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Abstract: We examined the transport of sediments and their surficial pathways from the mouth of
Neretva River, through the Neretva Channel, toward the Adriatic Sea. This research was based on
twelve box-cores and five grab samples collected within the Neretva Channel. Sediment dynamics
were evaluated using several proxies, such as organic matter, radiochemical isotopes and select metal
concentrations and physical parameters. The data analysis showed that the influence of the river on
particle distribution along the Neretva Channel decreases northward, with an estimated sediment
accumulation rate ranging from 1.9 to 8.5 mm/yr. The lowest accumulation rate was found in the
sector not influenced by river inflow, whereas the preferential sediment accumulation area is in the
center of the basin. We speculate that dispersion and accumulation of sediments are both driven by
an eddy in the waters of the Neretva Channel triggered/or intensified seasonally by the interaction of
karstic springs, river input and Adriatic Sea waters. Our results indicate that the anthropogenic factor
does not affect the concentration of metals within the channel and that the river particles dynamics
determine the Pb areal distribution, while Cr and Ni have a possible source located to the northwest
of the river-mouth.
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1. Introduction

The legal instruments of EU’s Environmental policies and their regional and local application
levels provide an interrelated regulatory framework for protection, preservation and prevention of
the European oceans [1–4]. According to these European directives, they are intended to apply an
ecosystem-based approach to manage human activities whilst ensuring sustainable use of marine goods
and services (respectively) [4,5]. In particular, the Marine Strategy Framework Directive (MSFD) [3] uses
eleven descriptors with several indicators covering ecological, physical, chemical and anthropogenic
components of the ecosystems that need to be integrated to achieve a good environmental status [6].
In this context, the study of sediment dynamics plays an important role, as it provides the basic
knowledge for a correct evaluation of the environmental quality.

The Adriatic Sea is an important sub-region of the Mediterranean marine area and has been
proposed as Ecologically or Biologically Significant Areas in the Mediterranean (EBSAs) from the
Barcelona Convention, UNEP/MAP [7]. Several studies were carried out on sediment dynamics
and geochemistry in the Adriatic Sea, but they were mainly focused on its western side (Italian
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Economic Water Zone; see [8–14] and reference therein). Hence, few geochemical data are available
from sedimentary deposits of the eastern coast [15–17] and potential input of contaminants is still
little known.

Regional geology largely controls the composition of marine sediments; however, in densely
populated regions, such as coastal areas, the anthropogenic influence may strongly affect the dispersion
and concentration of organic matter and contaminants, modifying the river discharge through a
combination of factors such as urban settlements and roads, runoff of agricultural soils, and dry and
wet atmospheric deposition [18]. In this work, the influence of the Neretva River (NR) on the southern
Croatian Adriatic coastal system was investigated in order to gain information on sediment dynamics
of the area (Figure 1).

Figure 1. Study area and sampling locations. Shaded relief image derived from bathymetric data
with sun illumination from NW, 45◦ over the horizon and no vertical exaggeration (grid resolution
10 m). Elevation and bathymetry data from EMODnet gridded data (www.emodnet.eu/bathymetry).
Filled red and pink circles indicate box corer and grab samples locations, respectively. Bathymetry
contour interval is 10 m. Red box in the inset indicates the study area.

The major aim of this work was to determine sediment pathways and dynamics of particles that
bond metals in the Neretva Channel (NC) by combining sediment geochemistry, geochronological data
and physical parameters of the water column to obtain basic information required for an assessment of
the health and quality of the environment to preserve the marine life [19]. These results may provide a
useful support for evaluation and decision-making processes aiming to achieve the environmental
goals proposed by the Water Framework Directive [2] and the MSFD [3].

2. Study Area

The NC (Figure 1) is a narrow, semi-enclosed basin located along the southernmost part of the
Croatian coast. Oriented SE–NW, it is bounded to the NE by the Croatian coastline, to the NW by the
open Adriatic Sea through the Korcula Channel, and to the SW by the Peljesac Peninsula. The NC is
a microtidal, low-wave energy environment with river-dominated sedimentation processes [15,17].
The river has an average annual water inflow of 332 m3/s with peaks in December and April, and with
a long-term seasonal variability in terms of minimum and maximum monthly discharge from low
to moderate, respectively [20]. The NR mouth, located ≈20 km to the east of the town of Metković,
is characterized by a reclaimed alluvial plain and forms the largest depositional system in the southern
Croatian coast, covering an area of ≈246 km2.

