured
sensitivity, we find dΦ

dx · xzpm = 63nΦ0 as a zero point flux for our system. For

a slope, dωLC

dΦ , of a λ/4 resonator terminated with a SQUID of 1GHz/Φ0, this
results in a g0,mag = gmag · xzpm = 63Hz. We conclude, however, that it will
be a considerable challenge to make the Q factor of such a LC resonator high
enough to reach the sideband resolved limit.



Supplementary Materials E Correction and
Conversion of the
Data to Units of
N/

√
Hz

The data used in our gravitational experiments comes from the photodiode
detector which measures the passages of the masses on the wheel, and the
SQUID signal. Both these signals are filtered by our lock-in amplifiers. Since
our gravity experiments were performed at differing amplitudes in the mode,
each time trace had a different slope, as discussed in Supp. B. To account
for this, we have subtracted an individual exponential decay in the form of
Aet/τfit from each.

Fig. S6: Ringdown subtraction as performed on the time trace mea-
surement of each wheel position. Shown here for a separation between
particle and driving mass at wheel phase zero of 48.1 cm vertical, and laterally
displaced by 3.5 cm. Residual plotted in the lower half, where we see the fluc-
tuations as result of the drive up and drive down effected by the mass-wheel,
which is slightly detuned in frequency with respect to the mode. We drive
detuned since we wish to stay away from the non-linear driving and frequency
shift of the mode that happens at large amplitude. Furthermore, detuned driv-
ing enables us to substract the absolute amplitude.

After subtracting the ringdown, we apply a phase factor to the time traces.
This phase factor is determined based on the detuning of the resonator fre-
quency with respect to the lock-in center frequency. This change ensures that



the central peak of the resonator mode will fall fully in a single bin of the
Fourier transform we perform next, this ensures that the transfer function of
the resonator mode is fully symmetrical. Before performing the Fourier trans-
form, we also cut out a section of the time trace in which there is an integer
amount of phase cycles for the mass-passage signal, which ensures smooth peri-
odic boundary conditions for our FFT. This results in a spectrum giving us the
motion of the particle per root hertz, which can be converted to RMS motion
in a specific frequency band by integrating over that frequency bandwidth.
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Fig. S7: Spectrum of the time trace converted to motional noise, with
the transfer function plotted overlaid. The orange vertical line indicates
the resonance frequency of the mode.

By then subtracting the transfer-function of the mechanical mode from
the particle signal, and applying our conversion factor to go from Φ0 to dis-
placement, and using a spring stiffness k = mω2 and a mode bandwidth of
df = Q/f , we arrive at our force noise spectrum in N/

√
Hz
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Fig. S8: Force noise spectrum. Spectrum of the time trace converted to
force noise, the final product of this procedure. The orange vertical line indi-
cates the resonance frequency of the mode.

The noise floor of this measurement corresponds to a mode temperature of
3K, from Tmode = kx2

RMS/kB .
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