RUBICON
Robotic UBUquitous COgnitive Network

—— —
SEVENTH FRAMEWORE
PRGGRAMME

Project No.: 269914

D1.1 — Functional Designh &
Specification & Mockup
Layer

Editor: Claudio Gennaro ISTI-CNR
Mathias Broxvall ORU
Claudio Vairo ISTI-CNR

Contributor(s): Giuseppe Amato ISTI-CNR
Mauro Dragone NUID UCD
Alessio Micheli UNIPI
Stefano Chessa UNIPI
Davide Bacciu UNIPI
Claudio Gallicchio UNIPI
Alessandro Saffiotti ORU

Dissemination level

X | PU=Public

PP = Restricted to other programme participants (including the Commission Services)

RE = Restricted to a group specified by the consortium (including the Commission Services)

CO = Confidential, only for members of the consortium (including the Commission Services)

© Copyright RUBICON - All Rights Reserved

RUBICON D1.1 Comm Abstraction & Proxy

RUBICON: Project No.: 22699145

Issue Date

30/09/2011 (M9, MS1)

Deliverable Number

D1.1

WP

WP1 - Communication Layer

Status

ODraft OWorking [XIReleased [CIDelivered to EC ClApproved by EC

Document history

\Y Date Author Description

0.1 | 01/09/2011 Claudio Gennaro First very draft

0.1 ' 05/09/2011 Claudio Vairo Added section 4.2.1

0.2 :{09/09/2011 Claudio Gennaro Added Requirements

0.3 :16/09/2011 Mathias Broxvall Added PEIS description in Section 3. Updated Sections 4.2
&5

0.4 : 23/09/2011 Claudio Gennaro Added specification and description of the join island +
figure.

0.5 :27/9/2011 Claudio Gennaro Updates to the implementation issues.

0.6 :28/9/2011 Mathias Broxvall Added section about proxies in the implementation issues.

0.7 :30/9/2011 Mathias Broxvall Rewrote section, and split into separate section.

0.8 | 03/10/2011 Claudio Gennaro Final release

Disclaimer

The information in this document is provided as is and no guarantee or warranty is given that the
information is fit for any particular purpose. The user thereof uses the information at its sole risk and
liability.

The document reflects only the author’s views and the Community is not liable for any use that may
be made of the information contained therein.

03/10/2011

Page 2

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

Executive Summary

This report describes project activities related to Task 1.1 — “Specification and design of the
network”, which analyzes the state of the art solutions for networking in WSANSs already available in
the consortium and out of the consortium, in order to assess a baseline on which we will build our
solutions for supporting the RUBICON communications.

03/10/2011 Page 3

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

Contents

1. INTRODUCTIONcctiiiiiiiiitttinttietttseieteeemeeemeemseeeseeemeeesmeesmemseeeeeeeeeeeeteemeeeeeeeeeeeeeeeeeeeeteeeeeeeeeeseeeseeenn 8
1.1 OVERVIEW OF THE RUBICON COMMUNICATION LAYERveevveeeiieeiieesreeeiesenseeesssessneeensesesseessssesssneeenns 8

2. REQUIREIMMENTS......ccciiiiiiiiiiissnss 10
2.1 PROVIDED INTERFACE REQUIREMENTS ..eeeuuvtteeeurteeesurteesnunreeesnusreesssuseeesssseeessneeesssnsesessnnseeesssnseesssnens 10
2.2 NON-FUNCTIONAL REQUIREMENTSeeteeurteeesureeessunreeesnuseeesssusteessnseeesssseesssnneeessssseeessssseeessnsenesssnens 12

3. BACKGROUND TOOLS AND TECHNIQUEScccooeiiiiiiiisses 13
3.1 THE PEIS-MIDDLEWARE ... tttittterureesteesteeenieeesuseesseeenseesnsseesssesssesensssesssessssessnsssessessnsessnsessnssessnnes 13
0 B I 1 o Yo [V Tor 1 [ISR SR 13
3.1.2 High-level PEIS-KErnel deSignN.............cccuueeeeueeeeeiiiieeeiiieeesieeeessieaessiiteaessissaesssessssssseassanes 14
Bl Yo =) (= 4= ol -SSR 15
3.1.4 Internal organisation Of the PEIS-KEINEl.............cceueeeveeeeeiieieesiiieeeeiieeeesiieeesiieaesesieeaenns 17
BN U o 1= N 1] [) =T PRSP 18
R N T o o] SRR 20
R A 1 1= Vo) [o V=T R UURRE 24

3.2 PROXIED OBJECTS .uuvveeureesureesusesesseeessseessseessesasssessssessnsssansesasssessnsesesesessssesssesansesssssesssessnsesansssennnes 27
3.2.1 Introduction tO ProxXi€d ODJECLS.........cuueeeeeeeeeeeieee et ees st a e e e et e cataa e e e e e ssstaaaaaa e e e 27
IR D=2 [0 1 oo 1 A (=1 ¢ ¢ PSR 28

3.3 MAD-WISE STREAM SYSTEM LAYER ...cuveeeereesreeesreeesseeesseeeasesssseeessseessessssessssssesssessnsesensesssssesssessnses 30
G I N o} (o 1o [V Lo 1 (o s IO PP PR PRSP 30
3.3.2 TRE SLrEAM SYSLOIM ...ttt e ettt e e e e e sttt a e e e e ss e taaeaaeeesssssseenaeaeesians 31
3.3.31IMPIeMENtALiON DELQIIScccoceeeeeeeeeeeeeeeeeeee ettt e e ettt eea e e e e e et e e e e e s s ssssseeaaaeesaans 34
3.3.4 CONCIUSIONS ..ottt ettt e e ettt sate e st s et e e stta e s teesbasesataessteasseasssseenasesnns 38

BLA SIMIEPP LIGHT . .utteiutee ittt ettt ettt e st e st e e bee e sate e st e sabaeebeeesateesabeeeabaeenbteesabeesabeeensaeensseesasaesabaeenseeenseens 39
O A [1 7o Yo [V ot o (o1 O PSPPI 39
342 REQUITEIMENTS ...ttt e et eaeaaaseaaaasassasaaasasasasasasaaasaaasasasaeeees 39

O N Y o L=l Lol [4 Lo FO SRS 41
34,4 ENEIGY EffiCICNICY ..vvveeeeeeeeeee ettt ettt et e ettt e e et a e e s tta e e e st e e e sstaa e e ssaaaensnes 45

4. HIGH-LEVEL DESIGN.....ccoiiiiiiiiiiiiiiiiiiiniiisiiissiisssisss 48
4.1 DESIGN OVERVIEWuvteeeeieiteeeeeuteeeeestteeeeasseeesassaseesassssessnsssssssssssessnssesessnssssssasssessassssessnsssssssnseeessnnes 48
4.1.1 GALEWGAYS QNG PIOXIES.....ccccccvvieeeeiiieeesiieeeesiee e eetaeeetttea e estttaaesstaasessstaaeesstaassastnaessssteasensses 49

4.2 IMPLEMENTATION ISSUES ...vttteeetteesesutreeeeeuteeesaseeeessssasessassseessssssssssssesessassssessssssessansssesssssssessnsesessnnes 53
4.2.1 High level QreRit@Cture OVEIVIEWccc.uueeeeeeeeeieciiieiaaeeeesiisstaaaaeeeessttssasaseessssssssanaeenans 53
Vi3 NNV g Lo o1 [olel s 1o 14 T4 T=1 K3 USSR 55
4.2.3 MUIETEASKINGevveeeeeeeeeeeee ettt e ettt a e e e e ettt a e e e e et st e aaaaesessasssssaaaeeasssssssaanaaes 55
O D Yoo V=] o SRS 56
4.2.5 Implementation of proxied 0bjects aNd ProCESSESuweeeeeeciviieeieeeeseiiiiereeeeeesiiisenanans 56

5. INTERFACE SPECIFICATIONcccuuueeemmememennsemsmssans 58
5.1 SYSTEM OVERVIEW.....etetteeiueeesuteeeueeessseesssesssesenssesssseesssesansesssssessnsessnsesessssssnsessnsesssssssssessnsesssssessnses 58
5.2 TRANSPORT SUBLAYER AND ADDRESSINGvveeeuverereeessseesnseeesseesssseesseesssessssesssssessssessssesssssessnsessssessnses 59
5.3 SPECIFICATION OF THE IMIOCKUP LAYEReiuveeeieeeiteeesiieesteeesteeesnseessseesssesesseesssseesnsessnsessnseessnsesssessnnes 59

03/10/2011 Page 4

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

5.3.1 Specification of the functions of the Synaptic_Channels component................cccccuvuuenn.... 59
5.3.2 S Specification of the functions of the Streams componentccceecccvvvveeeeeecscivenenanenn, 61
5.3.3 Specification of the functions of the Connectionless component...............ccccceeeeeccvvvenannnn. 63
5.3.4 Component MANGQGEMENT.............uueveuuueviuiiiriiiiieeeeiiieeeeeeeeeeeeeatetatattaataaaaaaaaaaaaaaaaaaaeaaeeeeeeeeees 64
5.4 INTERFACE SPECIFICATION FOR PEIS-WSN GATEWAYueiiiuieeiieeeitieesteesieessseeesseeessesssesessessssesssseesnns 64
6. ACKNOWLEDGEIMENTScciiitiiiuniiienicieeniieniiiensiisieiseisissisisserssstssstsssssssssssssssssssssssssssssssnssssnes 66
7. REFERENCESccuituiiiiuiiiiniiineiiienieiesioiesiienssisnsssessietsesssssstssesesssssssstensssssssssssssssssssansssssssssnssssnes 67
Abbreviations

RUBICON Robotic UBIquitous COgnitive Network

WSN Wireless Sensor Network

MaD-WiSe Management of Data in Wireless Sensor networks

Mote A wireless sensor network that is capable of performing some processing,

gathering sensory information and communicating with other connected nodes in
the network.

PEIS Physically Embedded Intelligent Systems

03/10/2011 Page 5

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

Figures
Figure 1 - Role of the RUBICON ComMMUNICAtION LAYEIcccccuiieiecieeecciieeecettee e etee e e ettee e evee e e aree e 8
Figure 2 - Relationship of Communication Layer with the devices and the other Layers....................... 9

Figure 3 - The PEIS-kernel stack illustrating the internal modules and layers of the PEIS-kernel
(yellow), PEIS-components of a special nature essential for the middleware (blue) and application
foloTa] o oY o T=T oY 43K [T) S SUSRP 15

Figure 4: Example of a proxy using RFID as interface channel. Proxy manager receives signatures from
all interfaces, looks up and creates the proxy for the detected object. The robot communicates with
the proxy like for any other device in the €COIOZY.....cueiiiiiiiiiiiiie e 30

Figure 5: Stream types. T = transducer, W = writing operator, R = reading operator.ccccceecuveenn. 31

Figure 6: Command/event sequence when opening a remote stream from sensor A to sensor B (App
= Application, SS = Stream System, Net = NetWOIK).cccueiiviiiiiiiiiies e 36

Figure 7: Command/event sequence when data is written to a remote stream (App = Application, SS
= Stream System, NEt = NETWOTK)c.ii ittt re et e et e e s be e st e e e taeeaseesabeeeanes 37

Figure 8: Stream System Module interaction diagram. Full arrow lines indicate commands while

dashed arrow liNes INICate EVENTS.cccii ittt e b e 38
Figure 9: Components in SMEPP Light architecture.........ccuveeveeiiiccce e, 43
FIBUIE 10: Creating @ SrOUD ..uuuuuuueerereieieiuieeeeeeeeererererererereeerererereeeererereereteereeetereeeeeteretetatetetereeeeeeeeeaeeeeeens 44
Figure 11: Duty cycles and SUDSCHIPLIONSccoeeiiiiiiee et e e e et e e e e e e arrraneeeeean 46
Figure 12: Energy consumption (in MA-RE) ... e et 47
Figure 13 - Type of communications and devices iNVOIVEd.c...coociiiiiiiiiii e 48
Figure 14 - Topology of the RUBICON ECOIOZYcceieiiiieiieie ettt ettt tee e e e e 49
Figure 15 - Communication between two Motes (A-to-B) in the same island...........ccoceeeeieeeicineenns 50
Figure 16 - Communication between two Motes (A-to-B) in remote islands.........cccecveeeviviieeiccineennns 51
Figure 17 - Communication between a mote and a remote PC/ RObOL.cccoevvivieeiiieiiiecceeeieeee, 52
Figure 18 - The communication messages between a mote and a PCin detailsccceeevciveeeicinennns 53
Figure 19 - The communication messages between two foreign motes in details..........cccccevveeeenneennn. 54
Figure 20 - Sequence diagram of the communication between two motes of the Control Layer 54

03/10/2011 Page 6

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

Figure 21 - Software architecture for the Communication Layer: logical sublayers are separated by a
dashed line, software components are small rectangles.ccccveiieecciiiiiii e 58

Tables

Table 1: Interface of SMEPP LIGHT ...ccceuiiiiieieeeee ettt e e e e e s te e e s eabae e e e nreas 40

Table 2 - Summary of the communication relatioNSAIPScccoueeeeecveeeeiiieeeecieeeecceee e e e eiaee e 52

03/10/2011 Page 7

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

1. Introduction

1.1 Overview of the RUBICON Communication Layer

Figure 1 depicts the conceptual, layered high-level architecture of the RUBICON system, outlining the
main responsibilities of each layer and their main interactions and emphasising the Communication
Layer.

[Env / System)
Events, State, confidence

(Novelty Detection)
Feedback,Training

5|e0S

Communication
Layer

SNJE}S Uoijnd=xy

(Env [System)
Events, State

——>

Action Quality

=

=
g & @ =
=¥ =t = o

7 z =]
(=} (=] = o
o 2 3 ®
;-Jv (Supervision) ;’J" 3 w

- - 9

Wiring, Feedback, Training -

Figure 1 - Role of the RUBICON Communication Layer

The aim of the Communication Layer is to provide a reliable communication infrastructure for the
RUBICON framework. The implementation of communications and hardware abstraction services are
driven by the requirements dictated by WP2, WP3, and WP4, in order to enable the sharing of data
and functionality required by the RUBICON. To meet these requirements the communication layer
will be mainly based on the two existing Software: the StreamSystem Middleware by ISTI-CNR and
the PEIS Ecology middleware by ORU.

03/10/2011 Page 8

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

Control Layer Control Layer

Learning Layer Learning Layer

Comm-Layer Comm-Layer

Figure 2 - Relationship of Communication Layer with the devices and the other Layers

The main objective of this layer is to provide different type of communicating mechanisms for
exchanging information between Layers running on remote devices (robot, pc, motes, etc). See
Figure 2. In particular, the Communication Layer will make available different paradigms of
communication on the basis of the type of hardware involved in the communication. This aspect is
well described after the analysis of requirements provided in the next Section 4.

03/10/2011 Page 9

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

2. Requirements

In order to organize the overall presentation of the requirements across D1.1, D2.1, D3.1 and D4.1,
this section starts by reporting the functional requirements associated to interfaces that this layer
must provide to other layers of the RUBICON architecture, as discussed in D2.1 and D4.1. These
requirements, and the use cases collected in D0.1 are then examined in order to infer other
functional requirements describing the desired behaviour of the Control Layer, as well as non-
functional requirements concerning aspects such as openness (the ability of handling nodes entering
and leaving the system), fault-tolerance, etc. Finally, this section examines the requirements
requested to the other layers of the architecture.

Requirements are named RX.Symbol, where X is the first number of the deliverable (matching the
WP, e.g. 1 for WP1, 2 for WP3...) and Symbol is a short name reminding of what is the flow of data,
control, or functionality associated to the requirement, as in the high-level architecture diagram of
Figure 1.

2.1 Provided Interface Requirements

This section briefly reports the requirements associated to functionalities/data/control that this layer
must provide to interface with the other layers of the RUBICON architecture. These requirements are
extensively discussed in the deliverable of the layers requesting them. However, in this section the
same requirements are reported and examined from the perspective of the Control Layer in order to
ease the analysis of other requirements.