www.emodnet.eu/bathymetry
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The NR, despite high annual precipitation in the catchment area, has a low stream density
because part of its water is collected into karstic aquifers [20]. Furthermore, five hydropower plants
in the Neretva catchment impound a total area of 36 km2, storing a 1.1 km3 water reserve [21]. As a
consequence, the present-day delta is not associated with the large volumes of deposits that other
river systems along the western Adriatic coast are. Finally, water regime in the lower course of
the NR is complicated by the interaction with seawater ingression. For instance, deepening of the
NR riverbed may cause higher salinity of both water and soil due to a drop in the ground water
level [17,22]. Salt water constantly penetrates into underground waterways, leading to the salinity of
the soil, particularly during the dry season when the river flow is reduced [23]. Hence, the natural
environment of the lower river course may be strongly threatened in terms of chemical, physical and
biological changes [17], especially where human activities cause pressure, such as road construction
sites, urbanization, hunting and mining [22,24,25]. Moreover, the NR is moderately affected by
untreated municipal and industrial (metallurgy and other lighter activities) wastewaters.

3. Materials and Methods

During the oceanographic cruise NERES06 onboard the R/V Bios DVA in May 2006, twelve box
cores (BC) and five grab samples (G) were collected in the study area (Figure 1). Sampling sites were
selected along three transects parallel to the NW–SE-oriented axis of the channel in order to obtain an
exhaustive coverage of the investigated area.

The BC short cores (≈20 cm long) were radiographed via a directional X-ray tube (M60 Gilardoni)
using an aluminum and PVC filter, allowing the identification of the sedimentary structures before
sub-sampling. Once the cores were opened, sediments were described for visual characteristics,
and then, one-half of each was stored for the historical archive and the other half was sub-sampled with
a frequency of 2 cm for sediment grain size and tracer determinations. Before analyses, sediments were
dried at 60 ◦C in order to calculate the sediment porosity assuming a particle density of 2.5 g cm−3 [26].

Total carbon (TC) and total nitrogen (TN) contents, and the stable isotopic composition,
were determined on the surficial samples by using a FINNIGAN Delta Plus mass spectrometer,
directly coupled to the FISONS NA2000 EA (for further details see [27]). The total organic carbon
(TOC) was measured by a pre-treatment with 1.5 M HCl to remove the carbonates. TOC contents are
reported as weight percent (wt%) on dry weight. Moreover, C/N was calculated as molar ratio between
TOC% and TN%.

Grain size analysis was carried out on separates following wet sieving on a 63 µm mesh-size
sieve in order to separate sand from finer fractions, after a pre-treatment with H2O2 to remove the
organic matter and to favor disaggregation between sediment particles. Silt and clay fractions were
determined with an X-ray Sedigraph Malvern Mastersizer 2000s.

The time framework was based on 137Cs and 210Pb radionuclides. 137Cs activity was measured
by non-destructive gamma spectrometry (see [28] and references therein) using coaxial intrinsic
germanium detectors (Ortec HPGe GMX-20195P and GEM-20200), while 210Pb was determined by
chemical extraction of its daughter 210Pb, assuming secular equilibrium between the two isotopes [11,29].

In order to determine the metal fraction of surficial sediment particles and/or dissolved in the
interstitial water, 0.5 g of de-frozen wet sediment was leached with HNO3 and H2O2 (10:3) under
reflux [30].

Cr, Ni and Pb concentrations were determined by furnace atomic absorption spectrophotometers
and the results were normalized to the sediment dry weight. Accuracy and precision were tested
through repeated analysis of certified reference material NIST 2709, and in comparison with the
reported values for the determination of labile or extractable elements. Results fell within the range of
certified values. Accuracies (as %RDS), estimated by replicate analyses of NIST 2709, were 4% (for Ni
and Cr) and 3% (for Pb). The leaching recoveries, calculated on the basis of certified values for total
concentrations, were 66%, 63% and 93% for Pb, Cr and Ni, respectively.
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Conductivity and temperature (CTD) data collections were carried out during the oceanographic
cruise by correspondence with sampling stations with a Sea-Bird SBE 25 CTD equipped with temperature
and conductivity sensors. The CTD data were processed according to UNESCO standards [31],
and pressure values were averaged at 0.5 dbar intervals. The Ocean Data View software was used to
interpolate spatially the CTD vertical profiles [32].

