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This document contains additional details which are secondary to the presented article 5
entitled Driving Profiles Computation and Monitoring for Car Insurance CRM. In 6
particular, some additional experiments on the real showcase and aspects of privacy 7
are reported here. 8

A. INFLUENCE OF α AND β ON SSE 9

In this work, we studied how the value of α influences the SSE, and how the SSE 10
evolves over time. Figure 1 shows the results obtained in the case of the strict clustering 11
monitor. In the figure, we compare different settings of our approach with a baseline 12
where a reclustering is performed at every step of the algorithm. While the experiments 13
in this article shows how α influences communications, if we consider Figure 1 (left), 14
we can state that higher values of α do not influence the average SSE obtained. We can 15
observe only small differences between the variants of our system and the baseline. 16
Finally, considering Figure 1 (right), we can see how the introduction of the option for 17
balancing or the use of predictive models provides a more stable behavior with respect 18
to the baseline, forcing reclustering only when necessary. This behavior is quite similar 19
for different values of α. A set of tests has also been performed to study the impact 20
of β considering both communications and SSE quality. In this case, we observed that 21
changing the value of β has no impact on communications and SSE because there is 22
no communication reduction, and the SSE is stable as for α, thus providing a result 23
quite similar to the one proposed in Figure 1 (right). This is due to the fact that our 24
monitoring is not influenced by the distribution of SSE (see Equation (7)). 25

B. PRIVACY IN DISTRIBUTED CLUSTERING MONITORING 26

In the clustering monitoring model described in our article, each node observes local 27
updated streams and verifies that the local constraint on its stream has not been vio- 28
lated. If there is a violation, the node has to communicate its value to the coordinator. 29
In this case, serious privacy issues can arise. Effectively, the coordinator is responsible 30
for monitoring functions on mobility data, and the local vector, transmitted by each 31
node, describes the mobility behavior of a specific person. An attacker accessing the 32
user vector could learn information such as typical speed or typical trips. Moreover, 33
noncommunication from a specific node can reveal sensitive information about the state 34
of that node. Finally, when the node communicates to the coordinator, it is violating 35
a local constraint, and this information itself could be sensitive. How can we protect 36
this sensitive information? A suitable method consists of additive randomization for 37
perturbing the data to be sent. The data randomization affects also the safe zone. Our 38
setting assumes that each node is secure, and therefore we do not consider attacks 39
at the node level. This is motivated by the fact that GPS traces are automatically 40
collected by safe black-boxes installed by insurance companies and made accessible 41
exclusively to authorized personnel. This prevents potential malicious users (including 42
the car owner) from tampering with the system for fraudulent purposes, or at least 43
makes it extremely difficult and risky to do. On the contrary, we assume here that the 44
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Fig. 1. SSE comparison varying α (left) and SSE behavior through time with α = 1.0 (right).

coordinator is untrusted. Therefore, we focus on designing a privacy-preserving tech-45
nique to defend against an untrusted coordinator, enabling the distributed monitoring46
of global functions while preserving the privacy of each node. This assumption is nec-47
essary for two reasons. First, it allows us to protect data with respect to attacks during48
communications and attacks at the coordinator site by external adversaries; second,49
the coordinator could be a third party that offers the service of monitoring to the car50
insurance company, and this requires protecting data from unauthorized access. We51
formally define the problem as:52

Definition 1. Let {n1, n2, . . . , nm} be the m nodes of the system. We define a privacy-53
preserving technique such that the following requirements are satisfied:54

—Individual privacy is guaranteed;55
—The system performance, in terms of number of communications, is reasonable;56
—The correctness and the quality of the monitored function f is not compromised.57

In this context, we propose a method based on the additive randomization [Agrawal58
and Srikant 2000] of each local vector before sending it to the coordinator.59

