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Abstract—Ordinal regression (OR – also known as ordinal
classification) has received increasing attention in recent times,
due to its importance in IR applications such as learning
to rank and product review rating. However, research has
not paid attention to the fact that typical applications of
OR often involve datasets that are highly imbalanced. An
imbalanced dataset has the consequence that, when testing
a system with an evaluation measure conceived for balanced
datasets, a trivial system assigning all items to a single class
(typically, the majority class) may even outperform genuinely
engineered systems. Moreover, if this evaluation measure is
used for parameter optimization, a parameter choice may
result that makes the system behave very much like a trivial
system. In order to avoid this, evaluation measures that can
handle imbalance must be used. We propose a simple way to
turn standard measures for OR into ones robust to imbalance.
We also show that, once used on balanced datasets, the two
versions of each measure coincide, and therefore argue that
our measures should become the standard choice for OR.
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I. INTRODUCTION

The problem of rating objects with values ranging on an
ordinal scale is called ordinal regression (OR – also known
as ordinal classification). OR consists of estimating a target
function Φ : X → Y which maps each object xi ∈ X into
exactly one of an ordered sequence Y = 〈y1 ≺ . . . ≺ yn〉 of
classes (also known as “scores”, or “ranks”, or “labels”), by
means of a function Φ̂ called the classifier. This problem lies
in-between single-label classification, in which Y is instead
an unordered set, and (metric) regression, in which Y is
instead a continuous, totally ordered set (typically: the set
R of the reals).

In recent years OR has witnessed an increased interest in
the information retrieval (IR) community. One of the reasons
is the fact that OR is one of the most important approaches to
learning to rank (see e.g., [1], [2], [3]). The second reason
is that OR is a natural choice for rating product reviews,
a problem which has received increased attention within
sentiment analysis and opinion mining (see e.g., [4]). This
latter task (to which we will mostly refer in this paper)
consists in attributing a score of satisfaction to consumer
reviews of a product based on their textual content; this is
akin to guessing, based on an analysis of the textual content
of the review, the score the reviewer herself would attribute

to the product. This problem arises from the fact that, while
some online product reviews consist of a textual evaluation
of the product and a score expressed on some ordered scale
of values, many other reviews contain a textual evaluation
only. These latter reviews are difficult for an automated
system to manage, and associating them with a score in an
automatic way would make them more manageable. While
some researchers have used binary scores (i.e., classifying
the reviews as Positive or Negative – see e.g., [5], [6],
[7], [8]) or ternary scores (also including a Neutral class –
see e.g., [9], [10]), others have tackled the more complex
problems of attributing scores from an ordinal scale con-
taining an arbitrary (finite) number of values (see e.g., [11],
[12], [13], [14]). This scale may be in the form either of an
ordered set of numerical values (e.g., 1 stars to 5 stars),
or of an ordered set of non-numerical values (e.g., Poor,
Fair, Good, Very Good, Excellent). The only difference
between these two cases is that, while in the former case
the distances between consecutive values are known, this is
not true in the latter case.

II. IMBALANCED DATASETS AND TRIVIAL CLASSIFIERS

Despite this renewed interest in OR, research has seemingly
not paid attention to the fact that the datasets OR tackles are
often severely imbalanced, i.e., some classes are far more
frequent than others. For example, the TripAdvisor-15763
hotel review dataset we have presented in [11], consisting of
all the English-language reviews of hotels in Pisa and Rome
available from the TripAdvisor1 Web site at the beginning
of May 2008, is severely imbalanced, since 45% of all the
reviews have 5 stars, 34.5% have 4 stars, 9.4% have 3
stars, 7.2% have 2 stars, and only 3.9% have 1 star. This
example is not isolated: in 2006 Jindal and Liu [15] crawled
a corpus of 5.8 million reviews from Amazon2, and found
that, again on a scale of 1 star to 5 stars, 57.5% of the
reviews had 5 stars, 20.0% had 4 stars, 8.7% had 3 stars,
5.5% had 2 stars, and 8.3% 1 star. The fact that online
product reviews tend to have high scores associated with
them may indicate a propensity of reviewers to write only
about products they are happy with, and/or may indicate the

1http://www.tripadvisor.com/
2http://www.amazon.com/



presence of many “fake” reviews (see [15] for a discussion)
authored by people with vested interests. However, it is a
fact that review datasets come in imbalanced form, and it is
a fact that they are important3; as a consequence, automated
systems that intend to mine them must cope with imbalance.

