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A B S T R A C T

Surface soil water content plays an important role in driving the exchange of latent and sensible heat between
the atmosphere and land surface through transpiration and evaporation processes, regulating key physiological
processes affecting plants growth. Given the high impact of water scarcity on yields, and of irrigated agriculture
on the overall withdrawal rate of freshwater, it is important to define models that help to improve water re-
sources management for agricultural purposes, and to optimize rainfed crop yield. Recent advances in satellite-
based remote sensing have led to valuable solutions to estimate soil water content based on microwave or
optical/thermal-infrared data. This study aims at improving soil water content estimation at high spatial and
temporal resolution, by means of the Optical Trapezoid Model (OPTRAM) driven by Copernicus Sentinel-2 data.
Two different model variations were considered, based on linear and nonlinear parameters constraints, and
validated against in situ soil water content measurements made with time domain reflectometry (TDR) on irri-
gated maize in central Italy and on rainfed maize and pasture in northern Italy. For the first site the non-linear
model shows a better correlation between measured and estimated soil water content values (r= 0.80) com-
pared to the linear model (r= 0.73). In both cases the modeled soil moisture tends to overestimate the measured
values at medium to high water content level, while both models underestimate soil moisture at low water
content level. Estimated versus measured normalized surface soil water for rainfed pasture plots from nonlinear
OPTRAM parametrized based on irrigated maize parameterization (SIM1), and site-specific parametrization for
rainfed pasture (SIM2), indicate that both models (SIM1 and SIM2) are comparable for rotational grazing pasture
(RMSEsim1=0.0581 vs. RMSEsim2=0.0485 cm3 cm-3) and the continuous grazing pasture
(RMSEsim1=0.0485 vs. RMSEsim2=0.0602 cm3 cm-3), while for the rainfed maize plots SIM1 shows lower
RMSE (average for all plots RMSE=0.0542 cm3 cm-3) compared to the site-specific calibration model (SIM2 –
average for all plots RMSE=0.0645 cm3 cm-3). Finally, OPTRAM estimations are close to in situ measurement
values while Surface Soil Moisture at 1 km (SSM1 km) tends to underestimate the measurements during maize
crop growing season. Soil moisture retrieval from high-resolution Sentinel-2 optical images allows water stress
conditions to be effectively mapped, supporting decision making in irrigation scheduling and other crop man-
agement.

1. Introduction

Surface Soil Moisture (SSM) is a key variable related to the health of
terrestrial ecosystems and specifically to agriculture crops. It supports
water flow and transport processes in the soil-plant-atmosphere system

(Campbell and Norman, 1988; Zhang and Zhou, 2016; Lakshmi, 2012),
finally controlling latent heat flux to the atmosphere. SSM is defined as
the temporary storage of rainfall in the top soil layer, called the aera-
tion zone. This part of the soil profile is fundamental for agriculture
since it controls the amount of water available to plant roots therefore it
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regulates the key physiological processes affecting growth (Lakshmi,
2012; Wang et al., 2007). SSM is very sensitive to changes in en-
vironmental conditions, since rising temperatures and current and ex-
pected changes in the global climate determine alterations in the hy-
drology and surface energy balance of entire landscapes (Vanino et al.,
2018). This translates into changes of evapotranspiration and pre-
cipitation trends at different scales, resulting in unpredictable rainfall,
drought events and water scarcity (IPCC, 2013; Avramova et al., 2016;
Vanino et al., 2018). Changes in global temperature control the heat
and water balance between the land surface and the atmosphere, which
are fundamental in determining crop yield and efficiency of resource
use in agriculture production (Tollenaar and Lee, 2002). Given the high
impact that agricultural practices have on the overall withdrawal rate
of freshwater (Lakhankar et al., 2009; WWAP, 2015), it is important to
define models that help to improve both the management of water re-
sources for agriculture, and the management of rainfed crops.

Soil moisture is highly variable in time and space due to hetero-
geneity of soil properties, topography, land cover and the non-uni-
formity of rainfall events and evapotranspiration rates at various spatial
scales (Crow et al., 2012; Umar et al., 2016; Santos et al., 2014). Time
domain reflectometry (TDR) or gravimetric sampling techniques can
provide quantitatively accurate point based field measurements of soil
moisture but they cannot consider changes in spatial distribution across
gradients of soil surface characteristics (Lakhankar et al., 2009). The
development of satellite technologies allowed to assess spatial-temporal
variability with remote sensing, both optical and radar based, providing
quantitative estimations of SSM from local up to global scale (Ahmed
et al., 2011; Mulder et al., 2011). Earth Observation products were
shown to be a valid tool for soil moisture retrieval, providing high
temporal and spatial resolution data in support of real-time crop needs
at both regional and global scale (Zhang and Zhou, 2016; Wang et al.,
2007; Mulder et al., 2011).