B.1. Privacy-Preserving Technique60

The idea of our approach is to add to the original vector a noise vector where the com-61
ponents are drawn from a Gaussian distribution with mean 0 and standard deviation62
σ . During the whole process, for the geometric-based monitoring, the system considers63
the noisy version of each vector. Each node uses the noisy version of the local statistics64
vector for checking the local constraint, and, if there is a violation, the node transmits it65
to the coordinator. The coordinator averages all these noisy vectors and checks whether66
the function of the global average has crossed the threshold T .67

Setup Phase. Our proposal considers an initial phase where each node adds to its68
initial local statistics vector vi(0) a noise vector zi(0) obtaining ṽi(0) and sends it to the69
coordinator, which checks if the global vector computed by using the noisy vectors ṽi(t)70
is within the admissible region; otherwise, a global violation is raised. The coordinator71
defines the initial vector e and communicates it to all sites. At this point, each site72

builds its ball B(ṽi(t), e) with radius r̃i = ‖ṽi (t)−e‖
2 and center c̃i = ṽi (t)+e

2 . The addition of73
the noise vector affects the radius and the center of the ball, and, as a consequence, the74
construction of the safe zone; then, even the safe zone is randomized.75

Local Monitoring Phase. After constructing its ball, a node monitors the local statis-76
tics vector against that safe zone; for each time t the node ni adds a noise vector zi to77
the current statistics vector vi(t) and tests its local constraints; that is, it checks if the78
perturbed vector ṽi(t) is contained in the admissible region (i.e., if the ball B(ṽi(t), e)79
is monochromatic). If no violation occurs, the monitoring goes on without any commu-80
nication and no further action. If there is some local violations, the controller has to81
check whether there is a global violation. To verify whether the global threshold T82
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Fig. 2. Missing alarms caused by the randomization.

was crossed, the coordinator requires a synchronization (i.e., all nodes have to trans- 83
mit their perturbed statistics vectors) and then evaluates whether the average of this 84
vector is within the admissible region. If a global breach is detected, the coordinator 85
computes a new estimate vector e according to the updated statistics vectors sent by 86
the nodes. 87

B.2. Correctness of the Monitoring 88

The randomization of each local statistics vector ṽi(t) implies the randomization of each 89
ball B(ṽi(t), e). When we add a noise vector zi to vi(t), the diameter of the original ball 90
could increase or decrease, and the ball could also change its position thus generating 91
fake or missing alarms. The first case is due to the fact that a non-monochromatic ball 92
after the randomization could become monochromatic and generate fake violations. 93
Therefore, privacy protection might increase the number of communications because 94
of false-positive alarms. The second case represents the opposite situation: A monochro- 95
matic ball becomes non-monochromatic with the randomization. This means that the 96
node might not communicate when a violation of the original constraint actually hap- 97
pens. The correctness of the system could be compromised because of missing alarms. 98
This case is represented in Figure 2, where the gray area shows the inadmissible zone, 99
the red ball represents the randomized ball, while the other ball is the original one. The 100
construction of the red ball, given the perturbed vector, leads to a missing alarm. The 101
same figure on the right outlines what happens in the system in terms of safe zones. 102
The original vector lies outside of the safe zone while the adding of noise moves the vec- 103
tor within the safe zone, thus generating the missing alarm. In the following, we give 104
the correctness guarantees of privacy-preserving monitoring, providing a probabilistic 105
guarantee about missing alarms. 106

Given a vector ṽi(t), we know that it is the result of adding noise to each original 107
component drawn by a Gaussian distribution with mean 0 and standard deviation 108
σ . Fixed with a probability 1 − δ, we want to find the minimum radius such that 109
the original vector vi(t) is one of the points in the area covered by the sphere (in s 110
dimensions) with center ṽi(t) and a specific radius rl; ||zi|| = ||vi(t) − ṽi(t)|| ≤ rl with 111
probability at least 1 − δ. We can observe that ||zi||2 follows a χ2

s distribution, and, in 112

particular, the distribution is σ 2χ2
s . 113

Given the ball B(ṽi(t), e) of the node ni with center c̃i, we denote by dist(c̃i, b) the 114
distance between c̃i and the boundary of the nonadmissible region. Now, we formulate 115
the theorem that states the correctness of the monitoring. 116