NAME DESCRIPTION
R2->1.INPUTSTREAM The Learning Layer requires the timely delivery of input data collected by

the sensors’ transducers and other available off-the-shelf software
From functional components in order to progress with the computation of the predictions
requirement of the Learning Network.

R2.PREDICTION
This requirement is needed in order to satisfy the functional requirement
R2.PREDICTION as, in order to provide the requested output prediction at
each RUBICON clock tick, the LN needs to have all the inputs readily
available at its input interface.

R2->1.COMMUNICATION | The Learning Layer requires the Communication layer to set up
synchronous communication channels among the learning components
From DoW, “Work Package | residing on different nodes of the RUBICON ecology . These are used to
Description” for WP2 and | transmit configuration and control information (e.g. wiring data,

the Section 1.3 “S/T components of the learning modules) as well as input data.
Methodology and
associated work plan” The goal of the Learning Layer, as described in the Section 1.3 of the Dow,

is to “deliver a distributed, adaptive, and self-organizing memory
comprising independent learning neurons residing on multiple nodes of
the ecology. These neurons will interact and cooperate through the
underlying communication channels provided by WP1”. Therefore, the
Learning Layer needs the Communication Layer to setup appropriate

03/10/2011 Page 10

RUBICON D1.1 Comm Abstraction & Proxy

RUBICON: Project No.: 22699145

communication channels between the distributed learning modules.

R3->1.SENSING
From

R3.STATE,
R3.RELIABILITY,
R3.EXECUTION &
CONFIGURATION

In order to build and maintain an up-to-date picture of the state of the
robotic ecology and its environment (R3.STATE), and to enable
collaboration between members of the robotic ecology (e.g.
communication of localization data from the ceiling camera to the robot,
in the AAL scenario, see R3.EXECUTION & CONFIGURATION), the Control
Layer must be able to receive data and periodic status updates from every
sensor and actuator it wishes for.

In order to support R3.RELIABILITY, the Control Layer should also be able
to specify the desired update rate and to be informed of the maximum
latency to be expected by the resulting updates.

The Control Layer may tolerate the loss of some of these updates but all
data must be time stamped in order to be able to ignore old updates.

R3->1.ACTUATION
From
R3.EXECUTION &
CONFIGURATION,
R3.RELIABILITY

The Control layer must be able to send control instructions (e.g. new set
points, new output values) to every actuator it wishes for.

For this type of transmission, the Control Layer does not require the ability
to communicate periodic updates of control instructions. However, in
order to support R3.RELIABILITY, transmission of control instructions
should be reliable (acknowledged). In addition, the Control layer needs to
be informed of the maximum expected latency.

R3,4->1.DATA SHARING
From

R3.KNOWLEDGE SHARING,

R3.DISTRIBUTION,

In order to support R3.KNOWLEDGE SHARING, R3.DISTRIBUTION and
R3.EXECUTION & CONFIGURATION, the Control Layer must be able to
(asynchronously) share it sensor data, actuator status and other
information among distributed nodes (multiple robots, WSN nodes and

R3.EXECUTION & | other devices).

CONFIGURATION,

R3,4->1.MESSAGES In order to support R2->3,4.CONTROL, R3.DISTRIBUTION, and
From R3.EXECUTION & CONFIGURATION and co-ordinate its operation across
R2->3,4.CONTROL distributed nodes, the Control Layer must be able to send reliable and
R3.DISTRIBUTION, synchronous control messages to all the nodes it wishes for.
R3.EXECUTION &

CONFIGURATION,

R3,4->1.DISCOVERY &
TOPOLOGY

From
R3.0OPENNESS,
R3.RESOURCES, R3.STATE

In order to support R3.0PENNESS, R3.RESOURCES and R3.STATE, the
Control Layer needs an updated picture of all the components available in
the system, including all the WSN nodes currently active.

Every component should have a unique ID and the Control Layer should be
informed whenever any robotic device or WSN nodes join (as they become
operative and connect to the network), or leave the system (as they get
disconnected, breaks, they battery get depleted or simply move out of
network range

03/10/2011

Page 11

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

2.2 Non-Functional Requirements

NAME

R1.DEBUGMODE

DESCRIPTION

All the modules implementing the Communication Layer must be able to run in
debug mode. In this modality, the software generates log files containing
information about the messages exchanged. You should not be running in
debug mode except when you are trying to isolate a problem because it causes
the size of the log files to grow quickly.

R1.MULTITASKING

The Communication Layer must be able to support the communication of more
than one process running on the same Mote.

R1.ROUTING

The Communication Layer running in a mote knows which island it belongs to
and the corresponding basestations that must be contacted for routing
messages.

R1.SCALABILITY

The topology and the routing mechanisms of the Communication Layer must be
designed to support a growing number of devices without degradation of
performance in communications.

R1.DISTRIBUTION

The Communication Layer must be distributed across the Motes, PCs, and
Robots in order to minimize network bandwidth, latency, and energy
consumption.

03/10/2011

Page 12

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

3. Background tools and techniques

Within the RUBICON project, we will rely on two main background technologies, the PEIS-
middleware and the MaD-WiSe Stream System, for the implementation of the communication layer
in WP1. These two background technologies implements partly overlapping services but with
important differences in hardware requirements and with services targeted towards applications for
robotic devices and for distributed wireless-sensor-networks, respectively. This allows for efficient
WSN networks while at the same time allowing for advanced planning and dynamic reconfiguration
of robotic tasks at the level of computationally more capable devices.

To distinguish between the type of devices that can be reached natively using the PEIS-middleware
and the MaD-WiSe Stream System we will refer to the networks as the PEIS-network or PEIS-ecology
the wireless-sensor-network or networks (for the case of multiple islands of WSN), respectively. Note
that we use the term wireless-sensor-network somewhat loosely here since the nodes under
consideration also can contain actuation devices.

We expect this hybrid approach to give a synergetic effect and to allow for the implementation of
very heterogeneous devices in the RUBICON ecology.

In this section we will also describe the SMEPP Light middleware, from which we borrow the
publishing/subscription mechanism that can offer functionality to develop the auto discovery
functionality.

3.1 The PEIS-middleware

Due to the nature of the background PEIS-middleware and the role that it plays both in the
communication and in the control layers it is described both in deliverable D1.1 and D3.1 — albeit
with a slightly shift in focus on the communication, configuration and control aspects of the
middleware, respectively.

We will here describe only the aspects of the PEIS middleware related low level communication, P2P
based message routing and the higher level tuple based communication needed for the
implementation of proxies. Most notably, we refer the reader to D3.1 for details related to control
mechanisms such as dynamic re-configurability.

3.1.1 Introduction

The PEIS kernel and related middleware tools are a suite of software previously developed as part of
the Ecologies of Physically Embedded Intelligent Systems project in order to enable communication
and collaboration between heterogeneous robotic devices [1]. This kernel is a software library
written in pure C and with as few library and RAM/processing dependencies as possible making it
suitable for a wide range of devices. The original purpose of this library was to enable software
programs running on PC (Linux, MacOS, and Windows), PC/104 (Linux/RTAI), Gumstix (uCLinux) to
participate as PEIS components in the PEIS Ecology network. This network is composed of an
heterogeneous set of mobile robots and networked sensors and actuators and the middleware is
used to enable communication and collaboration services between these devices that are in many
aspects non-overlapping (and orthogonal) to hardware centric robotic middlewares such as
Player/Stage and ROS.

03/10/2011 Page 13

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

Since there exists bindings for the PEIS middleware to several other programming languages, most
notably Java, this middleware is a suitable candidate around which to build the collaboration aspects
of the robotic devices in the RUBICON ecology.

Although there exists a TinyOS based version of the PEIS-kernel (TinyPEIS), a design decision was
made to not rely on this version for RUBICON. The main reasons for this include the required RAM
memory (4kb) and processing requirements that are not compatible with the planned resource
utilization of the learning layer (see WP2). For this reason, a hybrid approach is required with
another pure communication middleware running on the TinyOS based devices and with dedicated
bridge devices that synchronises messages and collaboration tasks between the robotic devices and
the Wireless Sensing and Actuation devices.

In the remainder of this section we will describe the communication aspects of the PEIS middleware
as applicable to the RUBICON project. For the non-communication aspects, we refer the reader
instead to Deliverable D3.1. For the TinyOS based communication layer, see Section 3.3, in this
deliverable.

3.1.2 High-level PEIS-kernel design

The most important design requirements of the PEIS-kernel have been to provide a decentralized
mechanism for collaboration between separate processes running on separate devices that allows
for automatic discovery, high-level communication and collaboration through subscription based
connections and dynamic self-configuration. These and any additional services should all allow any
devices to communicate/collaborate with any other devices as long as there exists any, possibly
indirect path of communication between the devices.

For this requirement, a first design choice of the PEIS-kernel was to abstract the notion of
communication links, with current implementations for using TCP/IP links, UDP/IP links and
Bluetooth devices for the main PEIS ecology.

On top of the basic communication links, a P2P layer implements multi-hop routing and probabilistic
broadcasts between nodes as well as acknowledgement, multi-fragment messages and reliability
services.

Finally, on top of these communication services a set of higher-level services including eg. a
subscription based tuplespace mechanism, dynamic-reconfiguration mechanisms is implemented.

From the point of view of WP1 mainly the first two layers, the communication and P2P, are of
interest. For the other services and layers, we refer the reader to deliverable D3.1.

03/10/2011 Page 14

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

Meta |ﬁer
emantic discove

Eonﬁgurmg[A -~

Tuplespace layer [Distribution]
“ TGD m’o]
SU.t:scm:: tro ns

Communication layer

PEIS Components

awaYy s1ad

Y
a1eM3IPPIN SI3d

| Connection managemem;

| L;nklfa},rer I

Figure 3 - The PEIS-kernel stack illustrating the internal modules and layers of the PEIS-kernel (yellow),
PEIS-components of a special nature essential for the middleware (blue) and application components
(red).

In addition to the direct services provided by the PEIS-kernel library (available inside every process
linked to the library) there are also a number of essential services that are provided only by a few
specialized processes. These services are typically only intended to be run on one process on each
host of the network (peisinit) or for debugging or visualization (tupleview) purposes or are of other
specialized nature such as action or configuration planners.

Figure 3 illustrates this distinction between what is part of the PEIS-kernel, and what are specialized
components or semi-essential services of the PEIS middleware. Again, we refer the reader to
deliverable D3.1 for an overview of these other services.

3.1.3 API reference

The following subset of the PEIS-kernel API related to the P2P layer constitutes the main interface to
the other communication layers in the RUBICON ecology (ie. to the dedicated WSN/WSAN motes).
For all PEIS-kernel functions, the prefix peisk_ is used in the API functions but are omitted here for
simplicity. Furthermore, all internal datastructures of the specific PEIS-kernel instance associated
with each separate process can be accessed through the globally accessible variable peiskernel in
the memory space of each such process.

The list of all known hosts in the current ecology can be accessed as a hash table

peiskernel .hostInfoHT

This provides an interface to the automatic discovery mechanism and allows for a low-level access of
every known PEIS device that can be reached from the current network.

Manipulation of this hashtable can be made using the hashtable API functions:

03/10/2011 Page 15

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

hashTableIterator first,hashTableIterator next,
hashTableIterator value

The former two provides the mechanism for iterating over all known hosts while the later returns a
datastructure of type hostinfo, presenting the hostname, unique peis-id and magic ID and different
known low level addressing mechanisms that can be used to establish direct links to it.

The basic mechanism for sending and receiving low-level messages within the PEIS ecology focus
around the notion of ports which are an integer describing the targeted service within different
destinations — specified using the unique peis-id identifier that is given to each process participating
in the PEIS ecology. These identifiers are part of the host information given above.

To send data to a targeted service within any other PEIS process on the network use the
sendMessage functionality.

sendMessage (port, destination, length, data, flags)

This functionally will split the message into fragments that fit within the size limitation of the
underlying linklayer connections and, depending on the selected flags, will queue the message for re-
transmission until it has been verified by an acknowledgement package from the destination (or until
the destination is known to be non-routable).

For the point of view of WP1 this mechanism will be used for transmission of message between the
gateway devices in the implementation of the dedicated WSN island-to-island routing mechanism.

The basic service for receiving packages is by registering a callback function that is invoked by the
kernel whenever a message is received on a specific port:

registerHook (port, function-pointer)

Where the callback is a pointer to a function that processes the received data package. This allows
for a non-polling mechanism for receiving messages.

In addition to sending messages to a specific host known by its identifier, the PEIS-kernel also allows
for broadcasts that will ensure that a given message is received by every PEIS that can be reached in
the network.

broadcast (port, length, data)

This mechanism is used to implement many of the decentralized services that synchronises eg. the
tuplespace and the distributed clock on the network.

From the point of view of WP1 this mechanism will be used for detecting the available gateway
devices in the implementation of the dedicated WSN island-to-island routing mechanism.

For the communication between gateways and robotic devices, WP1 will utilize the distributed
tuplespace of the PEIS-kernel. A complete list of relevant APl calls for this is provided in the
automatically generated documentation [10], but we present here a reference of the most vital
methods. We give first the two convenience methods used to create and insert tuples directly from a
given set of data and using default values for all other properties such as timestamps and expiry
dates.

setTuple (key, len, data, mimetype, encoding)
setRemoteTuple (owner, key, len, data, mimetype, encoding)

03/10/2011 Page 16

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

For general purpose tuples the following functions are used insert tuples into the tuplespace.

initTuple (&Tuple) initAbstractTuple (&Tuple)
setTupleName (&Tuple, name)

insertTuple (&Tuple)

appendTupleByAbstract (&Tuple,nlen, added-data)

Read of tuples are generally performed with either one of the direct reading methods, by using the
associative search based reading, and/or by registering a callback on the tuples.

subscribe (owner, key) subscribeByAbstract (owner, key)
getTuple (owner, key, flags) getTuples (owner, key,ResultSet*)
getTupleByAbstract (&Tuple, flags)
getTuplesByAbstract (&Tuple, ResultSet*)
registerTupleCallback (owner, key,userdata, callback-£fn)
registerTupleCallbackByAbstract (&Tuple,callback-£fn)

In addition to these there are a large number of API calls relevant to the manipulation and reading of
tuples from the distributed tuplespace. We refer the reader to the doxygen documentation of the
PEIS-kernel for this purpose.

For the point of view of WP1 these tuple manipulation APl's are of interest in the implementation of
the gateway devices tuplespace based communication with robotic devices.

3.1.4 Internal organisation of the PEIS-kernel

Internally, the PEIS kernel consists of a number of modules that implement the different services
provided by the kernel. These services are implemented using the notion of periodic functions and
event-hooks that can be registered during the initialization of each module (which is done during the
initialization of the kernel).

A periodic function is a function that will be attempted to be invoked by the kernel at a fix frequency.
Since the kernel is not dependent on multi-threading this is done by an internal scheduling that calls
the functions at the appropriate time. This scheduler is run whenever the peisk _step function is run
which must be done manually by users of the non-threaded PEIS-kernel and is done automatically by
the more common multithreaded PEIS-kernel. In the former case, applications should call the
scheduler at a minimum of 20 Hz and in both cases should ensure that the scheduler is not blocked
longer than 50ms.

The scheduler will call each periodic function with up to the frequency specified for it. In general, it
does not call a function multiple times in order to "catch up" if the step function have been delayed.
This allows for (1) gradual degradation when CPU usage is 100% and (2) to register periodics with a
period time of 0.0 in order to be called on every step.

Event-hooks exist not in the generic sense but rather for specific network packages and for specific
tuple updates. They are registered by high-level modules (or user programs) and are called when the
corresponding network package or tuple is detected by the kernel. Again, since the core kernel is
non-multithreaded this is typically done indirectly by the scheduler calling a periodic function, which
triggers the corresponding event upon receipt of a network package or the timeout of a
package/expiry of a tuple.

03/10/2011 Page 17

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

The modules currently implemented in terms of these two types of functions (and additional API
functions) can loosely be organized as a number of layers providing services to higher layers, and in
the end the software application. The three most important layers are:

A The Link Layer, which provides basic communication channels between different software
instances on the same computer, or distributed on any computers on a Ethernet network,
connectible by bluetooth connections or any future additional link mechanisms.

