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Abstract: Given the economical importance of the olive tree it is essential to study its responses to 

stress agents such as excessive UV-B radiation, to understand the defense mechanisms and to 

identify the varieties that are able to cope with it. In the light of the analysis carried out in this study, 

we argue that UV-B radiation represents a dangerous source of stress for the olive tree, especially 

in the current increasingly changing environmental conditions. Both the varieties considered 

(Giarraffa and Olivastra Seggianese), although resistant to the strong treatment to which they were 

exposed, showed, albeit in different ways and at different times, evident effects. The two varieties 

have different response times and the Giarraffa variety seems better suited to prolonged UV-B 

stress, possible due to a more efficient and quick activation of the antioxidant response (e.g., 

flavonoids use to counteract reactive oxygen species) and because of its capacity to maintain the 

photosynthetic efficiency as well as a relatively higher content of mannitol. Moreover, pigments 

reduction after a long period of UV-B exposure can also be an adaptation mechanism triggered by 

Giarraffa to reduce energy absorption under UV-B stress. Olivastra Seggianese seems less suited to 

overcome UV-B stress for a long period (e.g., higher reduction of Fv/Fm) and has a higher 

requirement for sugars (e.g., glucose) possible to counteract stress and to restore energy. 
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1. Introduction 

One of the issues intricately linked to climate change is the reduction of the ozone layer, the 

latter being significantly increased by air pollution [1]. In fact, the stratospheric ozone shields 90% of 

UV-B radiation [2], therefore its degradation causes a higher exposure of organisms to this radiation 

and increases the risks connected to UV-B exposure [3]. Excessive exposure to UV-B radiation exerts 

adverse impacts of different types, which include a wide range of morphological, physiological and 

reproductive aspects on plants, animals, and humans [4]. The awareness of the dangerous effects of 

ozone layer reduction gave rise to several changes at the global level (e.g., implementation of the 

Montreal Protocol) resulting in the slowdown of the ozone layer depletion, but ozone layer is still 

lower than in the pre-1980 era. Currently, the levels of UV-B reaching the earth surface vary 

considerably, reaching values around 15 kJm−2 d−1 in the Mediterranean basin or even extremely 

higher values, around 65 kJm−2 d−1, in Lhasa (Tibet) during the summer [5]. Nevertheless, elevated 
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UV-B levels are expected to continue over the 21st century, particularly in regions were clear sky is a 

typical condition [6]. 

UV-B radiation (280–315 nm) play an important role in terrestrial ecosystems but, when in 

excess, it can represent a risk for plants, inducing numerous negative effects, both direct and indirect, 

to which plants can respond with defense and adaptation mechanisms, depending on the species and 

the environmental conditions in which they live [7]. DNA is one of the macromolecules most at risk 

of UV radiation; specifically, UV-B radiation can cause gene mutations triggering the production of 

cyclobutane-pyrimidine dimers and, to a lesser extent, pyrimidine (6-4) -pyrimidinone (6-4 PP) 

dimers [8]. In addition to being mutagenic, both RNA and DNA polymerase are unable to read 

unrepaired dimers, leading to a blockage in gene transcription and DNA replication [8]. Furthermore, 

studies have shown the presence of oxidative DNA lesions induced by UV rays in plants [9]. In fact, 

exposure of plant tissues to UV-B rays increases the production of reactive oxygen species (ROS) 

causing damage to nucleic acids as well as to proteins and lipids [10]. 

Another main target of UV-B radiation is the photosynthetic apparatus, which is particularly 

sensitive to UV-B exposure [9]. High UV-B radiation results in a decrease in photosynthetic efficiency, 

reduction of the growth rate, and alterations in the metabolism of carbon and nitrogen [9,10]. UV-B 

radiation can also affect stomatal conductance, altering the rate of water loss through transpiration 

and net CO2 assimilation rate [9,11]. Studies on direct injuries of the photosynthetic apparatus by UV-

B radiation showed inactivation of photosystem II (PSII) [9,12], decrease in photosynthetic pigment 

levels [13], alteration of the integrity of thylakoids and chloroplast ultrastructure [9], reduction in the 

activity of Rubisco [14,15] and down-regulation of transcription of photosynthetic genes [16]. UV-B 

rays can also cause photomorphogenic modifications and damages, especially in leaves. Curling of 

leaves, for example, aims at reducing the surface exposed to radiation [17]. It has also been observed 

that the increase in UV-B radiation in several species reduces the height of plants, the leaf fresh mass 

and area, the production of total biomass, and changes the morphology of leaves [18,19]. Negative 

effects of UV-B radiation can also be extended to other plant processes, including the reproductive 

ones. In some cases, alterations of the reproductive system have been observed as a result of decrease 

in pollen germination [20]. For instance, in the olive tree, both pollen germination and pollen tube 

length were strongly reduced by high levels of UV-B [11]. 