This study focuses on the determination of SSM using Copernicus
Sentinel-2 (S2) optical data to drive the recently proposed Optical
Trapezoid Model (OPTRAM) (Sadeghi et al., 2017). Model accuracy was
assessed through validation with in situ SSM measurements obtained in
two study areas from northern and central Italy with the TDR tech-
nique. A nonlinear parameterization procedure was used in addition to
the standard linear procedure to improve SSM retrieval accuracy. Fi-
nally, the values obtained here and based on optical data were com-
pared with low-medium resolution (1 km) and high-frequency SSM
products developed by Bauer-Marschallinger et al. (2018) and obtained
through data fusion of Metop-ASCAT and Sentinel-1 available in the
Copernicus Global Land Service (CGLS) (https://land.copernicus.eu/
global/products/swi). This study is amongst those aiming to derive a
universally valid SSM estimation model through optical remote sensing,
finally providing reliable and accurate quantitative SSM data. The
OPTRAM model was implemented in the Mediterranean environment to
determine the applicability of a universal parameterization that ac-
counts for different environmental and crop management conditions
(rainfed and irrigated). Finally, the robustness of the methodology is
critically assessed.

1.1. Conceptual framework

Advances in the technical capabilities of space-borne sensors
opened the way to new in-depth studies on the application of RS to
estimate and monitor SSM (Dash and Ogutu, 2016). When considering
crop management, precise use of freshwater for irrigation purposes is
essential for supporting sustainable and efficient practices in order to
guarantee high crop yields (Lakhankar et al., 2009). Temporal and
spatial monitoring of soil moisture throughout the growing stages of
crops will prevent water stress and improve the overall crop perfor-
mance (Vuolo et al., 2015; Doraiswamy et al., 2004). Remote sensors
cannot directly measure SSM content, but instead use a proxy variable
related to measured signals. This section provides an overview of the

current state of the art in RS soil moisture estimation methods that
allowed three main groups to be distinguished, based on the different
sensors used (Kerr, 2007; Moran et al., 2004; De Ridder, 2000; Magagi
et al., 2016).

1.1.1. Passive microwave sensing of SSM
Changes in SSM lead to changes in the surface emissivity detected

with microwave frequency. The estimation of SSM using passive mi-
crowave sensors is based on the difference between the dielectric
properties of water and of dry soil, measured as variations in the soil
brightness temperature of dry and wet soils (Njoku and Kong, 1977).
Microwave sensors are also used to measure emissivity in its different
spectral windows. In the field of passive microwave sensors, e.g. the
Advanced Microwave Scanning Radiometer (AMSR-E, Njoku et al.,
2003; Koike et al., 2004; McCabe et al., 2005), Soil Moisture and Ocean
Salinity (SMOS, Kerr et al., 2012), several algorithms were developed
based on the use of different combinations of frequencies and polar-
izations as well as different type of ancillary data (Jackson, 1993; Njoku
and Li, 1999; Owe et al., 2001; Paloscia et al., 2015). At the base of
these algorithms is the physical based radiative transfer model (RTM),
conceived to estimate SSM from the microwave signal based on as-
sumptions of scattering albedo, vegetation roughness and surface
temperature, e.g. SVAT-infrared thermal radiative transfer models by
François (2002) (Gao et al., 2004, 2006; Dobson et al., 1985; Chauhan,
1997; Pan et al., 2014).

Despite the capability of passive microwave sensors to observe the
earth’s surface regardless of meteorological conditions, their coarse
spatial resolution limits their application below the 10 km scale (Bauer-
Marschallinger et al., 2018).

1.1.2. Active microwave sensing of SSM
Active sensors transmit information as a series of pulses while the

radar antenna traverses the imaged landscape, which are then pro-
cessed together to simulate a long aperture capable of providing high
surface resolution scenes (Ulaby et al., 1996). The active sensor systems
able to cover frequencies suitable for RS soil moisture estimations in-
clude Sentinel 1-A satellite, which provides C-band images (Şekertekin
et al., 2016); C-band RADARSAT-1/2; Soil Moisture Active Passive
(SMAP) missions (Chan et al., 2016); and ASCAT scatterometer onboard
the Metop-A satellite (Wagner et al., 1999; Paulik et al., 2014). Radars
represent a good source of data for SSM retrieval due to the higher
spatial resolution when compared to radiometers but lack the capacity
to discriminate signal interaction associated with measured backscatter
data influenced by surface roughness, vegetation canopy and vegetation
water content (Lakshmi, 2012). To overcome these limitations some
models were conceived considering SAR and radiometer data fusion
(Bauer-Marschallinger et al., 2018; He et al., 2014; Peng et al., 2017).
An ideal SSM retrieval algorithm would combine the high spatial re-
solution of SAR with the high sensitivity of a radiometer to obtain an
improved soil moisture product (Lakshmi, 2012). Bauer- Marschallinger
et al. (2018) proposed a data fusion approach combining two different
data sources, METOP-ASCAT and Sentinel-1, in order to calculate a Soil
Water Index (SWI) providing data on a daily basis at 1-km spatial re-
solution.

