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Abstract

Ab initio many-body perturbation theory within the GW approximation is
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a Green’s function formalism widely used in the calculation of quasiparticle
excitation energies of solids. In what has become an increasingly standard
approach, Kohn-Sham eigenenergies, generated from a DFT calculation with
a strategically-chosen exchange correlation functional “starting point”, are
used to construct G and W , and then perturbatively corrected by the re-
sultant GW self-energy. In practice, there are several ways to construct the
GW self-energy, and these can lead to variations in predicted quasiparticle
energies. For example, for ZnO and TiO2, the GW fundamental gaps re-
ported in the literature can vary by more than 1 eV depending on the GW
code used. In this work, we calculate and analyze GW quasiparticle (QP)
energies of these and other systems with three different GW codes: Berke-
leyGW, Abinit and Yambo. Through a systematic analysis of the GW
implementation of these three codes, we identify the primary origin of major
discrepancies between codes reported in prior literature to be the different
implementations the Coulomb divergence in the Fock exchange term and
the frequency integration scheme of the GW self-energy. We then eliminate
these discrepancies by using common numerical methods and algorithms,
demonstrating that the same quasiparticle energies for a given material can
be obtained with different codes, within numerical differences ascribable to
the technical details of the underling implementations. This work will be
important for users and developers in assessing the precision of future GW
applications and methods.

Keywords: GW calculations, reproducibility, solids, convergence,
plane-wave pseudopotential

1. Introduction

Quantitative prediction of charged single-particle excitations in other-
wise interacting many-particle systems such as solids is a key component of
the design and discovery of materials and the fundamental understanding
of matter at the atomistic level. A rigorous formalism for computing such
particle-like excitations is many-body perturbation theory, in which electron
addition/removal energies are solutions to an effective non-Hermitian single-
particle eigenvalue problem with a non-local energy-dependent potential, or
self-energy operator Σ. In the so-called GW method, [1] the self-energy Σ
is approximated, to lowest order in the screened Coulomb interaction W , as
iGW , where G is the one-electron Green’s function. In a standard approach,
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G and W are constructed from a (either regular or generalized [2]) Kohn-
Sham (KS) eigensystem, computed via density functional theory (DFT), and
the KS eigenvalues are corrected perturbatively with a one-shot G0W0 self-
energy, where the subscript indicates that G and W are not updated self-
consistently. By accounting for the screening of the crystal environment, GW
is naturally applicable to solids and has proven quite effective in predicting
quasiparticle energies of a wide range of crystals.[3, 4, 5, 6, 7, 8] However,
because of the complexity, computational cost, and the number of conver-
gence parameters involved, numerical approximations are required in GW
calculations, and varying algorithms in different codes can sometimes yield
distinct results.

Crystalline silicon is probably the most-studied test-bed solid for GW .
Having high crystal symmetry and containing only sp-bonded orbitals, silicon
is a relatively-simple system, for which GW within standard approximations
yields accurate quasiparticle energies and sizable self-energy corrections.[3, 4]
Transition metals (TMs) and transition metal oxides (TMOs), with localized
d or f electrons, present a bigger numerical challenge for GW . When dealing
with TMs, care should be taken in the technical details and approximations
used within GW . For instance, the convergence criteria,[9] and the choice of
frequency-integration scheme [10, 11, 12, 13, 14] and pseudopotentials [15]
can yield substantially different results. Several GW studies on rutile TiO2

have predicted gaps ranging from 3.1 to 4.8 eV,[11, 16, 17, 18, 19, 20] while
for ZnO gaps published so far range from 2.6 to 4.5 eV.[9, 12, 15, 21, 22, 23,
24, 25] Thanks to advances in computational resources and algorithms, recent
work has explored convergence beyond past limits,[9, 12, 15, 21, 22, 23, 25]
and accurate pseudopotentials specific for GW have been proposed. [15, 26]
Despite the existence of studies comparing GW results from different codes
(such as FHI-AIMS [27], TURBOMOLE [28], and VASP [29]), methods, and
basis sets for gas-phase molecules, such as GW100 [30], no equivalent study
yet exists for solids. The growing popularity of GW , the multiple dedicated
codes used forGW , and the existing challenges and discrepancies encountered
when performing GW on increasingly chemically complex systems, such as
TMs and TMOs, make it imperative to have reproducibility of predictions
from different GW codes.

In this work, we report the results of a detailed comparison of three dif-
ferent plane-wave-based GW codes, and we find that predictions from these
codes can agree very well, under given similarly physically sound approxima-
tions. For purposes of assessment, we study the representative solids Si, Au,

3



TiO2, and ZnO with the open-source GW codes Abinit (ABI) [31], Berke-
leyGW (BGW),[32] and Yambo (YMB).[33] Our benchmark calculations
provide a framework for users and developers to document the precision of
new applications and methodological improvements, and provides standards
for the reproducibility of GW calculations.

