Empirical Software Engineering Journal manuscript No.
(will be inserted by the editor)

Efficient Static Analysis and Verification of Featured
Transition Systems

Maurice H. ter Beek . Ferruccio
Damiani . Michael Lienhardt - Franco
Mazzanti - Luca Paolini

Received: date / Accepted: date

Abstract A Featured Transition System (FTS) models the behaviour of all
products of a Software Product Line (SPL) in a single compact structure,
by associating action-labelled transitions with features that condition their
presence in product behaviour. It may however be the case that the resulting
featured transitions of an FTS cannot be executed in any product (so called
dead transitions) or, on the contrary, can be executed in all products (so
called false optional transitions). Moreover, an FTS may contain states from
which a transition can be executed only in some products (so called hidden
deadlock states). It is useful to detect such ambiguities and signal them to
the modeller, because dead transitions indicate an anomaly in the FTS that
must be corrected, false optional transitions indicate a redundancy that may
be removed, and hidden deadlocks should be made explicit in the FTS to
improve the understanding of the model and to enable efficient verification—
if the deadlocks in the products should not be remedied in the first place.
We provide an algorithm to analyse an FTS for ambiguities and a means to
transform an ambiguous F'T'S into an unambiguous one. The scope is twofold:
an ambiguous model is typically undesired as it gives an unclear idea of the
SPL and, moreover, an unambiguous FT'S can efficiently be model checked. We
empirically show the suitability of the algorithm by applying it to a number of
benchmark SPL examples from the literature, and we show how this facilitates
a kind of family-based model checking of a wide range of properties on FTSs.

M.H. ter Beek™, F. Mazzanti
ISTI-CNR, Via Giuseppe Moruzzi 1, Pisa, 56124 Italy
E-mail: maurice.terbeek@isti.cnr.it, franco.mazzanti@isti.cnr.it

F. Damiani, L. Paolini
University of Turin, Corso Svizzera 185, 10149 Turin, Italy
E-mail: ferruccio.damiani@unito.it, luca.paolini@unito.it

M. Lienhardt
ONERA, Chemin de la Vauve aux Granges 6, 91123 Palaiseau, France
E-mail: michael.lienhardt@onera.fr

http://orcid.org/0000-0002-2930-6367
http://orcid.org/0000-0001-8109-1706
http://orcid.org/0000-0003-4562-8777
http://orcid.org/0000-0002-4126-0170

2 M.H. ter Beek et al.

Keywords Software product lines - Formal specification - Behavioural
model - Featured transition systems - Static analysis - Formal verification

1 Introduction

Software Product Line Engineering (SPLE) advocates the reuse of components
(systems as well as software) throughout all phases of product development.
Following this paradigm, businesses today no longer develop single products,
but families or product lines of closely-related, customisable products. Upon
identifying the relevant features of the product domain, to exploit their com-
monality and variability, a feature diagram or feature model defines those
combinations of features that constitute valid product configurations [2]. The
automated analysis of such variability models has a 30-year history [26,89].
Think, e.g., of the detection of anomalies like so called dead or false optional
features. Behavioural models with variability, on the other hand, have a shorter
history [67,65,76,66,68,3,78] and they have received considerable attention
only during the last decade, following the seminal paper by Classen et al. [40].
SPLs often concern massively (re)used critical software (e.g., in smartphones
and the automotive industry), thus it is important to demonstrate their correct
behaviour next to their correct configuration.

A Featured Transition System (FTS) is a formal model with variability for
capturing the behaviour of all products of an SPL in one compact model [39,
44]; its action-labelled transitions are associated with features that condi-
tion their presence in product behaviour. Proving correctness of such models
through model checking or testing is challenging. Ideally, the compact struc-
ture of the FTS is exploited to reason on the whole SPL at once. Such an
all-in-one technique, according to which the behaviour of all products is ex-
amined only once simultaneously, is called family-based analysis in contrast
to a brute force enumerative product-based analysis, according to which the
behaviour of every product is examined individually, one-by-one [88]. Over
the past decade, F'TSs have shown to be amenable to family-based testing and
model-checking [74,37,42,39,38,51,12,60,54,24,62,57,18].

In [9], we tackled the automated static analysis of FTSs. We defined the
following three ambiguities for an FTS: a dead transition (i.e., a featured
transition that is unreachable, and thus cannot be executed, in any product);
a false optional transition (i.e., a featured transition that can be executed in
all products in which its source state is reachable); and a hidden deadlock state
(i.e., a state from which a transition can be executed only in some products).
We developed an algorithm to detect ambiguities in FTSs (and a means to
resolve them), mimicking the well-established anomaly detection for feature
models, with a proof of its correctness. The motivations we presented in [9]
were twofold: an ambiguous FTS is often undesired, since it gives an unclear
idea of the SPL behaviour, and an unambiguous FTS paves the way for an
efficient kind of family-based model checking. We illustrated the latter on a
few examples from the literature.

Efficient Static Analysis and Verification of FTSs 3

This paper extends [9] in the following ways.

1. We introduce an engineering methodology aimed towards providing feed-
back to SPL modellers to possibly improve their FTS models and, subse-
quently, a strategy which offers a number of verification options (cf. Fig. 4).
A dead transition in an FTS indicates a modelling error that must be cor-
rected. A false optional transition indicates a redundancy that may be
intentional, but resolving it allows for more efficient verification options.
A hidden deadlock should be made explicit in the model to improve un-
derstanding and to enable an efficient kind of family-based verification—if
the deadlocks in the products that are the cause should not be remedied
in the first place.

2. Driven by the need to improve the practical applicability of our automated
static analysis for behavioural ambiguity detection in FTSs, we present
a new algorithm (more efficient than that presented in [9]) for detecting
ambiguities in FTSs by reducing the analysis to SAT solving. In addition,
we prove its correctness.

3. To demonstrate the improved practical applicability, we apply our algo-
rithm to a larger set of benchmark SPL examples than in [9], including the
FTS of the complete mine pump model of [35,36] and that of the Claroline
SPL of [50] with over 10,000 transitions, both of which are not tractable
with the algorithm presented in [9]. We empirically show the suitability of
the new algorithm by means of a clear runtime speedup.

4. We capitalise on the promise of an efficient kind of family-based model
checking by demonstrating how properties specified in either the well-
known Linear-time Temporal Logic (LTL) or in v-ACTLive", a rich action-
based and variability-aware fragment of the well-known branching-time
Computation Tree Logic (CTL), can be verified (with a linear complexity)
directly on an unambiguous FTS (ignoring its feature expressions) such
that validity is preserved in all LTSs modelling product behaviour. The
preservation of valid v-ACTLive" properties was anticipated in [9], while
the preservation of valid LTL properties was not observed before. These
results imply the addition of two efficient verification options to the above
mentioned strategy provided to SPL modellers (cf. Fig. 4).

Outline After mentioning some related work in Section 2 and providing some
background in Section 3, we provide our engineering methodology in Section 4
by defining ambiguities in FTSs and providing a means to resolve them. In
Section 5, we present the new static analysis algorithm to detect ambiguities
in FTSs, based on SAT solving, and prove its correctness. In Section 6, we em-
pirically show the suitability of the new algorithm by applying it to a number
of exemplary FTSs from the literature. In Section 7, we show the feasibility
of an efficient kind of family-based model checking of FT'Ss made possible by
the static analysis algorithm. Finally, we conclude the paper in Section 8.

4 M.H. ter Beek et al.

2 Related Work

Static analysis of FTSs mimics the automated analysis of feature models by
defining behavioural counterparts of dead and false optional features [26,89).
It is related to static (program) analysis [86,33], which includes the detection
of bugs in the code (like using a variable before its initialisation) but also the
identification of code that is redundant or unreachable.

In [74], conventional static analysis techniques are applied to SPLs that
are represented in the form of object-oriented programs with feature modules.
The aim is to find irrelevant features for a specific test in order to use this
information to reduce the effort in testing an SPL by limiting the number of
SPL programs to examine to those with relevant features. In [30], several well-
known static analysis techniques are lifted to Java-based SPLs without the
exponential blowup caused by generating and analysing all products individu-
ally. This is achieved by converting such analyses to feature-sensitive analyses
that operate on the entire SPL code in one single pass. Basically, if the original
analysis reports that a data-flow property holds at a given program statement,
then the lifted analysis reports a feature constraint (a logical expression over
the set of features) under which that property holds at the given statement.

In [73], static type checking is extended from single programs to an entire
SPL (program family) by extending the type system of a subset of Java with
feature annotations. This guarantees that whenever the SPL is well-typed,
then all possible program variants are well-typed as well, without the need
to generate and compile them first. In [48], type-checking for product lines is
mechanised and soundness of a constraint-based type system for Lightweight
Feature Java (LFJ), an extension of Lightweight Java with support for features,
is proved using a full formalisation of LFJ in the Coq proof assistant [28].

An encompassing overview of analysis strategies for SPLs, including type
checking, static analysis, model checking, and theorem proving, can be found
in [88] and a recent empirical study on applying variability-aware static anal-
ysis techniques to real-world configurable systems is presented in [87].

Family-based model checking of behavioural SPL models provides a means
to simultaneously verify multiple behavioural product models in a single run.
Properties can be verified with dedicated SPL model-checking tools such as
SNIP [37,39], ProVeLines [42], VMC [20,19,13], {NuSMV [38,58], ProFeat [34]
(for probabilistic model checking), or QFLan [16,90] (for statistical model
checking), or—through suitable abstractions or encodings—with well-known
classical model checkers like SPIN [61,60,62], PRISM [64] (for probabilistic
model checking), Maude [82], mCRL2 [24,18], or NuSMV [57].

In this paper, we introduce an engineering methodology that enables a
kind of family-based model checking for F'T'Ss, according to a strategy that is
sketched in Figure 4 (the part that is not in red). This figure will be discussed
in more detail in Sections 4 and 7. The strategy that is sketched is as follows. If
(1) the FTS is live, which is the case whenever it has no hidden deadlocks (so,
unambiguous FTSs are live), and (ii) the property ¢ to be verified is specified
in either LTL or v-ACTLive®, then ¢ can be verified directly on the FTS (by

Efficient Static Analysis and Verification of FTSs 5

ignoring its feature expressions) and if (iii) ¢ holds, this validity is preserved
in all LT'Ss modelling product behaviour, i.e. ¢ holds for all products. If any
of these three conditions does not hold, the property needs to be verified with
classical (family-based) approaches, such as the ones mentioned above.

The verification methodology depicted in Figure 4 thus indicates specific
cases in which verification of live FT'Ss reduces to verification of corresponding
MTSs and LTSs (which, as we will see, can be obtained straightforwardly by
ignoring the feature expressions, and distinguishing necessary and optional
transitions in case of MTSs) with a linear complexity. However, if either (i) the
property to be verified is not a v-ACTLive® or LTL formula, or (ii) the result
of the verification is false, then the formula needs to be verified with classical
family-based model checking or by means of product-based model checking,
with an exponential complexity [39,38].

3 Background

In this section, we provide some background needed for the sequel. Labelled
Transition Systems (LTSs) are the underlying behavioural structure of FTSs.

Definition 1 (LTS) A Labelled Transition System (LTS) is a quadruple £ =
(S, X, s0,0), where S is a finite (non-empty) set of states, X' is a set of actions,
sp € S is an initial state, and § C S x X x S is a transition relation.

We call (s,a,s") € 0 an a-(labelled) transition (from source state s to target
state s') and we may also write it as s — s'.

We recall classical notions for LT'Ss that will be used throughout the paper.

Definition 2 (reachability) Let £ = (S, X, s9,6) be an LTS. A sequence
p = Sot181tase - -+ is a path of L if t; = (s;_1, a4, s;) € ¢ for all i > 0; p is said
to wisit states sg, s1,... and transitions tq,ts,... and we denote its ith state
by p(i) and its ¢th transition by p{i}.

A state s € S is reachable (via p) in L if there exists a path p that visits it,
i.e., p(i) = s for some i > 0; s is a deadlock if it has no outgoing transitions,
ie., P(s,a,8)€d forallac ¥ and s’ € S.

A transition t = (s, a,s’) € d is reachable (via p) in L if there exists a path
p that visits it, i.e., p{i} = ¢, for some ¢ > 0.

Example 1 In Figure 1, we depict the LTSs £; and L5, modelling the behaviour
of two different coffee machines, adapted from [24,9]. Each LTS has actions
to insert coins (ins) and to pour either standard (std) or extra large (xxlI)
coffee upon the insertion of one or two coins, respectively. Clearly all states
are reachable and there are no deadlocks.

FTSs were introduced in [40] to concisely model the behaviour of all the
products of an SPL, modelled as LTSs, in one transition system by annotating
transitions with conditions expressing their presence in (product) LTSs. Let
B = {T, L} denote the Boolean constants true (T) and false (L), and let B(F)

6 M.H. ter Beek et al.

L1 std Lo

@ﬁ@ ** ()

Fig. 1 LTSs £; and L2 modelling coffee machines

denote the set of propositional formulas over a set of features F' (i.e., using
features as propositional variables). We do not formalise a language for propo-
sitional formulas in order to allow the inclusion of all possible propositional
connectives but, in particular, we include the constants from B. The elements
of B(F') are also called feature expressions. An FTS is an LTS equipped with
a feature model and a function that labels each transition with a feature ex-
pression. In the following definition, the feature model is represented by the
set of its (product) configurations, where each configuration is represented by
a Boolean assignment to the features (i.e., selected = T and unselected =).

Definition 3 (FTS) A Featured Transition System (FTS) is a sextuple F =
(S, X, s9,0, F, A), where S is a finite (non-empty) set of states, X is a set of
actions, so € S is the initial state, 6 C S x X x B(F) x S is a transition
relation, F' is a set of features, and A C {A: F — B} is a set of (product)
configurations.

Given a feature expression ¢ € B(F), we call (s,a,¢,s") € § featured
transition (labelled with a and limited to configurations satisfying ¢) and
(s,a,T,s') € § must transition. We may write featured transitions as PRALI

The notions from Definition 2 (path, reachability, deadlock) are carried
over to F'T'Ss by ignoring the feature expressions.

A configuration A € A satisfies a feature expression ¢ € B(F'), denoted by
A E ¢, whenever ¢ is valid in the interpretation J, i.e., the result of substituting
the value of the features occurring as variables in ¢ according to A is T. Thus,
by definition, A\ | T.

Without loss of generality, in the sequel we only consider F'T'Ss that do not
contain two featured transitions ¢—/%¢" and ¢—*+¢’ such that ¢ # ¢'. Any
FTS that does not satisfy this criterion can be transformed into one that does

by replacing the two transitions with one featured transition qa|¢—\/¢'>q/ .

Definition 4 (product) Let F = (S, X, so,0, F, A) be an FTS. The LTS
specified by a particular configuration A € A, denoted by F|s, is called a prod-
uct of F. It is obtained from F by first removing all featured transitions whose
feature expressions are not satisfied by A (resulting in the LTS (5, X, s, d’),
with ¢ = {(s,a,5') | (s,a,6,8') € 6 and A = ¢}), and then removing all
unreachable states and their outgoing transitions. Given a featured transition
(s,a,¢,8") € §, we call (s,a,s") € § its corresponding (LTS) transition. The
set of products of F is denoted by lts(F).