The areal distributions of metal contents, sand fraction and sediment accumulation rate (SAR)
were computed by universal kriging interpolation, a method for which the values are modelled by a
Gaussian process governed by prior covariance. Under suitable assumptions on the spatial continuity
of the variable to interpolate, kriging gives the best linear unbiased prediction of the interpolated
values [33]. Spatial continuity parameters (range, nugget and sill) were evaluated using theoretical
models fitting the experimental variograms calculated for each variable [34,35]. Universal kriging
assumes that a continuous property called “regionalized variable” consists of two parts: a drift,
or expected value, and a residual, or deviation from the drift. The drift is modelled by a polynomial
function within a given neighborhood. The residual surface obtained by drift removal can be regarded
as first-order stationary in a statistical sense. However, the effectiveness of this technique depends on
the correct specification of several parameters that describe the semivariogram and the model of drift.
We assumed a linear model of the semivariogram implying that estimation error increases without
bounds with increasing distance from the control point.

Spatial analysis and mapping were performed using the PLOTMAP [36] and the GMT [37]
software packages adopting the WGS84 datum and a Mercator projection with standard parallel at the
latitude of 42.5◦ N.

Data relationships were statistically analyzed through the Pearson correlation coefficient, using
the STATISTICA software package.

4. Results

4.1. Sediment Features

Sediment grain size analyses indicate that the NC deposits are mostly clayey silts with a silty
dominant fraction and a low-fraction of sand. In particular, on surficial samples, the coarser materials
were found in the southernmost zone (sand content of 31% in site 15BC) and in the north-western
sector of the channel (sand fractions of 51%, 39% and 31% at sites 07BC, 06BC and 10BC, respectively;
Figure 2a).



Appl. Sci. 2020, 10, 807 5 of 18

Figure 2. (a) Log-normal sediment mean diameter [38] areal distribution and (b) organic carbon
surficial areal distribution in the Neretva Channel with (c) covariation of N/C versus δ13C.

Surficial TOC (Figure 2b) varies from 0.6% (06BC) to 1.18% (17BC) and δ13C from -22.3%� (06BC)
to -27.0%� (17BC). Total nitrogen (TN) content ranges from 0.15% (17BC) to 0.09% (06BC), resulting in
C/N ratios from 5.9 to 8.5.

X-radiograph images, together with depth distributions of sediment porosity and sand fractions
of selected BC samples, are shown in Figure 3. X-ray images of BCs do not display evident inner
sedimentary structures; instead, bioturbations are observed in several sediment intervals; in particular,
in cores from the area close to the river mouth (i.e. site 01BC). Sample porosities of the surficial level
along the entire channel range between 0.62 and 0.71. In addition, at each sampling site porosity
slightly decreases with depth (toward the bottom of the BC) without abrupt changes through the
sedimentary sequence (Figure 3).
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Figure 3. Examples of X-ray images, porosity and sand content depth profiles (left panel), and 210Pb
and 137Cs concentration activity variations with depth (right panel) from selected box cores (BCs):
(a) 01BC; (b) 03BC; (c) 05BC; (d) 06BC; (e) 10BC; (f) 14BC and (g) 15BC.

Vegetal remains are found mostly in sediments near the river mouth (sites 01BC, 02BC, 09BC
and 15BC), whereas fragments of molluscs, bryozoans and ostracods are widespread in the surficial
sediments of the NC, with the exception of the nearest site to the river mouth (01BC), where only
fragments of molluscs are found, and of the deepest site (07G) where the benthic macrofauna is
almost absent.

4.2. Activity-Depth Profile of 210Pb and 137Cs Radionuclides

137Cs and 210Pb content variations with depth of selected BC are shown in Figure 3. 137Cs measured
only in three BC (Figure 3a–d), displays maximum activity concentration at the top of BCs (i.e. 01BC
and 03BC or at sub-surficial levels as in 02BC and 05BC; Figure 3a,c) with values ranging from the
detection limit to 18 Bq/kg (Figure 3d,e). Unfortunately, the 1986 peak of 137Cs relative to the Chernobyl
accident cannot be resolved in our samples.
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210Pb contents in cores generally decrease with depth following a regular exponential trend
(Figure 3). Since cores 04BC, 09BC, 13BC, 14BC and 15BC are strongly affected by physical or biological
mixing (see X-radiograph; i.e. Figure 3f,g), a different 210Pb pattern is observed.