Although plants have developed numerous repair and protection mechanisms over time, the 

damage caused by UV-B radiations is still significant [7]. Among the defense mechanisms that plants 

activate in response to UV-B stress, the enzymatic and non-enzymatic mechanisms that counteract 

the generation of ROS and their subsequent reactions are of extreme importance. Antioxidants 

include enzymes like superoxide dismutase, catalase and the Halliwell/Asada pathway enzymes, as 

well as non-enzymatic substances like glutathione, ascorbate, tocopherols, carotenoids, albumin, 

bilirubin, chelating agents and phenolics [7,12,21]. With special reference to phenolic compounds, 

flavonoids are reported to effectively absorb UV-B radiation and to neutralize reactive oxygen species 

(ROS) [22]. Furthermore, exposure to UV-B radiation can increase the concentration of other phenolic 

compounds such as the hydrocinnamic acids and secoiridoids that can also efficiently protect plants 

against the deleterious effects of UV-B stress [23]. 

The Mediterranean region is one of the most vulnerable to climate change and the negative 

effects of the high levels of UV-B radiation on several typical species of this region has already been 

highlighted (e.g., [15,24,25]). Olive trees (Olea europaea L.) are one of the most important and oldest 

crops in the Mediterranean basin. Despite the high adaption of this species to the environmental 

condition of Mediterranean region, the continuous elevated levels of UV-B radiation predicted for 

the near future (e.g., [26,27]) together with other multiple environmental factors characteristics of 

these region (such as sky cloudiness and high air pollutants) represent a risk to olive culture and 

productivity, as already highlighted in other reports [15,23,28]. It is therefore urgent understand how 

elevated UV-B radiation affects olive plants physiology and identify varieties better adapt to these 

conditions, allowing farmers to grow selected varieties that are suitable for the current and future 

environmental situation. In this study we aimed at integrating the contribution of previous surveys 

[15,23,29,30], studying the physiological response, particularly photosynthesis, pigments, 
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carbohydrates and antioxidant compounds, of two Italian Olea europaea varieties (Olivastra 

Seggianese typical from the Toscana region and Giarraffa from Sicilia region) to high levels of UV-B 

radiation. The Olivastra Seggianese is a variety widespread only in its area of origin: on the slopes of 

Monte Amiata in Tuscany. The plants of this cultivar reach considerable size. The fruits are small in 

size with a spherical shape and ripen early and simultaneously. The quantity of oil in the olives is 

high and of good quality. It is a hardy plant that resists low temperatures. Giarraffa, on the other 

hand, is cultivated in many areas of Sicily but is also found in some areas of Calabria and Puglia. The 

trees are of medium height. The fruits are quite large, ovoid, ripen early and can also be used for oil 

extraction. This cultivar shows a low rusticity and a greater susceptibility to attacks by common 

animal parasites. It has a medium tolerance to low temperatures. In the present study we have 

investigated these two olive varieties, which are exposed to a different solar radiation because of 

geographical reasons, in order to evaluate the effects of chronic UV-B stress (14 h per day for 8 weeks) 

by comparing the sensitivity/tolerance of the two varieties and identifying the most critical time 

points and the olive plants response adaptations. 

2. Results 

The UV-B treatment was carried out for a period of 8 weeks for 14 h a day. The treatment scheme 

was performed according to Nogués and Baker [24]. During the treatment eight time points were 

established: the first one before the onset of UV-B treatment (T0), after 1, 2, 3, 4, 5, 6, 7 and 8 weeks of 

UV-B treatment (indicated respectively as T1, T2, T3, T4, T5, T6, T7 and T8). Photosynthetic efficiency 

was measure in fresh material in all time points (in control and UV-B treated plants), since it is an 

indicator of the plant photosynthetic performance and it is a non-destructive parameter. 

Additionally, leaf samples were collected in five representative sampling times (T0, T2, T4, T6 and 

T8), immediately frozen in liquid nitrogen and stored at −80 °C. 

2.1. Photosynthetic Efficiency 

The Fv/Fm in the control plants of both varieties did not differ significantly (confirmed by 

ANOVA test) as the response trend of both varieties overlap over time (Figure 1). 