Efficient Static Analysis and Verification of FTSs 7

F std|€ FMr = $ D€

Fig. 2 FTS F modelling a product line of coffee machines

Note that, by construction: (i) each product does not contain unreachable
states or transitions, (ii) each must transition of the FTS has a corresponding
transition in the products in which it is reachable, (iii) each product does
not contain states or actions that were not originally present in the FTS, and
(iv) each featured transition has a unique corresponding LTS transition when
its source state is reachable.

The feature model expression of F, denoted by FMx, is a feature expres-
sion that represents A (like, e.g., the formula in conjunctive normal form
Vaea (Ager ({F AU = THU{=f [A(f) = L }). Thus, for all A F — B
it holds that A = FMx if and only if A € A. We may write FM instead of FMx
if no confusion can arise.

Ezxample 2 In Figure 2, we depict an FTS F modelling the behaviour of the
two coffee machines from Example 1 as a product line of coffee machines,
adapted from [24,9]. Imagine that extra large coffee is exclusively available
for the American market, while standard coffee is exclusively available for
the European market. To this aim, F has transitions labelled with features $
and €, representing products for either the American or the European market,
respectively, and a must transition that must be present in every product. Its
feature model, depicted in Figure 3(left), can be represented by the feature
expression FMr = $ B €, where @ denotes the exclusive disjunction operation.
Hence the product configurations of F are A = {\1, A2}, where A\1($) = L,
)\1(€) =T,)\2($) =T, and)\2(€) = 1. The LTSs .7:|)\1 = L, and]:|A2 = Lo,
depicted in Figure 1, model the behaviour of the only two products of F:
configuration A; for the European market and Ay for the American market.

Parallel composition of FTSs is equal to the classical parallel composition
of LTSs modulo projection [36,39]. Intuitively, parallel composition partially
interleaves the transitions of the LTSs, permitting asynchronous execution of
their actions, except for those with shared actions, which are synchronised,
thus only permitting execution of their actions at the same time. In case
of FTSs, the feature expressions of synchronised transitions are conjuncted,’
while each interleaved transition simply maintains its feature expression [36,
39].

1 We foresee an optimisation of conjuncted feature expressions to foster useful output (e.g.,
the synchronisation of two must transitions could lead to a conjuncted feature expression
T AT, which would technically not be a must transition according to Definition 3 and could
thus be detected as a false optional transition, as we will see in Definition 6(ii).

8 M.H. ter Beek et al.

(] ¢ Mondatory
A Optional
A\ Mo

2 ¢--» Excludes

L] (8} -

Fig. 3 Feature models of product line of coffee machines (left), with a dead feature (middle),
and with a false optional feature (right)

4 Ambiguities in FTSs

When applying automated analysis of feature models, the better known anal-
ysis operations that are typically being performed concern the detection of
anomalies (cf., e.g., [26,89]). These anomalies reflect ambiguous or even con-
tradictory information. Examples include so-called dead and false optional
features. A feature is dead if it is not contained in any product configuration
of the FTS, whereas it is false optional if it is contained in all product configu-
rations of the F'TS even though it is not a designated mandatory feature. Such
anomalies are typically due to an incorrect use of cross-tree constraints. Con-
sider the feature models depicted in Figure 3. The one on the left corresponds
to the feature model expression $ @€ from Example 2 and it has neither dead
nor false optional features. The one in the middle corresponds to the feature
model expression $ A ($ 1 €), where 1 is the negation of conjunction (a.k.a.
not and), and it has a dead feature €, indicated in red, because this optional
feature is excluded by the mandatory feature $ and thus never present. The
feature model on the right, finally, corresponds to the feature model expression
$ A (3 — €), meaning that € is false optional, indicated in red, because it is
required by the mandatory feature $ and as such always present.

In this section, we formalise equivalent notions in a behavioural setting, by
adapting the above notions to (featured) transitions of an FTS (Section 4.1).
Furthermore, we define ambiguous FTSs and we show how to transform any
ambiguous FTS into an unambiguous one (Section 4.2). This constitutes our
envisioned engineering methodology, which is sketched in Figure 4 (the top-
right red part) together with a number of verification options (the part of Fig. 4
that is not red) organised in a strategy that was briefly outlined in Section 2
and which will be discussed in more detail in Section 7. This engineering
methodology improves the clarity of behavioural SPL models, which is one of
the contributions of this paper.

4.1 Behavioural Ambiguities

Recall from Definition 4 that all states of a (product) LTS of an FTS are
reachable from the initial state.

Definition 5 (dead transition) We say that a transition (of an FTS) is dead
to mean that in all the FTS’s products the corresponding (LTS) transition is
not reachable.

Efficient Static Analysis and Verification of FTSs 9

improve
;r:i{esi ¢ holds check
examples for all parallel FTSs component
d P products ambiguities
(products) check
compose
improve
L check
check
verify with
classical -
(family-based) no l;;‘ Se yes
approach live?
(SNIP /fLTL, 1ve:
fNuSMV /fCTL)
is ¢ an verify with
no LTL or v- y SPIN/LTL
ACTLive® or VMC/v-
formula? ACTLive®

¢ holds
for all
products

no

sET?

Fig. 4 Engineering methodology (top-right red part) and verification options (not in red)

Clearly, since an FTS is intended to compactly represent the behaviour of
all products of a product line, a dead transition in an FTS indicates a modelling
error that must be signalled to the modeller so it can be corrected. Such
correction can mean removing the transition or changing its feature expression.

Definition 6 (false optional transition) We say that a transition (of an
FTS) is false optional to mean that: (i) it is not dead, (ii) it is not annotated
with the feature expression T, and (iii) its corresponding (LTS) transition is
present in all the FTS’s products in which its source state is present.

Definition 6 is a slightly revised version of that of [9, Def. 3.2|, in which
condition (i) was not explicitly required. Note that condition (iii) does not
imply condition (i). In fact, condition (i) requires the source state of the con-
sidered transition to be present (i.e., reachable) in at least one product of the
FTS, which is not guaranteed by condition (iii).

A false optional transition in an FTS indicates a redundancy, in the sense
that the associated feature expression can be replaced by T without changing
the behaviour of any of the products of the product line. This redundancy
may be intentional syntactic sugar, to underline the fact that the considered
transition is part of the behaviour of those product configurations that satisfy
the feature expression, but otherwise it may be useful for the modeller to know.
Moreover, as we will see in Section 7, substitution of the feature expression
with T allows for more efficient verification because it results in one more must
transition, and thus one less feature expression to be evaluated.

10 M.H. ter Beek et al.

F FM = f1 @D f2 Flxn Flxag
alf2 al fz a

Fig. 5 FTS F and its product LTSs F|y, and F|x,

Ezample 8 In Figure 5(left), we depict an FTS F with features f; and fs and
feature model FM = f1® fo. The LTSs F|,, and F|,,, depicted in Figure 5(mid-
dle and right), model the behaviour of its two valid product configurations:
A= {f1} and A2 = {fo}. We immediately see that transition 52%52 is

dead and transition s; u‘—h>52 is false optional.

An important safety property of systems concerns deadlock freedom, i.e.,
the system should not reach a state in which no further action is possible, thus
guaranteeing progress or liveness [1,83]. In case of configurable systems (like
FTSs) this notion can be extended to guaranteeing liveness for each product
variant (LTS). In order to express this notion in the context of FTSs, we
introduce the following definition (recall from Section 3 that a state of an FTS
is said to be a deadlock if it has no outgoing transitions).

Definition 7 (hidden deadlock state) We say that a state (of an FTS) is
a hidden deadlock to mean that: (i) it is not a deadlock in the FTS, whereas
(ii) it is a deadlock in at least one of the FTS’s products (LTSs).

Note that, because of condition (ii) in Definition 7, hidden deadlock states
of an FTS are present in one or more of its (product) LTSs.

A hidden deadlock in the FTS should definitely be signalled to the modeller,
so it can be checked whether the deadlocks in the LT'Ss should be remedied.
If they should not, i.e., if the deadlocks in the LTSs are intended or unavoid-
able, then this should be made explicit in the FTS to improve understanding.
Moreover, as we will see below, this enables a kind of family-based verification.

Definition 8 (ambiguous FTS) We say that an FTS is ambiguous to mean
that: (i) at least one of its states is a hidden deadlock, or (ii) at least one of
its transitions is dead or false optional.

Ezample 4 Tt is easy to see that state s, of the FTS F depicted in Figure 5(left)
is a hidden deadlock state, because s, is a deadlock in the LTS F|y,. Indeed,
F is an ambiguous FTS (cf. also Example 3).

Now consider the ambiguous FTS F’ depicted in Figure 6(left) with fea-
tures f1 and fy and feature model FM = f; @ fo. The LTSs F'|x, and F'|,,
depicted in Figure 6(middle and right), model the behaviour of its two valid
product configurations: Ay = {f1} and Ay = {f2}. Similar to Example 3,
transition so L}Sz is dead. However, transition s; a‘—fl>52 is no longer false
optional, since it is indeed not present in F’|, even though its source state s;
is reachable in that LTS. Moreover, not only state s is a hidden deadlock (for

Efficient Static Analysis and Verification of FTSs 11

F FM = f1 @ f2 F'x F'lxg
@O
alfz alfz a

Fig. 6 FTS F’ and its product LTSs F'|5, and F'|j,

the same reason as above) but so is state s, since it is a deadlock in F'|y,.
Hence also F’ is ambiguous.

In Definition 8, an FTS is said to be ambiguous if it has a hidden deadlock
state or a dead or false optional transition. We can imagine further ambiguities.
For instance, consider for a moment an FTS with the two ‘nearly’ duplicate
transitions ¢—7s¢’ and ¢y ¢/ (such FTSs are generally not considered
in this paper, cf. Section 3). Then the second transition is redundant, since the
validity of its feature expression implies that of the first transition, meaning
that the second transition adds no behaviour. This clearly represents a kind
of ambiguity, since looking at that second transition in isolation it would seem
that execution of a requires the presence of features f and g, while actually
the presence of f suffices.

Clearly, it is unlikely that systems over a certain size are modelled as single
monolithic FTSs. Typically, (large) systems are designed in a modular way, as
a composition of (smaller) components. We will see examples of such systems in
Section 6. Our engineering methodology goes into that direction. The feedback
that our analysis provides to the modellers offers them a means to revise their
(small) models before composing these models to form (larger) systems.

4.2 Resolving Ambiguities

The initial part of our engineering methodology (i.e., the top-right red part
of Fig. 4) concerns checking for ambiguities. Next to providing feedback to
the modeller, it is important to know how to resolve ambiguities in an FTS. A
dead transition could simply be removed, but this might not be the right thing
to do, since the modeller may simply have made a mistake in the behavioural
model or in the feature model. Likewise for a false optional transition, which
however could also be intentional, to make explicit that the (corresponding)
transition is part of the behaviour of those product configurations that satisfy
the associated feature expression. Finally, a hidden deadlock should either be
made explicit in the FTS, which can be done by adding a deadlock state to the
FTS, or the deadlocks in the LTSs should be remedied—again by changing the
behavioural model or the feature model. Hence, based on the detailed feedback
obtained, the modeller can iteratively improve and check the FTS until the
FTS is either unambiguous or ambiguous, but such that it is the FTS as
intended by the modeller.

12 M.H. ter Beek et al.

Fu FM = f1 @ f2 F! FM = f1 @ f2
Waﬁam
alfz alf2 Tl=f1

Fig. 7 Unambiguous FTSs obtained from the FTSs of Figures 5 and 6

In the latter case, according to the above recipes, any ambiguous FTS
can be straightforwardly turned into an unambiguous FTS by the following
transformation:

1. remove the dead transitions;

2. turn the false optional transitions into must transitions; and

3. make explicit the hidden deadlocks by adding to the set of states S of the
FTS a distinguished deadlock state s; ¢ S and, for each hidden deadlock
state s, adding a new transition (which we call a deadlock transition) with s
as source, sy as target, and labelled by a distinguished action { ¢ X and by
a feature expression that negates the disjunction of the feature expressions
of all its source state’s outgoing transitions.

Note that step (3) needs to be performed only for those hidden deadlock states
that have not yet become explicit deadlock states upon the removal of dead
transitions in step (1).

Ezample 5 In Figure 7(left), we depict an unambiguous FTS F, that was
obtained by transforming the ambiguous FTS F of Figure 5. We removed

dead transition so L@g and false optional transition s; %82 was turned

into must transition s; G‘—T»@g. Note that in this case there was no need to
add a deadlock transition from the hidden deadlock state so to a newly added
explicit deadlock state, since s has become an explicit deadlock state in the
FTS upon removal of the dead transition so %52

In Figure 7(right), we depict an unambiguous FTS F. that was obtained
by transforming the ambiguous FTS F’ of Figure 6 as follows. We removed the
dead transition so %52 and we added the deadlock transition s; iﬂ?f
from the hidden deadlock state s; to the newly added explicit deadlock state
s;. Note that in this case, without adding this deadlock transition, state s;

would have remained a hidden deadlock state in F.

Note that the addition of explicit deadlock states and transitions does not
preserve bisimilarity (nor trace equivalence), which means that resolving the
ambiguities does not guarantee that the properties of the original FTS are
maintained.? However, if a modeller decides to resolve ambiguities in an FTS
(as signalled by our static analysis) through the introduction of explicit dead-
lock states and transitions, then even though the resulting FTS is no longer

2 A property can still be verified by minor modifications of the formula (e.g., by expressing
the v-ACTLive® formula EF [-a] T as EF [-a A =] T or the LTL formula O T as O 7).

Efficient Static Analysis and Verification of FTSs 13

bisimilar to the original one, it has gained in clarity. Furthermore, as antici-
pated earlier, a kind of family-based verification on the improved FTS becomes
available to the modeller, according to the strategy outlined in Figure 4.

As said before, an ambiguous FT'S may be due to a mistake of the modeller
in defining the feature model, in particular in the case of large feature models
with many cross-tree constraints. Here we provide a small example, leaving
more meaningful examples to Section 6.

Ezample 6 Consider again the FTS F depicted in Figure 5(left), but now with
feature model FM = f; — fo, i.e. the presence of feature f; requires that of fo.
In this case, the LTS F|,, has two further a-transitions, viz. loops in states
sp and sz, meaning that F no longer exhibits neither dead transitions nor
hidden deadlock states—only the false optional transition s; a‘—hnz remains

(cf. Examples 3 and 4).

5 Detecting Ambiguities

In this section, we present an algorithm to detect behavioural ambiguity. It
relies on expressing the conditions of being a hidden deadlock state, a dead
transition, or a false optional transition in an F'TS as propositional formulas
(in which the names of the FTS’s features, states and transitions are used as
propositional variables), thus reducing FTS ambiguity detection to solving a
set of SAT problems [41] (i.e., to decide whether a given propositional for-
mula is satisfiable). While SAT solving is well known to be NP-complete, SAT
solvers are widely used for all kinds of static analysis on feature models with a
surprising effectiveness even for models with hundreds of thousands of clauses
and tens of thousands of variables [84,79].

To this aim, our implementation exploits an automatic SAT solver. SAT
solving is an active field of research [70,29,72,6] and tools exist that compute,
more or less efficiently, a solution for an input formula, or fail if the formula is
not satisfiable. Hence, by feeding the formula encoding an ambiguity question
to a SAT solver, we can obtain an answer to it. In our implementation, we use
the Z3 SMT solver [85] (that includes a SAT solver) developed by Microsoft
Research and freely available under the MIT license. The python code of our
implementation is publicly available [10]; it accepts FT'Ss in the format .dot as
input and all example models used in the remainder of this paper are provided.