4.3. Regional Water Circulation and Water-Column Structure

During the sampling survey, temperature (T) and salinity (S) values in the water column ranged
from 12.7 to 17.1 ◦C and from 19.2 to 38.0 psu, respectively (Figure 4a,b). At sites 01BC and 17BC,
in front of the river mouth, recorded values of T and S at sea surface were ≈ 16 and 15.2 ◦C, and ≈ 34
and 19.3 psu respectively, whereas values at the sea bottom displayed lower temperature and higher
salinity (≈ 13 and 13.5 ◦C, and ≈ 37.5 and 37.6 psu respectively).

Figure 4. (a) Temperature and (b) salinity spatial distribution. Temperature (e,f) and salinity (g,h)
vertical cross sections along the northern (c) and the central (d) transects running parallel to the NE
coast of the Neretva Channel.

T and S profiles across the water column are shown in Figure 4e–h. Observed values reveal
water stratification with the highest temperatures at the surface in the southeast sector of the NC.
The northern transect (Figure 4e,f) and surficial areal data (Figure 4a,b) suggest water inflow with
lower temperature and salinity localized along the coast to the north of the main Neretva river-mouth
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in the vicinity of station 11G, where a local decrease of salinity has been also recorded at 0 and 5 m
water-depth intervals (Figure 4e,h). The water mass with lower T and S moves deeper toward the
center of the channel.

4.4. Metal Distributions

Among the several metals, we focused on Cr, Ni and Pb in this study, because their origin may be
due to both natural and anthropogenic causes. The spatial distributions of their concentrations (µg/g)
allowed identifying zones of provenance (source areas) and areas at critical levels (Figure 5). Results
shown in Figure 5 indicate that site 08G, in the northern part of the investigated area, displays the
maximum contents of Ni and Cr (84.0 and 71.5 µg/g respectively), whereas the minimum contents
were recorded at site 06BC (28.6 and 28.7 µg/g, respectively) located in center of the northern sector of
the NC (Figure 5b,c). In particular, surficial Cr and Ni concentrations decrease toward the river mouth.
Differently, the Pb concentrations show two different areas of local maxima: the first (36 µg/g) is located
in front of the river mouth at site 01BC; the second (67.9 µg/g) in the center of the NC at site 10BC.

Figure 5. Surficial distribution of (a) Pb, (b) Ni and (c) Cr concentrations.

5. Discussions

5.1. Surface Sediment Distribution

The Neretva’s surficial sediment is generally composed of clayey silt. The distribution suggests
an influence of the river plume decreasing along the SE–NW direction (Figure 2a). In particular,
accumulation of fine-grained particles (mean grain size > 7.5 ϕ [38]) occurs mainly in two areas:
in front of the NR mouth and in the central/northeastern part of the NC (Figure 2). This accumulation
pattern is in agreement with the observed water circulation, where a hypopycnal river plume formed
at the mouth distributes fine-grained particles over the entire channel area [16,17]. These observations
suggest a different nature of the two observed coarser-grains depositional zones. The southernmost
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zone may only receive river sediments sporadically during events of strong hydro-dynamism in the
channel and may be considered a non-depositional area characterized by relict coarser sediment.
This silt-sandy accumulation zone was previously reported by [16]. Instead, the northernmost sandy
zone may be related to the influence of high energy currents from the open Adriatic Sea that remove
the finest part of the sediments.

The observed porosities and particle grain size in the BCs (Figure 3) suggest that over the
time recorded by our samples, the NC sedimentation was continuous in a low-energy environment.
Moreover, the chaotic textures of sediments in the cores nearest to the river pro-delta area (BC01-17
and 13) suggest also that these deposits are affected by several post-depositional processes, including
physical mixing and biological reworking due to microbial activity. Both of those processes may be
related to the seasonal river input variability or episodic flooding events from the NR.