  
Figure 1. On the x-axes the time points, on the y-axes the Fv/Fm value. Maximum photochemical 

efficiency (Fv/Fm) in the two olive varieties, Olivastra Seggianese and Giarraffa, under control and 

UV-B treatment in the different sampling times. In each line, values are given as mean ± standard 

deviation. Asterisk (*) represent significant differences between control and treated plants of 

Olivastra Seggianese (* p ≤ 0.05; ** p ≤ 0.01). Hashtag (#) represent significant differences between 

control and treated plants of Giarraffa (p ≤ 0.05). The § symbol represent significant differences 

between Olivastra Seggianese treated plants and Giarraffa treated plants (p ≤ 0.05). 
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The Fv/Fm values in control plants ranged from 0.83 to 0.84 all over the experiment. However, 

more discrepancies were evident when comparing the trend of plants subjected to UV-B with those 

of control. 

As expected, before the onset of stress (T0), all plants (control and those undergoing UV-B stress) 

have similar Fv/Fm values. After the first week of stress (T1), control plants and UV-B plants from 

the variety Olivastra Seggianese showed similar (p > 0.05) Fv/Fm averages. However, comparing both 

varieties under UV-B conditions, the Fv/Fm in Olivastra Seggianese was significantly higher than the 

one of Giarrafa (0.82 ± 0.01 and 0.80 ± 0.01, respectively). At T2, it is possible to observe a remarkable 

decrease (p ≤ 0.05) in the Fv/Fm ratio in UV-B treated plants when compared with the controls, for 

both varieties. At this point the Fv/Fm was around 0.79 in UV-B Olivastra Seggianese plants and 0.73 

in UV-B Giarraffa plants. From T3 to T4, UV-B treated plants of both varieties showed a lower value 

of Fv/Fm (p ≤ 0.05) than control, but no significant differences were found in both varieties treated 

with UV-B. At T5, the UV-B Olivastra Seggianese reported slightly higher fluctuations with a sharp 

decrease, but this was not statistically significant (compared to UV-B Giarraffa and control plants). 

In the next sampling points (T6 and T7), control and UV-B plants showed similar (p > 0.05) Fv/Fm 

values. At T8, UV-B-stressed Olivastra Seggianese showed a decrease (p ≤ 0.01) in the Fv/Fm to values 

around 0.71, while controls remain stable. UV-B Giarraffa plants were still in a plateau phase, but 

with an Fv/Fm significantly lower (p ≤ 0.05) than the control. At this time UV-B plants of the two 

varieties showed a statistically significant difference (p ≤ 0.05). 

As specified in the method section, the performance Index (Pi) is a more sensitive parameter 

indicating the possible variations of the entire photosynthetic apparatus, including photosystems I 

(PSI) and II (PSII). Concerning the performance index (Pi), the controls of both varieties have a similar 

trend of response (Figure 2), and do not differ significantly as confirmed by the ANOVA test. 

Contrarily, the Pi of UV-B plants, which are remarkably similar to those of controls at time point 0, 

are clearly affected by a decrease (p ≤ 0.05) just after one week of stress (T1). At time point 1, controls 

of Olivastra Seggianese had a Pi around 13.18, while UV-B plants had 9.14. For the control plant of 

Giarraffa the Pi was around 11.16, while in UV-B plants was 6.15. 

 

Figure 2. On the x-axes the time points, on the y-axes the Pi value. Performance index (Pi) in the two 

olive varieties, Olivastra Seggianese and Giarraffa, under control and UV-B treatment in the different 

sampling times. In each line, values are given as mean ± standard deviation. Asterisk (*) represent 

significant differences between control and treated plants of Olivastra Seggianese (p ≤ 0.05). Hashtag 

(#) represent significant differences between control and treated plants of Giarraffa (p ≤ 0.05). Double 

§§ represent significant differences between Olivastra Seggianese treated plants and Giarraffa treated 

plants (p ≤ 0.01). 
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After the T2, the Pi decreased significantly (p ≤ 0.05) in UV-B plants. While the average Pi in 

control plants of Olivastra Seggianese is 14.1, in UV-B plants was approximately 5 and in UV-B 

Giarraffa was approximately 3.73 at T2 (against a value of 11.46 in control plants). Subsequently, from 

T3 onward, UV-B plants of both varieties enter a plateau phase which persisted up to T7. After a 

further week of stress (T8), the Pi of the UV-B Olivastra Seggianese plants were affected by a 

significant drop (1.79 against 12.43 of control plants). The Pi in UV-B Giarraffa plants persist in the 

plateau phase, with an average Pi value lower than that of controls. At this time point, differences 

between the mean value of stressed plants of both varieties were statistically significant (p ≤ 0.01). 