1.1.3. Optical/thermal sensing of SSM
This method is based on the use of visible, short wave and thermal

infrared optical bands (wavelengths ranging between 0.4 and 15 μm) to
retrieve surface reflectance (Sobrino et al., 2012; Rahimzadeh and Berg,
2016). In the field of the optical/thermal imagery-based approach, the
technique most applied for SM retrieval is based on a “triangular” or
“trapezoidal” concept. The model, hereinafter called Thermal-Optical
Trapezoid Model (TOTRAM) (Nemani et al., 1993; Carlson et al., 1994),
is derived from the interpretation of the relationship existing between
the pixel distribution of Land Surface Temperature (LST), and vegeta-
tion indices (VI) (Piles et al., 2011; Lambin and Ehrlich, 1996; Gillies
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et al., 1997). Several modifications to the conventional trapezoid model
were proposed to improve its accuracy. Two of the major limitations of
the TOTRAM model are associated with the concomitant use of thermal
and optical satellite data and the need for constant calibration/para-
metrization due to the variability of LST, which is easily influenced by
near surface temperature, relative humidity and wind speed (Mallick
et al., 2009). The conventional trapezoid model was thus replaced by an
alternative model developed by Sadeghi et al. (2017) that replaces
thermal bands with shortwave infrared bands that are simultaneously
available on the same satellite. Despite the growing number of studies
on RS based estimations of SSM at a global scale, numerous challenges
derive from building a universally applicable model inclusive of all the
parameters affecting surface soil moisture (Zhang and Zhou, 2016).
Some of the current limitations are associated with: (i) the input
parameters of SSM models; (ii) physical interpretation of different
surface variables from satellite data and their discrimination; (iii) spa-
tial and temporal resolution of the images acquired being influenced by
surface roughness and vegetation cover; (iv) difficulties in establishing
a universal relationship between SSM and soil texture across different
study areas; (v) lack of surface data for validation of remotely sensed
SSM that are given as single data points not considering the spatial and
temporal variability of SSM over a given region (Bosch et al., 2006).

The OPTRAM model is presented in the next section. OPTRAM is a
simple linear model at Short-wave Infra-Red (SWIR) wavelengths
(0.7–2.5 μm), with physically definable parameters, offering a
straightforward method for remote sensing SSM retrieval based on
optical images (Sadeghi et al., 2015). The model was chosen for the
feasibility of its implementation and the potential universal calibration
of its parameters over heterogeneous soils.

1.1.4. Theoretical background: the optical TRApezoid model (OPTRAM)
OPTRAM relies on the use of optical data to retrieve SSM (Sadeghi

et al., 2017). It explores the relationship between soil moisture in the
root zone soil layer and vegetation dynamics represented by vegetation
indeces. Soil water content (W) is derived by combining the normalized
difference vegetation index (NDVI) as a measure of fraction of absorbed
photosynthetically active radiation and shortwave infrared (SWIR)
transformed reflectance (STR) values (Sadeghi et al., 2015). These in-
deces are a measure of the health and vigor of vegetation that is de-
pendent, amongst other factors, on the soil water content (Liu et al.,
2012). Soil water status influences vegetation growth and changes in
soil water content will result in changes to the spectral characteristics of
vegetation (Chen et al., 2014; Santos et al., 2014). The assumption of
the existence of a linear relationship between soil and vegetation water
content, is built upon the theory of reflectance and developed into a
simple regression model (Sadeghi et al., 2015).

OPTRAM was developed based on the Kubelka and Munk (1931)
theory of reflectance describing a two-flux radiative transfer (a down-
ward and an upward light propagation flux, I and J) in an absorbing and
scattering layer (Sadeghi et al., 2015). The model is built on two dif-
ferential equations putting in relation the radiance, I and J, at a depth in
the layer z at a given wavelength and with a light absorption (k) and a
light scattering coefficient (s). The reflectance (R) is obtained as a
function of k and s.
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The SWIR transformed reflectance is then derived as follows when
considering R at the SWIR bands:
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Assuming the existence of a linear relationship between soil sa-
turation degree and STR, W results in:

= −
−

W STR STR
STR STR

d

d w (3)

where STRd and STRw are the STR values at dry and wet conditions and
R is surface reflectance for the SWIR band. Assuming a linear re-
lationship between soil water content and vegetation water content, the
dry and wet edges of the theoretical trapezoid formed between the STR-
NDVI spaces are defined as follows:

= + ×STR i s NDVId d d (4)