5.2. Organic Carbon

Relationships between C/N ratios and the δ13C contents are commonly used as proxies to
determine the source of organic matter in coastal areas [26,39,40]. In addition, the δ13C and δ15N
isotopic compositions and the N/C ratio help to discriminate the marine versus terrestrial origins
of the particles [41]. Since the photosynthetic processes and carbon sources are different between
marine organisms and terrestrial plants, there is an inverse correlation between the δ13C and C/N
ratio: A high δ13C values suggests a predominant influence of marine phytoplankton [42]. On the
contrary, low δ13C values (lower than -27%�) are indicative of vegetable sources (C3 plants) from
inland; i.e., proximity to the shoreline and/or proximity to a source of organic matter of continental
origin [43]. Here, we considered the N/C ratio instead of the C/N, because it behaves linearly in a
mixing model [43,44] and an estimate of the sedimentary organic carbon fraction is more reliable [45].
The observed N/C and δ13C distributions (Figure 2c) indicate that the sites close to the river mouth
(01BC and 17BC) have a clear terrestrial signature due to the strong fluvial input. The marine input
increases northward, and the transition between terrestrial and marine regimes may be located along
the theoretical line joining sites 12G, 4BC and 9BC (Figure 2b). In addition, a strong negative correlation
(−0.81) is observed between TOC and δ13C, a result in agreement with that of [17]. These data together
with a lack of correlation with the clay fraction (Table 1), suggest riverine 13C depleted terrestrial
organic matter as the main source of sedimentary organic carbon [27].

Table 1. Linear correlation coefficients between Pb, Cr and Ni concentrations (µg/g), porosity, organic
carbon (TOC, %), total carbon (TC, %), inorganic carbon (TIC, %), C/N ratio, carbon stable isotope (δ13C,
%�) and sediment compositions (fines, sand, clay, silt contents, %). Statistically relevant coefficients are
reported in bold and highly significant one in bold red.

Pb Cr Ni Porosity TOC TC TIC C/N δ13C Fines Sand Silt Clay

Pb 1.00
Cr −0.04 1.00
Ni 0.12 0.67 1.00
Porosity −0.69 0.43 0.06 1.00
TOC 0.10 0.09 0.30 −0.10 1.00
TC −0.04 −0.16 −0.72 0.09 −0.52 1.00
TIC −0.06 −0.16 −0.70 0.10 −0.64 0.99 1.00
C/N −0.03 0.04 0.07 0.12 0.59 −0.29 −0.36 1.00
δ13C −0.13 0.07 −0.17 0.20 −0.82 0.40 0.50 −0.56 1.00
fines 0.09 0.19 0.68 −0.11 0.70 −0.89 −0.92 0.45 −0.59 1.00
Sand −0.10 −0.21 −0.67 0.08 −0.73 0.87 0.91 −0.48 0.62 −1.00 1.00
Silt 0.12 −0.17 0.31 −0.39 0.24 −0.60 −0.58 0.18 −0.45 0.67 −0.63 1.00
Clay −0.05 0.42 0.24 0.42 0.40 −0.07 −0.13 0.23 −0.02 0.10 −0.15 −0.67 1.00

These results allow us to hypothesize that the input material from the NR is quickly moved
northward by marine currents and released not far from the river mouth, particularly in the area near
and along the coast (north of the river mouth). The observed organic carbon distribution highlights a
reduced fluvial influence moving seaward. However, surficial sediments may be affected by seasonal



Appl. Sci. 2020, 10, 807 10 of 18

conditions and their distribution may be different in other periods of the year due to different amounts
of input material from the river.

5.3. Age Model and Sediment Accumulation Rates

Activity-depth profiles of 137Cs and 210Pb were evaluated along the BCs to define an age model of
the NC recent sedimentary sequence (Figure 3).

Correlations between 210Pb age determinations and depth are strongly model-dependent in
cores with non-exponential 210Pb profiles [46]. Assuming a constant 210Pb flux below the surficial
mixed layer, a “constant flux–constant sedimentation” model has been adopted to obtain an estimate
of sedimentation accumulation rates (SARs) for the last hundred years. However, since the main
assumptions of most common conceptual models in sediment chronologies refer to the inputs of
particles and/or a radiotracer onto the sediment, in those samples where 210Pb profiles were not suitable
for model calculations (such as in samples 06BC and 10BC), rough estimates of sediment accumulation
rates were obtained by assuming an age of 100 years at the depth where the 210Pb background value
of ≈18 Bq/kg is found (Figure 3d,e). Since physical mixing and bioturbation were neglected in the
calculations, these apparent average rates have to be considered upper limits.