5.1 FTS representation

Our algorithm assumes that the considered FTS is represented by the global
data structure fts that includes four fields:

1. states stores the set of all states in the FTS;
2. transitions stores the set of all transitions in the FT'S;
3. initial stores the initial state of the FTS;

14 M.H. ter Beek et al.

4. fm stores the formula FM (introduced before Example 2 in Section 3), which
is a formula in B(F') that represents the feature model of the FTS.

Each state is represented by a data structure that includes three fields:

1. in_trs stores the set of incoming transitions of this state;

2. out_trs stores the set of outgoing transitions of this state;

3. hdead is a Boolean flag used to record whether this state is a hidden dead-
lock.

Each transition is represented by a data structure that includes four fields:

1. bx stores the feature expression labelling the transition, i.e., a propositional
formula in B(F);

2. source stores the source state of the transition;

dead is a Boolean flag used to record whether this transitions is dead;

4. false_opt is a Boolean flag used to record whether this transitions is false
optional.

@

The Boolean flags in each state (field hdead) and transition (fields dead and
false_opt) are used to record the results of the analysis (i.e., the output of the
algorithm); their initial values are immaterial.

5.2 Propositional Formulas Expressing the Conditions to be Checked

Let F = (S, X, 50,0, F,A) be an FTS. Let T be the set of the names of the
transitions of the F'T'S. In this section, we introduce propositional formulas on
B(F USUT) that express the conditions of being a hidden deadlock state, a
dead transition, or a false optional transition in the FTS.

Recall that an interpretation for a propositional formula in B(FUSUT)
is a function Z : (FUSUT) — {T, L}. We say that a state or transition is
selected in an interpretation to mean that the associated propositional variable
gets value T and, on the other hand, we say it is deselected in an interpretation
to mean that the associated propositional variable gets value 1.

Notation 1 For the sake of simplicity, we abuse the notation of data struc-
tures for states and transitions (cf. Section 5.1). We use fts.states as an
alternative name for S, and use fts.transitions as an alternative name for T'.
We use fts.initial to refer to the initial state sg, use s € fts.states and
s = t.source (where t € T) to refer to the corresponding state (an element
of S), and use t € fts.transitions, t € S.in_trs, and t € S.out_trs to refer to
the corresponding transition (an element of T').

Let inner_states denote the set fts.states \ {fts.initial}. An initial path is
a path that starts from the initial state.

We first introduce some propositional formulas that, together with the
formula fts.fm, allow us to formalise the conditions that grasp the initial paths
in the FTS’s products.

Efficient Static Analysis and Verification of FTSs 15

— iniziar 18 the formula fts.initial (i.e., the name of the initial state). This
formula is valid in an interpretation Z iff 7 selects the initial state.

— imer 18 the formula Ascinner_states (5 = atLeastOneTransition0f(s.in_trs)), where
atLeastOneTransition0f(X) is a placeholder for Ve x (tbx At At.source). This
formula is valid in an interpretation Z iff 7 selects only states that are
reachable via selected transitions, with valid (in Z) feature expressions,
that are outgoing from selected states.

— (single is the formula /\Sefts.states atMostOneOf (s.out_trs), where atMost0One0f (X)
is a placeholder for A,cxt= (Aycx\). This formula is valid in an
interpretation Z iff Z selects at most one outgoing transition, for each state
(selected or not).

— end(s) is the formula s A (A,¢, ous_rs —t)- This formula is valid in an interpre-
tation Z iff 7 selects the state s and deselects all outgoing transitions from
that state.

Next, we focus our attention on the conjunction of the above formulas.

— is_useful_state(s) is the formula fts.fm A dinitial A Pinner A Psingle A end(s). This
formula is satisfiable (i.e., valid in some interpretation Z) iff in at least one
LTS product there is a simple path (i.e., a path with no repeated states)
that starts from the initial state and ends in s.3

Ezample 7 Consider the FTS on the right. @ @ﬂ‘_T@:) a|T

It has no features and just one product configuration (represented by the
mapping from the empty set to B) which yields the LTS consisting of the initial
state sg. Therefore, fts.fm = T. States s and s; are not useful (since they are
not reachable from sg) and, accordingly, the formulas is_useful_state(s) and
is_useful_state(s;) are not satisfiable. To see this, let ¢ be the transition from
s1 to s and let ¢; be the transition from s; to si.

— To satisfy is_useful_state(s) requires to assign T to s (because end(s) must
be satisfied), which in turn requires to assign T to both ¢ and s; (because
pimer must be satisfied), which in turn requires to assign L to ¢; (because
bsingie Must be satisfied, viz. only ¢ can exit s1), which in turn implies that
bimer cannot be satisfied (because at least one transition has to enter s;)
and therefore is_useful_state(s) cannot be satisfied.

— To satisfy is_useful_state(s1) requires to assign T to s and L to ¢; (because
end(s1) must be satisfied), which in turn implies that ¢imer (and therefore
is_useful_state(s;)) cannot be satisfied.

We can straightforwardly define the formulas for checking the behavioural
ambiguities by exploiting the formula is_useful_state(s).

— exists_deadlock(s) is the formula is_useful_state(s) A A,cq out_trs 7E-PX- This
formula is satisfiable iff, in at least one LTS product, the state s is a

3 Note that there could be interpretations that fulfill is_useful_state(s) and include also
non-initial paths, but in any case s must still be reachable by an initial path that is within
the interpretation.

16 M.H. ter Beek et al.

deadlock—thus if s is not a deadlock in the FT'S, then s is a hidden deadlock
(cf. Definition 7).

— is_not_dead_transition(t) is the formula is_useful_state(t.source) A t.bx. This
formula is satisfiable iff the transition ¢ is not dead (cf. Definition 5).

— may_be_opt_transition(t) is the formula is_useful_state(t.source) A —t.bx. This
formula is satisfiable iff the LTS transition corresponding to transition ¢
(of the FTS) is not present in at least one of the FTS’s products in which
its source state is present—thus if ¢ is not dead, then ¢ is not false optional
(cf. Definition 6).

Example 8 Consider the FTS F of Example 3. Let tg, t1, t2, and t3 be the
transitions so— 550, so—Lvsy, 51T sy, and so- s, respectively. We
have that the formula is_not_dead_transition(t3) is not satisfiable (therefore
ts is dead) and the formula exists_deadlock(sz) is satisfiable (therefore state
s2 is a hidden deadlock). Moreover, the formula is_not_dead_transition(tz) iS
satisfiable (therefore t5 is not dead) and the formula may_be_opt_transition(t2)
is satisfiable (therefore ¢s is false optional).

Consider the FTS F’ of Example 4. Let tg, t1, t2, and t3 be the transitions
so—1%2 80, S0 an 81, 81 alh 9, and so— s, respectively. We have that
the formula is_not_dead_transition(ts) is not satisfiable (therefore t3 is dead).
Moreover, both formulas exists_deadlock(s;) and exists_deadlock(sz) are satisfi-

able (therefore both s; and sy are hidden deadlocks).

We denote by Az the restriction of the interpretation Z to features. The
following lemma formally states the meaning of the five components of the
formula is_useful_state(s).

Lemma 1 Let fts be the global data structure that represents the FTS F =
(S, X, 80,0, F, A) and let T be an interpretation. Then

1. T sts.fmiff Az € A.

2. T & binstiar iff Z(fts.initial) = T.

8. T = bimer iff, for all s € inner_states, if Z(s) = T then there is at least a
transition t € s.in_trs such that: T |= t.vz, Z(t) = T, and Z(t.source) = T.

4. T E bsingie iff, for all s € inner_states, there is at most one transition
t € s.out_trs such that Z(t) =T.

5 T & end(s) iff, Z(s) = T and Z(t) = L, for all t € s.out_trs, where s €
fts.states.

Proof Straightforward. O
The next lemma formally states the meaning of the formula is_useful_state(s).

Lemma 2 Let fts be the global data structure that represents the FTS F =
(S, X, 50,0, F, A) and let s' be a state of F. Then the formula is_useful_state(s)
is satisfiable iff there are an interpretation T and an initial path P of F ending
in s' such that \r € A and

1. Z(s) = T, for each state s visited by P, and

Efficient Static Analysis and Verification of FTSs 17

2. Z(t) = T and Az [t.ve, for each transition t visited by P.

Proof We consider first the direction from right to left. Let Z be an interpreta-
tion and P an initial path of F ending in s’ such that Az € A and conditions (1)
and (2) hold. Consider the interpretation Z, that maps to L all the states and
transitions that are not in P and behaves as 7 on all other arguments. Then it is
immediate to check that Z,): is_useful_state(s’) holds (i.e., is_useful_state(s’)
is satisfiable).

Consider now the other direction. Let Z' be an interpretation satisfying
is_useful_state(s’), i.e., such that T’ ': fts.fm, T ': Pinitials T): Qinners T ':
Psingle, and 7’ ': end(s’) hold.

Immediately, Az: € A follows from 7’ |= tts.fm, while Z’(fts.initial) = T
and Z'(s') = T follow from 7’ |= ¢initian and Z' |= end(s’), respectively. Then
the proof follows by induction on the number n of states selected by Z' (note
that n must be at least one, since fts.initial is always selected).

— If n = 1, then we are selecting only one state, i.e., s’ and the initial state
coincide. Hence, the initial path is just s’ and the proof that conditions (1)
and (2) hold is immediate.

— Let n > 1. If ¢ is the initial state, then the proof is immediate (as for
the case n = 1). Thus, let s’ be different from the initial state. We know
that s’ is selected in whatever interpretation satisfying is_useful_state(s’).
By Lemma 1(3), we know that there are m > 1 transitions {t1,...,tm} €
s.in_trs such that Z' = t;.0x, Z'(¢;) = T, and Z'(¢;.source) = T. Moreover,
we know that s’.out_trs = @ by Lemma 1(5).

Let Zy be the interpretation that maps {s’,¢1,...,t,} in L and behaves
as I’ on all other arguments. For all transitions ¢;, we have that Zy |=
end(t;.source) holds, because by Lemma 1(3) there is at most a selected
transition outgoing from ¢;.source in Z' and we deselected it. Moreover,
To E tts.tm, Iy | ¢initiar, Zo F bimer, and Zy | ¢singre hold. Therefore
7o |= is_useful_state(t;.source) holds.

By induction we have that there are a configuration Az, € A and a selected
initial path Pg of F|y, that reaches t1.source and (together with Zy) sat-
isfies conditions (1) and (2). Clearly, Az, = Az (by construction of Zj).
Extending Py with the transition #; and the state s’, we obtain an ini-
tial path P’ that reaches s’ and (together with Z') satisfies conditions (1)
and (2). O

Finally, the following theorem formally states the correctness of the formu-
las exists_deadlock(s), is_not_dead_transition(t), and may_be_opt_transition(t).

Theorem 1 (correctness of the formulas for checking the behavioural
ambiguities) Let fts be the global data structure representing the FTS F =
(S, X, 80,0, F, A) and let s be a state of F. Then

1. The formula ezists_deadlock(s) is satisfiable iff there is a configuration \ €
A such that the state s is a deadlock in F|y.

18 M.H. ter Beek et al.

2. The formula is_not_dead_transition(t) is satisfiable iff there is a configura-
tion A € A such that the LTS transition corresponding to transition t is
reachable in F|y.

8. The formula may_ve_opt_transition(t) is satisfiable iff there is a configuration
A € A such that the state t.source is reachable in F|y and the LTS transition
corresponding to transition t is not reachable in F|y.

Proof Straightforward from Lemma 2. O

5.3 Algorithms

The algorithm in Listing 1 below uses the function check to verify whether
a propositional formula ¢ is satisfiable, namely to verify the existence of an
interpretation (an assignment of truth values to propositions in B(FUSUT))
that makes the formula valid. This is the core functionality of all SAT solvers.

Listing 1 Ambiguities discovery algorithm

1 # fts contains the input FTS (according to Section 5.1)
2

3 for s in fts.states:

4 if(s.out_trs = @):

5 s.hdead < False

6 else:

7 s.hdead <check(exist_deadlock(s))

8

9 # for all states s, it holds that:

10 # (s.hdead = “‘s is a hidden deadlock’’)

11

12 for s in fts.states:

13 for ¢ in s.in_trs:

14 t.dead <not check(is_not_dead_transition(t))

15 if(t.dead or t.bx=T):

16 t.false_opt < False

17 else:

18 t.false_opt <not check(may_be_opt_transition(t))
19

20 # for all transitions t, %t holds that:
21 # (t.dead = ‘‘t is dead’’) and (t.false_opt = “‘t is false optional’’)

Theorem 2 (correctness of the ambiguities discovery algorithm) Let
fts be a data structure representing an FTS. The execution of the algorithm
in Listing 1 terminates and at the end of the execution the following holds.

1. For each state s, if s is a hidden deadlock, then shdead=True; otherwise
s.hdead=False.

2. For each transition t,
(a) if t is dead, then t.dead=True; otherwise t.dead=False;
(b) if t is false optional, then t.false_opt=True; otherwise t.false_opt=False.

Proof Correctness of the formulas exists_deadlock(s), is_not_dead_transition(t),
and may_be_opt_transition(t) is stated by Theorem 1.

Efficient Static Analysis and Verification of FTSs 19

The algorithm first detects all the hidden deadlocks (lines 3—7, where the
test in line 4 detects the states that are deadlocks in the FTS), thus establishing
the invariant in lines 9-10. Then it detects all the dead transitions and all
the false optional transitions (lines 12-18, where the test in line 15 detects
the dead transitions that cannot be false optional because they are dead or
labelled with T), thus establishing the invariant in lines 20-21 while keeping
the invariant in lines 9-10 (since the Boolean flags ndead of the states are not

modified).
The termination of the algorithm is straightforward since the number of
states and transitions of the FTS is finite. O

It is worth observing that, whenever one is only interested in detecting the
hidden deadlocks, it is enough to run only the first part (lines 1-10) of the
algorithm in Listing 1: this part represents a specialised algorithm that only
detects hidden deadlocks.

Remark 1 (The FTS ambiguity detection problem is NP-complete) For every
propositional formula ¢ with variables in F', the FTS

({s0. 5}, {a}, s0, {s0-" L35}, F,2")

is such that its (unique) transition is: (i) dead if and only if ¢ is not satisfiable
(i.e. —¢ is valid); and (ii) false optional if and only if —¢ is not satisfiable
(i.e. ¢ is valid). Moreover, state sg is a hidden deadlock if and only if ¢ is not
satisfiable. Thus, the FTS ambiguity detection problem is NP-hard. Moreover,
the algorithm in Listing 1 can be transformed into an algorithm that, given the
data structure fts (cf. Section 5.1) representing an FTS F with n states and
m transitions, reduces (in polynomial time in the size of fts) the ambiguity
detection problem for F to n+ 2 x m SAT problems (each problem consisting
of a formula whose size is linear in the size of fts), as follows:

— extend the data structure introduced in Section 5.1 by adding a field
hdead_formula to each state and by adding a field dead_formula and a field
false_optional_formula to each transition;

— replace line 7 by s.hdead_formula ¢exist_deadlock(s);

— replace line 14 by t.dead_formula <is_not_dead_transition(s); and

— replace lines 15-18 by t¢.false_opt_formula <may_be_opt_transition(s).