2.2. Photosynthetic Pigments 

Figures 3 and 4 show the content of pigments in olive leaves of both varieties (control and UV-

B treated plants). The content of chlorophyll a, chlorophyll b, β-carotene and lutein during the 

sampling times was similar (p > 0.05) in control and UV-B Olivastra Seggianese plants. Although the 

absolute quantity is slightly lower in treated plants than in control ones, the observed difference is 

inherent in the experimental variation. Therefore, we assumed no statistically significant differences 

in Olivastra Seggianese between controls and treated plants (also confirmed by ANOVA test).  

 

Figure 3. On the x-axes the time points, on the y-axes the concentration of pigments expressed in µg 

mg−1. (A) Chlorophyll a content in the two olive varieties, Olivastra Seggianese and Giarraffa, under 

control and UV-B treatment in the different sampling times. For each column, values are given as 

mean ± standard deviation. Hashtag (#) represent significant differences between control and treated 

plants of Giarraffa (p ≤ 0.05). (B) Chlorophyll b content in the two olive varieties, Olivastra Seggianese 

and Giarraffa, under control and UV-B treatment in the different sampling times. For each column, 

values are given as mean ± standard deviation. Hashtag (#) represent significant differences between 

control and treated plants of Giarraffa (p ≤ 0.05). 
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Figure 4. On the x-axes the time points, on the y-axes the concentration of pigments expressed in µg 

mg−1. (A) β-carotene content in the two olive varieties, Olivastra Seggianese and Giarraffa, under 

control and UV-B treatment in the different sampling times. For each column, values are given as 

mean ± standard deviation. Hashtag (#) represent significant differences between control and treated 

plants of Giarraffa (p ≤ 0.05). (B) Lutein content in the two olive varieties, Olivastra Seggianese and 

Giarraffa, under control and UV-B treatment in the different sampling times. For each column, values 

are given as mean ± standard deviation. 

Also, the content of these pigments in control and UV-B Giarraffa plants was similar (p > 0.05), 

except at time point 6 where the levels of chlorophyll a, chlorophyll b and β-carotene were higher (p 

≤ 0.05) in control plants. Even in this case, the ANOVA test did not show significant differences 

between control and treated plants. 

2.3. Sugars 

At T0 the content of sucrose, glucose 6-P, glucose, fructose and mannitol was similar (p > 0.05) 

in both varieties. As regards glucose 6-P and sucrose, no statistically significant differences were 

found between control and UV-B plants of both varieties (Figure 5A,B, also confirmed by the ANOVA 

test). Although the average values fluctuated in the various cases analyzed, they were all part of a 

physiological fluctuation. 
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Figure 5. On the x-axes the time points, on the y-axes the concentration of sugars expressed in mg 

ml−1. (A) 6-P glucose content in the two olive varieties, Olivastra Seggianese and Giarraffa, under 

control and UV-B treatment in the different sampling times. For each column, values are given as 

mean ± standard deviation. (B) Sucrose content in the two olive varieties, Olivastra Seggianese and 

Giarraffa, under control and UV-B treatment in the different sampling times. For each column, values 

are given as mean ± standard deviation. 

The levels of glucose (Figure 6A) in the control and UV-B Giarraffa plants were similar (p > 0.05). 

In fact, the ANOVA test did not give significant results. On the contrary, in the case of Olivastra 

Seggianese there were significant differences between control and UV-B plants, as confirmed by the 

ANOVA test. In fact, at the T2, T4 and T8, UV-B plants showed levels of glucose lower than control 

plants. At time point 6, UV-B plants showed a glucose level higher (p ≤ 0.05) than the control. 

Concerning the content of fructose, we found that fluctuations for the Olivastra Seggianese 

variety were statistically significant while those for the Giarraffa variety were not (data confirmed by 

the ANOVA test); at time point 2 the levels of this sugar in UV-B plants of both varieties were higher 

than in control plants (Figure 6B). Moreover, at time point 6, the UV-B Olivastra Seggianese plants 

showed a content of fructose significantly lower than the control ones (p ≤ 0.01). 
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Figure 6. On the x-axes the time points, on the y-axes the concentration of sugars expressed in mg 

ml−1. (A) Glucose content in the two olive varieties, Olivastra Seggianese and Giarraffa, under control 

and UV-B treatment in the different sampling times. For each column, values are given as mean ± 

standard deviation. Asterisk (*) represent significant differences between control and treated plants 

of Olivastra Seggianese (p ≤ 0.05). (B) Fructose content in the two olive varieties, Olivastra Seggianese 

and Giarraffa, under control and UV-B treatment in the different sampling times. For each column, 

values are given as mean ± standard deviation. Double asterisk (**) represent significant differences 

between control and treated plants of Olivastra Seggianese (p ≤ 0.01). 