Since the 210Pb dating model requires validation by a second, independent stratigraphic
tracer [47,48], 137Cs activity-depth profiles were considered in the calculations. Unfortunately, as
mentioned above, the 1986 137Cs peak (Chernobyl accident) is not cleatracer [47,48]rly identifiable in
the investigated sedimentary intervals. This is probably due to the strong bioturbation and sediment
mixing (see X-ray images in Figure 3f,g) as suggested before by [16]. Moreover, since the half-life of
137Cs is 30.17 years, it could not be excluded that the concentration is below the experimental sensitivity.
This effect may be enhanced in case of high contents of carbonate (such as in karstic areas) that are less
reactive to radiotracers [49]. In order to overcome validation troubleshooting, the core depth where
137Cs reached the instrumental detection limit was used as reference age, assuming it corresponded to
the early 1960s, when a large number of nuclear bombs were exploded in the atmosphere.

Estimated sediment accumulation rates (SARs; Figure 6) range from 1.9 to 8.5 mm/yr. These
values differ partially from those previously estimated by other authors [16], ranging from 4 to 6 mm/yr
and based only on the distribution of 137Cs in core sediments. In particular, the lowest SAR value
of 1.9 mm/yr was found at site 06BC (Figure 6), located to the NW of the channel at the boundary
with the Korcula Channel, a location comparable to that of sample K3 of [16] where a SAR of 4 mm/yr
was estimated. In the sectors of the channel less influenced by the river outflow, SARs range from 1.9
to 2.3 mm/yr, while in the areas where the river influence is high, SARs range from 4.0 to 8.5 mm/yr.
The highest accumulation rates are observed in front of the river mouth and along the northeastern
coast with a peak of localized preferential accumulation at site 04BC (8.5 mm/yr; Figure 6). Estimated
accumulation rates are in agreement with the observed water circulation, where a hysopycnal river
plume formed at the river mouth distributes particles toward the open sea.
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Figure 6. Apparent sediment accumulation rates (SAR) over the study area.

Apparent accumulation rates (Figures 3 and 6) suggest that most surficial sediments in the NC
result from the present day seasonally river-dominated coastal sedimentary regime, with few relict
deposits in its southernmost sector, south of the river mouth. According to the calculated SARs,
our BCs record a time interval ranging from 18 (04BC) to 100 years (06BC) ago.

5.4. Regional Water Circulation and Water-Column Physical Properties

Surficial currents along the eastern Adriatic in the proximity of the NC are always oriented from
SE to NW following the overall cyclonic circulation of the basin [50]. Local data on annual mean
values of water circulation within the NC are not available in the literature, except for a little punctual
information. Given that the NC represents a semi-closed marine environment, it is reasonable to
assume that channel hydrodynamics are the result of a balance between tidal currents and fluvial
influence, and seasonal variations in precipitation may act as a driving factor for the regional water
exchange with the Adriatic open sea.

Generally, river currents do not exceed the velocity of 0.1 m/s and are higher during the winter
season [51,52]. In particular, in 2004, daily outflows (m3/s) during winter and spring periods ranged
from 300 to 400 m3/s, with short time intervals of peak flow (>500 m3/s) or reduced flow (< 200 m3/s).
However, during the summer season, the river outflow is drastically reduced (up to 50 m3/s), as
reported by UNEP/MAP [53]. In addition, horizontal distribution of freshwater into the channel may
depend on the direction of local winds and may vary on a daily basis [54].

Based on CTD data, sediment grain size and SAR surficial distributions, we suggest the presence
of an eddy in the NC waters located at the center of the channel that may strongly influence sediment
dispersion and determine areas of localized preferential sediment accumulation not necessarily in
correspondence with the river mouth (e.g., 10BC, Figure 4). Moreover, a considerable amount of
freshwater is discharged into the channel by several submarine karstic springs [55], suggesting high
inflow of cold water that lacks sediment load during periods of intense rainfall.

The observed water stratification along the northern transect may represent a seasonal snapshot
of the hydrologic conditions of the study area. Mixed-water conditions may dominate through the
entire NC area during flooding events in autumn. However, for the objectives of this study, spring
conditions may be considered the optimal hydrological situation. Close to the river mouth, less salty
and colder water was detected. This could be due to a reduction of the salt-wedge during low tide
conditions and/or intense river outflow, or the karstic characteristics of the region. Karstic fresh waters
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have generally poor or null suspended material contents, explaining why these inflows do not affect
organic matter or metal distributions.