2. The GW method in practice

The GW method is an interacting Green’s function formalism which ac-
counts for the response of the system to addition or removal of a single elec-
tron in an interacting N -electrons system, via a non-Hermitian, non-local,
and frequency-dependent self-energy operator

Σ(r, r′;ω) =
i

2π

∫
dω′ eiω

′ηG(r, r′;ω + ω′)W (r, r′;ω′), (1)

where η is a positive infinitesimal and the bare Coulomb potential v and
the inverse of the dielectric matrix ε−1 are used to construct the screened
Coulomb potential

W (r, r′;ω) =

∫
dr′′ε−1(r, r′′;ω)v(r′′, r′). (2)

In the so-called one-shot GW , also known as G0W0, the quasiparticle
energies EQP are solved perturbatively from a mean-field Kohn-Sham (KS)
starting point; that is, G0 and W0 are constructed from the KS mean-field.
In this approach, which implicitly assumes the KS wavefunctions ψKS are
close to the QP wavefunctions ψQP, the QP energy of the ith state is given
by[3, 4]

EQP
i = EKS

i + 〈ψKS
i |Σ(EQP

i )− Vxc|ψKS
i 〉 (3)

where Vxc is the KS exchange-correlation potential, and Σ is evaluated at
the QP energy EQP

i . A common approximation is to linearize Σ in the QP
energy with a first-order Taylor expansion around EKS

i , such that

EQP
i = EKS

i + Zi 〈ψKS
i |Σ(EKS

i )− Vxc|ψKS
i 〉, (4)
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with the renormalization factor

Zi =

[
1− 〈ψKS

i |
∂Σ(ω)

∂ω

∣∣∣∣
ω=EKS

i

|ψKSi 〉
]−1

. (5)

As discussed later, the standard linearization scheme should be used with
care as it can lead to relatively large deviations (up to 0.2 eV in ZnO) in
predicted QP energies.

A source of deviation among GW results with different codes is the nu-
merical integration scheme used to evaluate the frequency dependence of Σ
in Eq. (1).[13, 12, 11, 10] A common practice to reduce computational cost
is to approximate the dielectric function with a single-pole via a general-
ized plasmon-pole model (PPM). For each set of momentum components
(q,G,G′), the inverse dielectric function ε−1 in this approximation takes the
form

Im ε−1G,G′(q, ω) = AG,G′(q)× (6)
[
δ
(
ω − ω̃G,G′(q)

)
− δ
(
ω + ω̃G,G′(q)

)]

Re ε−1G,G′(q, ω) = 1− AGG′(q) ω̃2
GG′(q)

ω2 − ω̃2
G,G′(q)

, (7)

where the matrices AGG′(q) and ω̃GG′(q) are to be determined. [4] In the
Hybertsen-Louie (HL) approach, the PPM parameters are determined from
sum rules and by evaluating the dielectric function at ω = 0. [4] In the
Godby-Needs (GN) scheme, the parameters are set by calculating ε−1 at
two frequencies: ω = 0 and an imaginary frequency close to the plasma
frequency.[34] Both Abinit and Yambo use the PPM-GN scheme as de-
fault; BerkeleyGW uses a PPM-HL version modified to deal with non-
centrosymmetric systems.[35, 32] When calculating ε(q,q′;ω = 0) to find
the PPM-HL parameters from Eq. (7), it may happen that the dielectric
function cannot be satisfactorily approximated by a single-pole model for
certain (q,G,G′) leading to imaginary frequencies ωG,G′(q). Such modes,
referred to here as unfulfilled PPM modes ωunf., are neglected in the original
version of the PPM-HL.[4] Other treatments of the unfulfilled modes are also
possible. For example, these frequencies can be given an arbitrary value of
ωunf. = 1 Ha, which was the default behavior in Abinit and Yambo.

Beyond PPMs, it is increasingly standard for GW codes to use full-
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frequency (FF) methods, in which the frequency convolution in Eq. (1) is
evaluated numerically. A straightforward integration method on the real
axis (FF-RA) is available in codes such as Yambo and BerkeleyGW. How-
ever, such an integration of Σ in Eq. (1) presents numerical challenges since G
and W possess poles close to the real axis. To avoid this difficulty, in the full-
frequency contour-deformation (FF-CD) method, the integration contour in
Eq. (1) is deformed into the complex plane, into a region where the integrand
is smooth; the alternative integration path must be supplemented with the
residues from the poles of G, as explained in detail in Refs. [36, 5, 37]. The
FF-CD method is available in Abinit and has been recently implemented
into BerkeleyGW.[38, 39] For other FF methods we refer the reader to
Refs. [40, 41, 20].

The self-energy is usually split into a frequency-independent exchange
part Σx and a correlation part Σc, so that Σ(r, r′;ω) = Σx(r, r

′)+Σc(r, r
′;ω),

[42] where the matrix element of Σx between two Bloch states reads:

〈ik|Σx|jk〉 = −
∑

q,G

v(q + G)Fijk(q + G) (8)

and
Fijk(q + G) =

∑

v∈occ.

Mivk(q + G)M∗
jvk(q + G). (9)

Here, Mivk = 〈ik|ei(q+G)·r|vk− q〉 are matrix elements for states i and v at
k-point k. The expression for Σc is given in Ref. [12].