A The P2P Layer, which creates an ad-hoc peer-to-peer network on top of all available network
links in order to let any PEIS component in the ecology communicate with any other
components.

A The Tuple Layer, which implements the basic tuplespace on top of the P2P layer. Although
this layer provides the core of the services used by applications, some of the other library
functions are of use in some applications.

For a complete list of all modules in the PEIS-kernel, see the Doxygen page for software modules
included in the PEIS-kernel G6 release, available online at [10]. Also note that some of the
implementations with periodic functions and sockets have been made more efficient than apparent
in this document by using e.g. Unix signal masks instead of polling reads, efficient datastructures —
these standard computer science techniques have been omitted in this document to simplify the
description of the basic concepts.

For the purpose of RUBICON, we plan to build gateway devices that utilize some of the same
mechanisms as for the PEIS-kernel modules, most notably access to primitive peer-to-peer network
communication mechanisms. These gateway devices can also be considered a part of PEIS-kernel as
well as of the general RUBICON middleware.

3.1.5 The Linklayer

This is the lowermost layer in the overlay network dealing with any connections in the PEIS network
(which should not to be confused with the OSI linklayer) The API layer of the OSI stack for e.g.
TCP/UDP can be considered the linklayer for the PEIS-kernel.

The main purpose of the linklayer is to provide a notion of primitive connections for the P2P layer. It
offers these services to the higher layers:

A Notion of low-level addresses that can be used in establishing connections
A Discovery of possible connections to establish
A Connections that can send 1024 byte large packages to neighbours.

The linklayer is built with modules for different link mechanisms. Currently we have the following
mechanism, as more esoteric hardware becomes available we may add more mechanisms.

A TCP/IPv4 (currently the dominant link mechanism) provides bidirectional links to any other

PEIS on the same Ethernet network.

A UDP/IPv4 (currently not used) has a few advantages with regards to speed, overhead and
latencies but have to throttling manually.

03/10/2011 Page 18

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

A Bluetooth creates connections between any bluetooth connected PEIS as soon as they enter
the same physical space. It allows for a much simpler (even nonexistent) infrastructure, ie. no
network configurations are required for the PEIS to find each other.

Some of the modules (ie. the bluetooth module) can be enabled/disabled during compile time
depending on the available low-level libraries.

Future developments that are not planned as part of the RUBICON project include adding linklayer
modules for raw access to WiFi networks and raw access to primitive ARP messages. These should be
implemented to remove some of the constraints on the current TCP/IP infrastructure — although this
requires elevated privileges to run on most operating systems. Also, a simple Unix-socket or shared-
memory space linklayers may be implemented for very high throughputs of components onboard the
same physical hardware and is planned to reduce the latency of ROS to ROS communication passing
through the PEIS layer, as described in Deliverable D3.1.

Each linklayer module exports upon initialization time a list of interfaces that it can use to establish
connections. An interface represents different physical devices or logical networks (of the linklayer)
along which the linklayer can communicate. Each linklayer module there has an associated lowlevel-
address that uniquely names the interface and, when appropriate, can be used for establishing
connections.

Each process that runs the PEIS-kernel can have more than one linklayer module active at each time,
and more than one interface available in each such module. The lowlevel-addresses from each
linklayer module and interface is given in the hostinformation structure together with the global peis-
name and peis-id of the process.

3.1.5.1 TCP/IPv4 linklayer

This linklayer uses TCP connections on top of IPv4. For each physical and logical IPv4 network
interface on the machine a corresponding IPv4 linklayer interface is established. For the purpose of
RUBICON, we plan to rely primarily on this linklayer for the communication between robotic devices
and between the gateways that connect disparate WSN islands.

Each process that runs the PEIS-kernel allocates a TCP port (default 8000) that it will use to listen for
incoming connections, with the same port number running on each interface. Furthermore, each
such process opens the multicast port 227.1.3.5:10001 for listening to announcements on the local
networks. (This is an alternative to processing ARP requests to simplify portability and required
privileges).

During run time, each process that runs the PEIS-kernel sends out periodic announcements on the

above multicast port publishing its hostinfo structure.

It provides an API function for attempting a connection to a specific other TCP/IPv4 lowlevel-address.
Furthermore, it periodically listens to the incoming socket and creates a connection structure for
each successful incoming connection.

It also provides a functionality for sending an atomic package along a given connection. Each such
package is up to 1024 bytes large.
3.1.5.2 UDP/IPv4 linklayer

This is a linklayer interface using UDP over IPv4. For the purpose of the RUBICON project, we plan on
not relying on this linklayer due to the basic constraints posed by UDP traffic.
03/10/2011 Page 19

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

3.1.5.3 Bluetooth linklayer

Bluetooth is an alternative linklayer that can be used standalone or in conjunction with the TCP
linklayer. The bluetooth linklayer module is compile time optional, and requires that 1ibbluetooth—
dev is installed to compile.

The bluetooth layer can use one or more bluetooth adapters, these are given as commandline
options using —peis—bluetooth hciX where hciX is a specific bluetooth adaptor. Use hcitool dev
to see which bluetooth adaptors are available on your system. It can use multiple adaptors by being
given multiple instances of that option. It does not require to use all adaptors available on the local
machine.

Currently, PEIS components need to be run with root privileges in order to be able to use the
bluetooth adaptors, this is necessary to enable RAW interface mode to overcome some of the
limitations in the current linux bluetooth interface drivers and libraries.

Multiple PEIS components can be run using the same bluetooth adaptors. However, only one
component can use the adaptor for "broadcasting”, which announces that this bluetooth adaptor is
connected to a PEIS component. Currently, the first PEIS that opens the device gets this privilege, and
hence, when that PEIS is closed no other PEIS will make incoming connections to any PEIS on this
computer. In the proposed service level BDI architecture of WP3 this is not a limitation since the first
PEIS to run on each component, peisinit, will also be the last to terminate.

In order to find other PEIS that have bluetooth adaptors, each PEIS with an adaptor performs SCAN
operations using the bluetooth adaptor in RAW mode. This gives a list of all other bluetooth devices
(not just PEIS) in the vicinity, as well as their signal strengths. The signal strengths are reported as
tuples, to be used by higher-level applications to compute locations of devices.

By regularly attempting to connect using L2CAP port 7315 (HELLO connections) to detected
bluetooth devices, it can be determined if they are PEIS and basic host information data can be
transmitted between the two. This also transmits the port numbers of any ports for incoming
connections.

By using the signal strengths, and the results of the periodic HELLO connections, it is possible to
determine when a bluetooth connection between two PEIS might be possible. This is reflected by the
bluetoothisConnectable function, and is used by the connection manager to determine which devices
should connect to whom.

3.1.6 The P2P layer

The middle layer of the PEIS-kernel consists of a basic P2P overlay network, which uses any forms of
network links provided by the lowermost overlay linklayer to create an ad-hoc P2P layer discovering
and connecting all PEIS.

It provides these basic services to other parts of the PEIS kernel and to the MaD-WiSe Stream System
layer gateway.

A routing of messages towards destinations multiple hops away
A port/pin based communication. Any PEIS can send a message on a given port of any other

named PEIS or broadcast on a given port to reach all available PEIS in the environment. The
ports typically denote different modules in the targets PEIS-kernel. Communication can be

03/10/2011 Page 20

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

initiated with unknown PEIS by a broadcasted request and continued by sending messages
back to the replier.

A long messages: splits up messages longer than linklayer limit (1Kb) into multiple packages
sent individually towards destination

A reliable messages: see Section 3.1.6.8 for details how this is implemented. This allows for the
automatic resending of messages until they have been acknowledged by the receiver, or until
a timeout have been reached. In either case, a user defined hook can be triggered to deal
with the success/failure, which allows higher modules to take appropriate actions.

A port based hooks: calls user defined functions when a package belonging to a given port
passes through or targets this host. Allows the functions to intercept or ignore the packages.

3.1.6.1 Connections

The basic network interface between the P2P layer and the Link layers are the notion of connections
that are established between any PEIS devices. Each connection have five queues of packages that
are to be transmitted along the connection one at a time through the underlying linklayers. The
gueues are sorted by priority and all packages on a higher priority queue must be transmitted in full
before lower priority queues are transmitted. The higher priority queues must be used very
selectively, keeping mind that they may cause lower priority messages to fail and possibly generate
further traffic to deal with the failures.

When a higher module requests to send a point-to-point or broadcast message to a specific other
peis-id and port combination it provides flags that specify which priority should be used and if the
message requires an acknowledgement.

3.1.6.2 Routing tables

Internally The P2P layer keeps track of a routing table and propagates these along the neighbours
links whenever the routing information changes. This information is stored in a local hash table.

For every other known component, a hash table entry is created with routing information for this
host. The routing information consists of the peis-id of the host, the magic number of the host, the
sequence number of the last known routing information to this host, the estimated hops (metric
distance) to this host as well as a timer used by the knownhosts updating service.

Additionally, a simplified version of this hash table is stored for each connection, listing the estimated
routing information to each host as if it had to go through this connection.

A periodic function is used to update the global routing table by inserting the local node into its own
routing table and monotonically incrementing the corresponding sequence number (called seqgno) by
one on each update. Furthermore, on each update a packed representation of the global routing
table is computed containing the id, last-seen-sequence-number, magic-number, hops and
estimated-connections for each host. The estimated-connections are computed from the connection
manager structure for this host if available. These packed representations are sent along each
connection (split into pages that fit within each package size requirement) to the direct linklayer
neighbours without any further propagation.

An update to the global routing table is computed on each node whenever they receive routing
information from the direct neighbours. The received routing information is decoded and compared

03/10/2011 Page 21

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

to the current routing hash table for that connection and missing hosts are marked as outdated.
Hosts that are not outdated are updated in the connections routing table and a check is made to see
if the global routing table is updated. This is done by comparing the values of seqno — hops for the
routing table, trying to maximize this value in the global table. This can lead to the three cases: (1)
no-change required, (2) use this connection instead of the current connection or (3) select another
connection.

The magic numbers for hosts are used for detecting the situation when a given peis-id is used
simultaneously by two different nodes, or to detect when a node have stopped and restarted. It is
also used to prevent propagation of incorrect routing information to hosts that have been deleted
and restarted.

3.1.6.3 Known hosts

This is a module that uses routed packages to query for and respond to information requests of the
hostinformation structure which stored in the PEIS-kernel. Whenever a peis-id for an unknown host is
detected by the routing algorithms, a query is send to retrieve this information. Additionally, when
inconsistencies with multiple components using the same id, or a component is suspected as having
restarted (detected through the magic numbers) this is verified through the known hosts query
mechanism and any old routing information is invalidated.

3.1.6.4 Connection Management

A connection management module is responsible for establishing connections to hosts that have
been detected by the periodic announcements in the linklayers or through propagated routing
information.

This module attempts to keep the diameter of the P2P network small in order to decrease amount of
wasted global bandwidth due to routing and to increases chance of packages being delivered with
fewer retries (reducing latencies) — while at the same time keeping a trade off between the number
of connections that exist in the network and the possibility of the software to request
communications with any host at any time (e.g. without introducing the latency of first establishing a
connection).

Secondary goals of it is to the keep number of new connection establishments as small as possible
(avoid routing table changes, saves OS time) and to have direct connections to any hosts with which
we exchange much data (overall efficiency of network) as well as to attempt to keep the number of
connections in within a suitable range.

To minimise used bandwidth this module establish direct connections to hosts to whom we (or hosts
routing through us) transmit much information. This module keeps track of how much traffic
(bytes/second) are routed to different hosts. This includes all directed messages (not link level
packages) and routed packages. For hosts that we route more than X bytes per second over a sliding
window (for a constant X), force a connection if possible.

To minimise girth this module finds the value V(c) of each connection c. The value of a connection is
the maximum increase in metric distance to any host, which are currently routed through that
connection if that connection would be closed. This can be computed from the connections routing
tables. The value of connections to whom we have a forced link (data per second > X) have an infinite
value.

03/10/2011 Page 22

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

Next, for each known host which it hasn't connected to recently it finds the value V(h) of establishing
a connection to this host h. This value is defined as a random number (0-99) plus a constant (100)
times the current metric to this host minus the heuristic metric cost along a direct connection to that
host (this metric is dependent on the linklayer and is computed for each such low-level address by
low-level address pair).

Hosts that have recently been connected to have a value of zero. This allows for a certain
randomness in choosing which hosts to connect to, aliasing interference patterns from multiple
components attempting to connect to the same hosts.

If we have fewer than the minimum wanted connections (eg. 3) then establish a new connection to
the host h with the highest value V(h).

If we have a suitable number of connections (eg. < 7) then connect to the host h with the highest
value V(h) if this value is higher than the lowest V(c) for any connection c. If we have more than a
suitable number connections (eg. 7) then close the connection with the lowest value (if it not
infinite).

3.1.6.5 Clusters

The module for cluster management is a sub-module of the general connection management and
tries to ensure that the global ecology will always have at least one path of communication between
any two hosts —ie. to avoid the ecology from splitting into separate P2P networks.

To do this the service computes the cluster number, defined as the lowest id of the components to
which it has a route. This number is included in the host information for this host (and thus
propagated through any link-layer broadcasts). For each host detected by the linklayers it checks to
see if the detected host has a lower cluster number. If so, it attempts to force a connection to it if
any of its listed lowlevel addresses are connectible.

3.1.6.6 Auto-connect hosts

In conjunction with the connection manager there is also the notion of auto-connect hosts. These are
hosts to whom we attempt to always maintain a low-level connection. A built in service will monitor
this connection and re-establish it whenever it is closed.

The main purpose of establishing auto-connect hosts are to either (a) connect networks which do not
talk with multicasts between each other or goes through firewalls or (b) connect to hard-coded leaf
nodes. By using one manually established such connection between two PEIS separated by firewalls
and/or different netmasks these networks become routable and may even establish direct
connections for the case of having any low-level routable interfaces between the devices on these
networks.

Currently there is no UDP firewall piercing service in the PEIS-kernel, but this may be implemented
later to allow for better establishment of connections through firewalls.

3.1.6.7 Leaf nodes

To minimise the amount of overhead associated with the large number of components it is possible
to configure the recology as a network-of-stars, where only one component per host talks to the P2P
network and the remainder of the components only communicate through this component. This is
done by running these secondary components as leaf nodes and establishing auto-connections to the

03/10/2011 Page 23

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

master node — which usually is the special peisinit component residing on each host and managing
which other components can run on it.

3.1.6.8 Acknowledgement handling

Packages sent through the P2P layer of the PEIS-kernel can be, and usually are, sent in "reliable
mode". Meaning that they after sending get put on a stack of packages to be acknowledged within a
given timeframe or they are retransmitted. In order to not flood this stack, packages will only be
retransmitted a maximum of PEISK_PENDING_MAX_RETRIES times. The retransmission are with an
increasing period of PEISK_PENDING_RETRY_TIME seconds for the first retry, twice that for the
second retry, three times that for the third etc.

The PEIS-kernel saves a copy of the message in a separate queue and will retransmit the message
with incrementally increasing period times until either a timeout has passed or until an
acknowledgement receipt for this package arrives.

When a package is removed from the acknowledgement queue, a function hook associated to this
package is triggered along with a flag signalling if the package succeeded or failed. When messages
are sent along a point-to-point connection (never for broadcasts) the user can specify such function.

When the PEIS-kernel receives messages targeted to it, it checks for the presence of the
acknowledgement flag. If present, it saves the unique package id and sender of the package on a list
of packages to be acknowledged. When this list of packages to be acknowledged for a specific user is
large enough or when the oldest message in the list exceeds a threshold a package is send back to
the sender with all the acknowledged packages. (This allows for minimising the overhead of
acknowledgements while avoiding triggering unnecessary retransmission of packages).

Acknowledgement/failure of large messages (requiring multiple packages) are treated listing all the
sub-packages that was send for the large message and invoking the hook (if any) when all of the
parts have succeeded or when any of them have failed for the last time.

In the implementation of the island-to-island communication in WP1 we will rely on the
acknowledgments mechanisms only for some type of messages and will send messages for which
retransmission is undesirable using the non-reliable transmission mechanism.