THEOREM 1. Given a perturbed local statistics vector, if its ball B(ṽi(t), e) is monochro- 117
matic and dist(c̃i, ṽi(t)) + rl < dist(c̃i, b), then the probability of having a missing alarm 118
is at most δ. 119
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PROOF. As stated earlier, with probability at least 1−δ we have ||vi(t)− ṽi(t)|| ≤ rl. So,120
dist(c̃i, ṽi(t)) + r represents the radius of the original ball B(v(t), e) with probability at121

least 1−δ. We have that dist(c̃i, ṽi(t)) = ||ṽi (t)−e||
2 (i.e., it is the radius of the ball B(ṽi(t), e))122

while ||ṽi (t)−e||
2 + rl ≥ ||ṽi (t)−e||

2 + ||vi(t) − ṽi(t)|| = ||vi (t)−e||
2 (i.e., the original ball will have at123

most this radius). Since, dist(c̃i, ṽi(t))+rl < dist(c̃i, b) we can infer that with probability124
at least 1 − δ the original ball B(v(t), e) is monochromatic and, as a consequence, the125
probability of missing alarms (non-monochromatic) is at most δ.126

Another form of missing alarms are those that we call global missing alarms: The127
coordinator receives one or more alarms from the nodes, computes the average vector128
ṽ(t), and it is within the admissible region while the original v(t) would not be within129
that region. Before providing the theorem that states the probability of global missing130
alarms in the monitoring process, we note that if each node vector is perturbed by131
a noise vector with components drawn by a Gaussian distribution N (0, σ ), then the132
average vector is affected by noise from a Gaussian distribution with standard deviation133
σ√
m, where m is the number of nodes in the system. By following the same reasoning134

as in the case of local missing alarms, given the perturbed average vector ṽ(t), with135
probability at least 1 − δ, its original version is within the area covered by the sphere136
(in s dimensions) with center ṽ(t) and radius rg. Therefore, we have that ||v(t)− ṽi|| ≤ rg137

with probability at least 1 − δ and the noise ||v(t) − ṽi||2 follows the distribution σ√
m

2χ2
s .138

We denote by dist(ṽ(t), b) the distance between the global vector ṽ(t) and the boundary139
of the nonadmissible region.140

THEOREM 2. Given the perturbed global vector ṽ(t), if rg < dist(ṽ(t), b), then the141
probability of having a missing alarm is at most δ.142

PROOF. The proof derives from the observation that we have ||v(t) − ṽi(t)|| ≤ rg with143
probability at least 1 − δ.144

B.3. Protection Against Spectral Filtering Attack145

An attacker can access the coordinator data, obtaining the matrix Ũ where each row is146
a perturbed node vector ṽ(t). From Ũ, the attacker applying the spectral filtering attack147

[Kargupta et al. 2005] can reconstruct an approximation of the original matrix called Û .148

The distance between U and Û is the privacy protection measured by the relative error149

re(U, Û ): Higher re means more privacy protection. The relative error increases with150
the magnitude of the noise to be added to the original data; a Gaussian distribution with151
a greater σ guarantees more privacy protection. So, to counter this attack, we exploit152
the methodology presented in Guo et al. [2008], allowing us to find a suitable σ that153
guarantees a minimum level of privacy. It gives a bound for the reconstruction error154
obtained by a spectral filtering attack, helping data owners to decide how much noise155
should be added to satisfy a given threshold of tolerated privacy breach. In a centralized156
system, the data owner identifies the best σ of the noise distribution by accessing the157
original matrix U . This is not possible in a distributed system because each node does158
not have a global vision of all the original vectors; thus, we propose to learn offline159
the standard deviation by observing the historical data of the nodes N. The idea is160
to analyze over an extended period the data pertaining to the nodes in the system;161
by observing the typical behavior of the data, we can learn the standard deviation162
σ suitable to setting the minimum privacy level τ for each monitor iteration tp. The163
learned values of σ will be used during the monitoring phase. The basic assumption164
here is that a user’s behaviors present some typical regularities, and we want to exploit165
them to find the suitable standard deviation of the noise distribution. In the following,166
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Fig. 3. Communications, SSE, F-measure, and reclustering by varying α for different levels of privacy.