The exchange term, also present in the evaluation of Fock exchange for
hybrid functionals in DFT, features a divergence in the Coulomb potential
v(q + G) = 4πe2/|q + G|2 as q → 0 for G = 0. Several schemes have been
proposed to treat the divergence of the Coulomb term. [43, 44, 45, 46, 47, 48,
49, 50, 51, 33, 32] For instance, in the spherical-cutoff technique, the Coulomb
interaction is attenuated beyond Rc and v(0) is replaced with 2πe2R2

c , where
the sphere of radius Rc has volume equal to that of the unit cell times the
number of k-points. [49] In Abinit by default the Coulomb singularity is
approached by an auxiliary-function integration method detailed in Ref. [48].
Other codes avoid the Coulomb singularity by replacing the value of q → 0
in Eq. (8) by an integral around q ' 0.[52, 33, 32] This method is applicable
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to any q point in the BZ by assuming,

〈ik|Σx|jk〉 = −
∑

q,G

∫

Rq+G

dq′

Ω(Rq+G)
v(q + q′ + G)

× Fijk(q + G), (10)

where the integral is performed over the BZ region Rq+G, which is associ-
ated with a volume Ω(Rq+G), and centered around each q + G point. This
method gives the effect of a larger sampling of points around q assuming
that F(q + G) is constant over that region.

In the “random integration method” (RIM) implemented in Yambo [33]
and “Monte Carlo averaging” (MC average) technique used in BerkeleyGW
[32] the integral is evaluated using a stochastic scheme. In both codes a
stochastic scheme is also used to evaluate every term of the form

∫
dnqf(q)v(q)

in Σc, as the scheme can straightforwardly account for integration of arbitrary
potentials in regions Rq+G with arbitrary boundaries. Moreover, with the
MC averaging scheme, the analytical behavior of W (q→ 0) is also appropri-
ately adjusted depending on whether the system behaves like a metal, semi-
conductor, or displays a graphene-like linearly vanishing density of states; it
is also adjusted based on the dimensionality of the system, as discussed in
Ref. [32]. These stochastic integration methods have shown success in accu-
rately computing the Coulomb singularity and in improving the convergence
of Σ with respect to k-point sampling.[33, 32] To facilitate a complete com-
parison, we also implemented the MC averaging method into Abinit for the
present work, as will be discussed below.

Aside from the physical model employed for the dielectric matrix and the
treatment of the Coulomb divergence, we emphasize that several parameters
must be converged in order to achieve meaningful GW results. Both the cal-
culation of ε and Σc involve unrestricted sums over bands that are truncated
up to Neps. and Nsig., respectively. Additionally, the codes discussed here use
plane-wave basis sets; the number of plane-wave basis functions, NPW, used
to evaluate ε and Σ, is expanded up to an energy-cutoff εcut. These three
parameters Neps., Nsig., and NPW are interdependent, and their convergence
needs to be addressed simultaneously.[9, 12] Here, we extrapolate the GW
QP gaps (energy eigenvalue differences) to the complete basis set (CBS) limit
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with a function of the form[39]

f(Neps.,NPW, Nsig.) =(
a1
Neps.

+ b1

)(
a2
NPW

+ b2

)(
a3
Nsig.

+ b3

)
, (11)

where a1, a2, a3, b1, b2, and b3 are constants to be determined. Other im-
portant convergence parameters and considerations include the k-point sam-
pling of the Brillouin zone, pseudopotential choice, basis used to describe the
wavefunctions, and in the case of full-frequency calculations, the frequency
sampling on the real and imaginary axis.

3. Technical details

In what follows, we compare GW calculations for several materials using
three codes implementing the same approaches. For all materials considered,
we fix the lattice parameters to the experimental values. These are, for Si in
the diamond structure, fcc Au, rutile TiO2, and wurtzite ZnO, respectively,
5.43 Å, 4.08 Å, (a = 4.60, c = 2.9) Å, and (a = 3.25, c = 5.20) Å. We use
norm-conserving Fritz-Haber Institute pseudopotentials with 6, 4, 12 and 20
valence electrons for O, Si, Ti and Zn, respectively. For Au, we use Optimized
Norm-Conserving Vanderbilt Pseudoptentials (ONCVP) [53] with 19 valence
electrons. We use a Perdew-Burke-Ernzerhof (PBE) [54] starting point for
GW , except for ZnO in which the Local Density Approximation (LDA) is
used for the sake of comparison to previous work. Our DFT calculations use
a k-point mesh and a plane-wave energy-cutoff which ensure that the total
energies are converged within 50 meV per unit cell. The k-point mesh is
consistent with that for GW calculations, see below; we use a plane-wave
energy cutoff to represent wavefunctions of 40, 88, 300 and 300 Ry for sili-
con, gold, TiO2 and ZnO, respectively. The GW parameters are carefully set
to converge quasiparticle energies to 0.1 eV; for silicon, we use a Γ-centered
Monkhorst-Pack grid of 12× 12× 12 k-points, εcut = 20 Ry and 300 unoccu-
pied states; for gold, we use a mesh of 16×16×16 k-points, εcut = 32 Ry, and
400 unoccupied states; for rutile TiO2, we use a shifted k-grid of 6×6×10 k-
points and the number of unoccupied states and εcut value were extrapolated
to the CBS, as detailed in the supplemental materials (SI); and for wurtzite
ZnO, we use a shifted k-grid of 8× 8× 5 k-points, and the unoccupied states
and εcut are also extrapolated to the CBS. We summarize in Table I of the
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Supplementary Information (SI) all convergence parameters used for tables
and figures in this manuscript.