5.5. Metal Distributions

Metal concentrations suggest that the river outflow plays only a marginal role in Pb, Cr and Ni
surficial distributions (Figure 5). In detail, Pb shows the highest concentration at site 10BC located in
the center of the channel and far from possible direct sources. This may be due to an event of local
discharge or to a pulse in the transport of metal enriched sediment, as suggested by the higher sand
content at the top of the core and by the N/C values (Figure 2b,c and Figure 3). A second local maximum
of Pb content is located in front of the river mouth following a distribution inversely correlated with
the distance from the mouth (Figure 5a).

Cr and Ni contents (Figure 5b,c) are affected by a source located along the coast to the NW of
the river mouth (close to station 08G). Moreover, Cr content shows another local maximum at site
07G (70.4 µg/g), where an increase in the sand fraction is observed, suggesting an additional source.
On the other hand, the minimum values of Ni and Cr contents at site 06BC may indicate a scouring
resuspension or not sedimentation, as suggested by the observed N/C values. In the southern part of
the NC, where coarser sediments are located, an increase of Cr and Ni contents associated to a low
organic carbon and to a low sediment accumulation rate of 2.3 mm/yr (15BC; Figure 3) suggests that
this zone acts as a trap for metal bearing particles. Alternatively, the Cr and Ni abundances in this area
may be influenced by sediment inputs from Peljesac Peninsula.

Some authors indicate the ratio Cr/Ni as a possible tracer of geo-genic versus anthropogenic
influences [56–58] and suggest it as suitable to determining geochemical baselines in the case of high
natural concentrations [34,35,59]. In particular, Cr concentrations in south Dalmatia show a mean
value of 126 µg/g; that is the highest value found in karstic regions, probably due to the presence of
chromite-bearing ultramafic rocks and/or of clastic deposits derived from older mafic magmatic rocks.
Similarly, Ni levels in the same area show a mean value as high as 84 µg/g as a consequence of the
presence of mafic and ultramafic rock outcroppings in the region. These rocks are probably a source
of Ni in alluvial soils of the floodplains of rivers draining this region [57]. The expected Cr/Ni value
reported in literature [56–58] is about 1.5, whereas in the study area Cr/Ni ranges from 0.7 (site 12G) to
1.9 (site 07G) with a mean value of 0.9. This discrepancy may be due to a natural variability but also
due to the extraction efficiency of the leaching method. However, ratio values are generally uniform in
the area supporting the hypothesis of Cr and Ni background concentrations.

According to previous data [17], heavy metals (such as Pb, Cr and Ni) in surficial sediments
are tightly linked to fine grain size fractions, and in particular, to clay minerals coated by iron
oxides/oxy-hydroxides that may trap metal cations within their crystal-chemical structures. Univariate
statistical analysis shown in Table 1 confirms the previous observations for Ni and Cr: that they
correlate positively with each other, and with clay and porosity, while they correlate negatively with
total and inorganic carbon. In addition, organic carbon shows a positive correlation with fine grain size,
in particular, with the clay fraction, and negative ones with total carbon and inorganic carbon. These
results may support the hypothesis of clay minerals and organic matter as driving factors of Cr and Ni
areal distribution. Pb shows a different behavior, characterized by a negative significant correlation
with porosity. Since porosity is correlated negatively to silt and positively to clay, this suggests that Pb
is not immobilized in the clay fraction of the sediments having higher affinity with the silt fraction.

A preliminary evaluation of environmental risks due to contaminant loads within the channel has
been carried out, comparing surficial concentration values with quality criteria for marine sediments
(Table 2)—threshold effect level (TEL), effect range low (ERL), probable effect level (PEL) and effect
range median (ERM) [60–62]—and with benchmarks (LCB and LCL) for Italian coastal areas [63].
These guidelines are screening tools to predict potential sediment toxicity, linking sediment metal
concentrations to the adverse biological effects that may result from exposure to chemicals.
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Table 2. Minimum, maximum and average concentrations (in µg/g d.w.) of heavy metals in box-core
sediments. Comparison with Italian and international sediment quality guidelines benchmarks.