Solving the SAT problems stored in the fields hdead_formula, dead_formula, and
false_optional_formula provides a solution to the ambiguity detection problem
for the given FTS, therefore we conclude that the FTS ambiguity detection
problem is NP-complete.

6 Benchmark Examples

In this section, we apply the new algorithm to a number of exemplary FTSs
from the literature. The python code of the implementation and all FT'S models

20 M.H. ter Beek et al.

FM =58Vt

open| = f N take| o f
&)

(2)
pay|—=f N2J change|—f

Fig. 8 FTS of the vending machine from [36]

allowing the verification of the examples presented in this section are publicly
available [10]. We first discuss the experiments (in Section 6.1) and then the
corresponding performance results (in Section 6.2).

6.1 Experiments

Vending Machine In Figure 8, we depict the FTS modelling the behaviour
of a configurable vending machine from [36], an FTS benchmark which was
used in [9] and in many other publications [40,39,51,7,12,54,60,62,32,59,63,
8,57]. It serves a beverage (soda or tea) either for free or upon payment, in
which case a compartment is opened for the customer to take the beverage
after which it closes again. Its feature model is represented by the formula
sVt over the 4 features {f,c, s,t}, thus resulting in 12 product configurations
(viz. 2% — 4, excluding the product configurations &, {f}, {c}, and {f,c} that
lack both features s for soda and ¢ for tea). The FTS of the vending machine
contains only 9 states and 13 transitions.

Listing 2 reports the result of applying our static analysis algorithm to this
FTS. The FTS contains no dead transitions and no hidden deadlocks, but it
does contain the 6 false optional transitions (2, change, - f, 3), (4, return, c, 1),
(5, serveSoda, s,7), (6, serveTea, t,7), (8, take, — f,9), and (9, close, — f,1). Thus,
the FTS is ambiguous, but it would suffice to turn its false optional transitions
into must transitions to make the FTS unambiguous.

Listing 2 Result of the static analysis on the FTS of Figure 8

VENDING MACHINE: live

LIVE STATES = [1,2,3,4,5,6,7,8,9]

DEAD TRANSITIONS = []

FALSE OPTIONAL TRANSITIONS = [(2,3,change),(4,1,return),(5,7,serveSoda),
(6,7,serveTea), (8,9,take), (9,1,close)]

HIDDEN DEADLOCK STATES = []

Coffee Machine In Figure 9, we depict the FTS modelling the behaviour of
a configurable coffee machine family from [25]. Originally introduced in [66],
this is another SPL benchmark which was already used in [9] and in a number

Efficient Static Analysis and Verification of FTSs 21

FM=MAW ACA (E® D)
AN (P — R)A(—(P AD))

insertBev(Buro)| B

cappuccino| P

pour
sugar| W

pour
sugar| W

pour

milk| P

pour

coffec| P

pour coffee| C

pour

milk| P

pour

coffec| P

take cup| M

Fig. 9 FTS of the coffee machine from [25]

of other publications [4,5,15,17,20,23,22,13,21,27,91].* The coffee machine
serves a (possibly sugared) beverage (coffee, tea, or cappuccino) upon the
insertion of a coin (euro or dollar), after which the customer takes her/his
beverage (possibly following a ringtone). Its feature model is represented by
the formula FMg = MAWACA(E®D)A(P — R)A(=(PAD)) over the features
F.={M,W,C,E,D,P,R,T, X}, resulting in 12 product configurations which
accept either euros or dollars and offer coffee (with sugar) and possibly tea
and cappuccino (upon a ringtone and only for euros). The FTS of the coffee
machine contains 14 states and 23 transitions.

Listing 3 reports the result of applying our static analysis algorithm to this
FTS. The FTS contains no dead transitions and no hidden deadlocks, but it
contains 14 false optional transitions such as (1, sugar, W, 2), (1, no sugar, W, 3),
(2, coffee, C,6), (8, pour tea, T,12), and (13, take cup, M,0). Thus, the FTS is
ambiguous, but it would suffice to turn its false optional transitions into must
transitions to make the FT'S unambiguous.

Listing 3 Result of the static analysis on the FTS of Figure 9

COFFEE MACHINE: live

4 The only differences between the FTS used here and the one in [9] is the additional
transition (1, cancelBev, X,0), which allows to cancel a coin insertion in the presence of an
additional optional feature X, next to a renaming of the states and the features.

22 M.H. ter Beek et al.

LIVE STATES = [0,1,2,3,4,5,6,7,8,9,10,11,12,13]

DEAD TRANSITIONS = []

FALSE OPTIONAL TRANSITIONS = [(1,2,sugar),(1,3,no_sugar),(2,6,coffee),
(3,7,coffee), (6,7,pour_sugar) , (5,8,pour_sugar) , (4,9,pour_sugar) ,
(9,11, pour_milk), (9,10,pour_coffee), (8,12,pour_tea), (7,12,pour_coffee),
(11,12, pour_coffee), (10,12,pour_milk), (13,0,take_cup)]

HIDDEN DEADLOCK STATES = []

Coffee/Soup Machine In [25], this family of coffee machines was extended with
an optional soup component running in parallel with the beverage component.
The FTS modelling the behaviour of this soup component is depicted in Fig-
ure 10.° The resulting family of vending machines is such that each product
allows the insertion of either euros or dollars (returned upon a cancel) in one
of its components. The customer chooses a beverage or, if available, a type of
soup (at least one among chicken, tomato, pea), which requires to place a cup.
A cup detector is optional (mandatory for dollars). Whenever present, soup
is only poured if a cup was placed. Placing a cup may need to be repeated
if not detected. A choice for soup may be cancelled until a cup is detected.
Optionally, a ringtone may ring upon delivery (mandatory for cappuccino, as
before), after which the customer takes her/his cup (with a drink or soup)
and can again insert a coin in one of the components. The feature model of
the soup component is represented by the formula FM; A FMg A SC, where
FMg = (U = SC)A (S < SCYA(CSV PSV TSV-S)A((DASC)—U),
over the features F,U{SC,U, S, CS, PS, TS}. The FTS of the soup component
contains 13 states and 28 transitions.

Listing 4 reports the result of applying our static analysis algorithm to this
FTS. The FTS contains no hidden deadlocks and no dead transitions, but it
contains the 7 false optional transitions (3, place cup,U, 2), (5, place cup, U, 4),
(7, place cup,U,6), (8, pour tomato, T'S,11), (9, pour chicken, CS,11), (10, pour
pea, PS,11), and (12, take soup, M,0). Thus, the FTS is ambiguous, but it
would suffice to turn its false optional transitions into must transitions to
make the FTS unambiguous.

Listing 4 Result of the static analysis on the FTS of Figure 10

SOUP COMPONENT: live
LIVE STATES = [0,1,2,3,4,5,6,7,8,9,10,11,12]
DEAD TRANSITIONS = []
FALSE OPTIONAL TRANSITIONS = [(3,2,place_cup),(5,4,place_cup),(7,6,place_cup),
(8,11,pour_tomato), (9,11,pour_chicken), (10,11,pour_pea), (12,0, take_soup)]
HIDDEN DEADLOCK STATES = []

The feature model of the composite FTS that results from running the
(optional) soup component depicted in Figure 10 in parallel with the beverage
component of the FTS of the coffee machine depicted in Figure 9 is represented
by the formula FMc AFMg over the features F.U{SC,U, S, CS, PS, TS}, giving

5 While omitted in the component FTS drawn in [25], once put in parallel, coin insertion
for soup requires the presence of the soup component (e.g., (0, insertSoup(Euro), SCAE,1).

Efficient Static Analysis and Verification of FTSs 23

bad luck| - U

cup present| U

skip| ~U

take soup| M

place cup| U

tomato| TS

pour tomato| TS ring| R

insertSoup(Euro)| SC A E

cup present| U

/\/\/\ pour chicken| CS
4 9

skip|~U

cancelSoup| X chicken| CS

insertSoup(Dollar)| SC A D

no cup| U place cup| U

pour pea| PS

cup present| U

cancelSoup| — X

cancelSoup| =X

FM=MAWACA(E® D)

place cup| U A (P — R) A (=~(P A D))
AU — SC) A (S + SC)

A(CS VPSS VTSV-S)
A((DASC)—U) A SC

Fig. 10 FTS of the soup component from [25]

rise to 244 product configurations.® The composite FTS contains 182 states
and 691 transitions.

Listing 5 reports the result of applying our static analysis algorithm to this
composite FTS. The composite FTS contains no hidden deadlocks, 284 false
optional transitions and 8 dead transitions. The false optional transitions
are obviously due to the relatively large amount of false optional transi-
tions in the two component FTSs. The dead transitions can be explained
by analysing the execution traces. Consider, for instance, the dead transition
(12, insertSoupDollar, SC A D, 29). Its source state can be reached upon in-
serting a coin, followed by choosing sugar and ordering cappuccino, which we
recall to require feature P. If the inserted coin was a euro, requiring feature F,

6 In [25], only 118 of these configurations are valid due to additional quantitative con-
straints on feature attributes omitted here (e.g. cost of features). We also omitted some
mandatory features that do not occur in the FTSs and are thus irrelevant for our purposes.

24 M.H. ter Beek et al.

then the transition cannot be executed since features £ and D exclude each
other, while if the inserted coin was a dollar, requiring feature D, then the
transition cannot be executed since P and D exclude each other. Since any
product has either D or E, indeed in all product LTSs this transition is not
reachable. A similar reasoning applies to the skip transitions, which require a
feature R that cannot be part of product LTSs in which their sources states
are reachable. Hence, the FTS is ambiguous, but it would suffice to remove its
dead transitions and turn its false optional transitions into must transitions
to make the FTS unambiguous.

Listing 5 Result of the static analysis on the composite F'TS resulting from the parallel
composition of the beverage component of the FTS of the coffee machine depicted in Figure 9
and the soup component depicted in Figure 10

COFFEE SOUP MACHINE: live
LIVE STATES = [1,2,...,182]
DEAD TRANSITIONS = [(12,29,insertSoupDollar),(16,38,insertSoupDollar),
(36,72, insertSoupDollar), (37,73, insertSoupDollar) , (136,165,skip),
(161,177, skip) , (175,180, skip) , (176,181, skip)]
FALSE OPTIONAL TRANSITIONS = [(2,4,sugar),(2,5,no_sugar),...,(182,64,take_soup)]
HIDDEN DEADLOCK STATES = []

Since neither the beverage component nor the soup component has any
dead transitions, this shows that the parallel composition of FTSs (with some
features in common) without dead transitions may result in a composite FTS
with dead transitions. Furthermore, the size of the composite FTS is such that
analysis by hand is infeasible. In the remainder of this section, we consider even
larger examples to illustrate the scalability of our approach.

Mine Pump In Figure 11, we depict the FTS modelling the behaviour of the
system FT'S modelling the logic of a configurable controller of the mine pump
model from [35,36], a standard SPL benchmark for FTSs which was used in [9]
and in many other publications [40,37,43,39,45,61,54,60,24,62,18|. The con-
troller of this mine pump model is the parallel composition of the system FTS
with the state FTS, depicted in Figure 12. The mine pump has to keep a mine
safe from flooding by pumping water from a shaft while avoiding a methane
explosion. Therefore, the controller interacts with an environment: it operates
a water pump based on water and methane level sensors, modelled by three
further FTSs. The parallel composition of these five FTSs constitutes the com-
plete mine pump model. We depict the F'TS of the methane level in Figure 13
and refer to [35,36] for the remaining FTSs. The feature model of the mine
pump model can be represented by the formula ¢ = (c+> (¢t Vep)) Al over the
feature set F' = {c, ct, cp, m, 1, I, In, Ih}, thus resulting in 64 products (viz. 26,
since ¢ is equivalent to considering features { ct, cp, m, ll, In, [h} to be optional).
The system FTS of the mine pump model contains 25 states and 41 transi-
tions.” The controller of the mine pump model, composed of the system and
state FT'Ss, contains 77 states and 104 transitions. The complete mine pump
model, composed of five FTSs, contains 418 states and 1,255 transitions.

7 Transitions with more than one label are abbreviations for one transition for each label.

25

Efficient Static Analysis and Verification of FTSs

(L]+ gm paf[aqerun aiem ey} SUOI)ISURI) Pa[[oqe] aAeY am) [9¢] woxy [epowr dund surwt oY) Jo ST, woyshis oy], TT "Siq

@ 11 | dorgmoryos @ 11| dorgdund @ 11 | Buzuunyy st

Yy | Busuunyyse

Y] | paddorgst

wi | doggaunyia st

w | doggaunyia s
mmmM AmmmM 11| dojgmorst
yp | Buruunygyas Yy |pavrgduind yp | fipvayrst

Yy | fipvayrzas Y1 | ipoayrst

w | doggaunygopyios, wi | dojgdund wi | Busuunggsy L wi | Bs prusanyod
@ e Lig 9Tg Lg 9s

| | Bspyoaraoas

w | Buruunygjon sy

a 20 | doggdwnd ﬁ 0 | Buruunyyst

10 | Buruunyggop sy

1ls

do | buruunyst

(v15)

do |fipvaypos __Jdo |Gusuunaiost

Glg

1V ((d2A 19) > 9) = na

26 M.H. ter Beek et al.

isStopped
isNotRunning
isNotReady

setStop

setReady isReady

isNotRunning
isNotReady

setStop

setMethaneStop

isMethaneStop
setMethaneStop

isNotRunning
isNotReady

setMethaneStop

setMethaneStop isRunning

setReady

setMethaneStop

setLowStop

isLowStop

isNotRunning

isNotReady

Fig. 12 The state FTS of the mine pump model from [36]

palarmMsg| T

methaneRise| T

methaneLower| T
setMethaneStop| T

Fig. 13 FTS of the methane level environment from [36]

Listing 6 reports the result of applying our static analysis algorithm to
the system FTS. The FTS contains no dead transitions, but 25 false optional
transitions, among which (s7, levelMsg, 1, s29), and one hidden deadlock state,
viz. Sg9. Indeed, state sog is reachable in all products upon the execution
of two must transitions (the second one being the false optional transition
(s7,levelMsg, 1, s20)), while sq9 is a deadlock in all 8 products that lack any of
the features from the subset {ll, in, Ih}.

Listing 6 Result of the static analysis on the FTS of Figure 11

MINE PUMP: not live

LIVE STATES = [S6,S7,...,519,821,822,...,530]

DEAD TRANSITIONS = []

FALSE OPTIONAL TRANSITIONS = [(S7,S20,levelMsg),(S9,510,isRunning),...,
(529,830, setLowStop)]

HIDDEN DEADLOCK STATES = [S20]

Efficient Static Analysis and Verification of FTSs 27

Hence the system FTS is ambiguous, but it would suffice to turn its false
optional transitions into must transitions and to add an explicit deadlock
state sy and a transition (sq, T, 7l A =In A =lh, s;) to make the system FTS
unambiguous. Actually, a deadlock often indicates an error in the modelling,
either in the feature model or in the behavioural model, i.e., the FTS. In fact,
another solution to make the system FTS unambiguous would be to slightly
change the feature model, e.g., by requiring the presence of at least one of
the features [, In, or [h via an or-relationship. Doing so, the feature model
becomes ¢ = (¢ <> (¢t Vep)) ALA (IIVInVIk), thus resulting in 56 products
(i.e., excluding the 8 products over F' that satisfy (¢ + (¢t Vep)) Al but
lack any of the features from the subset {ll,In, (h}). In [35,40,36], instead, an
alternative feature model in which only ¢ (and implicitly ¢t and cp) and m
are optional was considered, resulting in only the four products over F' that
satisfy (¢ <> (¢t A cp)) ALAUNA InA lh.