4. Results and discussion

4.1. Silicon
Σ

x ik
,i

=
V

B
M

Nk

36241284

-12.5

-12.6

-12.7

-12.8

Abinit aux. func.
Yambo RIM all BZ
Yambo RIM q ≃ 0

BGW MC avg. all BZ
BGW MC avg. q ≃ 0

Σ
x ik

,i
=

C
B

M

-5.7

-5.8

-5.9

Figure 1: Convergence of the matrix elements of Σx for the VBM and CBM at the Γ point
for silicon, with respect to the number of k-points Nk ×Nk ×Nk. In the different codes,
several techniques are used to treat the Coulomb singularity (see text).

We calculate the GW quasiparticle corrections to the band-structure of
bulk silicon, a typical system for GW calculations. We use a common pseu-
dopotential for all GW calculations, as defined in Section 3. The effect of
the pseudopotential approximation for silicon is discussed in Ref. [55].

We first study the accuracy of common approximations to treat the
Coulomb divergence, which influences the rate of convergence with respect to
k-points. In Fig. 1, we show the convergence of the matrix elements of Σx for
the valence band maximum (VBM) and conduction band minimum (CBM)
at Γ. We consider different techniques to treat the Coulomb singularity, in
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QP energies of silicon (eV)

PPM-GN PPM-HL FF-CD FF-RA
ABI BGW YMB ABI BGW ABI BGW YMB

VBM -0.64 -0.64 -0.64 -0.95 -0.95 -0.74 -0.79 -0.72
CBM 0.52 0.53 0.52 0.29 0.28 0.48 0.49 0.49
Gap 1.16 1.17 1.16 1.24 1.24 1.22 1.28 1.21

Table 1: VBM, CBM and fundamental energy-gap of silicon calculated within GW with
several codes using different frequency-integration schemes. Band energies are shown with
respect to the DFT VBM.

particular the MC average in BerkeleyGW for only q = G = 0 (black
lines, default up to version 1.1 of BerkeleyGW) and for all G vectors and
q-points in the BZ (blue lines, default starting from version 1.2); the RIM
for q = 0 only (brown lines) and all BZ (orange line) in Yambo and the
auxiliary-function treatment [48] in Abinit (pink lines). As expected, both
the convergence rate with respect to k-points and the converged number of
k-points can differ with the choice of method to treat the Coulomb singu-
larity. In this case the RIM and MC average approaches converge fastest,
with a grid of 8 × 8 × 8 k-points being sufficient to converge the Σx matrix
elements for the VBM and CBM within 0.05 eV.

In Table 1, we show converged G0W0@PBE QP energies for bulk silicon
using two different frequency integration schemes and different GW codes.
In fact, we find the same QP energies within 0.05 eV for all codes consid-
ered here. With respect to the frequency-integration schemes, we find that
the PPM in the GN or HL fashions provide a gap for Si within 0.1 eV with
respect to the full frequency (FF-CD) reference. Importantly, for a given
frequency-integration scheme, the QP energies obtained with the different
codes considered here agree within a tolerance better than 0.05 eV, demon-
strating that the same GW corrections can be found with different codes.

We highlight that the VBM, CBM, and gap energies calculated with
BerkeleyGW and Abinit with FF-CD agree with the energies obtained
with Yambo and FF-RA. This result serves as a numerical verification of
the equivalence between the implemented FF-CD and FF-RA integration
schemes, which was demonstrated exactly only for the electron gas. [36]
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VBM at Γ

Σ
ik

(e
V

)

18161412108642

-23.0

-23.2

-23.4

ABINITYamboBGW

CBM at Γ

Σ
ik

(e
V

)

-11.2

-11.4

-11.6

Figure 2: Convergence of the GW self-energy of gold. We show Σik matrix elements
for k = Γ and i =VBM/CBM. We consider uniform k-point grids of Nk × Nk × Nk k
points. The codes used here implement particular sets of approximations to treat metals
(see text).

4.2. Gold

We now revisit the G0W0 corrections to the scalar-relativistic band struc-
ture of bulk gold, a relatively difficult case for GW due to convergence issues,
the non-negligible influence of semicore orbitals on the band structure, and
relativistic effects. [56, 57] In what follows, we neglect spin-orbit interactions.
We first converge the number of bands and εcut, as detailed in the SI; 400
unoccupied states and εcut = 32 Ry ensures a convergence of 0.15 eV in the
QP gaps between occupied and unoccupied bands across the Brillouin zone
in a relatively large window of energies up to ∼ 15 eV above the Fermi level.
Secondly, we uniformly increase the k-point mesh up to 16 × 16 × 16. We
observe differences in k-point convergence rate that can be traced to the
specific numerical methods used. BerkeleyGW uses a zero-temperature
formalism, and a long wavelength limit of the head (G = G′ = 0 component)
of the inverse dielectric matrix is ε−100 (q → 0) ∼ q2 specific to metals. This
in turn modifies the MC averaging scheme, since the head of the screened
Coulomb potential W00(q) is now a finite and smooth function for q → 0 [32].
On the other hand, Abinit and Yambo use finite-temperature occupation
factors, requiring a smearing parameter. Here we use Gaussian smearing
with a broadening of 0.010 Ry.

In Fig. 2, we show the matrix elements of Σ calculated with sets of k-
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points of increasing size; here we set εcut = 32 Ry and N = 400. As men-
tioned, the rate of convergence depends on the treatment of band occupations
and the Coulomb singularity. While Abinit and Yambo use partial occu-
pations consistent with the underlying DFT code, BerkeleyGW uses a
zero-temperature scheme where the bands are either fully-occupied or fully-
empty. Moreover, BerkeleyGW uses a particular metal-screening scheme
to treat ε(q → 0) as described in Ref. [32]. With these different approaches,
as expected, the self-energy can converge at different rates with respect to
the k-point sampling (see Fig. 2). Importantly, when using a relatively-dense
mesh of 16× 16× 16 k-points, the codes considered here agree within 0.1 eV
in the predicted self-energy of the VBM/CBM at Γ, demonstrating that for
metals the codes predict the same QP energies when convergence is reached.