3.1.7 The Tuple Layer

The tuplespace layer is the third layer of the PEIS-kernel, implemented on top of the mechanisms
provided by the P2P layer. It is responsible for all storage, publishing and retrieval of tuples in the
distributed tuplespace - effectively creating a distributed database as a blackboard
communication/collaboration model. By performing associative wildcard searches, we allow efficient
collaboration between any pair of components in the ecology. By introducing concepts of meta-
tuples allowing for indirect accesses to data it enables simple and efficient dynamic reconfiguration
of inputs/outputs.

Since the tuplelayer is used by the control layer as the basic mechanism for collaboration it will also
act as the main interface point between MaD-WiSe Stream System devices and PEIS-network devices.
Although not a direct part of the communication layer developed in WP1 we will here describe this
tuplelayer in order to explain how the implementation of the gateway devices that link the MaD-WiSe
Stream System devices and PEIS-network devices will be developed.

03/10/2011 Page 24

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

3.1.7.1 Overview of the tuplespace

From the perspective of the tuplespace keys consists of three parts: (name, owner, data) where
name is a string key for the tuple, owner is the address of a PEIS responsible for this tuple (see below)
and data is the value of the tuple. The tuples are indexed by name and owner meaning that tuples
with the same name but different owners are allowed to coexist while there can (ideally) only be one
instance at a time of tuples with the same name and owner but different data.

There are (currently) two basic methods by which tuple values are propagated.

A The owner PEIS writes to the tuple and the updated value is propagated to all subscribed
PEIS.

A A PEIS writes to the tuple by sending a message to the owner PEIS which stores the last
written value and propagates it to all subscribed PEIS. The message passing is handled
transparently by the PEIS kernel and is not visible to the application other than by a delay
before the value is updated in the local tupelspace.

The owner of a tuple can always access the latest value of that tuple by a direct memory access. In
order for other PEIS to have access the latest value of a tuple they need to be subscribed to the
tuple. These subscriptions, which will make sure that subscription messages, are regularly sent to
only the relevant parts of the network. Subscriptions come in two varieties:

A Qualified subscription to (name, owner) tuples. These subscriptions are in essence a direct
one way communication from the owner of the tuple to the receiving PEIS which will get the
latest value of all written tuple values.

A Wildcard subscriptions (name, *) which registers50m a subscription with all PEIS on the
network. All matching produced tuples will be propagated to this PEIS.

Corresponding to these two subscription mechanism tuples can also be accessed by a call to
getTuple. We have three cases:

A A PEIS accessing a tuple with itself as owner. This returns the last value written to the tuple
by itself or by some other PEIS writing to the tuple (and propagating the message to this
owner).

A A PEIS accessing a tuple with another PEIS as owner. Returns the last value of the tuple that
has been propagated from the owner to this PEIS.

A Accessing a tuple with a wildcard (-1) as owner. Return a value for each owner that has
propagated a value for this keyname to this PEIS.

Note that the last two accesses require active subscriptions in order to receive the correct value.

Everyone interested in data should subscribe to key(s) periodically. Everyone producing data should
send a copy of it to everyone currently subscribed to it.

3.1.7.2 Storage of and accessing tuples

Each PEIS component has a simple data store where tuples belonging to the tuplespace of the
component is stored. Additionally they have a local cached version of the tuples that have been sent
to it from remote components. All tuples, both in the local storage and in the cache are subject to
the expiry date in the tuples and are deleted when the given timepoint (if specified) have passed.

For the actual storage, a simple hashtable based mechanism is used with primary indices on the tuple
key, with no secondary indices currently implemented. The indices and the data of the tuples are all
stored in RAM memory.

03/10/2011 Page 25

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

When a user attempts to access a tuple with a fully qualified key it is checked against both the local
storage as well as the cached storage. If a fully qualified owner id of the tuple was given this gives up
to one unique answer which is returned to the user. If a wildcard was specified for the owner id was
given this instead gives a number of answers that are returned in a result-set to the user.

If on the other hand access is made with wildcards inside the tuple key the local storage and cache is
iterated over to enumerate all matching tuples. These are again returned in a result-set.

The getTuple(s) operation will only consume computational power in the device that executes
the instruction.

In order to populate the local cache of tuples, the user must create subscriptions that are propagated
to all relevant components in the ecology. These components will then publish all their matching
tuples into the local cache of the subscriber and will keep publishing all newly generated tuples into
the subscriber until the subscription is cancelled.

Due to the time delay inherent in the network subscriptions must be made in advance before
being used.

Due to the simple implementation of the databases and search operations, unnecessary use wildcard
searches are discouraged.

A subscription operation with wildcards may consume significant computational power due to
the wildcard search and size of tuple database of each other component when executed or
when the component joins the ecology. However, it will only consume a moderate additional
computational power when new tuples are inserted in the other components.

3.1.7.3 Callback functions

Input streams are often accessed by explicitly querying and reading the latest value of a tuple in the
tuple space within the main loop of a robotic program. Although this method is convenient and easy
for beginning programmers a more efficient method with fewer drawbacks such as a risk of missing
some values or reading the same value twice is to use callback functions.

By registering a callback function with an abstract tuple as a prototype for the kind of tuples of
interest a given function will be guaranteed to be invoked with the matching tuples as they arrive
into the local cache of the PEIS-kernel. In addition to avoid the risks of missing tuples this also avoid
the problems with mutability of the tuples since the callback function will be executed from within
the main thread of the kernel. However, tuples should still be cloned and a return from the callback
function must be made if the processing time exceeds 50ms to avoid blocking the execution of the
PEIS-kernel stepping.

3.1.7.4 Meta Tuples

A meta tuple is a tuple which gives the owner and name of other tuples. Thus meta tuples provide a
mechanism for indirect reference which allows components to be dynamically reconfigured by
rewriting the references during execution. For details of the use and implementation of meta tuples
we refer the reader to Deliverable D3.1.

In the development of the gateway devices that interface between MaD-WiSe Stream System to PEIS-
ecology devices we will use the meta-tuple concept on the gateway devices and/or the proxy devices
to allow the services provided by the WSN to be dynamically configured from the perspective of the
control layer.

03/10/2011 Page 26

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

3.1.7.5 The tuplespace as communication channel

The tuple space has been and is still used actively as the main communication channel and
collaboration mechanism for the PEIS Ecology project and the robotic devices developed at AASS. As
a rough estimate of the uses of it, the shared data range from single reads of small static
configurations, to repeated ascii or binary data sensor data and even sharing video frames of image
data at high frame rates. The later typically uses frames of 100KByte to 10MByte at frame rates
ranging from 5-25Hz from one or more cameras.

For the communication between MaD-WiSe Stream System to PEIS-network devices the bottleneck on
the bandwidth used will be on the IEEE 802.15.4 side. As such no special considerations need to be
made to accommodate for the size of these messages on the PEIS side.

3.2 Proxied objects

Although developed as part of the previously mentioned PEIS ecology initiative, the notion of proxied
objects is a general concept that can be used to empower simple devices to operate in conjunction
with most forms of advanced robotics middlewares [1, 9].

3.2.1 Introduction to proxied objects

The basic idea of proxied objects is to give a representation of everyday objects which is consistent
with how other objects such as other robots are represented. By giving a uniform mechanism for
interfacing to any kind of object, we can easily query it for its capabilities and properties or ask it to
perform tasks regardless if it is a fancy robot or a simple coffee cup. As lofty as this goal may seem,
and in spite of the limited capabilities of simple devices (regardless of the representation, a coffee
cup just cannot brew itself), we will see that this slight shift in viewpoint gives a number of
advantages.

In this section we give a brief reminder to the general design pattern for implementing this viewpoint
and outline the various components and the needed information flow for this to happen.

The notion of proxied objects is based around the use of a proxy: a process hosted by a component
of the distributed robot system, which acts as a representative of the simple object inside the
middleware. The role of these proxies is to integrate everyday objects, such as RFID tagged objects or
very simple wireless sensors and actuators lacking the capability to run any middleware on board,
into a larger networked robot system. In these cases, the proxy is used to create an image of the
external object, which is made accessible to the middleware. This image is maintained using a
dedicated communication channel (e.g., an rfid-reader or a ZigBee radio module) to synchronize this
information with the actual object.

From a hardware point of view we require, obviously, the objects to be proxied. These objects can be
any kind of object to which we have any form of communication channel. Examples include, for
instance, everyday objects equipped with RFID tags or simple sensors and actuators connected with
ZigBee modules or Radio modems to transmit/receive analog and digital signals.

In the RUBICON project these devices correspond to the WSN motes for purely sensor based objects,
WSAN motes for objects with limited actuation capability (such as triggering a light switch) as well as
the classical RFID, and ZigBee type of proxied robotic objects as presented in the literature [9].

03/10/2011 Page 27

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

In addition to these objects, we also require components that can perform the communication with
the proxied objects, eg. an RFID reader or a ZigBee radio link, and that it can relay these
communications to the general middleware and connected robotic devices. We call these devices
interface components. These devices need not perform any major operations or interpretations on
the communications, but rather only transform in into a form usable by other components. This is
necessary since the same proxied object may be communicating with different interface components
at different timepoints or even simultaneously.

In the RUBICON project these interface points correspond to the gateway devices that are developed
for passing messages between PEIS components and WSN devices.

3.2.2 Design pattern

The design pattern consists of the following ingredients (we refer the readers to Rashid et. al [9]) for
the detailed explanation and experimental implementation):

Proxied Objects: These are objects with very limited computational capabilities but
augmented with a communication channel, eg. RFID tagged household items or simple
ZigBee sensors, that we want to include as peers in the network of devices. In the case of
RUBICON we will consider here not only computationally passive devices but also the WSN
devices required for higher level control for this purpose.

Interface: We refer to any component that provides an end-point for communication with
the the proxied object as an interface. These interfaces are used to access the information
about the object and include e.g. rfid readers for the case of rfid tagged objects or ZigBee
radio base stations for the case of ZigBee equipped sensors. These components need not
perform any major operations or interpretations on the communicated data, but only to
relay the raw data to make them accessible to devices in the networked robot system. We do
not require the same interface component to communicate with a proxied object at all time,
but only that some interfaces can communicate with the object some of the time.
For the case of RUBICON the interface to the proxied WSN motes are the gateway. Each
gateway provides a list of the WSN motes with which it can communicate and facilities the
exchange of messages with the WSN.

Proxy: This is the actual software component that represents the proxied object and
interfaces with the middleware.

The proxy receives any data flow from the proxied hardware via the interface, parses them
and publishes to the middleware with proper semantics. This information is called direct
information.

The proxy also provides prior information, given implicit in the nature of the proxy or being
given as argument to the proxy when instantiated. Typical prior information includes the
capacities and physical properties of the proxied objects. For instance, a proxy for RFID
tagged objects can make a static database lookup to give these properties when instantiated
for an RFID tag with a specific ID.

Properties from interfaces which indirectly allow us to deduce properties of proxied object
based on the context or the nature of the interfaces is indirect information. For example,
deducing a proxied object's coarse location based on the available interfaces signal strength
and the location of the interface device itself is a form of indirect information.

03/10/2011 Page 28

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

Proxy manager: Coping in a dynamic environment requires dynamic creation or starting of
proxies when proxied objects appear in the environment.To deal with this dynamic creation
of proxies, we are using a proxy manager, which is responsible for the instantiation of proxy
components as soon as interfaces detect new objects. In order to decide if the corresponding
object, or percept, corresponds to an already existing proxy or constitutes a new object the
proxy manager relies on any already running proxies to consume the percept. Each proxy is
assumed to contain mechanisms to assess whether the data from the interface (percept)
pertains to the object beeing proxied or not.

If the percept is not consumed by an existing proxy the proxy manager must instantiate a
new proxy that corresponds to this object. To do this, the proxy manager relies on the
signature of the percept, which must be provided by all interface components for each
object with which it communicates. This signature is searched in a database of available
latent proxy components. If a match is found, proxy manager starts the corresponding proxy
program.

Signature: A signature is a unique, semi-structured identifier used for identifying the class of
an object. It is composed of the used interface channel's type and a hardware unique
identification number for that channel, eg. MAC addresses or RFID id's and performs a partial
matching on these to determine a suitable proxy class to be used for the corresponding
object. This proxy class is used to instantiate the right proxy for the object to be used. Note
that class here denotes only a category of object and does not necessarily imply an object
oriented programming paradigm. In fact, for the PEIS Ecology reference implementation the
proxy exists as separate processes (implemented in any language) where the signature is
used to determine which program to launch for the corresponding object.

Figure 4 shows the anatomy of a proxy for simpler everyday objects such as a milkbox with a built-in
RFID tag. Here objects are proxied using only one communication channel at a time, eg. through one
of the RFID readers, even though multiple interfaces exists in the environment. The proxy
component is responsible for selecting the most suitable interface, when multiple interfaces
simultaneously perceive the proxied object.

The proxy communicates to the actual hardware via this selected interface. The hardware data,
which are received from and sent to the proxied object, are translated in the proxy with proper
semantics and are forwarded using this selected interface to the proxied object.

These communication data are direct information. On the other hand, position information, which
comes from the location of the most suitable interface is an example of indirect information.

The prior information is determined by a table lookup when the item is first sensed and contains the
proxied object's properties and capabilities, such as colours, shapes, grasping points, abilities to
perform actions, which are used by the deliberative components.

An example of a traditional proxied object that can perform actuated actions would be a simple
ZigBee mote with a PWM output connected to servos in the environment (for eg. actuating window
blinds or lamps).

Another example of a proxy would be a simple RFID tagged piece of grocery where the proxy process
would receive a serial number when instantiated. During run time, it would look for information from
all RFID readers in the environment and when it finds a reader which can perceive the tag with that
serial number, it uses the reader to read further tag data to compute properties of this specific item,
eg. translating the hexcode of the first few bytes into a representation of what type of food, expiry

03/10/2011 Page 29

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

date, shape of packaging etc. that it has. Additionally, it also computes its own position from the
position of the RFID reader.

When the interface components communicating with this proxied object is changed, for instance by
moving the object, the proxy should automatically be configured to use any new interface(s).

During task T1.4 we will use the above design pattern and augment it with the new requirements as
posed within RUBICON. See Section 4.2.5 for further details on these requirements. The outcome of
this task will be described in deliverable D1.4.

Signature
lookup

o B . (9
<> Ny %f’

Networked RFID reader y
Location: kitchen Indirect location "

— R Proxy
Proxied object . ./ 2 ‘/@mn

w/ RFID tag Type
Networked RFID reader Temperature
Loation: living room

Other interface
devices (eq. XBee)

Figure 4: Example of a proxy using RFID as interface channel. Proxy manager receives signatures from
all interfaces, looks up and creates the proxy for the detected object. The robot communicates with
the proxy like for any other device in the ecology.

3.3 MaD-WiSe Stream System layer
3.3.1 Introduction

The Stream System is the transport layer of the MaD-WiSe framework [1]. It is a software module
that abstracts the intra-sensor and inter-sensor communication mechanisms. Applications running on
the sensors rely on the Stream System to disregard the actual implementation details of collecting
transducer readings and passing such data to other local or remote computational entities.

The Stream System functionalities reflect the high dynamic variability of data and distributed
access/processing observed in sensor networks, and can be used as a building block for higher level
applications, such as sensed data management or database software. Applications can also address

03/10/2011 Page 30

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

local as well as remote transducers through a uniform interface that hides the details related to
communication and buffering.

The Stream System provides a uniform paradigm for the execution of data acquisition,
communication and local processing activities. Having these three activities defined under a uniform
framework allows the applications to concentrate on its logic, to ignore the specific data sources
used (transducers, radio, local queues) and to easily change data management strategies without
affecting the entire application.

The Stream System offers a unidirectional data collection and data communication abstraction to
higher layers. The basic concept of stream represents a generic unidirectional data channel that is
able to carry data records. The Stream System provides functionalities for creating, destroying,
writing and reading records to/from streams.

The context where we envision the use of streams is that of operator-driven computations.
Operators are seen as independent agents that have inputs, perform some operations on those
inputs and possibly produce an output. In our model, operator inputs and outputs are records read
from/written to streams.