we describe the details of the procedure for the learning phase, showing how to adapt 167
this methodology to our distributed scenario. 168

The learned information (i.e., a set of pairs 〈σtp, τtp〉) can be used by each node during 169
the monitoring phase after setting the global privacy level that we want guaranteed 170
in the system. Given a monitoring iteration tp and the global privacy level to be guar- 171
anteed τ, the node will draw the noise from the Gaussian distribution with standard 172
deviation σtp corresponding to minimum τtp such that τtp ≥ τ . Clearly, the learned infor- 173
mation could be used in a different way. As an example, after learning, we could decide 174
to always use the maximum standard deviation found in the historical data. This could 175
cause us to use too much noise in some steps; this corresponds to better privacy but 176
also to a worse impact on the correctness of the monitoring function. 177

C. EVALUATING THE PRIVACY PROTECTION IMPACT 178

Now we analyze the effects of the privacy transformation on the number of communi- 179
cations and on the quality of clustering and global function f . We set the probability of 180
missing alarm to δ = 0.01; this means that we capture possible local and global missing 181
alarms with a probability at least equal to 99.99%, and we consider a number of profiles 182
equal to 10. To evaluate the performance of the proposed privacy-preserving approach, 183
we consider the amount of communications exchanged between the nodes and the con- 184
troller and between the nodes and the semi-trusted entity for the communication of the 185
additional component. The communications of the first type are always a vector with 186
d dimensions, while messages of the second type are vectors of 1 dimension. In both 187
cases, the channel is a point-to-point link between the node and the controller/third 188
party. Here, we do not consider communications from the controller to the nodes; these 189
communications can be of different sizes, and they can use the network’s broadcasting 190
capabilities to reach all nodes at once. The number of communications of this kind is 191
negligible; thus, we decided to not include them in the analysis. We compare the amount 192
of communications required by the monitoring process without any privacy guarantee 193
and the one required in the system when we use our privacy-preserving method with 194
different levels of privacy. In privacy-preserving monitoring, the number of communi- 195
cations also includes communications between the nodes and the semi-trusted entity. 196

Figure 3 shows the effect of the privacy method on performance considering com- 197
munications, the SSE, the F-measure, and the reclustering operations when varying 198
the α parameter. As expected, the number of communications increases with privacy 199
protection: More privacy requires more communications. This is due to two reasons: 200
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(i) in the privacy-preserving approach, any time the node has to transmit the vector201
it has also to transmit the additional component with another transmission, so we202
have to double communications; and (ii) the randomization can increase the number203
of false-negative alarms. However, we can see that with a reasonable α = 1.5, the204
privacy-preserving approach adds about 30% of communications to the original ones.205
This is also the effect of double communications due to the third party; indeed, without206
these additional messages, we would have a very similar number of communications.207
We note that above an α value of about 2, increasing the level of privacy leads to de-208
creasing communications. This is probably due to the bad effect of a too-large value of209
α in computing Equation (2). Moreover, we analyze the impact of the randomization on210
the monitored global SSE and on the quality of clusters. The results show the behavior211
of the SSE measure by varying α and with different levels of privacy. The SSE value212
increases when the level of privacy is higher; however, the effect of privacy is reason-213
able because we have an increase of about 7% of the original value in the worst case. To214
evaluate the quality of the obtained clusters, we measured the F-measure, which is the215
harmonic mean of precision and recall.1 As expected, by increasing privacy protection,216
we reduce cluster quality. This result is confirmed by the F-measures computed for the217
different privacy levels. Finally, the results show that the perturbations introduced by218
the privacy process do not have a significant impact on the number of reclusterings219
made by the system.220
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