In Table 2 we show that the matrix elements of Σ for bands around
the Fermi level calculated with the different codes. The scalar-relativistic
DFT band structure and the Brillouin zone are shown in the SI. The GW
corrections agree within 0.05 eV, corroborating that at convergence different
codes give the same QP energies.

GW -PPM self-energy for gold (eV)
Abinit BerkeleyGW Yambo

Γ12 -23.33 -23.35 -23.29
X5 -24.25 -24.20 -24.20
X4′ -12.98 -13.08 -12.97

Table 2: Absolute GW self-energy for gold at high-symmetry k points, obtained from a
scalar-relativistic PBE DFT calculation. Calculations were performed with three different
codes and with the PPM-GN.

4.3. Rutile TiO2

Rutile has been the subject of several GW studies, and the reported G0W0

gaps range from 3.1 to 4.8 eV [16, 17, 11, 18, 19, 20, 25]. Part of the reported
disagreement comes from the treatment of the frequency dependence of Σ.
As detailed in Ref. [11], the fundamental gap calculated with certain PPMs
can deviate considerably (by up to 1.1 eV) from a full-frequency reference.
The sensitivity of the TiO2 gap to the manner in which the frequency de-
pendence of Σ is treated makes rutile an interesting case to investigate the
effect and accuracy of PPM and FF methods. As mentioned previously, we
use FHI-type pseudopotentials including semicore states consistently in all
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Rutile: (unconverged) QP energies obtained with a spherical-cutoff method (eV)
PPM-GN PPM-HL∗ PPM-HL† FF-CD FF-RA

BGW Abinit Yambo BGW Abinit BGW Abinit BGW Abinit Yambo

VBM 1.66 1.66 1.66 1.53 1.58 1.27 1.32 1.59 1.59 1.59
CBM 5.47 5.47 5.47 5.62 5.58 5.98 5.94 5.45 5.45 5.43
Gap 3.81 3.81 3.81 4.09 4.00 4.71 4.62 3.86 3.86 3.84

Table 3: QP energies for rutile within a spherical-cutoff technique. This comparison is
performed with small convergence parameters: a 6 × 6 × 10 k-point grid and εcut = 20
Ry. The actual QP energies of rutile are shown in Table. 4. We use different codes and
frequency-integration schemes (see text) For PPM-HL, unfulfilled PPM modes (ωunf.) are
either ∗ set to 1 Hartree or † neglected.

calculations performed with different codes. Although the choice of pseu-
dopotentials for GW is not studied in this work, we found that our results
for rutile are somewhat modified (by less than 0.1 eV) relative to those ob-
tained with other PPs, such as Gaussian[58] and pseudo-dojo-v0.2[26] PPs
(see Appendix Appendix A for more details).

We first examine the G0W0@PBE QP energies of rutile TiO2 obtained
from different codes, frequency-integration schemes, and in the case of PPMs,
choices for ωunf., as shown in Table 3. The PPM-GN predicts the VBM, CBM,
and gap of rutile within 0.1 eV of the FF reference. The accurate performance
of the PPM-GN has been observed consistently for other systems, including
other transition metal oxides [10, 12, 13].

We now examine the PPM-HL and in particular the effect of the different
choices for ωunf.. Interestingly, when the terms with unfulfilled PPM modes
are set to 1-Ha, the PPM-HL yields results within 0.1 eV of the PPM-GN
and FF approaches, and when neglecting components with ωunf. the results
tend to deviate by up to 0.8 eV from the FF reference. This clearly indicates
that the performance of PPMs for rutile is highly sensitive to the treatment
of unfulfilled PPM modes. For rutile, ωunf. make up an alarming proportion
of the dielectric function (∼54% of the matrix elements), which suggests
the need for a full-frequency treatment of ε, in agreement with Ref. [11].
The fraction of unfulfilled PPM modes is therefore an important indicator of
whether a full frequency approach is required.

We now compare the G0W0 self-energy calculated with different codes in
Table 3. When using the PPM-HL, the self-energy can deviate by up to 0.1 eV
for the different codes used here, due to different variants of the PPM-HL
being implemented; while Abinit implements the original version of PPM-
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Rutile TiO2 QP bandgap (eV)

Code Potential Freq. Eg Ref.

Yambo NC-PP PPM-GN 3.2 This work

Abinit NC-PP PPM-GN 3.2 This work

BGW NC-PP PPM-GN 3.2 This work

BGW NC-PP FF-CD 3.3 This work

BGW NC-PP PPM-HL 3.1 [19]

Tombo AE PPM-HL 4.0 [20], [25]

Yambo NC-PP PPM-GN 3.6 [17]

SaX NC-PP PPM-GN 3.4 [18]

AE 4.8 [16]

Yambo NC-PP FF-CD 3.3 [11]

Tombo AE FF∗ 3.3 [20], [25]

Table 4: We show the fundamental energy-gap of rutile calculated with G0W0 using differ-

ent set of approximations within different codes, such as the frequency-integration scheme,

basis set and norm-conserving pseudopotentials (NC-PP) / all-electron (AE). ∗ FF method

in the complex plane[20].