3.3.2 The Stream System

The Stream System offers three types of streams: sensor streams, local streams and remote streams.
Sensor streams are the basic abstraction for collecting readings from transducers. They can only be
read by operators since the writing is carried out by the associated transducers (these can be thought
of as virtual operators writing to sensor streams). Local streams represent a local data channel where
read and write operations must occur on the hosting sensor. Remote streams require cooperation
between two nodes since they intend to provide a data channel between two different nodes. Write
operations can be carried out on one of them (the stream write-end) and read operations can take
place on the other (the read-end). Figure 5 illustrates these concepts.

Sensor A

Memke

b Ep TR

Figure 5: Stream types. T = transducer, W = writing operator, R = reading operator.

In the following we use a command/event-based notation to define streams and their operation. A
key concept in command/event-based systems is that of split-phase operations. The call requesting

03/10/2011 Page 31

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

to start the operation returns immediately, without waiting for the operation to complete. When the
operation completes an event is fired to notify it. Split-phase operations are typically involved when
interacting with hardware devices where blocking is not allowed. Operations involving simple data
structure manipulation can immediately complete without requiring a later event notification (i.e.,
they are not split-phase).

3.3.2.1 Basic Stream Operations

An application identifies a stream through its stream descriptor, which is returned at stream
construction. Among the operations that can be applied to a stream, command

write (desc,buffer, length) ;

allows the user to write a record to a stream. A stream maintains data in a finite size queue and
write () appends a value to the end of the queue. If it finds the queue full, it simply discards the
first (oldest) queue element before appending its own. Argument desc supplies the stream
descriptor while arguments buf fer and 1ength give the starting address of the buffer containing
the data and its length in bytes, respectively.

Data stored in a stream can be accessed with command

read (desc) ;

where argument desc identifies the stream, as usual. read () is split-phase: the call immediately
returns. As soon as a record is available in the stream queue (possibly immediately), the Stream
System removes and returns the oldest one to the user by signalling event

readDone (desc,buffer, length) ;

The arguments have the same meaning as for write ().

Finally, when a stream is no longer needed, it must be destroyed with the command
close (desc);
3.3.2.2 Sensor Streams

Sensor streams provide an abstraction for collecting readings from local transducers. It is not possible
for an application to write to a sensor stream since its write-end is automatically associated with a
transducer. The Stream System writes data to the stream on the basis of readings collected from the
transducer. Sensor streams come in two flavors: periodic and on-demand.

With periodic sensor streams the Stream System periodically commands a reading from the
associated transducer with a fixed, timer-driven rate and writes a record of 3 elements to the stream:
(nid, ts, val). nid is the (network unique) node identifier, ts is a timestamp of the reading and val is
the actual reading. The user can later retrieve these records through the command/event sequence
read () /readDone ().

03/10/2011 Page 32

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

With on-demand sensor streams the Stream System performs a transducer sampling only when
explicitly requested to do so with a read () command. When the transducer supplies its reading,
the Stream System writes a record (with the same content as for periodic sensor streams) to the
stream and immediately signals the event readDone ().

The sensor stream constructor is command
opensS (dev,gsize, type, rate) ;

Argument dev encodes one of the transducers available on the node (e.g., light, temperature,
humidity, acceleration, magnetism, etc.). gsize gives the size of the queue data structure used to
store data records. The stream type (periodic or on-demand) is specified through argument type.
For periodic sensor streams the user must also supply the sampling rate in rate. The call
immediately returns the assigned stream descriptor.

3.3.2.3 Local Stream

The read-end and write-end of a local stream are on the same node. An application can both write to
and read from a local stream. Of course, different tasks of the applications are expected to read and
write on such streams. Creation of a local stream is achieved through command

openL (gsize) ;

that immediately returns the assigned stream descriptor. As for sensor streams, argument gsize
gives the queue size.

3.3.2.4 Remote Stream

Remote streams interconnect two distinct sensors in a unidirectional way: writing can only happen
on one of them (the write-end) and reading can only happen on the other one (the read-end). To
request the opening of a remote stream from sensor A to sensor B, the application modules on both
sensors must create their own stream end with command

openR (dest,gsize,s 1id);

The Stream System takes care of interacting with a lower level Network module and setting up the
remote stream.

On sensor A, argument dest gives the identity of remote sensor B. Various approaches could be
used to identify nodes, including node ids, coordinates, roles. On sensor B, dest simply identifies
the local node. From an implementation point of view, the Stream System module on sensor A (the
stream write-end) turns to the Network module asking it to setup a communication channel to
sensor B. On the other hand the Stream System module on sensor B (the read-end) plays a passive
role and just keeps track of the open request received. Argument dest allows the Stream System
module to decide whether it is the write-end or the read-end. Arguments s_id is a symbolic id, it is

03/10/2011 Page 33

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

the same on both stream endpoints and it is used to identify the same stream in the two nodes.
Finally, argument gsize gives the queue size.

The opening of a remote stream is split-phase to cope with possible network latencies. The
command immediately returns but when the stream has been set up the Stream System modules on
the two ends independently notify this by signalling the event

openRDone (desc,s id) ;

Argument desc contains the assigned stream descriptor and s_id is needed by the application
module to associate the event with the previous openR () command.

3.3.3 Implementation Details
3.3.3.1 The Network Module

In order to implement remote streams, the Stream System module needs assistance from a Network
module offering a connection oriented service. When opening a remote stream, the Stream System
asks the Network module to establish a unidirectional communication channel (a connection) to a
remote sensor with the following command

connect (dest) ;

Argument dest serves to identify the remote end. The command returns a locally allocated,
network unique, channel id.

Since operation outcome depends on the availability of resources on each node on the path to the
destination, it cannot be determined at the time the call returns. The connection establishment
procedure is implemented with a connect message going through the network towards the
destination and reserving the necessary resources along the way. A connect-ack message is then sent
back to the originating sensor confirming that the connection has been accepted by the destination
Network module. Arrival of the latter message at the source Network module, causes the signalling
of event

connectDone (c_1id) ;

to inform the user. Argument c_id is the same returned by the previous connect () and is used
by the Stream System to identify the pending connection request.

The user can now send packets on the established connection invoking the command
send(clid,buffer, length) ;

where the arguments serve to identify the connection and the data to send. The service offered by
the Network module is not necessarily reliable: reliability could be provided by other levels or be
completely missing. For this reason sending a packet is not contemplated as a split-phase operation
in the network interface and return of the command call does not mean that the message has been
received by the destination.

03/10/2011 Page 34

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

Upon receiving a message from a remote sensor over an established connection, the Network
module must pass the payload to the upper level. It achieves this by signalling the event

receive (c_id,buffer, length) ;

where the parameters identify the channel as well as the received data and its size. Finally the
command

disconnect (cid) ;

is used on the source sensor (write-end) to ask the Network module to shut down (i.e., terminate) an
existing connection. Servicing this request implies deallocating channel resources on all nodes of the
data path and it is performed by sending a special disconnect message along the path. Optionally,
also an expiration timer for each connection can be set on all the sensors of the path to free
resources of not closed channels. There is no event signalling upon operation completion.

The Network module also uses a novel algorithm [3] that attempts to turn off the radios on the basis
of application-provided information. When an application needs to periodically send fixed size/rate
packets to another node trough a given path (multi-hop communication), the algorithm exploits
communication timing information, transmission times, and average medium access delays, to
optimally schedule radio activities in the path.

To achieve energy efficient communication the application module provides additional arguments to
command open (), indicating when it will start sending packets on the remote stream, the interval
between consecutive packets and the size of each packet. The Stream System simply passes these
values to the Network module as additional arguments to connect ().

The implementation of our Network module relies on greedy routing [4] for the connection
establishment procedure and uses the algorithm described in [5] to assign three-dimensional virtual
coordinates to the sensors.

The Network module uses greedy routing to send the connect message when it needs to establish a
new connection. All sensors along the path allocate an entry in their connection forwarding table
associating the channel id with a neighbour (the next hop). The sensors also configure their radio
activity intervals as required by the energy efficiency algorithm. The destination replies to the
connect message with a connect-ack message that returns (along the reverse path) to the connect
message source and confirms connection establishment.

After connection setup each sensor on the path only turns on its radio when the next message is
expected and for up to some maximum amount of time. It forwards the message to the next hop on
the basis of the contained channel id and its connection forwarding table.

3.3.3.2 Streams

Internally, a stream is implemented as a finite size queue. The number of elements in the queue is
specified when the stream is opened, by means of argument gsize to commands openS (),
openL () and openR (). In case of local and sensor streams the queue data structure is allocated
on the node where the stream resides. For remote streams the queue data structure resides on the
read-end node. Thus, writing a record to a remote stream means passing it to the Network module
that will transport it to the destination node, which will finally store it in the queue.

03/10/2011 Page 35

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

The procedure for setting up a remote stream is rather complex since it involves several interactions
between the Stream System module and the underlying Network module. Figure 6 depicts the
temporal sequence of commands (full arrows) and events (dashed arrows) that occur when a remote
stream is opened from sensor A to sensor B. To avoid excessive cluttering only significant arguments
to command/event calls are reported. Dotted lines indicate frame generation in the MAC modules,
the actual sending, network traversal, reception in the destination MAC module and passing up to
the Network module.

Sensor A Sensor B
App SS Net Net SS App
openRis_id)
COnmEE b
= c_id. s_idy EE
[cia]
- conneciDoneic_idy [
A i
sendie_id)
- \SS_OPEN, 5 jg)
o ™ reeeiveic_id)
—————————— [
(=, c_id, 5_id}
. N ACK. s id) .
i§5_OPEN_ RO send(c_id)
receivele_id) [T openRis_id)
lagmmeccmmommm]
lidescA. c_id. s_id) (descB. ¢_id, s_id)
openRDopec | (0 FTTTTmsees ft
descA, s_id) openR Done(Et!r_sc_B
I descB, s_id)
descA

Figure 6: Command/event sequence when opening a remote stream from sensor A to sensor B (App =
Application, SS = Stream System, Net = Network).

Rectangles report on local data structures as they appear after the preceding command or event
completes.

In response to an openR () command, A’s Stream System module invokes command connect (),
asking the Network module to establish a data channel to B's Network module. connect () returns
a channel id (c_1d) and instructs the Network module to send a connect message. At this point

03/10/2011 Page 36

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

openR () stores the channel id together with the stream symbolic id (s_id) and returns control to
the application module.

When A's Network module receives the connect-ack message from B, it fires the connectDone ()
event. connectDone () retrieves the data structures for the remote stream by means of the
channel id, prepares an SS_OPEN message that includes the stream symbolic id and hands it to the
Network module for sending on the established channel. Upon receiving the message, B's Network
module signals the event receive () to B's Stream System module. Assuming B's application
module did not request to open the stream yet, the Stream System module associates the stream
symbolic id with the channel id and replies with a SS_OPEN_ACK message. A's Network module
passes up such message to the Stream System module which retrieves the stream data structures
and signals event openRDone () to the application, passing the stream symbolic id and a newly
allocated stream descriptor.

When B's application module invokes command openR (), the Stream System module discovers
that it already received the SS OPEN message from the other side and signals event
openRDone () with the stream symbolic id and a locally allocated stream descriptor as arguments.

Note that if B's application module invokes openR () before the Stream System module has
received message SS_OPEN from its peer in A, it cannot associate any channel id with it, yet. It only
keeps track of the symbolic id specified in the openR () call. Upon arrival of the SS_ OPEN message
from A it will signal event openRDone () after filling its data structures with the channel id.

Writing a record to a remote stream means sending the record over the network to a remote sensor.
The Stream System modules on both stream endpoints interact with the local Network modules in
order to implement this operation. Figure 7 illustrates the sequence of calls and events that take
place. A's application module writes a record to the remote stream invoking the command write ()
and passing the stream descriptor as well as the actual data record. The Stream System looks up its
data structures and retrieves the channel id associated with the user supplied stream descriptor. It
prepends a header (SS_WRITE) and asks the Network module to send the message over the
channel (send ()).

Sensor A Sensor B
App SS Net Net SS App
L | |
| desch, | |||I|.-“'."'|._c Wl [EI
N | [..,|.-\,.|| il | l-d_r-:;._:
wrileldescA) - i - o -7
5' sondic iy remilidescB) |t
(55 WRITE, disia "
' receivec_il)
remlDonel desc B3

Figure 7: Command/event sequence when data is written to a remote stream (App = Application, SS =
Stream System, Net = Network)

03/10/2011 Page 37

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

Upon receiving this message, B's Network module signals event receive () passing the channel id
as an argument. B's Stream System module retrieves the stream descriptor that is associated with
the channel id and writes the record into the stream data structure. If B's application module
previously commanded a read from the stream, the Stream System module can now signal the
event readDone (), passing the stream descriptor and the data record as arguments (Figure 7
shows this case). Otherwise, the Stream System module simply stores the record in the stream data
structure and signals readDone () when a record is requested with a later read () command.

3.3.4 Conclusions

The Stream System is a nesC module that offers (implements) some functionalities according to a
well defined interface and signals events to notify of conditions. It relies on the existence of a
Network module implementing a network (lower level) interface and providing interconnections
between any two sensors in a multi-hop network. It also interacts with a Transducer Abstraction
Module that abstracts the transducer devices on the sensor, providing commands to read any
specific transducer and signalling events when readings are available.

Figure 8 illustrates how the Stream System module fits into the system and how it interacts with the
other modules.

The Stream System is a data collection and data communication abstraction model suitable for
sensor networks. An application built on top of this system can be structured as a set of operators
distributed among the nodes of the sensor network. Operators read inputs, do some processing and
produce some output. The output of an operator becomes input of another by means of a stream
interconnection. A special type of stream serves as a transducer data source. The application totally
disregards issues concerning transducer operation as well as moving data from one node to another.

| Application Module

l :

-

I[| ~ Transducer
Stream System Module Abstraction
R ™ Module
[i i
Network Module ' |
: i B Y TinwOs
Light| gt
MAC Module umJ Sy

Figure 8: Stream System Module interaction diagram. Full arrow lines indicate commands while
dashed arrow lines indicate events.

03/10/2011 Page 38

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

3.4 SMEPP Light
3.4.1 Introduction

SMEPP Light is a middleware for Wireless Sensor Networks (WSNs) based on mote-class sensors. It is
derived from the specification developed under the framework of the Secure Middleware for
Embedded Peer-To-Peer (SMEPP) project [6], to deal with the hardware and software constraints of
WSNs.

SMEPP’s main objective is to hide the complexity of the underlying infrastructure while providing
open interfaces to third parties for secure application development. SMEPP middleware is secure,
generic and highly customizable, and it is adaptable to heterogeneous devices (from PDAs to
embedded sensor/actuator systems) and domains (from critical systems to consumer
entertainment).

SMEPP Light is the version of SMEPP tailored for WSNs. This because a sensor can hardly face the
technical problems arising in the implementation of the whole SMEPP specification. It addresses a
limited but yet significant and coherent subset of SMEPP primitives. In particular, differently from the
full SMEPP specification, SMEPP Light does not support services. On the other hand it features group
management, group-level security policies, mechanisms for query injection and data collection based
on a subscribe/event mechanism, and adaptable energy efficiency mechanisms.

SMEPP Light targets a Mote-class hardware platform for sensors. A typical example of sensors in this
class is the MEMSIC IRIS sensor [7]. It has an 8 bit, 8 MHz processor, 128 KBytes of program memory,
8 KBytes of RAM and 512 KBytes of storage memory.

SMEPP Light is developed on top of the TinyOS operating system [8]. A TinyOS application is a set of
components linked together to form an executable. Each component consists of an interface and its
implementation. The interface specifies a set of commands implemented by the component and a
set of events that the component can signal. Hereafter, to avoid confusion with the term event that
is also used for other purposes in SMEPP Light, we will call signals the TinyOS events. TinyOS relies on
the concept of split function for energy saving. Split functions are functionalities split into pairs
command/signal: when a component A invokes a split function of another component B
implemented by a command, the command enqueues the request and returns immediately. Only
when the result is available B generates the corresponding signal to give the result to A.