= + ×STR i s NDVIw w w (5)

where id and sd are the intercept and the slope of the dry edge and iw
and sw the intercept and the slope of the wet edge. The NDVI vegetation
index is defined as the difference in amplitude between the red and near
infrared (NIR) regions (Deering, 1979):

= −
+

NDVI R R
R R

NIR RED

NIR RED (6)

2. Materials and methods

2.1. Study areas

2.1.1. Northern italy - Trentino, rainfed maize and rainfed pasture
AgriLife farm (www.agrilife.bio) is an organic dairy farm, located in

Comano Terme in Trentino Alto Adige region (46°00′10.44″ N
10°52′12.88″ E; elev. 508m a.m.s.l.), raising donkeys that graze out-
doors. Soil water was monitored at 3 dates in 2018 on two pastures that
are managed with two different grazing systems: continuous and rota-
tional (PC and PT respectively, Fig. 1a right panel, Table1). Continuous
grazing implies that animals graze continuously on a single pasture for
the entire growing season (from May to October), while rotational
grazing permits the recovery and growth of the pasture. Three mea-
surement points were identified for each pasture, at a 10-m distance
from each other for PC (PC1, PC2, PC3, Table 1) and 30-m for PT (PT1,
PT2, PT3, Table1).

Cargos farm is a conventional farm located in Fiavè in Trentino Alto
Adige region (45°59′22.77″ N 10°50′03.03″ E; elev. 655m a.m.s.l.),
growing rainfed maize for silage (Fig. 1a left panel). Soil water was
monitored at 3 dates in 2018 in two points (at 20-m distance from each
other) for each of the four areas selected in the maize field (C1, C2, MA,
MB, Fig. 1a left panel, Table1)

Both sites are located in a glacial plain on glacial deposits covered
by heterogeneous croplands; dominant soils are classified as Cutanic
Luvisols, coarse loamy (IUSS, 2015), formed on Tertiary limestone and
Mesozoic dolomite, and on Holocenic alluvial deposits. Average annual
temperature is 10.1 °C; average rainfall 834mm. At both sites surface
soil water content was measured with a soil water sensor (Delta-T De-
vices SM150 T). The measurement was made at 0−15 cm depth
pushing the sensor into the soil until the rod was fully inserted ensuring
good soil contact.

2.1.2. Central Italy - Tuscany, irrigated maize
The experimental site of Tuscany-Grosseto (42°49′47.02″ N

11°04′10.27″ E; elev. 2 m a.m.s.l.) is located in central Italy 20 km away
from central Tuscany coastline (Fig. 1b). Average annual temperature is
15 °C and average annual rainfall is 640mm. The site is part of a dairy
farm (Azienda Agricola Le Rogaie). It mainly consists of a large flat
irrigated area extending over 72 ha where maize was cropped during
summer 2018. The area has a circular shape with 1 km diameter and is
irrigated by a rotating pivot-irrigation system, which normally operates
24 h a day in the period June-August. A full irrigation cycle is com-
pleted within 4 days.

The predominant soils are classified as Eutric Vertisols, fine silty
(IUSS, 2015), formed on substrates consisting of reclamation deposits
and recent alluvial deposits. Soil volumetric water content data were
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measured at one location point (FLOX 9, Fig. 1b, Table1) by means of
C650 TDR (Campbell Scientific, Logan, UT, USA) and acquired with a
CR3000 data logger (Campbell Scientific, Logan, UT, USA) at 5min
intervals at 0−30 cm depth. The TDR was continuously operated from
the beginning of July till end of September; no data are available for the
period 12–18 July due to a datalogger failure in saving data.

2.2. Remote sensing data

2.2.1. Sentinel 2
Multispectral ESA Sentinel-2A and 2B satellite images providing 13

spectral bands covering the visible, NIR and SWIR at 10, 20 and 60m
spatial resolution were retrieved from ESA Sentinel Scientific Data Hub
(https://copernicus.eu/) for the same day or the day following the in

situ soil water measurement for each location. Sentinel-2 images were
atmospherically corrected using the Sen2Cor algorithm (http://step.
esa.int/main/third-party-plugins-2/sen2cor), which processes ESA’s
Level-1C top-of-atmosphere reflectance to atmospherically-corrected
bottom-of-atmosphere (BoA) reflectance (Level-2A). Polygons corre-
sponding to the study areas were extracted from each of the Sentinel-2
images. Reflectance values from bands 4 (red) and 8 (near infrared)
were used to calculate NDVI and the reflectance from band 12 (SWIR)
was used for calculating STR. Band 12 images at 20-m spatial resolution
were resampled at 10-m with the nearest neighbor method to match the
spatial resolution of bands 4 and 8. For the period of interest 13 cloud-
free scenes were obtained: 10 for Tuscany and 3 for Trentino (Table 1).
Though only a limited number of cloud-free images were available to
match the exact dates of in situ measurements, the collected images
enabled a complete temporal coverage of the in situ measuring dates.