HL in Ref. [4], BerkeleyGW uses a modified version of the PPM to deal
with non-centrosymmetric systems as detailed in Ref. [32]. Assessing these
small variations in the PPM is beyond the scope of this work. When using the
PPM-GN or FF methods, the agreement is better than 20 meV, similar to the
silicon case. Importantly, we find that the quasiparticle energies predicted
by the different codes agree within 0.1 eV when using the same treatment of
the frequency-dependence.

To converge the GW gap of rutile we extrapolate the interdependent GW
parameters (εcut, Nsig. and Neps.) to the CBS limit, as described above and
in the SI. The converged bandgap is 3.3 eV for the different codes used here;
this result also agrees with previous full-frequency calculations of Refs. [11,
20, 25], as reported in Table 4.

4.4. Wurtzite Zinc Oxide

Historically, ZnO has been a challenging and controversial system forGW .
For ZnO, the GW result is strongly affected by the slow convergence of the Σc

term [9]. Convergence issues are further aggravated when using PPMs [12],
although these PPM-related issues may be partially remedied as illustrated
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ZnO QP energies (unconverged) (eV)
PPM-GN FF-CD FF-RA

BGW Abinit Yambo BGW Abinit Yambo

VBM 4.26 4.29 4.26 4.27 4.26 4.26
CBM 8.43 8.43 8.43 8.40 8.42 8.41
Gap 4.17 4.14 4.18 4.14 4.15 4.15

Table 5: GW quasiparticle energies of ZnO within a spherical-cutoff technique. The
three GW codes, Abinit, Yambo and BGW, agree for the calculated QP energies. This
comparison is performed with under-converged parameters: a 5 × 5 × 4 k-point grid and
εcut = 30 Ry.

in Ref. [24]. Here we only show results with FF methods and the PPM-GN
(validated against FF references[12]). For more on the PPM approximation
for ZnO, we refer the reader to Refs. [12, 13, 14, 24]. Other discrepancies in
the GW gap of ZnO arise from the use of incomplete basis-sets and different
pseudopotentials, such as projector-augmented waves [15]. Due to these is-
sues, the reported G0W0@LDA gaps with different approximations and codes
range from 2.3 – 4.5 eV (see Table 6).

We start by showing that the different codes used here agree on the gap
of ZnO, for a given pseudopotential. Again, although pseudopotential issues
are not discussed here, we find that our results are insensitive (within 0.1 eV)
to the choice of PPs tested in this work, as discussed in Appendix Appendix
A. In Table 5, we show underconverged QP energies for ZnO calculated
using a spherical-cutoff scheme within G0W0@LDA. All ZnO results in Table
V are computed at the same number of bands, dielectric matrix cutoffs, and
k-point grid for the purposes of comparison. However, these parameters are
underconverged.) We use the GN method, FF-CD method with Abinit and
BerkeleyGW, and the FF-RA method with Yambo. We set εcut = 30 Ry,
a Coulomb cutoff radius of 19.7177 Bohr, a plasma frequency of 38.82 eV
(for PPM-GN), a Γ-centered homogeneous grid of 5× 5× 4 k-points and 34
bands, and show that the unconverged GW gap of ZnO calculated with the
different codes is consistent within 0.1 eV.

Linearizing the self-energy to the QP energy, especially when using coarse
k-grids, can be inaccurate. An illustration of the difference between the
linearized and graphically-solved QP energies is given in Fig. 3a. For the
VBM, the linearized and graphical solutions can differ by ∼ 0.2 eV; for an
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Figure 3: Linearized vs. actual QP energies for ZnO. a) QP energy for the VBM at the

Γ point. We show the actual self-energy, E
QP
i (Σ[E

QP
i ]), and the linearized self-energy

evaluated at the KS energy. b) QP bandgap of ZnO. Two shifted k-point grids of 5×5×4
and 8× 8× 5 points are used. The linearized and actual solutions disagree by more than
0.2 eV for the coarser grid, and agree better than 50 meV for the finer grid of 8 × 8 × 5
points. Here we use unconverged GW parameters, as explained in the text.

unconverged set of GW parameters (5×5×4 k grid, εcut = 40 Ry and Neps. =

Nsig. = 2000), we find EQP
i (Σ[EQP

i ]) = 3.7 eV and EQP
i

(
ZΣ[EKS]

)
= 3.9 eV,

where EKS
i = 5.3 eV. In Fig. 3b we show the QP bandgap as a function of

the number of bands used to evaluate Σ. We use shifted grids of 5×5×4 and
8 × 8 × 5 k-point grids, Neps. = 2000 and εcut = 40 Ry. Within the coarser
grid the actual (blue dots) and linearized (cyan dots) solutions can disagree
by more than 0.1 eV due to features in Σ(ω), as shown in Fig. 3 (a). These
features are smoothed out when using a finer grid, reducing the discrepancy
associated with linearization.
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Figure 4: Convergence of the bandgap of ZnO with respect to the plane-wave basis-set
size. The bandgap converges linearly with respect to 1/NPW.