Yet another solution to make the system FTS unambiguous would be to
slightly change the FTS itself, to make sure that it contains neither a hid-
den nor an explicit deadlock state. In this case, it would suffice to add one
or more transitions to leave state s9p in a meaningful way. This is the solu-
tion opted for in [39,61,60,24,62], which use the specification in fPromela of
the complete mine pump model as originally distributed with SNIP [37] and
its re-engineered successor ProVeLines [42] (https://bitbucket.org/maxcordy/
provelines-cora/) or their translations for mCRL2 [46,31] (http://www.merl2.
org/) or VMC [20,19] (http://fmt.isti.cnr.it/vme/). Basically, three transitions
are added to the system F'TS of Figure 11 from state sy to the initial state sg
to cover the cases in which features from the subset {ll, In, [h} are missing, viz.
(820, highLevel, —lh, s¢), (820, lowLevel, —ll, s¢), and (s20, normalLevel, —ln, s¢).

The false optional transitions and the hidden deadlock state of the system
FTS are propagated into the controller of the mine pump model, which we re-
call to be the parallel composition of the system and state FTSs. Application
of our static analysis algorithm to the FTS of the controller of the mine pump
model reports that the FTS contains no dead transitions, 59 false optional
transitions, and 4 hidden deadlock states. The situation is different for the
complete mine pump model, which we recall to be the parallel composition of
five FTSs, viz. the system and state FTSs and three further FTSs that model
a water pump and water and methane level sensors. From the FTS of the
methane level, depicted in Figure 13, we immediately note that the actions
methaneRise and methaneLower are local actions of this FTS that do not syn-
chronise with any of the other four FTSs. Hence, while the solutions suggested
above would make the system FTS of Figure 11 unambiguous, it is clear that
the FTS of the complete mine pump model is deadlock-free, since it can indefi-
nitely execute the sequence of actions methaneRise followed by methaneLower.
This is confirmed by our static analysis algorithm applied to the FTS of the
complete mine pump model, which reports that the FTS contains no dead
transitions and no hidden deadlock states, but a stunning 308 false optional

https://bitbucket.org/maxcordy/provelines-cora/
https://bitbucket.org/maxcordy/provelines-cora/
http://www.mcrl2.org/
http://www.mcrl2.org/
http://fmt.isti.cnr.it/vmc/

28 M.H. ter Beek et al.

transitions.® The fact that the system FTS has hidden deadlock states that are
no longer present in the FTS of the complete mine pump model demonstrates
the usefulness of analysing component FTSs in isolation.

In general, while the parallel composition of unambiguous FTSs does not
introduce false optional transitions, the composite FT'S may contain dead tran-
sitions or hidden deadlock states. We have seen an example of the introduction
of dead transitions in the composite FTS of the coffee and soup component,
whose individual FTSs did not exhibit dead transitions.

The application of the static analysis algorithm to individual component
FTSs is surely desirable as it results in less ambiguous specifications of the
components constituting a composed system, and it possibly allows more effi-
cient model checking of the composed system (more on this in the next section,
cf. the part of Fig. 4 that is not red). A further advantage is that our approach
becomes applicable also to feature-oriented systems composed by superimpo-
sition, since in [63] it is shown how to transform feature-oriented systems
composed by parallel composition into feature-oriented systems composed by
superimposition while maintaining behaviour and modularity.

Instead, the application of the static analysis algorithm to a composed
FTS resulting from the parallel composition of several FTSs is less desirable
because the benefits of detecting ambiguities are greatly reduced. This is due
to the lack of a detailed specification of the composed FTS, which is merely
a semantic model without a matching syntactic specification. Note that com-
posed configurable systems can also be described as Multi SPLs (MPLs), i.e.,
sets of interdependent SPLs [71]. It is not clear how to obtain results for com-
posed FTSs by reusing results of analyses performed in isolation on its com-
ponent FTSs, in analogy with recently proposed compositional approaches for
analysing MPLs [80,47].

Claroline We conclude this section with a very large (monolithic) system.
The Claroline SPL is a configurable system whose FTS model, originally in-
troduced in [50], was reverse-engineered from an Apache weblog (containing
12,689,030 HTTP requests) of a dynamically configurable course platform used
at the University of Namur. The F'T'S model has since been used in several pub-
lications [56,52,53,54,49,55|. The Claroline SPL has 44 features and its feature
model is quite large: it is represented by a formula with 299 logical connectives
(omitted here), resulting in more than 5,000,000 product configurations. The
FTS of Claroline contains 107 states and 11,236 transitions. Application of our
static analysis algorithm reports (after running for about one hour) that the
FTS contains no dead transitions and no hidden deadlock states, but 259 false
optional transitions. Note that, since the FTS of Claroline has been generated
from the analysis of actual execution paths, the discovery of dead transitions
would have immediately signalled some major bug either in the feature model
or in the feature expressions, or in the log analysis procedure.

8 The FTS of the complete mine pump model could not be analysed in a reasonable
amount of time with the static analysis algorithm presented in [9].

Efficient Static Analysis and Verification of FTSs 29

Table 1 Characteristics of the FTSs considered in this paper and results of static analysis

FTS characteristics results of static analysis computational effort
. , # false # hidden run- memory

Model S| 18] |2 lri::; trfn:ii?jns optional deadlock time usage

transitions states (s) (Mb)

Vending . e]

machine [36] 9 13 12 yes 0 6 0 0.26 29.765

Coffee 14 23 15 yes 0 14 0 029 30.305

machine [5]

Soup 1328 18 yes 0 7 0 0.316 3085

component [25]

Mine pump o= g

(system) [36] 25 41 22 no 0 25 1 0.344 31.704

Mine pump c))

(controller) [36] 7 104 22 no 0 59 4 0.548 36.295

/

Coffee/Soup 182 691 33 yes 8 284 0 37.766 119.427

machine [25]

Mine pump . o .

(complete) [36] 418 1,255 26 yes 0 308 0 98.994 119.127

Claroline [50] 107 11,236 106 yes 0 259 0 2413.8 2010.229

6.2 Performance results

In Table 1, we report some data concerning the static analyses of the FTSs
discussed above.

The FTSs of the vending machine, the coffee machine, and the soup compo-
nent are all live (i.e., no deadlocks), with no dead transitions, while a respective
46%, 61%, and 25% of their transitions are false optional. Their static analyses
are immediate. Also the FTS of the coffee/soup machine is live, but 41% and
1% of its transitions are false optional and dead, respectively. Its static anal-
ysis takes about a minute. The static analysis of the system FTS of the mine
pump and that of the mine pump controller (i.e., the parallel composition of
the system FTS and the state FTS) are immediate, but neither of these FTSs
is live because 4% and 5% of their states, respectively, are hidden deadlocks.
None of their transitions are dead, but 61% and 57% are false optional, re-
spectively. Instead, the FTS of the complete mine pump is live and it has no
dead transitions, but 25% of its transitions are false optional. Its analysis is
not immediate, but takes a few minutes. Recall that this analysis could not be
performed in a reasonable amount of time with the static analysis algorithm
from [9]. The FTS of Claroline, finally, requires about an hour to analyse. It is
live and it has no dead transitions, but 2% of its transitions are false optional.

Next, we compare the current implementation of the static analysis algo-
rithm, as introduced in Listing 1, with the implementation used in [9], where
an algorithm looks for all simple paths from the initial state to each state
by visiting all cycle-free paths (starting from the initial state) in a depth-
first manner. The results are reported in Table 2, where timeout stands for
‘aborted after more than 2 hours’. The results show a clear improvement in
runtime, ranging from a 3.54x speedup for the FTS of the vending machine
to speedups of > 7200x for the three largest FTSs. This demonstrates the
improved efficiency of the current implementation.

30 M.H. ter Beek et al.

Table 2 Comparison of current implementation of static analysis algorithm with that in [9]

FTS characteristics computational effort results
implementation in [9] current implementation

Model S| 8] B)

runtime (b) memory runtime (S) memory runtime
usage (Mb) usage (Mb) speedup

Vending 9 13 12 0.92 38.230 0.26 29.765 3.54x

machine [36]

Coffee 14 23 15 2.822 40.140 0.29 30.305 9.72x

machine [5]

Soup 13 28 18 2.544 40.870 0.316 30.85 8.05x

component [25]

Mine pump 25 41 22 2.192 41.899 0.344 31.704 6.37x

(system) [36]

Mine pump =~ o7 14 9o 8.12 49.091 0.548 36.295 14.82x

(controller) [36]

Coffee/Soup 182 691 33 timeout - 37.766 119.427 >7200.00x

machine [25]

Mine pump 10 955 96 timeout - 98.994 119.127 >7200.00x

(complete) [36]

Claroline [50] 107 11,236 106 timeout - 2413.8 2010.229 >7200.00x

Table 3 Comparison of static analysis implementations for liveness of the largest F'T'Ss

FTS characteristics computational effort results
current implementation specialised implementation

Model Is| EI—])
runtime (s) memory runtime (s) memoty runtime

usage (Mb) usage (Mb) fraction
7

Coffee/Soup 182 691 33 37.766 119.427 2.288 61.620 6.06%

machine [25]

Mine pump 417 1255 26 98.994 119.127 2.948 68.969 2.97%

(complete) [36]

Claroline [50] 107 11,236 106 2413.8 2010.229 86.752 551.888 3.59%

In Table 3, we report a comparison of the current implementation of the
static analysis algorithm with a specialised implementation that only detects
hidden deadlocks, applied to the three largest FTSs showcased in this section.
This specialised implementation refers to the first part (lines 1-10) of the
static analysis algorithm in Listing 1, which (as pointed out at the end of
Section 5) represents a hidden deadlocks discovery algorithm (i.e., analysing
only liveness). The results show that only a fraction of the runtime of the
current implementation is needed for deadlock detection, ranging from 6.06%
for the FTS of the coffee/soup machine to only 2.97% and 3.59% for the
complete mine pump and Claroline FTSs, respectively.

All the experiments presented in this section were performed on a Mac Pro
(Late 2013) 3.7 Ghz Quad-Core with an Intel Xeon E5 processor with 10 Mb
L3 cache and 64 Gb (four 16 Gb) of 1866 Mhz DDR3 ECC memory. All the
experiments were performed five times each and the average time and memory
usage of each was collected and reported in the tables. We used Python 3.6.

Efficient Static Analysis and Verification of FTSs 31

7 Family-based Verification

In analogy with anomaly detection in feature models, dead featured transitions
in an FTS clearly indicate a modelling error, whereas false optional featured
transitions often provide a wrong idea of the domain by giving the impression
that certain behaviour is optional while actually it is mandatory (i.e., it occurs
in all products of the FTS). However, our engineering methodology (i.e., the
top-right red part of Fig. 4) that allows the transformation of an ambiguous
FTS into an unambiguous FTS also serves another purpose, viz. to facilitate a
kind of family-based model checking of properties expressed as logic formulas.
As anticipated in earlier sections, according to the strategy outlined in Figure 4
(the part that is not red), a property ¢ specified in either LTL or v-ACTLive"
can be verified (with a linear complexity) directly on an unambiguous FTS
F (ignoring its feature expressions) such that ¢ holds for all product LTSs
in Its(F) whenever it holds for F. This strategy offering a number of efficient
verification options is another contribution of this paper.

An FTS that has no hidden deadlocks is said to be live. In this section,
we show that a live FTS enjoys the property that all valid linear-time LTL
formulas are preserved by all its products, as well as all valid branching-time
v-ACTLive " properties (as we already showed in [9]). Intuitively, these results
are based on the fact that all transitions (and thus paths) in products of an
FTS F, i.e. LTSs in Its(F), also occur in F.

Branching-time Properties To start with the latter, v-ACTLive® is a rich
fragment of the variability-aware action-based and state-based branching-time
modal temporal logic v-ACTL and it is interpreted on so-called ‘live’ MTSs [12,
7,13,14]. A Modal Transition System (MTS) is an LTS that distinguishes ad-
missible (‘may’), necessary (‘must’), and optional (may but not must) tran-
sitions such that by definition all necessary and optional transitions are also
admissible [77,75]. In [13], an MTS is defined to be live if all its states are live,
where a live state of an MTS is such that it does not occur as a final state in
any of its products (these are LTSs obtained from the MTS in a way similar
to Definition 4), resulting in an MTS in which every path is infinite. Then it is
proved that the validity of formulas expressed in v-ACTLiveP is preserved in
all products (cf. [13, Theorem 4]), thus allowing a kind of family-based model
checking of MTSs. It is not difficult to see that this result continues to hold
for MTSs whose every state is either live or final.

Note that any FT'S F can be transformed into an MTS Fy;rs by considering
its must transitions as necessary transitions, its featured transitions as optional
transitions, and all its transitions as admissible, and by removing all feature
expressions. If F is live, then Fyrs is live, with respect to the FTS’s set of
products Its(F), because it has no hidden deadlocks.’

9 From VMC v6.4 onwards, final states of an MTS are no longer considered ‘hidden dead-
locks’ (i.e., they are considered live states) since they are deadlocks but not at all ‘hidden’.
For such MTSs, the same preservation properties of [13] apply.

32 M.H. ter Beek et al.

Moreover, all transitions of F whose corresponding (LTS) transitions are
mandatorily present in all products correspond to necessary transitions in
Furs- This demonstrates that the above mentioned result from [13] can be
carried over to live FTSs, thus allowing a kind of family-based model check-
ing of such FTSs for the v-ACTL fragment v-ACTLive". Hence, the following
result holds, where = denotes the satisfaction relation of v-ACTLive" inter-
preted over MTSs.

Proposition 1 ([9]) Any formula ¢ of v-ACTLive® is preserved by live FTSs:
given a live FTS F, whenever Fyrs | ¢, then F|y | ¢ for all products
Flr € lts(F).

Furthermore, note that states in an FTS that are the source of at least one
must transition are by definition live. Hence, replacing all redundant feature
expressions of false optional transitions (syntactic sugar) with T results in
more must transitions, thus allowing for a more efficient kind of (family-based)
verification.

Linear-time Properties In addition to [9], here we also consider linear-time
properties. As said before, a live FTS also enjoys the property that all valid
linear-time LTL formulas are preserved by all its products. This can be seen
as follows. A path in an LTS is said to be mazimal if it cannot be extended
further, i.e. it is infinite or it ends in a deadlock state. Model checking LTL
formulas on an LTS reduces to analysing its maximal paths: an LTL formula
is valid if it holds for all maximal paths. These notions trivially carry over to
FTSs by ignoring their feature expressions. Clearly, if an FTS is live, i.e. it
has no hidden deadlocks, then the set of maximal paths of any product (LTS)
is a subset of the set of maximal paths of the FTS. Hence, the following result
holds, where Fi1s denotes the LTS obtained from an FTS F by removing its
feature expressions and |= denotes the satisfaction relation of LTL interpreted
over LTSs.

Proposition 2 Any formula ¢ of LTL is preserved by live FTSs: given a live
FTS F, whenever Frrs |= ¢, then F|x |E ¢ for all products F|y € Its(F).