2.3. OPTRAM parameterization

OPTRAM was parameterized based on the pixel distribution within
the STR-NDVI space for the Tuscany case study. Two scenarios were
considered, one based on OPTRAM linear model and the second on the
use of a nonlinear OPTRAM model. The dry and wet edges of the model
were determined based on the pixel distribution within the STR-NDVI
space (Fig. 2a). For the first scenario the dry (id and sd) and wet (iw and
sw) edges parameters were determined by means of a linear fit of the
STR-NDVI point cloud. In accordance with Sadeghi et al. (2017), fitting
the edges was done based on visual inspection. The normalized soil
water content (W) for each pixel was estimated from the dry edge and
wet edge parameters via the use of equations and parameters reported
in Fig. 2a.

Since the STR-NDVI scatterplots showed non-linear trends in the dry
and wet edges, for the second scenario we considered the use of a
nonlinear OPTRAM model. The dry (id and sd) and wet (iw and sw) edges
parameters were modeled by an exponential function that is a nonlinear
combination of the model parameters depending on the STR and NDVI
pixel distribution:

Fig. 1. Study area: a) Trentino Alto Adige region (case study Cargos and Agrilife farms), b) Tuscany region case study (red line irrigated maize field, dashed black line
superimposed SSM1 km pixel).

Table 1
Details of study areas and satellite images.

Location
(UTM 32 N)

ID Crop Sentinel-2 acquisition date/
Ground measurements
dates

Tuscany -
Grosseto

4743984 N
669179 E

Flox9 Irrigated
maize

2018 (Jul. 8, Jul. 13, Jul.
18, Aug. 2, Aug. 12, Aug.
17, Aug. 22, Aug. 27, Sept.
6, Sep. 11) / Jul.1- Sept.31

Trentino-
Cargos

5094544 N
642072 E

C2A Rainfed
Maize

2018 (Jul. 18, Sept. 11, Oct.
19) / (Jul. 19, Sept. 13, Oct.
18)

C2B
ML2B
ML1B
C1B
C1A
ML2A
ML1A

Trentino -
Agrilife

5096059 N
644798 E

PT1 Rainfed
Pasture

2018 (Jul. 18, Sept. 11, Oct.
19) / (Jul. 19, Sept. 13, Oct.
18)

PT2
PT3
PC1
PC2
PC3
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= ×STR i s NDVIexp( )d d d (7)

= ×STR i s NDVIexp( )w w w (8)

W values for each pixel were then computed using Eq. (3) based on
dry and wet edges parameters via Eq.s (7) and (8) (Fig. 2b).

=
× −

× − ×
W

i s NDVI STR
i s NDVI i s NDVI

exp( )
exp( ) exp( )

d d

d d w w (9)

The OPTRAM model aims at obtaining a universal parameterization
suitable for different areas, provided that a broad range of soil moisture
and NDVI is obtained within a single scene to constrain such para-
metrization (Babaeian et al., 2019). In order to test the accuracy of a
single calibration for all the study areas, the non-linear dry and wet
edges parameters of the Tuscany-Grosseto site were then used for the
estimation of W values for the Cargos and Agrilife farms in Trentino
region (SIM1). A site-specific calibration for Cargos and Agrilife farms
in Trentino region was also computed in order to compare the results of
the two calibrations and verify to what extent a universal para-
meterization could be representative of the heterogeneous soil condi-
tions over different regions and for different crop management (SIM2).

Model implementation and soil water content maps creation were
created using R (R Core Team 2019, https://www.r-project.org/).

2.4. SSM 1 km product from Scatterometer and SAR data fusion

The SSM estimations derived from OPTRAM model were also
compared with a low-medium resolution (1 km) and high temporal
frequency SSM products developed by Bauer-Marschallinger et al.

(2018) in order to compare the accuracy and performance of different
RS soil water retrieval techniques for Tuscany region case study. SSM
data was obtained from Copernicus Global Land Services database
(https://land.copernicus.eu/global/). A total of 24 scenes were down-
loaded over the study area from July 6th to September 20th 2018. The
whole study area is covered by 4 SSM 1×1 km pixels; the pixel with
the highest cover percentage (about 40 %, Fig1b) and including the
Flox 9 measurement point was selected, extracted and processed. SSM
1 km data were lastly compared against soil water content measure-
ment, on a daily basis, and OPTRAM SM was calculated for the over-
lapping area. For a complete analysis daily rainfall collected by a rain
gauge were also reported. Data extraction and analysis were performed
using Matlab (Mathworks Inc. 2016).