For standard (i.e., binary or multiclass) classification there
is an entire strand of literature devoted to the consequences
of imbalance. In classification applications, the main conse-
quence of the imbalanced nature of a dataset is that, when
a system is tested on it, an evaluation measure robust to
imbalance must be used, i.e., a measure that does not reward
“trivial classifiers” (see e.g., [16]). For a given (binary,
ordinal, or other) classification problem a trivial classifier
Φ̃k may be defined as a classifier that assigns all documents
to the same class yk. Accordingly, the trivial class for E
(denoted ỹ) may be defined as the class that minimizes the
chosen error measure E on the training set Tr across all
trivial classifiers, i.e.,

ỹ = arg min
yk∈Y

E(Φ̃k, T r)

Likewise, the trivial-class classifier for E (denoted Φ̃) may
be defined as the trivial classifier that assigns all documents
to the trivial class for E.

The need of penalizing trivial classifiers has long been
acknowledged, e.g., in binary text classification [17], where
it is often the case that the positive examples of a class are
largely outnumbered by its negative examples (e.g., the Web
pages about NuclearWasteDisposal are less than .001% of
the total number of Web pages). A measure such as standard
error rate (namely, the fraction of classified documents that
are incorrectly classified) is not robust to this imbalance,
since the majority-class classifier (i.e., the trivial classifier
that assigns all documents to the majority class, which is
the trivial class for error rate) would be deemed extremely
“error-free”, probably more error-free than any genuinely
engineered classifier.

For binary text classification the standard evaluation mea-
sure is F1 [18], defined as the harmonic mean of precision
(π) and recall (ρ), i.e.,

F1 =
2πρ
π + ρ

=
2 TP
TP+FP

TP
TP+FN

TP
TP+FP + TP

TP+FN

=
2TP

2TP + FP + FN

where TP , FP , and FN stand for the numbers of true
positives, false positives, and false negatives resulting from
classifying our set of documents. One of the reasons F1

is standard is exactly because it is robust to this imbalance,
since the majority-class classifier would obtain F1 = 0 while
the minority-class classifier would obtain an F1 value equal
to the frequency of the positive class, which is usually very

3A 2007 study (see http://www.comscore.com/press/
release.asp?press=1928) found that between 73% and 87% “of
review users (...) reported that the review had a significant influence on
their purchase”.

low (less than .001, in the example above – note that for F1,
unlike for error rate, higher values are better)4. F1 is thus
preferred to error rate for evaluating binary classification
[17].

The lack of robustness to imbalance on the part of an
evaluation measure has two further negative consequences.
The first is that, when a classifier depends on one or more
parameters, optimizing these parameters on a validation set
by using such a measure obviously returns parameter values
that make the classifier behave very much like a trivial
classifier. The second, related consequence is that, when a
learning device is designed to internally optimize a given
measure, or “loss” (as is the case, e.g., of SVMs or boosting-
based learners), the resulting classifier may also resemble a
trivial classifier.

III. COMMON EVALUATION MEASURES FOR OR

Are the standard evaluation measures for OR robust to
imbalance? The most commonly used such measures are

1) Mean Absolute Error (here denoted MAEµ, and also
called ranking loss – see e.g., [19]), as used e.g., in
[20], [1], [21], [22], [23]. MAEµ is defined as the
average deviation of the predicted class from the true
class, i.e.,

MAEµ(Φ̂, T e) =
1
|Te|

∑
xi∈Te

|Φ̂(xi)− Φ(xi)| (1)

where Te denotes the test set and the n classes in Y
are assumed to be real numbers, so that |Φ̂(xi)−Φ(xi)|
exactly quantifies the distance between the true and the
predicted rank (the meaning of the µ superscript will
be clarified later).

2) Mean Squared Error (MSEµ – also called Squared
Error Loss), as used e.g., in [14], defined as

MSEµ(Φ̂, T e) =
1
|Te|

∑
xi∈Te

(Φ̂(xi)− Φ(xi))2 (2)

A variant is Root Mean Square Error, as used e.g., in
[21], which corresponds to the square root of MSEµ.