The results presented in Propositions 1 and 2 show specific cases in which
verification of live FTSs reduces to verification (with a linear complexity) of
corresponding MTSs and LTSs that are obtained straightforwardly by ignoring
the feature expressions (and distinguishing necessary and optional transitions
in MTSs). This is made possible by the engineering methodology sketched
in Figure 4 (the top-right red part). However, as illustrated by the strategy
outlined in Figure 4 (the part that is not red), if either the property under
verification is not an LTL or v-ACTLive® formula or the result of the verifica-
tion is false, then the formula needs to be verified with classical (family-based)
model checking.

In the remainder of this section, we apply these results to example FTSs
from Section 6 and provide examples of v-ACTLive® and LTL formulas to

Efficient Static Analysis and Verification of FTSs 33

Fig. 14 MTS obtained from the FTS of Figure 8

illustrate their impact. The models allowing the verification of the example
properties presented in this section are publicly available [10].

It is worth noticing that if we are interested in just the liveness of FTSs
(e.g. to enable family-based model checking of invariant properties), then the
first part (lines 1-10) of the static analysis algorithm in Listing 1 allows to
establish the liveness of FTSs in a much more efficient way (cf. Table 3).
Recall that this part represents a hidden deadlocks discovery algorithm, which
we referred to as the specialised implementation in Section 6.

Vending Machine We have seen in Section 4.2 how to transform an ambigu-
ous FTS into an unambiguous one. Furthermore, we have seen above how to
transform an FTS into an MTS. In Figure 14, we depict the MTS!'° that is
obtained in this way from the unambiguous (and thus live) FTS (described in
the beginning of Section 6) that corresponds to the FTS of Figure 8.

As we argued in the beginning of this section, the resulting MTS is live,
with respect to the FTS’s set of products, thus allowing family-based model
checking for v-ACTLive" (cf. Proposition 1). In fact, v-ACTLive® formulas
can efficiently be verified on MTSs with the variability model checker VMC
(http://fmt.isti.cnr.it/vmc), which is a tool for the analysis of branching-time
properties over behavioural SPL models specified as an MTS with a set of
logical variability constraints (akin to feature expressions) [20,19].

Originally, VMC used the variability constraints associated with the MTS
to dynamically evaluate the liveness of each node. Based on [9], where we
showed how to establish a priori the liveness of all nodes of an FTS, and thus of
the MTS that can be obtained by transformation, the most recent prototypical
extension of VMC, version 6.5, offers users the possibility to state explicitly
that an MTS is live.

The input language of VMC is a process algebra. Listing 7 contains the
specification of the vending machine in the process-algebraic input language
accepted by VMC. Note that the system part or process model (i.e. without
the constraints) can be seen as the natural encoding of the graph (MTS) of
Figure 14, with the process terms corresponding to the states of the graph

10 Dashed edges depict optional transitions and solid edges depict necessary transitions.

http://fmt.isti.cnr.it/vmc

34 M.H. ter Beek et al.

and SYS indicating the initial state. Intuitively, a.P models a process that
executes action a and then behaves as P, while P + Q models a process that
non-deterministically chooses to behave as either P or Q. Information on the
modality of the transitions (may, must) is defined as a special additional pa-
rameter associated to the basic actions of the algebra, the default being must.
Finally, Constraints { LIVE } explicitly declares that the MTS is live, the
novel feature of VMC v6.5.

Listing 7 Specification in VMC of MTS of Figure 8

Cl = pay(may).C2 + free(may).C3

C2 = change.C3

C3 = cancel(may).C4 + soda(may).C5 + tea(may).C6
C4 = return.Cl

C5 = serveSoda.C7

C6 = serveTea.C7

C7 = take(may).Cl + open(may).C8

C8 = take.C9

C9 = close.Cl1

SYS = C1

Constraints { LIVE }

Example formulas of branching-time properties of the vending machine
that we verified in a kind of family-based manner with VMC include the
following:

1. AG AFp,qyvfree T: infinitely often, either action pay or action free is exe-
cuted;

2. AG [open] AF 1o T: it is always the case that the execution of action open
1s eventually followed by that of action close;

3. AG AF pneeivserveSoda VserveTea | infinitely often, either action cancel or
action serveSoda or action serveTea is executed;

4. =E [T “teaUserveTea T]: it is not possible that action serveTea is executed
without being preceded by an execution of action tea;

5. [pay] AFiakeveancer T: whenever action pay is executed, eventually also ei-
ther action take or action cancel is ezecuted.'!

Obviously, there are also numerous formulas of linear-time properties of the
vending machine that can be verified in such kind of family-based manner,
with tools such as SPIN (http://spinroot.com/). Example formulas include
the following:'?

1. O (selected = < served): after selecting a beverage, the machine will always
eventually serve a beverage;

2. O (served = taken): after a beverage is served, the customer will always
eventually take the beverage.

11 Abusing notation, this concerns execution of transition (8, take,9), not of (7, take, 1).
12 In [40,39], the states of an FTS are labelled with atomic propositions, omitted in figures
to avoid clutter. For LTL model checking with SPIN, we assume that states 5 and 6 of
the FTS depicted in Figure 8 are labelled with the proposition selected, state 7 with the
proposition served, and states 1 and 9 with the proposition taken.

http://spinroot.com/

Efficient Static Analysis and Verification of FTSs 35

VMC v6.5 has thus been tailored for family-based model checking of tempo-
ral logic properties on FTSs (via their transformation in MTSs). At present,
efficient SPL model checking on FTSs can be achieved by using dedicated
family-based model checkers such as the ProVeLines [42] tool suite (including
its predecessor SNIP [37]) or fNuSMV [38], or, alternatively, by using one of
the highly optimised off-the-shelf model checkers like SPIN or mCRL2, which
have recently been made amenable to family-based SPL model checking on
FTSs [61,24,60,62,18|.

Mine Pump We have seen in Section 6 that the complete mine pump model
(an FTS with 418 states and 1,255 transitions) is live, thus allowing a kind
of family-based model checking for v-ACTLive® and LTL (cf. Propositions 1
and 2). In fact, we have done so for the complete mine pump model specifica-
tion in fPromela, as distributed with SNIP and ProVeLines, and its translation
for VMC (recall that the model specifications are publicly available [10]).

Example formulas of branching-time properties of the complete mine pump
that we verified in such kind of family-based manner with VMC include the
following: '3

1. MAX X : (EXY ihaneRisevmethaneLower X): the system behaviour includes a
(mandatory) path that contains only variations of the methane level;

2. AG [palarmMsg] =E [T _setMethaneStopUpalarmisg 1 |: it is not possible that
two palarmMsg actions occur without a setMethaneStop in between;

3. AG [highLevel] —=E [T —pumpstartUlowLevel)¢ it s not possible that the
water level decreases if the pump did not start;

4. AG —(pumpoff N EXpumpstop T): a pumpStop action cannot occur if the
pump is already off;

5. AG =(=ready N EXpumpstart 1): a pumpStart action cannot occur if the
system is not ready;

6. AG [stopCmd] —E [—stopped Ustartcma T): @ start command cannot follow
a stop command if in the meantime the system did not stop.

Example formulas of linear-time properties of the complete mine pump model
that we verified in such kind of family-based manner with SPIN include the
following: 4

1. O (—pumpOn V stateRunning): if the pump is on, the actual pump state is
set to running;

13 In [35,36], the states of the FTSs constituting the complete mine pump model are
labelled with atomic propositions. In particular, the initial state of the FTS modelling the
water pump, not depicted here, is labelled with proposition pumpoff, while states s; and s4 of
the FTS depicted in Figure 12 are labelled with propositions ready and stopped, respectively.

14 Tn the fPromela specification of the complete mine pump model distributed with SNIP
and ProVeLines, pumpOn and methane are Booleans that are set to true when the pump is
turned on or methane is detected, respectively, whereas the remaining variables are macros
(e.g. stateRunning defines that the FTS depicted in Figure 12 is in state s5, readCommand
defines that the FTS depicted in Figure 11 has received a commandMsg, and highWater
defines that the FTS has received a levelMsg stating that the water level is high).

36 M.H. ter Beek et al.

2. ((O < readCommand) A (O readAlarm) A (O readLevel)) =
(=< O (—pumpOn A ~methane A highWater)): if the controller can fairly
receive each of the three message types, then the pump is never indefinitely
off when the water is high;

3. O ((=pumpOn AlowWater N> highWater) = ((=pumpOn) U highWater)):
when the pump is off and the water is low, it will only start once the water
s high again.

These are precisely the properties #18, #34, and #41, respectively, as verified
with both SNIP and SPIN in [39].

Toolchain In [11], we present FTS4VMC, a tool developed specifically as a
front-end for VMC with a user-friendly GUI. The resulting toolchain allows
a modeller to analyse an FTS for ambiguities, remove them, transform the
resulting live FTS into an MTS and perform an efficient kind of family-based
model checking of v-ACTLive" properties. The FTS4VMC implementation is
publicly available from https://github.com/ftsdvmc/FTS4VMC.

8 Conclusion

In this paper, we have revisited several types of static analysis that can be
performed over an FTS as part of an engineering methodology. Concretely, we
analyse FTSs for hidden deadlocks and anomalies in the form of false optional
and dead transitions. The removal of hidden deadlocks improves the clarity of
FTSs and enables an efficient kind of family-based model checking of live FT'Ss.
Dead transitions identify real modelling errors present in FTSs that should be
removed. False optional transitions reveal redundancies in the feature expres-
sions labelling the FTSs. Moreover, replacing such syntactic sugar by T leads
to more must transitions, which eases verification and may increase the set
of properties verifiable by v-ACTLive™. We have presented a new algorithm
for these static analyses of F'T'Ss, for which we have proved the correctness.
We have evaluated the suitability of the new algorithm by applying it to a
large number of exemplary FTSs from the literature, and we have also showed
the usefulness for an efficient kind of family-based model checking of FTSs. In
particular, we have empirically demonstrated the superiority of the new algo-
rithm with respect to the algorithm presented in [9], by making feasible (in
reasonable time) the static analysis of FTSs of considerable size (cf. Table 2).

The python code implementing the algorithm and the specifications of
all the models that are needed to reproduce the experiments presented in
Sections 6 (static analysis) and 7 (verification) are publicly available [10]. Also
the implementation of the FTS4VMC tool developed specifically as a front-
end for VMC is publicly available (cf. Section 7). A front-end tool for SPIN;,
based on a transformation from FTSs to PROMELA, is ongoing work.

In principle, our static analysis checks could all be performed by classical
family-based model-checking approaches by expressing the ambiguity prop-
erties in CTL (exploiting the fact that they concern reachability questions).

https://github.com/fts4vmc/FTS4VMC

Efficient Static Analysis and Verification of FTSs 37

However, verifying such properties for each state and transition of an FTS
requires a considerable number of verifications. Moreover, the complexity of
verifying a single CTL formula on an FTS is exponential in the number of fea-
tures [38]. Note that the kind of family-based model checking we make possible
is linear in the size of the LTS or MTS that is obtained from a live FTS (by ig-
noring its feature expressions). Nevertheless, we intend to investigate this issue
in more detail, also empirically, possibly exploiting symbolic representations.

Recently [81], a subset of the authors proposed an approach and a tool
for checking SPLs of statecharts [69]. The tool checks that all the products
can be generated and are well-formed statecharts. In future work, we would
like to extend it by adding behavioural ambiguity detection analyses like the
ones presented in this paper. We also would like to study how to adapt our
static analysis algorithms to apply them to high-level SPL modelling languages
(e.g. fPROMELA [37,39] and fNuSMYV [38]). Finally, it would be interesting to
mechanise our formalisations and associated proofs to provide further evidence
of the soundness of our static analysis techniques.

Acknowledgements We thank the anonymous reviewers for useful comments and sugges-
tions that helped us to improve the presentation.

References

1. Alpern, B., Schneider, F.B.: Defining liveness. Inf. Process. Lett. 4(21), 181-185 (1985).
https://doi.org/10.1016,/0020-0190(85)90056-0

2. Apel, S., Batory, D.S., Késtner, C., Saake, G.: Feature-Oriented Software Product
Lines: Concepts and Implementation. Springer (2013). https://doi.org/10.1007/
978-3-642-37521-7

3. Asirelli, P., ter Beek, M.H., Fantechi, A., Gnesi, S.: Deontic Logics for Modeling Be-
havioural Variability. In: D. Benavides, A. Metzger, U. Eisenecker (eds.) Proceedings
of the 3rd International Workshop on Variability Modelling of Software-intensive Sys-
tems (VaMoS’09), ICB Research Report, vol. 29, pp. 71-76. Universitdt Duisburg-Essen
2009

4. (Asirel)li, P., ter Beek, M.H., Fantechi, A., Gnesi, S.: A Logical Framework to Deal with
Variability. In: D. Méry, S. Merz (eds.) Proceedings of the 8th International Conference
on Integrated Formal Methods (IFM’10), LNCS, vol. 6396, pp. 43-58. Springer (2010).
https://doi.org/10.1007/978-3-642-16265-7 5

5. Asirelli, P., ter Beek, M.H., Fantechi, A., Gnesi, S.: Formal Description of Variability
in Product Families. In: Proceedings of the 15th International Software Product Lines
Conference (SPLC’11), pp. 130-139. IEEE (2011). https://doi.org/10.1109/SPLC.2011.
34

6. Audemard, G., Lagniez, J.M., Szczepanski, N., Tabary, S.: An Adaptive Parallel SAT
Solver. In: M. Rueher (ed.) Proceedings of the 22nd International Conference on Prin-
ciples and Practice of Constraint Programming (CP’16), LNCS, vol. 9892, pp. 30—48.
Springer (2016). https://doi.org/10.1007/978-3-319-44953-1 3

7. ter Beek, M.H., Damiani, F., Gnesi, S., Mazzanti, F., Paolini, L.: From Featured Tran-
sition Systems to Modal Transition Systems with Variability Constraints. In: R. Cali-
nescu, B. Rumpe (eds.) Proceedings of the 13th International Conference on Software
Engineering and Formal Methods (SEFM’15), LNCS, vol. 9276, pp. 344-359. Springer
(2015). https://doi.org/10.1007/978-3-319-22969-0 24

8. ter Beek, M.H., Damiani, F., Gnesi, S., Mazzanti, F., Paolini, L.: On the expressiveness
of modal transition systems with variability constraints. Sci. Comput. Program. 169,
1-17 (2019). https://doi.org/10.1016/j.scico.2018.09.006

https://doi.org/10.1016/0020-0190(85)90056-0
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1007/978-3-642-16265-7_5
https://doi.org/10.1109/SPLC.2011.34
https://doi.org/10.1109/SPLC.2011.34
https://doi.org/10.1007/978-3-319-44953-1_3
https://doi.org/10.1007/978-3-319-22969-0_24
https://doi.org/10.1016/j.scico.2018.09.006

38

M.H. ter Beek et al.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

ter Beek, M.H., Damiani, F., Lienhardt, M., Mazzanti, F., Paolini, L.: Static Analysis
of Featured Transition Systems. In: Proceedings of the 23rd International Systems
and Software Product Line Conference (SPLC’19), pp. 39-51. ACM (2019). https:
//doi.org/10.1145/3336294.3336295

ter Beek, M.H., Damiani, F., Lienhardt, M., Mazzanti, F., Paolini, L.: Supplementary
material for: “Static Analysis of Featured Transition Systems” (2019). https://doi.org/
10.5281/zenodo.2616646

ter Beek, M.H., Damiani, F., Mazzanti, F., Scarso, G., Valfré, M.: Static Analysis and
Family-based Model Checking of Featured Transition Systems with VMC (2021). https:
//doi.org/10.5281 /zenodo.4497888

ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: Using FMC for Family-based
Analysis of Software Product Lines. In: Proceedings of the 19th International Software
Product Line Conference (SPLC’15), pp. 432-439. ACM (2015). https://doi.org/10.
1145/2791060.2791118

ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: Modelling and analysing va-
riability in product families: Model checking of modal transition systems with va-
riability constraints. J. Log. Algebr. Meth. Program. 85(2), 287-315 (2016). https:
//doi.org/10.1016/].jlamp.2015.11.006

ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: States and Events in KandISTI:
A Retrospective. In: T. Margaria, S. Graf, K.G. Larsen (eds.) Models, Mindsets, Meta:
The What, the How, and the Why Not?, LNCS, vol. 11200, pp. 110-128. Springer
(2019). https://doi.org/10.1007/978-3-030-22348-9 9

ter Beek, M.H., Legay, A., Lluch Lafuente, A., Vandin, A.: Quantitative Analysis of
Probabilistic Models of Software Product Lines with Statistical Model Checking. Elec-
tron. Proc. Theor. Comput. Sci. 182, 56-70 (2015). https://doi.org/10.4204/EPTCS.
182.5

ter Beek, M.H., Legay, A., Lluch Lafuente, A., Vandin, A.: A framework for quantitative
modeling and analysis of highly (re)configurable systems. IEEE Trans. Softw. Eng.
46(3), 321-345 (2020). https://doi.org/10.1109/TSE.2018.2853726

ter Beek, M.H., Lluch Lafuente, A., Petrocchi, M.: Combining Declarative and Proce-
dural Views in the Specification and Analysis of Product Families. In: Proceedings of
the 17th International Software Product Line Conference (SPLC’13), vol. 2, pp. 10-17.
ACM (2013). https://doi.org/10.1145/2499777.2500722

ter Beek, M.H., van Loo, S., de Vink, E.P., Willemse, T.A.: Family-Based SPL Model
Checking Using Parity Games with Variability. In: H. Wehrheim, J. Cabot (eds.)
Proceedings of the 23rd International Conference on Fundamental Approaches to
Software Engineering (FASE’20), LNCS, vol. 12076, pp. 245-265. Springer (2020).
https://doi.org/10.1007/978-3-030-45234-6 12

ter Beek, M.H., Mazzanti, F.: VMC: Recent Advances and Challenges Ahead. In: Pro-
ceedings of the 18th International Software Product Line Conference (SPLC’14), vol. 2,
pp. 70-77. ACM (2014). https://doi.org/10.1145/2647908.2655969

ter Beek, M.H., Mazzanti, F., Sulova, A.: VMC: A Tool for Product Variability Analysis.
In: D. Giannakopoulou, D. Méry (eds.) Proceedings of the 18th International Sympo-
sium on Formal Methods (FM’12), LNCS, vol. 7436, pp. 450-454. Springer (2012).
https://doi.org/10.1007/978-3-642-32759-9 36

ter Beek, M.H., Reniers, M.A., de Vink, E.P.: Supervisory Controller Synthesis for
Product Lines Using CIF 3. In: T. Margaria, B. Steffen (eds.) Proceedings of the Tth
International Symposium on Leveraging Applications of Formal Methods, Verification
and Validation: Foundational Techniques (ISoLA’16), LNCS, vol. 9952, pp. 856—873.
Springer (2016). https://doi.org/10.1007/978-3-319-47166-2 59

ter Beek, M.H., de Vink, E.P.: Towards Modular Verification of Software Product Lines
with mCRL2. In: T. Margaria, B. Steffen (eds.) Proceedings of the 6th International
Symposium on Leveraging Applications of Formal Methods, Verification and Validation
(ISoLA’14), LNCS, vol. 8802, pp. 368—385. Springer (2014). https://doi.org/10.1007/
978-3-662-45234-9 26

ter Beek, M.H., de Vink, E.P.: Using mCRL2 for the Analysis of Software Product Lines.
In: Proceedings of the 2nd FME Workshop on Formal Methods in Software Engineering
(FormaliSE’14), pp. 31-37. IEEE (2014). https://doi.org/10.1145/2593489.2593493

https://doi.org/10.1145/3336294.3336295
https://doi.org/10.1145/3336294.3336295
https://doi.org/10.5281/zenodo.2616646
https://doi.org/10.5281/zenodo.2616646
https://doi.org/10.5281/zenodo.4497888
https://doi.org/10.5281/zenodo.4497888
https://doi.org/10.1145/2791060.2791118
https://doi.org/10.1145/2791060.2791118
https://doi.org/10.1016/j.jlamp.2015.11.006
https://doi.org/10.1016/j.jlamp.2015.11.006
https://doi.org/10.1007/978-3-030-22348-9_9
https://doi.org/10.4204/EPTCS.182.5
https://doi.org/10.4204/EPTCS.182.5
https://doi.org/10.1109/TSE.2018.2853726
https://doi.org/10.1145/2499777.2500722
https://doi.org/10.1007/978-3-030-45234-6_12
https://doi.org/10.1145/2647908.2655969
https://doi.org/10.1007/978-3-642-32759-9_36
https://doi.org/10.1007/978-3-319-47166-2_59
https://doi.org/10.1007/978-3-662-45234-9_26
https://doi.org/10.1007/978-3-662-45234-9_26
https://doi.org/10.1145/2593489.2593493

Efficient Static Analysis and Verification of FTSs 39

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.
34.

35.

36.

37.

38.

39.

40.

41.

ter Beek, M.H., de Vink, E.P., Willemse, T.A.C.: Family-Based Model Checking with
mCRL2. In: M. Huisman, J. Rubin (eds.) Proceedings of the 20th International Con-
ference on Fundamental Approaches to Software Engineering (FASE’17), LNCS, vol.
10202, pp. 387-405. Springer (2017). https://doi.org/10.1007/978-3-662-54494-5 23
Belder, T., ter Beek, M.H., de Vink, E.P.: Coherent branching feature bisimulation.
Electron. Proc. Theor. Comput. Sci. 220(3), 14-30 (2015). https://doi.org/10.4204/
EPTCS.182.2

Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated Analysis of Feature Models 20
Years Later: a Literature Review. Inf. Syst. 35(6), 615-636 (2010). https://doi.org/10.
1016/j.is.2010.01.001

Beohar, H., Varshosaz, M., Mousavi, M.R.: Basic behavioral models for software product
lines: Expressiveness and testing pre-orders. Sci. Comput. Program. 123, 42-60 (2016).
https://doi.org/10.1016/j.scico.2015.06.005

Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development —
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. An EATCS Series. Springer (2004). https://doi.org/10.1007/978-3-662-07964-5
Bjgrner, N., Phan, A.D., Fleckenstein, L.: vZ — An Optimizing SMT Solver. In: C. Baier,
C. Tinelli (eds.) Proceedings of the 21st International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS’15), LNCS, vol. 9035, pp.
194-199. Springer (2015). https://doi.org/10.1007/978-3-662-46681-0 14

Bodden, E., Tolédo, T., Ribeiro, M., Brabrand, C., Borba, P., Mezini, M.: SPLLIFT
Statically Analyzing Software Product Lines in Minutes Instead of Years. In: Proceed-
ings of the 34th Conference on Programming Language Design and Implementation
(PLDI'13), pp. 355-364. ACM (2013). https://doi.org/10.1145,/2491956.2491976
Bunte, O., Groote, J., Keiren, J., Laveaux, M., Neele, T., de Vink, E., Wesselink,
W., Wijs, A., Willemse, T.: The mCRL2 Toolset for Analysing Concurrent Systems:
Improvements in Expressivity and Usability. In: T. Vojnar, L. Zhang (eds.) Proc.
TACAS’19, LNCS, vol. 11428, pp. 21-39. Springer (2019). https://doi.org/10.1007/
978-3-030-17465-1_ 2

Castro, T.M., Lanna, A., Alves, V., Teixeira, L., Apel, S., Schobbens, P.: All roads
lead to Rome: Commuting strategies for product-line reliability analysis. Sci. Comput.
Program. 152, 116-160 (2018). https://doi.org/10.1016/j.s¢ic0.2017.10.013

Chess, B., West, J.: Secure Programming with Static Analysis. Addison-Wesley (2007)
Chrszon, P., Dubslaff, C., Kliippelholz, S., Baier, C.: ProFeat: feature-oriented engi-
neering for family-based probabilistic model checking. Form. Asp. Comp. 30(1), 45-75
(2018). https://doi.org/10.1007/s00165-017-0432-4

Classen, A.: Modelling with fts: a collection of illustrative examples. Tech. Rep. P-CS-
TR SPLMC-00000001, University of Namur (2010)

Classen, A.: Modelling and model checking variability-intensive systems. Ph.D. thesis,
University of Namur (2011)

Classen, A., Cordy, M., Heymans, P., Legay, A., Schobbens, P.: Model checking software
product lines with SNIP. Int. J. Softw. Tools Technol. Transf. 14(5), 589-612 (2012).
https://doi.org/10.1007 /s10009-012-0234-1

Classen, A., Cordy, M., Heymans, P., Legay, A., Schobbens, P.Y.: Formal semantics,
modular specification, and symbolic verification of product-line behaviour. Sci. Comput.
Program. 80(B), 416-439 (2014). https://doi.org/10.1016/j.scico.2013.09.019

Classen, A., Cordy, M., Schobbens, P., Heymans, P., Legay, A., Raskin, J.: Featured
Transition Systems: Foundations for Verifying Variability-Intensive Systems and Their
Application to LTL Model Checking. IEEE Trans. Softw. Eng. 39(8), 1069-1089 (2013).
https://doi.org/10.1109/TSE.2012.86

Classen, A., Heymans, P., Schobbens, P., Legay, A., Raskin, J.: Model Checking Lots
of Systems: Efficient Verification of Temporal Properties in Software Product Lines. In:
Proceedings of the 32nd International Conference on Software Engineering (ICSE’10),
pp. 335-344. ACM (2010). https://doi.org/10.1145/1806799.1806850

Cook, S.A.: The Complexity of Theorem-Proving Procedures. In: Proceedings of the 3rd
Annual Symposium on Theory of Computing (STOC’71), pp. 151-158. ACM (1971).
https://doi.org/10.1145/800157.805047

https://doi.org/10.1007/978-3-662-54494-5_23
https://doi.org/10.4204/EPTCS.182.2
https://doi.org/10.4204/EPTCS.182.2
https://doi.org/10.1016/j.is.2010.01.001
https://doi.org/10.1016/j.is.2010.01.001
https://doi.org/10.1016/j.scico.2015.06.005
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-46681-0_14
https://doi.org/10.1145/2491956.2491976
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1016/j.scico.2017.10.013
https://doi.org/10.1007/s00165-017-0432-4
https://doi.org/10.1007/s10009-012-0234-1
https://doi.org/10.1016/j.scico.2013.09.019
https://doi.org/10.1109/TSE.2012.86
https://doi.org/10.1145/1806799.1806850
https://doi.org/10.1145/800157.805047

40

M.H. ter Beek et al.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

Cordy, M., Classen, A., Heymans, P., Schobbens, P.Y., Legay, A.: ProVeLines: A Prod-
uct Line of Verifiers for Software Product Lines. In: Proceedings of the 17th Interna-
tional Software Product Line Conference (SPLC’13), vol. 2, pp. 141-146. ACM (2013).
https://doi.org/10.1145/2499777.2499781

Cordy, M., Classen, A., Perrouin, G., Schobbens, P., Heymans, P., Legay, A.: Simulation-
Based Abstractions for Software Product-Line Model Checking. In: Proceedings of the
34th International Conference on Software Engineering (ICSE’12), pp. 672-682. IEEE
(2012). https://doi.org/10.1109/ICSE.2012.6227150

Cordy, M., Devroey, X., Legay, A., Perrouin, G., Classen, A., Heymans, P., Schobbens,
P., Raskin, J.: A Decade of Featured Transition Systems. In: M.H. ter Beek, A. Fan-
techi, L. Semini (eds.) From Software Engineering to Formal Methods and Tools,
and Back, LNCS, vol. 11865, pp. 285-312. Springer (2019). https://doi.org/10.1007/
978-3-030-30985-5 18

Cordy, M., Schobbens, P., Heymans, P., Legay, A.: Beyond Boolean Product-Line Model
Checking: Dealing with Feature Attributes and Multi-features. In: Proceedings of the
35th International Conference on Software Engineering (ICSE’13), pp. 472-481. IEEE
(2013). https://doi.org/10.1109/ICSE.2013.6606593

Cranen, S., Groote, J.F., Keiren, J.J.A., Stappers, F.P.M., de Vink, E.P., Wesselink, W.,
Willemse, T.A.C.: An Overview of the mCRL2 Toolset and Its Recent Advances. In:
N. Piterman, S.A. Smolka (eds.) Proceedings of the 19th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS’13), LNCS,
vol. 7795, pp. 199-213. Springer (2013). https://doi.org/10.1007/978-3-642-36742-7 15
Damiani, F., Lienhardt, M., Paolini, L.: A formal model for Multi Software Product
Lines. Sci. Comput. Program. 172, 203-231 (2019). https://doi.org/10.1016/j.scico.
2018.11.005

Delaware, B., Cook, W.R., Batory, D.: Fitting the pieces together: a machine-checked
model of safe composition. In: Proceedings of the 7th joint meeting of the Eu-
ropean Software Engineering Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering (ESEC/FSE’09), pp. 243-252. ACM (2009).
https://doi.org/10.1145/1595696.1595733

Devroey, X., Perrouin, G., Cordy, M., Samih, H., Legay, A., Schobbens, P., Heymans, P.:
Statistical prioritization for software product line testing: an experience report. Softw.
Syst. Model. 16(1), 153-171 (2017). https://doi.org/10.1007/s10270-015-0479-8
Devroey, X., Perrouin, G., Cordy, M., Schobbens, P., Legay, A., Heymans, P.: Towards
Statistical Prioritization for Software Product Lines Testing. In: Proceedings of the 8th
International Workshop on Variability Modelling of Software-intensive Systems (Va-
MoS’14), pp. 10:1-10:7. ACM (2014). https://doi.org/10.1145/2556624.2556635
Devroey, X., Perrouin, G., Legay, A., Cordy, M., Schobbens, P., Heymans, P.: Coverage
Criteria for Behavioural Testing of Software Product Lines. In: T. Margaria, B. Steffen
(eds.) Proceedings of the 6th International Symposium on Leveraging Applications of
Formal Methods, Verification and Validation (ISoLA’14), LNCS, vol. 8802, pp. 336—-350.
Springer (2014). https://doi.org/10.1007/978-3-662-45234-9 24

Devroey, X., Perrouin, G., Legay, A., Schobbens, P., Heymans, P.: Covering SPL Be-
haviour with Sampled Configurations: An Initial Assessment. In: Proceedings of the
9th International Workshop on Variability Modelling of Software-intensive Systems (Va-
MoS’15), pp. 59:59-59:66. ACM (2015). https://doi.org/10.1145/2701319.2701325
Devroey, X., Perrouin, G., Legay, A., Schobbens, P., Heymans, P.: Search-based
Similarity-driven Behavioural SPL Testing. In: Proceedings of the 10th International
Workshop on Variability Modelling of Software-intensive Systems (VaMoS’16), pp. 89—
96. ACM (2016). https://doi.org/10.1145/2866614.2866627