3.4.2 Requirements

The main feature of SMEPP (and thus of SMEPP Light) is that the peers in the same network organize
themselves into groups. The existence of different groups is useful since it enables the definition of
different security and communication domains, that involve only peers owning the appropriate
credentials.

The peers of a group in SMEPP Light interact via a publish/subscribe mechanism. A peer can
subscribe for events of other peers that belong to the same group, so that it automatically receives
the relevant events whenever they become available. From the security point of view, a group can be
open or closed, private or public. In closed groups, a key is necessary to access the group, while the
appropriate key is necessary to discover private groups.

03/10/2011 Page 39

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No

: 22699145

SMEPP Light also provides a two-level security based on symmetric cryptography:

security exploits three keys, namely the masterKey, the sessionKey, and the

sessionMAC.

network-level and
group-level. The network-level security exploits two keys: one for packets’ confidentiality (used to
encrypt the packet) and one for packets’ integrity (used to compute a MAC to be attached to the
packet). The two keys are set by the application and can be changed at run time. The group-level
sessionMAC. The
masterKey is used to restrict the access to the closed group, so that a peer can join a closed group
only if it owns the right masterKey. Once a peer joins a group it receives the sessionKey and the

command peerId smepp newPeer (netwKey, netwMAC)

command smepp createGroup (groupDescription)

command smepp getGroups (groupDescription)

signal getGroups_result (groupIdl[])

command smepp_ getGroupDescription (groupDescription)
command smepp_ joinGroup (groupld, masterKey)

signal peerJoined (peerDescription)

signal joinGroup result (groupId, subscriptions[], result)
command peerDescr[] smepp getPeers (groupld)

command smepp_ leaveGroup (groupld)

signal peerLeft (peerId, groupId)

command smepp subscribe (eventName, groupIld, expirationTime?,
signal subscribed (eventName, groupld, expirationTime, rate,
command smepp_unsubscribe (eventName?, groupId)

signal unsubscribed (eventName, groupId)

command smepp_ event (groupld, eventName, value)

command smepp_receive (groupld, eventName, frequency)

signal receive result (sender, groupld, eventName, value)

rate?)

offset)

Table 1: Interface of SMEPP Light

These keys are used to enforce data confidentiality and data integrity in all the communications
within the group, and they can be updated at run time, however the masterKey must be known in

03/10/2011 Page 40

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

advance and is set at compile time. Since a peer can join several groups, in all its communications it
must specify in clear text the identifier of the group to which the message is directed, so that each
peer receiving that message can use the right key to check the message integrity and to decrypt it.

Another important requirement of SMEPP is that each peer must be described by an XML document.
In SMEPP Light, the peer description contains the list of the transducers the sensor is equipped with
and it is compressed into a bitmask that the sensors can easily store and exchange.

For energy management purposes, each group defines its own duty cycle that drives the radio
activity of the peers. Thus each peer in the group operates the energy management according to this
duty cycle (e.g., it responds to the messages only when it is active). However, any received
subscription can request the peer to use also another duty cycle for environmental sampling. For this
reason SMEPP Light manages all the duty cycles (which should coexist) by turning on or off the peer
(and thus the radio) whenever necessary.

3.4.3 Specification
3.4.3.1 Interface

SMEPP Light provides primitives for peer initialization, group management, and event transmission.
The set of the (main) primitives is shown in Table 1. The peer initialization is executed by the
primitive smepp newPeer. It takes in input the network and the MAC keys (hence these keys are
established by the application) and returns to the application the peer identifier. This identifier is
unique within the network and corresponds to the sensor identifier used by TinyOS and assigned at
compile time to the sensor.

The group management primitives support the creation of groups, the search and the join to existing
groups. The smepp createGroup primitive creates a group according to the group description
taken in input. The description contains the security keys of the group and a set of flags expressing
the group security policies in terms of closeness and privacy.

The primitives for group discovery are used to retrieve groups that match search criteria. The
command smepp getGroups accepts a group description partially filled up, and returns, via the
signal getGroups result, the id of matching groups. Then smepp getGroupDescription
is used to read the group descriptions. Group discovery can be based on group name or on the
security properties.

The command smepp_ joinGroup takes in input the master key of the group to be accessed. The
result of the join protocol (either success or failure) is returned to the application by means of the
joinGroup result signal. If the joining is successful, the peer also receives the session keys used
for the communications in the group, the list of the peers belonging to the group, and the list of the
subscriptions currently active within the group. The list of subscriptions is also notified to the
application layer that can thus begin raising any relevant event. Furthermore, as a result of the join
protocol, all the peers in the group are notified with the signal peer joined reporting the
identifier of the newly joined peer. The descriptions of the peers into the group can be accessed via
the smepp_getPeers primitive.

The command smepp leaveGroup is a split function that enables a peer to leave a group. This
disassociation is automatically notified to all the peers in the group with the peerLeft signal.

03/10/2011 Page 41

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

The main event management primitives offer functionalities for event subscription and event
notification. Any peer in a group can invoke the event subscription that is then issued to all the peers
in the group. When one of the peers detects an event matching the subscription it sends the event
back to the peer (or the peers) that subscribed for it. The command smepp_ subscribe takes in
input the name of the event to be subscribed and a group id to which the subscription is directed.
The event name may encode an arbitrary monitoring task to be run on the peers in the group. The
primitive also takes two optional parameters: the expiration time and the rate of the subscription.
The rate defines the sampling rate of the monitoring task associated to the event name, which also
implies the maximum rate at which the events can be sent back to the subscriber. Each subscription
results in the creation of a routing tree spanning all the peers in the group and rooted in the
subscriber. This tree is used to route the events to the subscriber. After the expiration time the
subscription (and consequently the associated routing tree) expires and the subscriber should issue
again another subscribe if it is still interested. The presence of a subscribe request is notified to the
application layer of all the peers in the group by means of the subscribed signal that provides to
the application layer the parameters of the subscription (event name, group id, rate, expiration time)
and an offset time, that is the time in which the subscribe has been generated and that is used to
synchronize all the peers in the group about that subscription. After the invocation of the command
smepp_subscribe, the subscriber can invoke the command smepp_ receive to start waiting
for the corresponding events.

If a peer detects an event matching a subscription, it sends the event to the subscriber by using the
command smepp event, that routes the event using the routing tree constructed by the
subscribe. When the event reaches the subscriber, SMEPP Light provides the event to the application
layer by raising the receive result signal that provides to the application layer the value
associated with the event along with the event name, the identifier of the peer that detected the
event, and the identifier of the group where the event was detected.

3.4.3.2 Architecture

SMEPP Light is composed by three main components, namely the Peer ldentification, Group
Management and Event Management, that implement the SMEPP Light primitives, and three
components that provide support to security, networking, and energy efficiency. The interaction
among these components is shown in Figure 9.

The Peer Identification component maps to the peer initialization primitives and it interacts with the
Security component to set the network keys.

The Group Management component manages the topology of the groups and maps to the group
management primitives. It is in charge of the group descriptions and duty cycle management and it
interacts with all the support components: it sets the group master key, it sends and receive data
from the Network component when most of the primitives are executed, and it interacts with the
Energy Efficiency component to set the information for the management of the peers’ duty cycle.

03/10/2011 Page 42

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

Application
’ i '
] 1]
] |]
¥ . i L 4
=
Peer Group Evert
Hentification Management Management
J

T ¥
1 P (]
1 r -]
1]

-
L

Security ======4 Network m===== Energy

Efficiency

TinyOS/MAC B0215.4

Figure 9: Components in SMEPP Light architecture
The Event Management component maps to the event management primitives and it is in charge of
subscriptions and events. This component interacts with the Network component to access the
wireless medium and to set up the routing trees associated with subscriptions, and it interacts with
the Energy Efficiency component to configure the duty cycle of the peer according to the subscribes
generated or received.

The Security component manages the keys for all the security issues related to the network and to
the group layers. It keeps the network keys set by the Peer Identification component, the group
master key set by the Group Management component, and the group session keys received from the
Network component during the join protocol. This component also manages the protocol for the
dynamic refresh of the session keys.

The Network component implements the communication between peers. Its main mechanisms are
the network broadcast used to implement the subscriptions and the management of the routing
trees associated to them. It also provides a 1-hop broadcast protocol used to implement the group
discovery and the join mechanisms.

The Energy Efficiency component manages the duty cycles of the peer. In particular it manages the
on/off periods of the radio interface according to the duty cycles associated to the subscribe
messages received or generated by the peer. It should be observed that the management of the
radio is transparent to the other components, since this component makes sure that the radio is
activated before it is used by other components and that it is turned off soon after its use.

3.4.3.3 Protocols

For the sake of brevity we describe only the group creation/join protocols (Figure 10) and the
subscribe/event protocols. We illustrate the protocol of group creation and join referring to the
diagram of Figure 10, where it is shown the case where Node B creates a group and Node A joins the
group of B.

03/10/2011 Page 43

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

Nods A Node B
Application SMEPP Light MAC MAC SMEPP Light Application
Pear/Group Managament (30215 4) (a02.15.4) Pear/Group Management

aeidrouosiaDescn ‘:YOMIJIDLF['q0es)

modiles alsecr s!'.rL'ef| rsult

sardivoad-ast, giGoupa) |

sanditrandast, gatGrouphsg)

» pealid e b
+ gruphameHash [
» sseuiylah " sandinade &, gouphiag) |
updales Qroups send{nade A, grou
groupDud il pole and reorld
FrslSean ks e -
FsiBean ik - receive [grou phisg) « ghossr
=) = groupluteCicls
_ etGroupa_reaukigroucld fimer of get Groupe edples

| aerdroustesertalecer)

rasill | modifies gleecr shruct

PinGroupigroupd, masekay)

|eon:|(nm: 8, pinGoughe)

sendirode B pinGrou

DI —| A
« grupk ransimajoinEmuphisg)

sandnode &, gioupKeyhisg)

send{node & growpltey: J TR fhese mesgages aresent
recoha igroupkeyhisg | . g:;?:glm sandinods &, giouphtACMsg) L Fis o closed groug)
slores the seasion Keps g | -
recaived ino fhe Saliiee & oy ki chisn
eecurfy module t'\ recole iroLpMachEg) * grLpld ==ndirode A, peershisg)
L » s inMas

endinode & peastdsg)
| v groupkd

e paanahiag)

" = offsat eond(node &, subsel pioreheg)
s aftes pesrs [BF v poolled] ot
A, Bubser phonehieg) |
Koo e s e ptoneszg) : :J'DD;ET:'I] sond{broad, nottyinteg)
jpinGroup_meviigroupld, . nanGN"I N
“subscription st resul)
" —
Vi end ibrosccast natfecinbiag) The messags & soff ingroup
. . L‘f. » groupld broadeas! i nollfy fo Al members
& otk anplication and » peaild of the group the joiring of fhe
middizware wdafe » caEblies rods A
subacrichions g » pErert

Figure 10: Creating a group

Node B creates the group using the createGroup command. The group creation does not involve
communications since it consists in setting a few data structures in SMEPP Light and in setting the
master and the session keys in the B’s Security component, hence it can immediately provide the
result of the operation without resorting to the split function mechanism. The application layer of
Node A performs the search for existing groups by invoking the getGroups command. This
command sends to all the A’s neighbors (in local broadcast) a message requesting the group
descriptions of the existing groups. At Node B, SMEPP Light replies to this request (without involving
the application layer) by sending to A the descriptions of all the groups known to Node B (in this case
only one). At Node A SMEPP Light keeps all the received descriptions and after a timeout it notifies to
the application layer the list of identifiers of all the groups detected. The application at Node A can
then choose a group ID and it can access the corresponding group description by invoking the
getGroupDescription primitive.

Now the application layer of Node A can invoke the joinGroup primitive to join the group. As a
consequence, SMEPP Light sends in unicast to Node B the request to join the group. This message is
notified to SMEPP Light in Node B, that, in turn, decides whether to accept the request of A. In our
case the request is accepted, hence SMEPP Light in Node B sends a set of messages to A. These
messages contain the session keys, the list of peers belonging to the group, and the list of

03/10/2011 Page 44

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

subscriptions that are currently active into the group. All of these messages are used by SMEPP Light
in Node A to update its internal data structures, and once this phase is completed SMEPP Light raises
a joinGroup result signal to the application layer of the same node to notify that the join
protocol is completed. In the meantime, SMEPP Light in Node B sends in broadcast to all the other
peers in the group a message notifying that Node A joined the group.

The subscribe protocol is initiated by any peer in a group that wants to receive a given type of event
generated by other peers in the group. Consider for example the case where Node A subscribes for
an event that is generated by a Node B. To this purpose Node A invokes a subscribe command, that
broadcasts the subscription to all the peers in the group. Then Node A invokes the receive
command to prepare SMEPP Light in Node A to receive events related to this subscribe. When Node
B receive the subscribe message, SMEPP Light in Node B notifies this request to the application layer
by means of the subscribed signal. This signal gives to the application layer the event name for
which the subscription holds, hence it is responsibility of the application to start any relevant
monitoring task to detect the events matching the subscribe. This monitoring task should be
activated at the sampling rate contained in the subscribe message. Whenever the application in
Node B detects an event it sends the event to the subscriber using the event command. This
primitive sends a message containing the event to SMEPP Light in Node A that, in turn, notifies the
application in Node A by means of the receive result signal. This protocol continues until the
subscription expires or Node A cancels it using the unsubscribe command.

If a primitive fails, the middleware notifies the error to the application to let it implement fallback
policies. There are however some exceptions to this general behavior when the middleware cannot
identify the fault. One example is the removal of a peer from a group without the call of the 1eave
primitive. This case may result in broken routing trees, stopping data flows related to some
subscription. SMEPP Light copes with this problem via regular refreshing of subscriptions. There are
also some situations that cannot be coped with, for example when the sudden removal of a peer
results in a group partition. In this particular case, the group splits up, but the peers that remain
connected continue working without the sensors in the partitioned branch.

3.4.4 Energy Efficiency

The Energy Efficiency component of SMEPP Light saves sensors’ energy by keeping the radio off
whenever possible, i.e. when the sensors do not expect to receive or send data. This component
manages the radio by means of user duty cycles that are implicitly determined by the subscribe
messages (recall that these messages contain the subscription rate and an expiration time), and a
management group duty cycle that enables the sensors in the group to exchange control messages
(in particular join and subscribe messages). Each of these duty cycles defines periodic intervals when
all the sensors should turn on the radio.

As a side-effect of this approach, when a sensor executes the getGroups primitive it needs to keep
sending request messages until one of these messages is sent during a period of activity of a group.
However during the getGroups protocol the sensor receives enough information to synchronize
with the other sensors of the group, so the subsequent communications are performed according to
the management duty cycle of the group. To make this approach effective, the sensors need to be
(weakly) synchronized, for this reason synchronization information is periodically exchanged among
the peers in the group.

03/10/2011 Page 45

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

| |]

e

duty cycle

time line
and radio

status
5 Hpn

loa neat == radie kepl an

Figure 11: Duty cycles and subscriptions

Figure 11 shows an example of the status of the radio of a node that belongs to a group in which are
active two subscriptions (subsl and subs2). The three lines on the top show the activity windows of
the radio for the user duty cycles corresponding to the two subscriptions and for the group
management duty cycle. The last line shows the overall radio status. The Energy Efficiency
component computes the union of all the duty cycles, and decides when the radio should be turned
off and on, according to two parameters (tolerance and radio-delay) that provide some flexibility to
the system. The tolerance parameter specifies the minimum distance (in milliseconds) between the
end of an active radio window and the start of the next one: if two windows are too close the radio is
kept on until the second window ends. The radio-delay parameter expresses the time used to
anticipate and delay the radio commutations from off to on and from on to off, respectively.