Having demonstrated good agreement between different codes for ZnO
QP energies, we then proceed to converge the gap of ZnO only with Berke-
leyGW, excluding the other codes due to our limits on computational re-
sources. To accelerate the convergence with respect to k-points, we use a
shifted grid, a common practice well-documented in the past[59]. Using the
finest grid of k-points (that is the 8× 8× 5 grid), we proceed to converge the
Neps., Nsig. and εcut by extrapolating to the CBS limit (see SI). As shown in
Fig. 4, the bandgap converges linearly with respect to N−1PW and a relatively
high εcut > 80 Ry is needed to assure convergence within 0.05 eV. At con-
vergence, we find the G0W0@LDA gap of ZnO is 2.8 eV, in agreement with
recent calculations, as shown in Table 6.

Finally, we compare our G0W0 bandgaps with the corresponding elec-
tronic gaps measured in photoemission experiments. Here we use full-frequency
G0W0 approaches (FF-CD or FF-RA). Note that when comparing to ex-
periment the lattice-renormalization effect should also be included [63, 64],
e.g., the measured/calculated zero-point renormalization (ZPR) of silicon is
62–64 meV, 150 meV for TiO2 and 156–164 meV for ZnO [65, 66]. Our
calculated indirect gap of 1.21–1.28 eV for silicon (without renormalization)
is therefore in good agreement with the experimental gap of 1.17 eV [67].
Our result is also in agreement with the seminal work of Ref. [4]. As men-
tioned above, since we neglect spin-orbit effects in this work, we do not

17



ZnO QP bandgap (eV)

Code Potential Freq. Eg Ref.

BGW NC-PP PPM-HL 3.4 [9]

Abinit NC-PP PPM-HL 3.6 [12], [13]

Tombo AE PPM-HL 4.5 [25]

Abinit NC-PP PPM-HL 2.8 [14]

BGW NC-PP PPM-HL∗ 3.0 [24]

Abinit NC-PP PPM-GN 2.3 [12], [13]

Abinit NC-PP PPM-GN 2.6 [23]

AE FF+ 2.4 [60]

Abinit NC-PP FF-CD 2.4 [12], [13]

Vasp PAW FF-RA 2.5 [61]

AE FF-CD 2.8 [21, 22]

Vasp NC-PAW FF-RA 2.8 [15]

Tombo AE FF† 2.8 [25]

BGW NC-PP FF-CD 2.8 This work

Table 6: Fundamental bandgap of ZnO within G0W0@LDA. The converged gap is ex-

trapolated to the CBS, as detailed in the text. The reported bandgaps using different

codes and techniques are shown for comparison. * semicore electrons were excluded to

calculate the ground-state density required to fit the PPM-HL parameters, see Ref. [24].

† FF integration in the complex plane. + Frequency integration method based on the

random-phase approximation [62, 60].

compare the GW bandstructure of gold to experiment. Our calculated gap
of 3.3 eV of rutile TiO2 is also in good agreement with the experimental gap
of 3.3±0.5 eV [68, 69]. On the other hand, our GW gap of ZnO of 2.8 eV sub-
stantially underestimates the reported experimental gap of ∼ 3.6 eV [70, 71].
This well-known shortcoming of standard G0W0 for ZnO is due to a defi-
cient LDA starting point [61], and indicates the need for a more accurate
starting point or self-consistent schemes. This work reaches a consensus on
the value of the G0W0 band-gaps of prototype systems, and hence facilitates
future work studying beyond-standard GW schemes to improve the accuracy
of GW when using a poor mean-field starting point.
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5. Conclusions

In this work, we have revisited the GW approximation for prototype
systems with three representative plane-wave-based codes: Yambo, Abinit
and BerkeleyGW. Within judicious choices of approximations and the
same pseudopotentials, the converged GW QP energies calculated with the
different codes agree within 0.1 eV, addressing long-standing controversies
surrounding the GW results for difficult systems such as ZnO and rutile. Our
results comprise an important verification of codes using the GW method for
systems in the condensed phase, showing that different implementations can
agree numerically at a level much greater than the known accuracy of the GW
approximation and the underlying approximate Kohn-Sham eigensystem.

Specifically, we have studied the validity of approximations within one-
shot G0W0 which can give rise to disagreement in GW results between differ-
ent codes: the treatment of the Coulomb divergence, convergence, plasmon-
pole model (PPMs) approximations, and scheme for capturing the full fre-
quency dependence of Σ. We have benchmarked different techniques to treat
the Coulomb divergence, and identified several effective approaches, in par-
ticular an auxiliary-function method used in Abinit, the RIM in Yambo and
the MC average in BerkeleyGW. The latter was implemented in Abinit
for the purposes of this work. We have provided new insights into the details
of PPMs and their effect on GW results, such as the treatment of unfulfilled
PPM modes, which for some systems can lead to large deviations (> 0.5 eV)
from FF calculations. We have shown that specific PPMs, when treated at
the same level in the different codes, lead to results in complete agreement, in-
dependent of the code. Beyond the PPM approximation we have also shown
that the FF-CD method implemented in BerkeleyGW provides results in
agreement with FF implementations in Abinit and Yambo. We highlight
that QP energies predicted with the FF-CD method (in the complex plane)
agree quantitatively with real-axis FF references, a numerical proof of the
validity of the FF-CD.