3. Results and discussion

3.1. Tuscany case study – linear vs. Nonlinear model

A comparison of the OPTRAM SM estimates with in situ measure-
ments is depicted in Fig. 3, showing the performance of both linear and
nonlinear model calibrations. Albeit 10 Sentinel-2 passages were
available (Table 1) for the entire study period, in situ data for two dates
(July 13 and July 18) were not available due to a logging system
failure. The nonlinear model shows a better correlation between mea-
sured and estimated soil water content values (r= 0.80) compared to
the linear model (r= 0.73) (Fig. 3). RMSE was also lower
(0.0619 cm3 cm−3) for the nonlinear compared to the linear model
(0.0842 cm3 cm−3), and the same result was obtained with MAE (Mean

Fig. 2. Pixel distribution within the STR-NDVI space for the linear (a) and nonlinear OPTRAM in the Tuscany region (b). STRd (dry – solid red line) and STRw (wet –
solid blue line) were reported for both models (linear and non-linear).

Fig. 3. Linear (a) and nonlinear (b) OPTRAM soil moisture estimates compared to in situ soil moisture measurements from the Flox9 measurement point (Tuscany
case study).
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Absolute Error) ranging from 0.073 (linear model) to 0.049 (ex-
ponential model) cm3 cm−3. In both cases the modeled SM tends to
overestimate the measured values at medium to high water content
level, while both models underestimate SM at low water content level.
Both the underestimation and overestimation are reduced when using
the non-linear parameterization model. In fact, whereas OPTRAM
linear and nonlinear parameterization give a yield resembling overall
accuracy, the nonlinear model provides a better estimation of the real
SM for the Tuscany case study.

Comparing the values of in situ SM with those modeled with
OPTRAM, the estimation errors for both models are within the range of
what was described as reasonable agreement accuracy for remote sen-
sing mapping of SM (Sadeghi et al., 2017; Babaeian et al., 2018;
Mananze et al., 2019) when using OPTRAM parameterization based on
Landsat 8, Sentinel 2 or MODIS observations.

Soil Moisture maps generated from OPTRAM non linear para-
meterization are shown in Fig. 4. Within the whole period, 4 dates were
selected in order to cover the temporal variability of soil moisture.
Date-by-date visual comparison of the images shows that the model was
able to capture temporal and spatial variation of soil water underlying
the physically based relationship existing between volumetric soil
moisture and SWIR reflectance of bare or vegetated soils (Sadeghi et al.,
2015).

Moreover SM maps highlight the capability of the nonlinear model
in mapping moisture spatial variability at fine scale, especially on
August 17th September 11th, where spatial features of soil moisture
deriving from different fields and from the pivot irrigation management
are clearly detected. A very low moisture condition is mapped on July
8th, the driest date of the whole period both in models and measure-
ments (0.09, 0.12, 0.23 cm3 cm-3 for linear, nonlinear and measure-
ment respectively) as highlighted in Fig. 3.

3.2. Evaluation of OPTRAM estimations for the Trentino area

The soil moisture estimations using a site-specific nonlinear cali-
bration (SIM2) were compared to those obtained using the para-
meterization from the Tuscany case study (SIM1), for both Trentino
sites (Agrilife and Cargos). For the rainfed pastures (Agrilife) the results
indicate that both models (SIM1 and SIM2) are comparable (Fig. 6). In
the case of the rotational grazing pasture (PT), a slight improvement in
terms of coefficient of correlation and RMSE is achieved with the site-
specific nonlinear calibration (SIM2), while MAE slightly increased
(0.0397 vs. 0.0401 cm3 cm−3). Similar results are obtained for the

continuous grazing pasture (PC). In this case using the model based on
local calibration leads to a higher correlation, but at the same time to an
increase in RMSE and MAE (0.0485 vs. 0.0602 cm3 cm-3 for RMSE and
0.0404 vs. 0.0533 cm3 cm-3 for MAE).

The implementation of OPTRAM using only optical remote sensing
data for irrigated maize in Tuscany region produced realistic soil
moisture values for the pasture in Trentino region. A local calibration
led to higher correlation coefficients, but similar or worse RMSE and
MAE values (Fig. 5). Although the errors are comparable with those
observed for irrigated maize (Tuscany case study, RMSE < 0.06
cm3 cm−3), a worse performance of both models for pastures is evident
in terms of correlations.

It is worth to note that for this case study we evaluated the spa-
tiotemporal distribution of SM represented by 3 points of measurement
within 20m for PC and within 60m for PT. It should also be noted that
the value of STR, for SM estimation, was calculated on the basis of S2
band 12, which has a native resolution of 20m, and then resampled at
10m.