The performance of the energy efficiency mechanism has been evaluated by measuring the periods
of active radio of a sensor. In the experiments we used 4 MicaZ motes (s1, s2, s3, s4) connected in a
line, i.e. s1 is connected to s2, s2 to s3 and s3 to s4. We measured the radio status of node s2, s1 is
the node that produces the subscriptions and s4 generates the events. We repeated four sets of
experiments with a number of subscriptions ranging from 0 to 4. The rate of each subscription has
been set randomly in each experiment. Each experiment has been repeated 10 times for 180
seconds, and in each experiment we measured the average period of time in which the radio of
sensor s2 was inactive, ready, receiving and sending. With these data we computed the average
energy consumption of sensor s2 (expressed in mA-hr) in every set of experiments, as shown in
Figure 12. For a comparison the figure reports the energy consumption estimated with the TOSSIM
simulator and the energy consumption in the case where the energy efficiency module is disabled.
The figure shows that the energy efficiency strategy enables significant energy savings, and that the
energy consumed grows sub linearly with the number of subscriptions.

03/10/2011 Page 46

RUBICON D1.1 Comm Abstraction & Proxy

08

Consumption (mA)

14+

1,2 4

— ¥ = Simulator

0.8
0.4

02+

e Ex periment
m— = Always on

0 subs 1subs 2subs 3subs 4subs

Mumber of subscribes

Figure 12: Energy consumption (in mA-hr)

03/10/2011

Page 47

RUBICON: Project No.: 22699145

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

4. High-Level Design

4.1 Design overview

As described in Section 1, the Communication Layer will make available different paradigms of
communication on the basis of the type of hardware involved in the communication.

From the responsibilities of WP1 we envisage that the communication layer must enable synaptic
communications between all four combinations of mote/PC to mote/PC. For exchange of raw sensor
readings and actuation commands it must enable PC to PC communication as well as some
combinations of PC to mote communications and mote-to-mote communications. However, the form
of direct non-synaptic communications in the mote-to-mote scenario is different from the PC to
mote and/or PC-to-PC scenarios.

For communication involving Motes-to-PC and Motes-to-Motes, we will use three types of
communications:

1. Synaptic Communication: This type of communication is used exclusively by the Learning
Layer and enables two ESNs (Echo State Network), running on different nodes, exchanging
data. In particular it enables the transmission of the output of a set of neurons from a source
ESN to a destination ESN.

2. Data Stream Communication: This type of communication is used exclusively by the Control
Layer and enables the point-to-point communication between two specific devices, typically
for reading data from remote mote transducers.

3. Connectionless Message Passing: This type of communication is used exclusively by the
Control Layer and enables the point-to-point communication between two specific devices,
typically for sending commands to remote mote-actuators.

. Connectionless
Synaptic Data Stream Tuple space

(blackboard)

Message

Communication Communication .
Passing

PCs and Robots Motes

Figure 13 - Type of communications and devices involved.

03/10/2011 Page 48

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

Figure 13 shows the relationships between the devices used in RUBICON and the type of
communication paradigm used by them.

4.1.1 Gateways and Proxies

For communication involving PC-to-PC, we will use the Tuple space (blackboard) mechanism, which
provides a repository of tuples in a distributed shared memory that can be accessed concurrently.

For the PC to mote scenario we will rely on a basestation, which sits on the border of the PEIS
ecology and is directly connected (by means of a USB or serial cable) to a WSN sink. This gateway
device will translate a tuplespace representation of actuation commands and raw sensor readings
and the connectionless message passing mechanism on the WSN side.

In practical terms this is done by continuously publishing tuples with the latest received (raw) sensor
readings from each WSN that transmits such messages. The name of these tuples will contain the
unique ID of the corresponding WSN mote. Furthermore, it will listen for tuples containing raw
messages on tuples containing these ID's and will translate the content of these tuples as
connectionless message passing commands to the basestation.

This provides a generic light-weight interface between the PC and mote. The component that
performs this task of WP1 is called the gateway.

To fulfil the R1.SCALABILITY and R1.DISTRIBUTION requirements, the Communication Layer will be
developed to support a star-topology (see Figure 14), in which a cluster of motes, called islands, will
be interconnected by mean of the PEIS-network. A special mote acting as sink node, connected via
USB with a basestation (a PC) will host the gateway component. Please refer to Section 4.2 for
additional information on how the gateway component will be implemented.

Island 1

@

Island 2

Island 3

Figure 14 - Topology of the RUBICON Ecology
From the implementation point of view, the Communication Layer will exploit both middlewares, the
PEIS middleware and the TinyOS middleware. The details of these two middlewares are provided in
Section 4.2, what it is important to know at this stage is how they are used in scenarios when the
motes involved in the communication belong to the same island or belong to remote islands.

03/10/2011 Page 49

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

Figure 15 depicts the first case, which is the simplest one, when the communicating motes lie in the
same islands, in which TinyOS is used.

TinyOS

Figure 15 - Communication between two Motes (A-to-B) in the same island.

The second case is represented in Figure 15, in which we show how two processes running on two
motes lying on remote islands exploit the PEIS middleware to communicate. To be able to
communicate across these islands we require a special mote called a sink connected with a PC by
means of a serial link (such as USB). This PC is the basestation that hosts the gateway component and
routes the messages between the PC/Robot and the motes.

In the example scenario below, two basestations, which manage one island each, can communicate
with each other through the PEIS middleware. By exploiting the P2P network of PEIS these devices
can route messages originating in the islands to each other and forward such messages to the
destination motes.

03/10/2011 Page 50

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

base

station base

(PC) station
g (PC)

Figure 16 - Communication between two Motes (A-to-B) in remote islands

Finally, the last case is when a mote must communicate with a PC or a robot. In this case, we again
use the PEIS-middleware as a means for connecting the gateway with the remote PC/robot, see
Figure 17, but give a tuplespace-based interface for reading/sending raw messages.

In order to accommodate for more generic and high-level integration between the networked
robotic software and the WSN we will use the notion of proxied devices to give higher level
representations of the available WSN motes to the robotic devices.

In practical terms this corresponds to PEIS components, aka. proxies, that subscribe to the tuples
provided by the gateway devices in order to receive raw sensor readings. These sensor readings are
parsed in a mote-specific way and translated into the general (human readable) format used on the
PEIS network. Furthermore these proxies will subscribe to meta tuples that correspond to inputs that
will be transmitted to the actuation devices — also by means of the message passing functionality of
the routing devices.

It is important to have a clear idea of the difference between gateway and proxy. The gateway has
two responsibilities:

e |t communicates with the sink mote and can send data to the other gateways connected to
other motes. (i.e. it can bridge them over the PEIS P2P network).

e It can accept tuples and translate them into raw messages that are sent to motes.

Notably, the gateway does not have any logic for "understanding" what a mote can do. It cannot
create semantic representations of the motes (i.e. it does not export XML or JSON tags describing
what functionalities a given motes export, what type of messages they can accept or the data-format
that is produced by them). This task is instead delegated to a proxy.

03/10/2011 Page 51

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

Table 2 summarizes the relationship between the middleware and the paradigm of communication
used for different combination of communicating peers.

station
(PC)

Figure 17 - Communication between a mote and a remote PC/ Robot.

Pc-to-Pc

Synaptic Streams over Peis TinyOS/ TinyOS/
Communication Kernel TinyOS+Gateway+PEIS TinyOS+Gateway+PEIS
(point-to-point)

Data Stream Peis Middleware TinyOS/ TinyOS/
Communication TinyOS+Gateway+PEIS TinyOS+Gateway+PEIS
(point-to-point)

Connectionless Peis Middleware TinyOS/ TinyOS/
Message TinyOS+Gateway+PEIS TinyOS+Gateway+PEIS
Passing

Tuplespace Peis Middleware Not supported Not supported
(blackboard)

Table 2 - Summary of the communication relationships

03/10/2011 Page 52

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

4.2 Implementation issues
4.2.1 High level architecture overview

In order to give a practical guide for the design of Communication Layer components, in this section
we analyze more in detail for the most complex last two cases where the communication involves
tinyOS and PEIS. This guidance is given for Control Layer, however, can be adopted in other Layer.

In Figure 18, we show how the control layer program running on mote in an island send a message to
the control layer running in a remote PC. This is an additional level of detail of the Figure 17. First the
communication layer installed in the source mote forward the message to communication layer of
the sink responsible for its islands. The gateway part running on the sink mote uses the USB
connection to forward the message to the gateway of the basestation, which in turns publish the
message as a tuple for the control layer of the remote PC.

Figure 19 shows the same sketch also the communication of two motes belonging to different
islands. This is an additional level of detail of the Figure 16.

Control layer

island

Communication

N basestation

sink-mote

Communication Communication
Layer Layer

gateway

Figure 18 - The communication messages between a mote and a PC in details

03/10/2011 Page 53

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

Control layer

Control layer

Island 1
Communication Island 2
Layer Communication
Layer
basestation 2 \

. basestation 1
sink-mote 1

sink-mote 2

tinyOS

tiny0S

Communication Communication

=V Communication Communication

2 d
pepsen p2p receive

Figure 19 - The communication messages between two foreign motes in details.

Suppose that a process of the Control Layer running on the mote A belonging to the Island 1 needs to
send a message to a process of the Control Layer running on the mote B located in the Island 2.
Figure 20 shows the temporal sequence diagram of the communication process steps by highlighting
the role of the two Layers involved. In this figure, we also show the separation between the API call
and the message invocation.

Legendl: ——» command - ——— 3 avent

Island 1 Island 1

[(fodea | [est_] [sz] [Nodes |
BTN ! ! ! !

ottt

1 I 1
! cocerved) i ! -
v Tt sendSoriei{E) ! : !
1 1 1 1
i i recevad() i i i
i | Son dossao) i | i
1 ' i ' i
: i @ : i :
1 g i 1 i
i | received() I | 1
1 ! =TT T T senasenaln 1 1
i 1 recove) ! !
1 ! 1
1] i
1 i
> i
1 i
v v

Figure 20 - Sequence diagram of the communication between two motes of the Control Layer
03/10/2011 Page 54

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

The Control Layer in mote A invokes a call (sendSerial ()) to the Communication Layer in the
same mote to pass the message to be sent. This message contains the identifier of the mote B as
destination of the message. The Communication Layer in mote A is notified of the incoming message
as consequence of the sendSerial () (this method is implemented in the Communication Layer
implementing, the Control Layer simply invokes it).

According to the addressing mechanism adopted, Communication Layer implementing in mote A
determines that the destination mote does not belong to the same island, so it encapsulate the
message in a new message with sink 1 as destination and transmits it by means of a nesC command
(send ()).

The Communication Layer implementing in sink 1 receives this message and forwards it on the serial
interface to the gateway component in the basestation 1. The gateway just receives a notification of
the incoming message and must implement the handling of this message.

In addition to the target mote, this message consists of a unique identifier for the island to which the
target mote is connected as well as the data of the message. The gateway utilizes the
peisk_sendMessage () functionality to transmit the message to the corresponding gateway in
basestation 2, which is connected to the target mote B.

Basestation 2 in the Island 2 is notified of this message. It forwards this message to the
Communication Layer in sink 2 by invoking a call to sendSerial (). Sink 2 finally knows a route to
mote B and the Communication Layer at this mote forwards the message to destination.

4.2.2 Synaptic channels

Requirement R2.INPUTSTREAM is needed in order to provide the requested output prediction at
each RUBICON clock tick, the Learning Network needs to have all the inputs readily available at its
input interface. For this purposes, all the Motes involved in the Learning Network, i.e., on which the
Learning Layer is installed, will be have an internal clock synchronized. The synchronized will be
guaranteed by means of special broadcast message, which will be periodically sent in order to keep
the motes' clocks aligned. For the sake of flexibility, the transducer will be used as local clock for a
mote. For the mote that do not have a transducer, as fake transducer will implemented in order to
simulate the local clock.

4.2.3 Multitasking

In TinyOS TCP/IP Sockets are not available to support multitasking communications. The reason is
that it would employ too much memory for buffering. To cope with this problem and to satisfy
R1.MULTITASKING, in our implementation we use the mechanism active messages and interfaces.

Every message in TinyOS contains the name of an event handler. The Sender must declare a buffer
storage in a frame and in the receiver the event handler is fired automatically in a target node.

A TinyOS application is a set of components bound by bidirectional interfaces. A component can
either USE or PROVIDE an interface. Each interface provides COMMANDS that a component using
that interface can CALL (for example Send()), and EVENTS that a component using that interface

03/10/2011 Page 55

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

MUST implement (for example Receive()). The component providing an interface is responsible to
implement the COMMANDS (in case of the Send() COMMAND implementing the actual transmission
of a packet over the air) and to NOTIFY the EVENTS (for example notify the component using the
interface when a new message is received). The component using an interface simply can CALL a
COMMAND to execute a task (for example call Send()), but it must implement an event handler for
each EVENT defined in the interface (for example event Receive()).

4.2.4 Discovery

In order to satisfy the requirement R1.DISCOVERY, we ,must implement a mechanism that allows the
ecology to know when a new mote joins a WSN. To this end, we envisage the implementation of a
special agent of the control layer, which is responsible to signal the basestation that there is a new
node on the island and all the abilities of transduction and actuation that are present in this new
mote. In particular, this agent on the mote is also in charge of performing the actuations and to route
the streams coming from the transducers. When the sink of the island receives a join message from a
new mote, it sends an event to the gateway of the basestation connected to it via the serial port,
which in turn publish a tuple on the PEIS Tuplespace with all the metadata describing the
functionality of the joining mote. This tuple can be accessed by other entities of the ecology and
allow them to discover of the motes present in all the islands.

4.2.5 Implementation of proxied objects and processes

The design pattern of proxied objects, as described in Section 3.2 will be used within RUBICON to
simplify the high level integration of simple devices with the robotic devices in the ecology. This
concept will be used also to simplify the integration of application dependent objects into already
deployed RUBICON ecologies. As such it will allow for customization of the available hardware
devices without any need for re-implementation of any of the robotic software already running in
the ecology.

This concept will be used within RUBICON for two main purposes; (1) to provide higher level
computational capabilities and representations to motes that lack the resources and (2) to provide all
computational and representation capabilities to devices that have none. While originally only the
later use of proxies was considered, we have in this designed opted also for the former in order to
tackle the challenges required by the limited amount of RAM and computational capability of the
motes. Additionally, since the planner expected to be deployed on all agents (see D3.1) will not be be
able to run onboard such motes we will rely on this proxy mechanism to outsource such ego-centric
planning tasks.

As such, the design pattern will be augmented to satisfy a number of new requirements within
RUBICON.

First of all, due to the distributed nature of the learning layer and the agent architecture within WP3
we have a requirement of the proxy mechanism to allow for the computational representations of a
WSN mote to be split between the physical mote and a proxy process running on computationally
more powerful devices. We thus have a requirement on the extended design pattern for proxies to
allow for a seamless integration between these two parts of the WSN based agent.

Secondly, the proxied motes must be able to communicate both with other WSN agent as well as
with the main robotic ecology. Since these two types of destinations used different mechanisms for
communications (Streams vs. tuples) this pose an additional challenge for the implementation of
proxies.

03/10/2011 Page 56

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

When implementing the proxied objects concept for WSN motes in the RUBICON ecology we will use
the gateway devices to support message passing between the proxy processes running anywhere in
the ecology and the individual motes. Thus the interface device to the proxied WSN motes, as
defined in the design pattern for proxies, are the gateway. Each gateway provides a list of the WSN
motes with which it can communicate and facilities the exchange of messages with the WSN.

As described in Section 3.2 the proxy manager for RUBICON must be able to detect the presence of
new motes. For the case of RUBICON and WP1 this process is trivially implemented for the WSN
motes since discovery of the motes and messages from the motes inherently contain a unique
sender ID which is associated with each unique proxy id. The proxy manager for RUBICON will rely on
these descriptions in order to detect when a new mote have appeared or disappeared and notify the
currently running proxy processes accordingly. Thus satisfying the requirement R3.DISCOVERY in
WP1.

We require a signature for each mote in order to allow the proxy manager to know the type of proxy
process that should be started. In RUBICON a signature of a WSN mote is simply a type identifier that
identifier the type of mote and configuration with which it communicates. These signatures are
represented by an integer given by the WSN mote where proxy programs (processes that can be
launched when encountering a matching mote) can claim responsibility for a subset of the space of
all the possible types. These signatures are provided by a unique type identifier that is compiled into
each WSN mote when assembled for a specific application.