3) Mean Zero-One Error (more frequently known as
Error Rate), as used e.g., in [20], [1], [21], [24], [12],
[13], and simply defined as the fraction of incorrect
predictions, i.e.,

MZOEµ(Φ̂, T e) =
|{xi ∈ Te : Φ̂(xi) 6= Φ(xi}|

|Te|
(3)

Unlike MSEµ and MAEµ, MZOEµ has the disadvantage
that all errors are treated alike, and thus insufficiently
penalizes algorithms that incur into blatant errors. MSEµ

penalizes blatant mistakes (e.g., misplacing an item into a
rank faraway from the correct one) more than MAEµ, due

4Here we assume that the positives are the minority and the negatives
are the majority, which is usually the case in binary classification.



to the presence of squaring; as such, it has been argued
(see e.g., [25]) that MSEµ is more adequate for measur-
ing systems that classify product reviews, since different
reviewers might attribute identical reviews to different but
neighbouring classes.

It is quite evident that none of these measures is robust
to imbalance, since they are all based on a sum of the
classification errors across documents. Since the majority-
class classifier incurs in zero error for all the documents
whose true class is the majority class, and since in an
imbalanced dataset these documents are many, this trivial
policy tends to be fairly “error-free”.

To make this problem even worse, it is easy to show
that for all these error measures the “trivial class” Φ̃k need
not be the majority class; in other words, there may exist
trivial classifiers that are even more “error-free” than the
majority-class classifier. For instance, in the TripAdvisor-
15763 dataset mentioned above, assuming that the class
distribution in the test set is the same as that in the training
set, by assigning all test documents 4 stars we obtain lower
MAEµ than by assigning all of them 5 stars, which is the
majority class. This is because 4 stars is only marginally
less frequent than 5 stars, but in misclassifying all of
the documents belonging to the lower classes (1 stars to
3 stars) as 4 stars we make a smaller mistake than in
misclassifying them as 5 stars.

Little research has been performed in order to identify
evaluation measures that overcome the shortcomings of
measures (1)-(3). Gaudette and Japkovicz [25] acknowledge
that these and other measures are somehow problematic
but do not concretely propose alternatives. Waegeman et al.
[26] instead propose an evaluation method based on ROC
analysis. The problem with their method is that, like all
methods based on ROC analysis, it is more apt to evaluate
the ability of a classifier at correctly ranking the objects
(i.e., at placing 5 stars reviews higher than 4 stars reviews)
than to evaluate the ability of the classifier to classify an
object into its true (or into a nearby) class. In other words,
the ROC measure of [26] does not reward the ability of a
learning device to correctly identify the thresholds τj that
separate a class yj from its successor class yj+1, for all
j = 1, . . . , (n− 1).

IV. MAKING OR MEASURES ROBUST TO IMBALANCE

What can we do to make the three measures described in
Section III more robust? The simple solution we propose is
to transform them so that they are based on a sum of the
classification errors across classes. This notion is inspired
by the well-known distinction between the microaveraged
and macroaveraged versions of F1 (see e.g., [27]), where
the former is obtained by averaging effectiveness across
individual documents and the latter is instead obtained by
first computing F1 on a per-class basis and then averaging
the results across the classes. According to this terminology,

all the evaluation functions of Section III are microaveraged;
we instead propose to use their macroaveraged analogues.

For instance, the macroaveraged version of MAEµ (that
we denote by MAEM ) is obtained by transforming (1) into

MAEM (Φ̂, T e) =
1
n

n∑
j=1

1
|Tej |

∑
xi∈Tej

|Φ̂(xi)−Φ(xi)| (4)

where Tej denotes the set of test documents whose true class
is yj and the “M” superscript indicates macroaveraging (the
“µ” superscript we have used previously indicates instead
microaveraging).