In summary, our work provides a framework for users and developers to
validate and document the precision of new applications and methodological
improvements relating to GW codes.
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Appendix A. The choice of pseudopotential for GW

In this appendix, we study the variation of the bandgap with respect to
the choice of pseudopotential for TiO2 and ZnO. We emphasize that the vali-
dation of pseudopotentials for GW requires all-electron references and is be-
yond the scope of the present manuscript. In Table A.7 we show the G0W0 di-
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rect gap of rutile calculated with different choices of pseudopotentials. We use
a DFT-PBE starting point from Abinit and consider norm-conserving PPs
of the Fritz Haber Institute (FHI)[73], Optimized Norm-Conserving Vander-
bilt (ONCV)[53] and Hartwigsen-Goedecker-Hutter (HGH)[58] kinds. The
configuration of choice for Ti is [Ne]3s23p63d24s2 (including semicore states),
and [He]2s22p6 for O. We only use PPs available in the literature (see Ta-
ble A.7). Note that the HGH and Pseudo Dojo (PD) PPs contain non-local
core corrections (NLCC), which are subtracted from Σ when calculating the
QP energies. In the table, we show the energy cutoff required to converge the
DFT total energy per atom to 0.01 eV and the PP radii, which can be taken
as a measure of the PP “hardness”. Here we use BerkeleyGW to compute
the G0W0 direct gap of rutile using a set of under-converge parameters for
GW : Neps. = Nsig. = 2000, εcut = 20 Ry, the MC avg. technique and a
Γ-centered homogeneous grid of 6 × 6 × 10 k-points. Importantly, the GW
gaps corresponding to different PP types agree within 0.1 eV, indicating a
small dependence of the gap of rutile with the choice of PPs used here.

We now study the sensitiveness of the GW results with respect to the
choice of pseudopotential for ZnO. In Table A.8 we show the QP gap of ZnO
calculated with G0W0@LDA using different PPs. The configuration of choice
for Zn is [Ne]3s23p63d104s2 (including semicore states), and [He]2s22p6 for O.

Pseudopotentials for TiO2

PP PP radii Ecut. DFT gap GW gap
type (Bohr) (Ry) (eV) (eV)

FHI1 Ti: s 1.48, p 1.62, d 1.70 60 1.78 3.12

HGH2 Ti: s 0.34, p 0.24, d 0.24
280 1.88 3.23

O: s 0.22, p 0.21

PD3 Ti: s 1.35, p 1.30, d 1.65
60 1.88 3.23

O: s 1.25, p 1.35

Table A.7: Testing norm-conserving pseudopotentials for rutile. For each PP type we
show the radii per angular momentum (s, p or d), the plane-wave energy-cutoff (Ecut.)
(see text), and the corresponding DFT and GW gap of rutile. We use G0W0 PPM-GN
with a DFT-PBE starting point, at unconverged GW parameters (see text).
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Pseudopotentials for ZnO
PP PP radii Ecut. DFT gap GW gap

type (Bohr) (Ry) (eV) (eV)

FHI4
Zn: s 0.80, p 0.80, d 0.80

300 0.67 2.76
O: s 1.20, p 1.20

RRKJ5 Zn: s 1.00, p 1.00, d 0.85
300 0.73 2.87

O: s 1.10, p 1.10

HGH6 Zn: s 0.40, p 0.53, d 0.25
300 0.73 2.90

O: s 0.22, p 0.21

PD7 Zn: s 1.35, p 1.65, d 1.85
60 0.78 2.82

O: s 1.25, p 1.35

PD8 Zn: s 0.80, p 0.80, d 0.60
500 0.74 2.84

O: s 0.80, p 0.80

Table A.8: Sensitiveness of the GW gap of ZnO with respect to the choice of PPs. Same as
TiO2 in Table A.7. We use G0W0 FF-CD with a DFT-LDA starting point at unconverged
GW parameters (see text). Note that the GW gaps of ZnO shown in this table agree with
the converged gap (= 2.8 eV) due to spurious cancellation of errors.

As in the TiO2 case, some of the HGH and PD PPs considered here contain
NLCCs. We also show the minimum kinetic energy cutoff for the plane-wave
expansion to converge the DFT gap within 0.05 eV, and the corresponding
DFT-LDA and GW gaps. Here we use BerkeleyGW, the FF-CD method
with 20 imaginary frequencies, an uniform sampling of real frequencies spaced
by 0.25 eV from 0 to 6 eV, the modified static-reminder method of Ref. [77]
and unconverged GW parameters: εcut = 30 Ry, Nsig. = Neps. = 500 .
For ZnO the GW and DFT gaps change little, by up to 0.14 and 0.1 eV
respectively, with the different choices of PPs. Therefore, the results for
ZnO and TiO2 presented in this manuscript are negligibly affected by the
choice of PPs.
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lon, T. Rangel, G.-M. Rignanese, A. Romero, B. Rousseau, O. Rubel,
A. Shukri, M. Stankovski, M. Torrent, M. V. Setten, B. V. Troeye,
M. Verstraete, D. Waroquiers, J. Wiktor, B. Xu, A. Zhou, J. Zwanziger,
Recent developments in the ABINIT software package, Computer
Physics Communications 205 (2016) 106 – 131.

[32] J. Deslippe, G. Samsonidze, D. A. Strubbe, M. Jain, M. L. Cohen,
S. G. Louie, Berkeleygw: A massively parallel computer package for the
calculation of the quasiparticle and optical properties of materials and
nanostructures, Comput. Phys. Commun. 183 (2012) 1269.
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