For the point of view of WP1 the implementation of proxied WSN motes will occur during task T1.4.
During this task we will address the new requirements as described above and any other constraints
posed by the RUBICON ecology. We will deal with the distribution of the planning and control as
required for the individual agents for both WSN based proxies as well as traditional proxies of
everyday objects. The details of this will be covered in deliverable D1.4.

03/10/2011 Page 57

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

5. Interface Specification

5.1 System overview
The Communication Layer is a complex software system organized into two logical sub-layers (using
the terminology of the OSI reference model), separated by a dashed line in the box representing the
communication layer (see Figure 21):
1. The Transport sublayer provides transparent transfer of data between end users, providing
reliable data transfer services to the upper layers.
2. the Network sublayer provides the functional means of transferring variable length data
sequences from a source entity on one network to a destination entity on a different
network, while maintaining the quality of service requested by the Transport Layer.

A sublayer is realized by a variable number of software components, depicted as simple rectangular
boxes in Figure 21, that are distributed over an heterogeneous networked architecture comprising
both resource constrained devices (e.g. sensor nodes) as well as powerful gateways.

Learning Control Learning/ Control
Layer Layer Layers

send/receive
Synaptic I/0 from/to Communication layer
Ve Control information trasducers/actuators control ™\
[Transport sublayer

synaptic_ . Component
streams connectionless
channels Management
) A . A) A
.| send/receive | send/receive | send/receive |
Network sublayer v 7
Comm
Network Management <>
Control
A
\ send/receive Communication Layer
A _
v

Media Access Control

Figure 21 - Software architecture for the Communication Layer: logical sublayers are separated by a
dashed line, software components are small rectangles.

The software components realizing the functionalities of the subsystems within the Communication
Layer interact through local function calls as well as with remote messages: at this point, we abstract
from such distinction and we represent all intralayer interactions as thin arrows in Figure 21.

03/10/2011 Page 58

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

In the following, we summarize the role and the functionalities associated to the components of the
Transport sublayer.

5.2 Transport sublayer and addressing

The Transport sublayer provides transparent transfer of data between end users, providing reliable
data transfer services to the upper layers. The Transport Layer controls the reliability of a given link
through flow control, segmentation/desegmentation, and error control. Some protocols are state-
and connection-oriented. This means that the Transport Layer can keep track of the segments and
retransmit those that fail. The Transport layer also provides the acknowledgement of the successful
data transmission and sends the next data if no errors occurred.

The addresses of mote in the Ecology is formed by the address of the island and the address of the
mote in the island. The address of the island is a unique number that corresponds to the peis-id of
the basestation. It is codified with a byte, that is interpreted as un unsigned integer. The value 255 is
used to indicate "myself". The address of the mote is a two bytes unsigned integer and is a unique
number that corresponds to the TinyOS-ID. The value 65535 is used to indicate a broadcast inside the
island, and the value 65534 is used to indicate "myself".

5.3 Specification of the Mockup Layer

In this section we specify the interfaces of the Transport sublayer, which represents the interface of
the Mockup Layer. The implementation of this Mockup interface is aimed at verifying its correctness
of the specified components of the communication infrastructure in its early stage. The
implementation of the communication functionality will proceed through two main refinement
steps. The first step will produce a non-optimized, fully functional version that will be used by the
other WPs to test their solutions in the first part of the project. The second phase will produce the
final, optimized version of the layer that will be used in the final

5.3.1 Specification of the functions of the Synaptic_Channels component

Function: create_syn_channel_out(dest, size, params[DIM_SYNCHANNEL_PARAM)])
Synopsis: Setup of a Synaptic Channel between local node and a specified destination node.
inputs:

e dest: Destination mote of the Synaptic Channel.

e size: Number of neuron readings whose values have to be transmitted to dest (i.e.
the channel size).

e params: Channel parameters like type, QoS..

return:

e FAIL if opening the stream is impossible because, for example, Stream System layer
data structures have no space to store a new stream or the stream is already
opened.

e SUCCESS means a createSynChannelOutDone event will be signaled once the
Synaptic Channel has been opened.

Event: createSynChannelOutDone(channel, success)
Synopsis: Signal the outcome of the output Synaptic Channel creation request.

03/10/2011 Page 59

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

inputs:
e channel: Descriptor of the opened Synaptic Channel.
e success: it tells if the Synaptic Channel creation was successful.

Function: create_syn_channel_in(src, size, params[DIM_SYNCHANNEL PARAM)])
Synopsis: Setup of a Synaptic Channel between a remote src node and the local node.
inputs:

e src: Source node of the Synaptic Channel.

e size: Number of neuron readings whose values have to be transmitted to dest (i.e.
the channel size).

e params: Channel parameters like type, QoS..

return:

e FAIL if opening the stream is impossible because, for example, Stream System layer
data structures have no space to store a new stream or the stream is already
opened.

e SUCCESS means a createSynChannellnDone event will be signalled once the Synaptic
Channel has been opened.

Event: createSynChannelnDone(channel, success)
Synopsis: Signal the outcome of the output Synaptic Channel creation request.
inputs:
e channel: Descriptor of the opened Synaptic Channel.
e success: it tells if the Synaptic Channel creation was successful.

Function: dispose_syn_channel(channel)
Synopsis: Closes the specified Synaptic Channel that resides in the node where the function is
invoked.
inputs:
e channel: The descriptor of the Synaptic Channel to be closed.
return:
e FAIL if opening the stream is impossible because, for example, Stream System layer
data structures have no space to store a new stream or the stream is already
opened.

Function: start_syn_channel(channel)
Synopsis: Starts transmitting the stream of neuron output vectors on the specified channel. A
channel that is activated with this primitive becomes an active synaptic channel.
inputs:
e channel: The descriptor of the Synaptic Channel whose stream of neuron output has
to be started.
return:
e FAIL if the operation can not be completed (for example the channel does not exists);
SUCCESS otherwise.

Function: stop_syn_channel(channel)

03/10/2011 Page 60

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

Synopsis: Stops transmitting the stream of neuron output vectors over the specified active
synaptic channel.
inputs:
e channel: The descriptor of the Synaptic Channel whose stream of neuron output has
to be stopped.
return:
e FAIL if the operation can not be completed (for example the channel is not active, or
does not exists); SUCCESS otherwise.

Function: write_output (channel, k, val)
Synopsis: Fills the k-th element of the ChOut vector associated to the Synaptic Channel
channel with the value val.
inputs:
e channel: The descriptor of the Synaptic Channel that uniquely identifies a ChOut
vector structure in the output interface of the local mote.
e k:The index of the ChOut element where to write the value.
e val: The value to be written in the ChOut vector.
return:
SUCCESS if the write operation is completed successfully, FAIL otherwise.

Event: syn_input_update (channel, index, status)
Synopsis: Notifies the status update of an input synaptic connection.
inputs:
e channel: he descriptor of the Synaptic Channel that uniquely identifies a Chin vector
structure in the input interface of the local mote.
e index: The index of the Chin element whose status update has to be notified.
e status: The status of the synaptic connection.

Function: read_input (channel, index)
Synopsis: Read the specified value in the Chin vector of the input interface of the ESN
running on the local mote.
inputs:
e channel: The descriptor of the Synaptic Channel that uniquely identifies a Chin vector
structure in the input interface of the local mote.
e index: The index of the Chin element whose value has to be returned.
return:
the requested value.

Event: clock_tick (currentClock)
Synopsis: Signals the tick of the current distributed RUBICON clock T.inputs:
e currentClock: The current value of the RUBICON clock.

5.3.2 S Specification of the functions of the Streams component

Function: open_remote (island_addr, mote_addr, symbolic_name, stream_rate, qos)
Synopsis: Request that a remote stream is opened.

inputs:
e jsland _addr: The address of the island destination of the message.

03/10/2011 Page 61

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

e mote_addr: Destination of stream (if open_remote is invoked by destination, dest is
the node itself).

e symbolic_name: Code univocally identifying the stream to be opened.

e stream_rate: Rate at which source (destination) of the stream is going to write (read)
data into (from) the stream. It is expressed in milliseconds.

e gos: Quality of service of the stream.

e buffer_size: Maximum size of data (in bytes) that can be sent over the stream.

return:

e FAIL if opening the stream is impossible because, for example, Stream System layer
data structures have no space to store a new stream or the stream is already
opened.

e SUCCESS means a openRemoteDone event will be signaled once the stream has been
opened.

Event: openRemoteDone(stream_desc, symbolic_name, success)
Synopsis: Signal that the remote stream has been opened.
inputs:
e stream_desc: Descriptor of the opened stream.
e symbolic_name: Code univocally identifying the opened stream.
e success: Whether the open_remote was successful.

Function: open_sensor (sensor_tid, stream_rate, sampling_type)
Synopsis: Open a sensor stream.
inputs:
e sensor_tid: Identifier of the transducer whose sensor stream has to be opened.
e stream_rate: Rate at which sensor must sample environment. It is expressed in

milliseconds.
o sampling_type: If sampling is periodic or on demand.
return:

e stream descriptor if opening has been completed successfully;
e -1 otherwise (for example no available space to store a new stream or the stream is
already opened)

Function: open_local ()
Synopsis: Open a sensor stream.
inputs:
return:
stream descriptor if opening has been completed successfully;
-1 otherwise (for example no available space to store a new stream or the stream is
already opened)

Function: close (desc)
Synopsis: Close the selected stream.
inputs:
e desc: Descriptor of the stream to be closed.
return:
FAIL if the operation can not be completed;
SUCCESS otherwise.
03/10/2011 Page 62

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

Function: read (desc, nbytes)
Synopsis: Request that nbytes bytes are read from the selected stream.
inputs:
e desc: Descriptor of the stream to be read.
e nbytes: Number of bytes to be read.
return:
FAIL if the stream is not open or the read can not be performed (for example, attempt
to read from a remote stream opened in write mode).
SUCCESS otherwise.

Event: readDone(desc, buf, nbytes, success)
Synopsis: Signal that the data is ready.
e desc: Descriptor of the stream.
e buf: Pointer to a region where read data was put; meaningful only if success =
SUCCESS.
e nbytes: Number of actually read bytes; meaningful only if success = SUCCESS.
e success: Whether the read was successful.

Function: write (desc, buf, nbytes)

Synopsis: Write nbytes bytes from buf into the stream identified by stream_desc
inputs:

e desc: Descriptor of the stream to be written.

e buf: Pointer to the buffer to be written.

e nbytes: Number of bytes to be written in the stream.
return:

return the number of actually written bytes; -1 if the write fails.

5.3.3 Specification of the functions of the Connectionless component

Function: send(island_addr, mote_addr, buf, nbytes, reliable, am_type)
Synopsis: Send a message to the destination mote in a specified island.
inputs:
e jsland _addr: The address of the island destionation of the message.
e mote_addr: The address of the mote destination of the message.
e buf: Pointer to a region where the data to be sent are stored.
e nbytes: Number of bytes to be sent.
e reliable: TRUE if an ack is requested for the current message.
e am_type: type of the message. It identifies the interface to be used to send the
message.
return:
FAIL if it is not possible to send the message, SUCCESS otherwise.

Event: ack (success)
Synopsis: Signal that the acknowledgment of a previously sent message.

inputs:
e success: whether the ack was successful.

03/10/2011 Page 63

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

Event: receive (src_island_addr, src_mote_addr, buf, nbytes, success)
Synopsis: Signal that the data is ready.
inputs:
e src_island_addr: The address of the island destination of the message.
e src_mote_addr: The address of the mote destination of the message.
e buf: Pointer to a region where the received data is stored; meaningful only if success
== SUCCESS.

e nbytes: Number of actually received bytes; meaningful only if success == SUCCESS.
e success: Whether the receive was successful.

5.3.4 Component Management

Function: initCommunications()
Synopsis: Start both radio and serial interface.
inputs:

Event: initCommunicationsDone(success)
Synopsis: Signal the completion of both radio and serial component activation.

inputs:
e success: Whether the radio and serial activation was successful.

Function: joinlsland(description);
Synopsis: Request the basestation of the current island to be joined. As consequence the
mote will receive the mote_addr and the island_addr.
inputs:
e description: Description of the capabilities (transducers or actuators) installed on the
mote.

Event: moteJoined (success)
Synopsis: Signal that a new mote joined the RUBICON system.
inputs:
e mote_addr: Identifier of the joined mote.
description: Description of the capabilities (transducers or actuators) installed on the
mote.

5.4 Interface specification for PEIS-WSN gateway

Tuplename / Example Example data Description
devices {1,7,11} Lists the identifier for all detected WSN/WSAN
devices. $ 7. type 42 Contains a 4 byte type identifier for each identified

device. One tuple for each device detected

03/10/2011 Page 64

RUBICON D1.1 Comm Abstraction & Proxy

RUBICON: Project No.: 22699145

devices. 7. type

devices. $ /0. input. $CH <binary data>
devices. 7. input. 0

devices. $ 7D output. $CH <binary data>
devices. 7. output. 0

Writes a binary message on the given channel on
the given WSN

Is written by the gateway when a message is sent
out from the given WSN at the given channel.
Gateway subscribed to this channel iff any PEIS are
subscribed to this tuple.

Each island is given a unique number that corresponds to the peis-id of the gateway that is
connected to the island. For the case of WSN that are connected to multiple gateways this gives
multiple paths of addressing such WSN using any of the corresponding gateway ID's.

Unless specified otherwise all binary data is transferred in network byte order.

Messages passed from WSN to gateway when intended to be sent to another island

uint32

uintl6

uintl6

payload (up to 256 bytes)

PEIS ID of the corresponding island to which
message is sent

WSN ID of the target WSN mote

WSN channel of the target channel on the target
WSN

Payload of message

Corresponding messages passed from gateway to gateway when transmitting a island-to-island

message

uintlé

uintl6

payload (up to 256 bytes)

WSN ID of the target WSN mote

WSN channel of the target channel on the target
WSN

Payload of message

03/10/2011

Page 65

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

6. Acknowledgements

The authors wish to thank Dr. Susanna Pelagatti (UNIPI) for its careful quality assurance review of this
deliverable.

03/10/2011 Page 66

RUBICON D1.1 Comm Abstraction & Proxy RUBICON: Project No.: 22699145

7. References

[1]

[2]

3]

[4]

[5]

[6]
[7]
(8]
[9]

A. Saffiotti, M. Broxvall, M. Gritti, K. LeBlanc, R. Lundh, J. Rashid, B.S. Seo, Y.J. Cho. The PEIS-
Ecology Project: Visions and Results. In Proceedings of The 2008 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2008), pp. 2329-2335, Nice, France,
September 2008

Giuseppe Amato, Stefano Chessa, and Claudio Vairo “MaD-WiSe: A Distributed Stream
Management System for Wireless Sensor Networks”, Software Practice & Experience, 40 (5):
431-451 (2010).

G.Amato, P.Baronti, and S.Chessa, "Connection-Oriented Communication Protocol in
Wireless Sensor Networks," Istituto di Scienza e Tecnologie dell'Informazione - CNR, Tech.
Rep. 2005-TR-10, 2005.

B. Karp and H. T. Kung, "GPSR: Greedy Perimeter Stateless Routing for Wireless Networks," in
Proceedings of the 6™ International Conference on Mobile Computing and Networking
(MobiConm 2000), Boston, MA, USA, August 2000, pp. 243-254.

A. Caruso, S. Chessa, S. De, and A. Urpi, "GPS Free Coordinate Assignment and Routing in
Wireless Sensor Networks," in Proceedings of the 24th Annual Joint Conference of the IEEE
Computer and Communications Societies (Infocom 2005), Miami, FL, USA, March 2005, pp.
150-160.

EU FP6 "SMEPP” project, http://www.smepp.org/
http://www.memsic.com/products/wireless-sensor-networks/wireless-modules.html
http://www.tinyos.net/

J. Rashid, M. Broxvall, A. Saffiotti. Digital Representation of Everyday Objects in a Robot

Ecology via Proxies. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS
2008), pp. 1908-1914. Nice, France, September 2008.

[10] http://www.aass.oru.se/~peis

03/10/2011 Page 67