Cr Ni Pb

Mean surficial concentration 56.3 58.2 25
Minimum 26.9 28.7 4.5
Maximum 84 86.8 67.9

BG 45 51.8 24
WA 100 40 10

LCB * 100 70 40
LCL * 360 75 70
ERL ** 81 20.9 46.7
ERM ** 370 51.6 218

ISQGs ** 52.3 15.9 30.2
PEL ** 160 42.8 112.2

Mean metal concentrations pre-seventies (BG); world average (WA) [64]; * Italian Sediment Quality benchmark:
APAT and ICRAM [63]; ** International Sediment Quality Guidelines [60–62].

The Pb and Cr levels in surficial samples are below the benchmarks of PEL, ERM, and the Italian
LCL guidelines, except at sites 10BC and 14BC for Pb (ERL and LCB) and 08G for Cr (ERL). However,
the incidence of the effect for these samples may be considered low or scarcely probable (8%–30% for
Pb and 2.9%–21.1% for Cr; [62–64]).

The Ni surficial concentration exceeds, at several sites, both PEL and ERM guidelines, whereas
stations 06BC and 07G and 10BC comply under PEL; however, the Italian benchmark LCB is exceeded
only at site 08G. In general, the effect incidence for exceeding ERM is common, although for Ni it is
only 16.9% [62–64]. The Pb, Cr and Ni concentrations in surficial sediments of the Neretva Channel
fall into an unpolluted class with exception of Pb content of sample 10BC falling into a moderately
polluted class. All this highlights a general unpolluted situation of the channel.

The sediment flux (carried out where BCs were available; Figure 7) provides a quantitative
estimation of the amount of material that deposits in the channel. Two areas of higher flux are
identified: in front the river mouth and in the center of the NC, at site 04BC. The latter location is
not related to any particular morphologic setting of the channel and coincides with the area where
we suggest the presence of an eddy in the water circulation, probably favoring a critical area of
accumulation. TOC, following a similar distribution, tells the same story (Figure 2b), given that TOC
input depends mostly from the river inflow because springs water may be assumed containing very
few particles. These observations document that local hydrology plays a key role in controlling the
sediment distribution in the area.
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Figure 7. Areal distribution of sediment flux (g/cm2 yr) in surficial sediment of the Neretva Channel.

6. Conclusions

In this study, a multi-proxy approach on surficial sediment samples allowed us to determine
sediment dynamics of the Neretva delta system, the largest modern siliciclastic depositional system on
the eastern Adriatic coast.

Samples from 12 box-corer and five grab stations document that surficial sediments are
predominantly clayey silt and coarse silt with a distribution of finer grained particles decreasing
southward moving away from the river mouth.

Estimated accumulation rates, based on 210Pb and 137Cs activity versus depth profiles, range from
1.9 to 8.4 mm/yr, suggesting the center of the channel and the river mouth as the sectors with the
highest sediment deposition rates. In particular, two areas of higher sediment accumulation were
identified: (i) close to the river mouth; and (ii) in the central-northern sector of the Neretva Channel
along the axis of the basin.

Temperature and salinity vertical distributions indicate stratified waters along the axis of the
basin close to the Croatian coast, and the presence of less salty and colder water in the proximity of the
river mouth. The latter consideration, together with the observation of strong salt intrusions in the NR
delta, suggests a salt wedge reduction during low tide conditions and submerged fresh water inputs.
Moreover, relationships between TOC and TN and their spatial distribution, in particular, covariations
between N/C and δ13C, indicate a terrestrial origin with prevalent accumulation in the vicinity of the
river mouth that decreases northward towards the open sea. The scenario depicted above agrees with
temperature and salinity data of the water column and their surficial distribution in the channel.

Finally, based on CTD data, grain size, TOC and SAR distributions, we suggest the presence
of an eddy in the NC waters near the center of the channel that may be triggered and/or intensified
seasonally. This may strongly affect sediment dispersion favoring areas of localized preferential
sediment accumulation not necessarily close to the river mouth (e.g., 10BC, Figure 4).

The distribution of Pb contents in the surficial sediments follows a general trend inversely
proportional to the distance of the river mouth with two local zones of accumulation: in front of the
river mouth and in the center of the channel. Univariate statistics indicate that Pb is not immobilized
in the clay fraction. On the contrary, Ni and Cr distributions indicate that they follow the clay fraction
and that they account for other sources besides the river, such as sediment input from the Peljesac
peninsula. The comparison with marine sediment guidelines shows that surficial concentrations of the
examined metals have a low toxicity.
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