Devroey, X., Perrouin, G., Papadakis, M., Legay, A., Schobbens, P., Heymans, P.:
Featured Model-based Mutation Analysis. In: Proceedings of the 38th International
Conference on Software Engineering (ICSE’16), pp. 655-666. ACM (2016). https:
//doi.org/10.1145/2884781.2884821

Devroey, X., Perrouin, G., Papadakis, M., Legay, A., Schobbens, P., Heymans, P.:
Model-based mutant equivalence detection using automata language equivalence and
simulations. J. Syst. Softw. 141, 1-15 (2018). https://doi.org/10.1016/j.jss.2018.03.010

https://doi.org/10.1145/2499777.2499781
https://doi.org/10.1109/ICSE.2012.6227150
https://doi.org/10.1007/978-3-030-30985-5_18
https://doi.org/10.1007/978-3-030-30985-5_18
https://doi.org/10.1109/ICSE.2013.6606593
https://doi.org/10.1007/978-3-642-36742-7_15
https://doi.org/10.1016/j.scico.2018.11.005
https://doi.org/10.1016/j.scico.2018.11.005
https://doi.org/10.1145/1595696.1595733
https://doi.org/10.1007/s10270-015-0479-8
https://doi.org/10.1145/2556624.2556635
https://doi.org/10.1007/978-3-662-45234-9_24
https://doi.org/10.1145/2701319.2701325
https://doi.org/10.1145/2866614.2866627
https://doi.org/10.1145/2884781.2884821
https://doi.org/10.1145/2884781.2884821
https://doi.org/10.1016/j.jss.2018.03.010

Efficient Static Analysis and Verification of FTSs 41

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

Devroey, X., Perrouin, G., Schobbens, P.: Abstract Test Case Generation for Be-
havioural Testing of Software Product Lines. In: Proceedings of the 18th Interna-
tional Software Product Line Conference (SPLC’14), vol. 2, pp. 86-93. ACM (2014).
https://doi.org/10.1145/2647908.2655971

Dimovski, A.: CTL* family-based model checking using variability abstractions and
modal transition systems. Int. J. Softw. Tools Technol. Transf. 22(1), 35-55 (2020).
https://doi.org/10.1007/s10009-019-00528-0

Dimovski, A., Legay, A., Wasowski, A.: Variability Abstraction and Refinement for
Game-Based Lifted Model Checking of Full CTL. In: R. H&hnle, W. van der Aalst
(eds.) Proceedings of the 22nd International Conference on Fundamental Approaches
to Software Engineering (FASE’19), LNCS, vol. 11424, pp. 192-209. Springer (2019).
https://doi.org/10.1007/978-3-030-16722-6 11

Dimovski, A.S.: Abstract Family-Based Model Checking Using Modal Featured Tran-
sition Systems: Preservation of CTL*. In: A. Russo, A. Schiirr (eds.) Proceedings of
the 21st International Conference on Fundamental Approaches to Software Engineering
(FASE’18), LNCS, vol. 10802, pp. 301-318. Springer (2018). https://doi.org/10.1007/
978-3-319-89363-1 17

Dimovski, A.S., Al-Sibahi, A.S., Brabrand, C., Wasowski, A.: Efficient family-based
model checking via variability abstractions. Int. J. Softw. Tools Technol. Transf. 5(19),
585-603 (2017). https://doi.org/10.1007/510009-016-0425-2

Dimovski, A.S., Al-Sibahi, A.S., Brabrand, C., Wasowski, A.: Family-Based Model
Checking Without a Family-Based Model Checker. In: B. Fischer, J. Geldenhuys (eds.)
Proceedings of the 22nd International SPIN Symposium on Model Checking of Soft-
ware (SPIN’15), LNCS, vol. 9232, pp. 282-299. Springer (2015). https://doi.org/10.
1007/978-3-319-23404-5 18

Dimovski, A.S., Wasowski, A.: Variability-Specific Abstraction Refinement for Family-
Based Model Checking. In: M. Huisman, J. Rubin (eds.) Proceedings of the
20th International Conference on Fundamental Approaches to Software Engineering
(FASE’17), LNCS, vol. 10202, pp. 406-423. Springer (2017). https://doi.org/10.1007/
978-3-662-54494-5 24

Dubslaff, C.: Compositional Feature-Oriented Systems. In: P.C. Olveczky, G. Salaiin
(eds.) Proceedings of the 17th International Conference on Software Engineering and
Formal Methods (SEFM’19), LNCS, vol. 11724, pp. 162-180. Springer (2019). https:
//doi.org/10.1007/978-3-030-30446-1 9

Dubslaff, C., Baier, C., Kliippelholz, S.: Probabilistic model checking for feature-oriented
systems. In: S. Chiba, E. Tanter, E. Ernst, R. Hirschfeld (eds.) Transactions on Aspect-
Oriented Software Development XII, LNCS, vol. 8989, pp. 180-220. Springer (2015).
https://doi.org/10.1007/978-3-662-46734-3 5

Fantechi, A., Gnesi, S.: A behavioural model for product families. In: Proceedings of
the 6th joint meeting of the European Software Engineering Conference and the ACM
SIGSOFT International Symposium on Foundations of Software Engineering (ESEC/
FSE’07), pp. 521-524. ACM (2007). https://doi.org/10.1145/1287624.1287700
Fantechi, A., Gnesi, S.: Formal modeling for product families engineering. In: Pro-
ceedings of the 12th International Conference on Software Product Line Engineering
(SPLC’08), pp. 193-202. IEEE (2008). https://doi.org/10.1109/SPLC.2008.45
Fischbein, D., Uchitel, S., Braberman, V.A.: A Foundation for Behavioural Conformance
in Software Product Line Architectures. In: Proceedings of the ISSTA Workshop on Role
of Software Architecture for Testing and Analysis (ROSATEA’06), pp. 39-48. ACM
(2006). https://doi.org/10.1145/1147249.1147254

Gruler, A., Leucker, M., Scheidemann, K.D.: Modeling and Model Checking Software
Product Lines. In: G. Barthe, F.S. de Boer (eds.) Proceedings of the 10th Interna-
tional Conference on Formal Methods for Open Object-Based Distributed Systems
(FMOODS’08), LNCS, vol. 5051, pp. 113-131. Springer (2008). https://doi.org/10.
1007/978-3-540-68863-1 8

Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Program.
8(3), 231-274 (1987). https://doi.org/10.1016/0167-6423(87)90035-9

Heule, M., Jarvisalo, M., Suda, M.: The international sat competitions web page. https:
//www.satcompetition.org/. Accessed: 2019-03-22

https://doi.org/10.1145/2647908.2655971
https://doi.org/10.1007/s10009-019-00528-0
https://doi.org/10.1007/978-3-030-16722-6_11
https://doi.org/10.1007/978-3-319-89363-1_17
https://doi.org/10.1007/978-3-319-89363-1_17
https://doi.org/10.1007/s10009-016-0425-2
https://doi.org/10.1007/978-3-319-23404-5_18
https://doi.org/10.1007/978-3-319-23404-5_18
https://doi.org/10.1007/978-3-662-54494-5_24
https://doi.org/10.1007/978-3-662-54494-5_24
https://doi.org/10.1007/978-3-030-30446-1_9
https://doi.org/10.1007/978-3-030-30446-1_9
https://doi.org/10.1007/978-3-662-46734-3_5
https://doi.org/10.1145/1287624.1287700
https://doi.org/10.1109/SPLC.2008.45
https://doi.org/10.1145/1147249.1147254
https://doi.org/10.1007/978-3-540-68863-1_8
https://doi.org/10.1007/978-3-540-68863-1_8
https://doi.org/10.1016/0167-6423(87)90035-9
https://www.satcompetition.org/
https://www.satcompetition.org/

42

M.H. ter Beek et al.

71.

72.

73.

74.

75.

76.

7.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

Holl, G., Griinbacher, P., Rabiser, R.: A systematic review and an expert survey on
capabilities supporting multi product lines. Inf. Softw. Technol. 54(8), 828-852 (2012).
https://doi.org/10.1016/j.infsof.2012.02.002

Hutter, F., Lindauer, M., Balint, A., Bayless, S., Hoos, H., Leyton-Brown, K.: The
Configurable SAT Solver Challenge (CSSC). Artifi. Intell. 243, 1-25 (2017). https:
//doi.org/10.1016/j.artint.2016.09.006

Kaéstner, C., Apel, S.: Type-checking Software Product Lines — A Formal Approach. In:
Proceedings of the 23rd International Conference on Automated Software Engineering
(ASE’08), pp. 258-267. IEEE (2008). https://doi.org/10.1109/ASE.2008.36

Kim, C.H.P., Batory, D.S., Khurshid, S.: Reducing Combinatorics in Testing Product
Lines. In: Proceedings of the 10th International Conference on Aspect-Oriented Software
Development (AOSD’11), pp. 57-68. ACM (2011). https://doi.org/10.1145/1960275.
1960284

Kretinsky, J.: 30 Years of Modal Transition Systems: Survey of Extensions and Analysis.
In: L. Aceto, G. Bacci, G. Bacci, A. Ingolfsdottir, A. Legay, R. Mardare (eds.) Models,
Algorithms, Logics and Tools, LNCS, vol. 10460, pp. 36-74. Springer (2017). https:
//doi.org/10.1007/978-3-319-63121-9 3

Larsen, K.G., Nyman, U., Wasowski, A.: Modal I/0 Automata for Interface and Product
Line Theories. In: R. De Nicola (ed.) Proceedings of the 16th European Symposium
on Programming (ESOP’07), LNCS, vol. 4421, pp. 64-79. Springer (2007). https://doi.
org/10.1007/978-3-540-71316-6 6

Larsen, K.G., Thomsen, B.: A Modal Process Logic. In: Proceedings of the 3rd
Symposium on Logic in Computer Science (LICS’88), pp. 203-210. IEEE (1988).
https://doi.org/10.1109/LICS.1988.5119

Lauenroth, K., Pohl, K., Téhning, S.: Model Checking of Domain Artifacts in Product
Line Engineering. In: Proceedings of the 24th International Conference on Automated
Software Engineering (ASE’09), pp. 269-280. IEEE (2009). https://doi.org/10.1109/
ASE.2009.16

Liang, J.H., Ganesh, V., Czarnecki, K., Raman, V.: SAT-based Analysis of Large Real-
world Feature Models is Easy. In: Proceedings of the 19th International Software Prod-
uct Line Conference (SPLC’15), pp. 91-100. ACM (2015). https://doi.org/10.1145/
2791060.2791070

Lienhardt, M., Damiani, F., Donetti, S., Paolini, L.: Multi Software Product Lines in
the Wild. In: Proceedings of the 12th International Workshop on Variability Modelling
of Software-Intensive Systems (VaMoS’18), pp. 89-96. ACM (2018). https://doi.org/
10.1145/3168365.3170425

Lienhardt, M., Damiani, F., Testa, L., Turin, G.: On checking delta-oriented product
lines of statecharts. Sci. Comput. Program. 166, 3-34 (2018). https://doi.org/10.1016/
j-scico.2018.05.007

Lochau, M., Mennicke, S., Baller, H., Ribbeck, L.: Incremental model checking of delta-
oriented software product lines. J. Log. Algebr. Meth. Program. 85(1), 245-267 (2016).
https://doi.org/10.1016/j.jlamp.2015.09.004

Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety. Springer
(1995). https://doi.org/10.1007/978-1-4612-4222-2

Mendonga, M., Wasowski, A., Czarnecki, K.: SAT-based Analysis of Feature Models
is Easy. In: Proceedings of the 13th International Software Product Line Conference
(SPLC’09), pp. 231-240. ACM (2009)

de Moura, L.M., Bjgrner, N.: Z3: An Efficient SMT Solver. In: C.R. Ramakrishnan,
J. Rehof (eds.) Proceedings of the 14th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS’08), LNCS, vol. 4963, pp.
337-340. Springer (2008). https://doi.org/10.1007/978-3-540-78800-3 24

Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer (2005).
https://doi.org/10.1007/978-3-662-03811-6

Rhein, A.v., Liebig, J., Janker, A., Késtner, C., Apel, S.: Variability-Aware Static Anal-
ysis at Scale: An Empirical Study. ACM Trans. Softw. Eng. Methodol. 27(4), 18:1-18:33
(2018). https://doi.org/10.1145/3280986

Thiim, T., Apel, S., Kastner, C., Schaefer, 1., Saake, G.: A Classification and Survey of
Analysis Strategies for Software Product Lines. ACM Comput. Surv. 47(1), 6:1-6:45
(2014). https://doi.org/10.1145/2580950

https://doi.org/10.1016/j.infsof.2012.02.002
https://doi.org/10.1016/j.artint.2016.09.006
https://doi.org/10.1016/j.artint.2016.09.006
https://doi.org/10.1109/ASE.2008.36
https://doi.org/10.1145/1960275.1960284
https://doi.org/10.1145/1960275.1960284
https://doi.org/10.1007/978-3-319-63121-9_3
https://doi.org/10.1007/978-3-319-63121-9_3
https://doi.org/10.1007/978-3-540-71316-6_6
https://doi.org/10.1007/978-3-540-71316-6_6
https://doi.org/10.1109/LICS.1988.5119
https://doi.org/10.1109/ASE.2009.16
https://doi.org/10.1109/ASE.2009.16
https://doi.org/10.1145/2791060.2791070
https://doi.org/10.1145/2791060.2791070
https://doi.org/10.1145/3168365.3170425
https://doi.org/10.1145/3168365.3170425
https://doi.org/10.1016/j.scico.2018.05.007
https://doi.org/10.1016/j.scico.2018.05.007
https://doi.org/10.1016/j.jlamp.2015.09.004
https://doi.org/10.1007/978-1-4612-4222-2
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1145/3280986
https://doi.org/10.1145/2580950

Efficient Static Analysis and Verification of FTSs 43

89. Thiim, T., Kéastner, C., Benduhn, F., Meinicke, J., Saake, G., Leich, T.: FeatureIDE: An
extensible framework for feature-oriented software development. Sci. Comput. Program.
79, 70-85 (2014). https://doi.org/10.1016 /j.scico.2012.06.002

90. Vandin, A., ter Beek, M., Legay, A., Lluch Lafuente, A.: QFLan: A Tool for the
Quantitative Analysis of Highly Reconfigurable Systems. In: K. Havelund, J. Pe-
leska, B. Roscoe, E. de Vink (eds.) Proceedings of the 22nd International Sympo-
sium on Formal Methods (FM’18), LNCS, vol. 10951, pp. 329-337. Springer (2018).
https://doi.org/10.1007/978-3-319-95582-7 19

91. Varshosaz, M., Beohar, H., Mousavi, M.R..: Basic behavioral models for software product
lines: Revisited. Sci. Comput. Program. 168, 171-185 (2018). https://doi.org/10.1016/
j-s€ico.2018.09.001

https://doi.org/10.1016/j.scico.2012.06.002
https://doi.org/10.1007/978-3-319-95582-7_19
https://doi.org/10.1016/j.scico.2018.09.001
https://doi.org/10.1016/j.scico.2018.09.001

	Introduction
	Related Work
	Background
	Ambiguities in FTSs
	Detecting Ambiguities
	Benchmark Examples
	Family-based Verification
	Conclusion