Multiple studies report good results in soil water retrieval from
radar imagery at the watershed scale. On the contrary, few report si-
milar results at field or site scale level (Thoma et al., 2008). Thoma
et al. (2008) confirmed the spatial limitation of high-resolution radar
imagery for estimating field scale SM, indicating 35m as the optimal
resolution for watershed averaged estimates of soil moisture (filtered
images) and>150m for unfiltered images. He et al. (2014) developed
a methodology describing the use of microwave/optical data for soil
moisture retrieval in an alpine prairie. Their research, based on an In-
tegral Equation Method, a Water Cloud Model and an inversion scheme
for soil water retrieval, achieved better results than our OPTRAM re-
sults for pasture (higher coefficient of correlation with similar RMSE)
despite having a lower resolution (30m) and not accounting for tem-
poral analysis (one date).

Similarly, the exponential model implemented for the Tuscany case
study, and the site-specific calibration for Trentino region were tested
against soil water measurements for the Cargos farm site (rainfed
maize). The nonlinear Tuscany model (SIM 1, Fig. 6 a, b, c, d) shows
lower RMSE and MAE values compared to the site-specific calibration
model (SIM2 Fig. 6e, f, g, h), except for C1A-C1B field area. In general,
site-specific calibration for all field areas led to higher Pearson corre-
lation coefficient, although a slight deterioration of relative and abso-
lute errors was observed. This slight increase in the relative and abso-
lute errors could be attributed to the higher number of data used (over
an area of 72 ha) to implement the model for the Tuscany case study if

Fig. 4. Tuscany case study soil moisture maps obtained with nonlinear model.
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compared to the site-specific model tested on the two case studies for
the Trentino region (over an area of 1 ha for Cargos and 1.5 ha for
Agrilife).

Since all Cargos experimental fields have the same crop

management, we also compared all in-situ measurements and estima-
tions together, obtaining r= 0.3083, p-value=0.1427, MAE=0.0439
cm3 cm−3 and RMSE=0.0593 cm3 cm−3 without local calibration and
r= 0.5784, p-value=0.0031, MAE=0.0559 cm3 cm-3 and

Fig. 5. Estimated versus measured normalized surface soil water for Agrilife plots from nonlinear OPTRAM parametrized based on Tuscany region parameterization
(a and b, SIM1), and site-specific parametrization for Trentino region (c and d, SIM2) for rainfed rotational grazing pasture (PT) and rainfed continuous grazing
pasture (PC).

Fig. 6. Estimated versus measured SM from nonlinear OPTRAM for the Cargos plots. The first row (a-d) is based on the Tuscany case study calibration and the second
row (e-h) is site specific.
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RMSE=0.077 cm3 cm-3 when applying the site-specific calibration
(data not shown). These results confirm that OPTRAM can be uni-
versally parameterized for a given location (Sadeghi et al., 2017). A
site-specific calibration based on NDVI-STR point cloud distribution
enables us to achieve better correlations, although it could lead to
higher errors when applied on small fields (in our case around 1−2 ha).

The OPTRAM nonlinear parameterization, introduced and applied
for the first time for the Tuscany case study and then implemented and
applied to the two case studies in Trentino region, provided better ac-
curacy of SM estimations than those calculated by using linear para-
meterization of wet and dry edge. This is in contrast with the results
from Mallik et al. (2009), which show better accuracy of soil moisture
estimation for the LST-NDVI based linear parameterization for the dry
edge and a horizontal for the wet edge.

Furthermore, in both parameterizations, no oversaturated pixels
(above the modeled wet edge in Fig. 2a and Fig. 2b) were detected
unlike what was reported by Sadeghi et al. (2017) and Mananze et al.
(2019), mainly due to the fact that there are no water body/standing
water in our case study. The latter draw attention to a general over-
estimation of OPTRAM predictions for higher values of soil moisture,
particularly for deeper soil level. In this study we observed a slight
overestimation in Tuscany with the linear model (on average
0.011 cm3 cm−3), and an overall unbiased prediction with the non
linear model. Driest conditions, associated to bare soil immediately
after sowing, were slightly underestimated with both models (July 8,
0.14 and 0.11 cm3 cm−3 for non-linear and linear models respectively
against 0.23 cm3 cm−3). Overestimations of soil moisture were ob-
served for the Cargos farm. At Agrilife farm, the linear model tends to
underestimate SM on rotational grazing pasture (PT) and underestimate
high SM values. Overestimations were observed for low soil moisture
values on continuous grazing pasture (PC). The nonlinear model instead
overestimated soil moisture on PC, while underestimating high SM
value and exceed low SM values on PT.

In general, the good correlations between soil moisture measure-
ments and OPTRAM estimations for different soils, sparse or dense
crop/vegetation and different management (rainfed and irrigated) can
be confirmed, as already highlighted by Sadeghi et al. (2017); Babaeian
et al. (2018, 2019) and Mananze et al. (2019). These results were
verified across a whole irrigated maize crop season (from sowing to
maturity - low to high and saturated NDVI) in Tuscany region with
typical dry summer conditions, and in a subalpine zone (Trentino re-
gion) where there was a long dry period from late spring to early au-
tumn in 2018 (Climate Change Service, 2018).