If consecutive ranks have always the same distance d =
|yj+1 − yj |, it is easy to show that the trivial class(es) for
MAEM (and for MSEM and RMSEM ) are the middle
classes, i.e. ybn+1

2 c
and ydn+1

2 e
(these coincide with the 3

stars class in the TripAdvisor-15763 and Amazon datasets
discussed in this paper). For these classes the trivial classifier
always obtains MAEM = n

4 for even values of n and
MAEM = n2−1

4n for odd values of n (the trivial-class
classifier thus obtains MAEM = 1.2 in the both the
TripAdvisor-15763 and Amazon datasets).

The effect of using MAEM on an imbalanced dataset (or
any other dataset) is to make the trivial class for MAEM

count as any other class, instead of proportionally to its
frequency; assigning all test documents to the trivial class
for MAEµ produces zero error only for |Te|n test documents,
which is not enough to guarantee low MAEM .

A further interesting property of MAEM is that, on a
perfectly balanced dataset, it coincides with MAEµ. In fact,
given that on such a dataset its is true that |Tej | = |Te|

n for
all j = 1, . . . , n, we have

MAEM (Φ̂, T e) =
1
n

n∑
j=1

1
|Tej |

∑
xi∈Tej

|Φ̂(xi)− Φ(xi)|

=
1
|Te|

n∑
j=1

∑
xi∈Tej

|Φ̂(xi)− Φ(xi)|

=
1
|Te|

∑
xi∈Te

|Φ̂(xi)− Φ(xi)|

= MAEµ(Φ̂, T e)

Similar considerations hold for MSE and RMSE. We thus
argue that macroaveraged versions of these measures should
be the measures of choice in all OR contexts.

An example of the impact of using MAEM instead of
MAEµ comes from the following experiments (already
described, although with different emphasis, in [11]). Table
I reports the results of predicting the correct class (in a
range from 1 star to 5 stars) of the product reviews in the
TripAdvisor-15763 test set by means of an ε-support vector
regression (ε-SVR) learning device [28] fed with standard
bag-of-words representations. Recall that, as detailed in
Section II, the class distribution of TripAdvisor-15763 is



Table I
MAEM AND MAEµ RESULTS OBTAINED IN CLASSIFYING REVIEW

DATA FROM ONE GLOBAL AND SOME SAMPLE LOCAL
TRIPADVISOR-15763 DATASETS. “TRIVIAL” REFERS TO RESULTS

OBTAINED BY THE TRIVIAL-CLASS CLASSIFIER FOR THE MEASURE
INDICATED (MAEµ OR MAEM ).

Dataset Method MAEµ MAEM

Global Trivial 0.631 1.200
ε-SVR 0.621 0.788

Value Trivial 0.756 1.200
ε-SVR 0.847 1.085

Rooms Trivial 0.710 1.200
ε-SVR 0.822 1.132

Service Trivial 0.796 1.200
ε-SVR 0.818 1.111

highly imbalanced. Since each review in the dataset has both
a global score and other scores local to specific aspects (e.g.,
“Value”, “Rooms”, “Service”, . . . ), each characterised by its
own class distribution skew, experiments were actually run
on both the global and other aspect-specific datasets.

Concerning the global dataset, we may see that, if using
MAEµ as a measure, ε-SVR barely outperforms the trivial-
class classifier for MAEµ (.621 to .632, a mere +1.58%
improvement); if using MAEM , ε-SVR outperforms the
trivial-class classifier for MAEM by .788 to 1.200, a brisk
+34.3% improvement. Concerning the “Value” dataset, if
using MAEµ our ε-SVR is now even outperformed by the
trivial-class classifier for MAEµ (.847 to .756, a 12.0%
deterioration); according to MAEM , our ε-SVR is instead
better than the trivial-class classifier for MAEM , although
not by a wide margin (1.085 to 1.200, a 9.5% improvement).
The “Rooms” and “Service” datasets behave similarly to
“Value”.

It is easy to guess that this problem might even be exac-
erbated on datasets, such as the above-mentioned Amazon
dataset, in which the imbalance is even higher.

V. CONCLUSIONS

We have proposed the use of macroaveraged versions of
common measures such as mean absolute error or mean
squared error, in order to cope with the imbalance problem
in ordinal regression. These macroaveraged versions bring
about robustness to imbalance and are equivalent to their
standard microaveraged counterparts when the datasets are
perfectly balanced. The adoption of these measures thus
guarantees fair comparison among competing systems, and
more correct optimization procedures for classifiers.
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