3.3. OPTRAM vs. SSM1k product

Fig. 7 presentsSM mean values and standard deviations obtained
from nonlinear OPTRAM, SSM1 km and in situ measurements for the
Tuscany case study. Information on the rainfall events occurring during
the examined periods were used as ancillary data. in situ measurements,
OPTRAM estimated data, and SSM1 km data were available only for
three of the dates selected for our study (August 17th, 22nd and 27th).
OPTRAM estimations for August 17th and 27th are close to in situ
measurement values (0.44 ± 0.051 cm3 cm−3 vs. 0.43 cm3 cm-3 and
0.39 ± 0.048 cm3 cm-3 vs. 0.40 cm3 cm-3 respectively) while SSM1 km
tends to underestimate the measurements (0.33 and 0.32 cm3 cm-3) for
both cases. On August 22nd SSM1 km returns a good estimation of SM
(0.416 vs. 0.413 cm3 cm-3) while OPTRAM tends to overestimate the
measurement (0.462 ± 0.042 cm3 cm-3). In general, SSM1 km tends to
underestimate the in situ measurements during maize crop growing
season (from July to the end of August) except for the dates following
rain events (August 14th and 20th), where a substantial overestimation
is observed for those two dates. On the contrary, such a post rainy day
(August 8th, 22 mm) overestimation does not occur in the estimate
provided by SSM1 km on August 9th, which instead underestimates the
in situ measurement (0.33 vs. 0.41 cm3 cm-3). For the last period of

observations (first half of September) both OPTRAM and SSM1 km tend
to slightly overestimate SM measurements. Given that maize sowing
date was late in 2018 in Tuscany (June 15th), this bias confirms the
seasonal bias reported by Bauer-Marschallinger et al. (2018) and is
related to typical indications for vegetation dynamics that superpose
the soil water signal. In terms of error, SSM1 km has a double RMSE
compared to the nonlinear OPTRAM (0.1264 vs. 0.0619 cm3 cm-3) and
also shows a higher error than those reported for SSM1 km validation
reports for 6 experimental sites over Europe (Copernicus Global Land
Operations, 2018), ranging between 0.033 and 0.093 cm3 cm-3. While a
spatial analysis is not feasible because we have only one in situ mea-
surement and one SSM1 km pixel, a temporal analysis of SSM1 km and
in situ SM reveals a low correlation (r= 0.14, data not shown) in
agreement again with the results reported by the validation report over
Europe (Copernicus Global Land Operations, 2018). It must be noticed
that these results are also due to the large difference of scales, in this
case comparing information over 1 km with in situ point measurement.
In fact, if only three dates are considered, a better agreement is found
between SSM1 km and nonlinear OPTRAM (r=0.79, data not shown).

4. Conclusions

In this study, we explored the applicability of Copernicus Sentinel 2
images as a data source for the estimation of surface soil moisture based
on the Optical Trapezoid Model (OPTRAM). A linear parameterization
of the model was implemented for the Tuscany region case study and
soil moisture estimations were compared with in situ measurements for
the same area. Pearson’s correlation tests showed statistically sig-
nificant correlations between the observed and estimated soil moisture
values; overestimation was observed at medium to high water content
levels. A second parameterization considering nonlinear dry and wet
edges was performed. The overall better accuracy of the nonlinear
model was confirmed by a slight increase in the correlation coefficient
and lower RMSE and MAE. Furthermore, when observing the soil
moisture maps, the nonlinear model proved to perform better in de-
tecting temporal and spatial soil moisture variability over different
environments, crop and vegetation cover, and crop irrigation manage-
ment.

The practicability of OPTRAM model universal parameterization
was confirmed by the results obtained for the Trentino region case
study. The soil moisture values obtained underlines the overall better
performances of the Tuscany model parameterization over a site-spe-
cific model implemented for Trentino. Nevertheless, these affirmations
should find further confirmation in other studies exploring the uni-
versal parameterization of surface soil moisture estimation models at
the site-scale level over different regions. In conclusion, these results
indicate that the nonlinear OPTRAM model improves the already pro-
mising results from the linear model and further confirm the possibility
of an OPTRAM universal parameterization.

Surface soil moisture retrieval from high resolution (10m) Sentinel
2 images allows detection of water stress situations and supports crop
management decision making.

The implementation of such a model can provide useful information
in support of agricultural practices giving particular importance when
considering irrigation scheduling according to surface soil water con-
tent. At the same time, the OPTRAM-SSM1 km data fusion approach
should be considered and further explored to overcome the cloud re-
lated limitations imposed on Sentinel 2 images exploitation. Ultimately
future tests assessing high resolution time series analysis of satellite
images for soil moisture retrieval should be considered for longer per-
iods (more seasons) to monitor crop seasonal growth and SSM varia-
bility over time.
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