Results of mannitol (Figure 7) showed that the concentration of this alcohol-sugar increases in 

treated plants of both varieties significantly compared to the controls (as confirmed by the ANOVA). 

The content of mannitol in Giarraffa variety at the T2 point was significantly different between 

control and treated plants. In fact, mannitol in UV-B plants was 0.85 mg ml−1 while in control was 

0.64 mg mL−1 (p ≤ 0.05) (Figure 7). Furthermore, UV-B Giarraffa plants maintained high mannitol 

concentrations throughout the treatment, unlike UV-B Seggianese plants which resumed the control 

values after the peak at T2. 
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Figure 7. On the x-axes the time points, on the y-axes the concentration of mannitol expressed in mg 

ml−1. Mannitol content in the two olive varieties, Olivastra Seggianese and Giarraffa, under control 

and UV-B treatment in the different sampling times. For each column, values are given as mean ± 

standard deviation. Hashtag (#) represent significant differences between control and treated plants 

of Giarraffa (p ≤ 0.05). 

2.4. Antioxidant Capacity, Polyphenols and Flavonoids 

Figure 8 shows the antioxidant capacity of olive leaves of both varieties (control and UV-B 

treated plants). No significant differences were found in the content of antioxidants between 

Olivastra Seggianese and Giarraffa control and UV-B plants throughout the experiment duration. 

 

Figure 8. On the x-axes the time points, on the y-axes the concentration of antioxidant expressed in 

mmol 100 g−1. Antioxidant capacity in the two olive varieties, Olivastra Seggianese and Giarraffa, 

under control and UV-B treatment in the different sampling times. For each line, values are given as 

mean ± standard deviation. 
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Concerning polyphenols, a clear difference (p ≤ 0.05) in the total content between the two 

varieties was observed (Figure 9). In fact, at T0 all plants of Olivastra Seggianese showed an average 

value of polyphenols of about 13 mg g−1 FW, while plants of Giarraffa had a value of about 9 mg g−1 

FW. Despite this difference, controls of both varieties show a similar trend, particularly after T4. On 

the contrary, UV-B plants of both varieties show a different trend of response. In fact, UV-B Olivastra 

Seggianese plants, when compared to control, exhibited a slight increase (p > 0.05) in total 

polyphenols at T4, with an average content of 15.42 mg g−1 FW that was followed by a plateau phase 

until T8. Increase of polyphenols in UV-B Giarraffa plants, as compared to controls, is much more 

evident from T0 to T2, reaching an average content of 10.33 mg g−1 FW, subsequently plants decreased 

slightly until T8 with polyphenols content values similar (p > 0.05) to those of controls. 

 

Figure 9. On the x-axes the time points, on the y-axes the concentration of polyphenols expressed in 

mg g−1. Polyphenols content in the two olive varieties, Olivastra Seggianese and Giarraffa, under 

control and UV-B treatment in the different sampling times. For each line, values are given as mean 

± standard deviation. The symbol § represent significant differences between Olivastra Seggianese 

plants and Giarraffa plants (p ≤ 0.05). 

Figure 10 shows the total flavonoids present in the leaves of both varieties (control and UV-B 

treated plants). The data obtained showed that at T0 the content of flavonoids in plants of the two 

varieties was very similar (p > 0.05) as all plants have an average value of about 70 mg 100 g−1 FW. 

The controls of both varieties showed a similar and linear trend, albeit with some oscillations. On the 

contrary, UV-B plants of both varieties showed a different trend. In fact, UV-B Olivastra Seggianese 

plants, compared to the control, showed an increase (p ≤ 0.05) in total flavonoids at T4 with an average 

content of 83.62 mg 100 g−1 FW. This increase was followed by a plateau phase lasting until T8, with 

flavonoid content values similar (p > 0.05) to those of controls. Increase of flavonoids in UV-B 

Giarraffa plants, as compared to controls, is much more evident at T2 (p ≤ 0.05), whose average 

content is 85.11 mg 100 g−1 FW. Subsequently Giarraffa plants enter a plateau phase until T6, while 

maintaining a flavonoid content always higher (p ≤ 0.05) than the control. From T6 a decrease in 

flavonoid content was observed until T8 where the content of flavonoids returned to values similar 

(p > 0.05) to the controls. 
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Figure 10. On the x-axes the time points, on the y-axes the concentration of flavonoids expressed in 

mg 100 g−1. Flavonoids content in the two olive varieties, Olivastra Seggianese and Giarraffa, under 

control and UV-B treatment in the different sampling times. For each line, values are given as mean ± 

standard deviation. Asterisk (*) represent significant differences between control and treated plants 

of Olivastra Seggianese (p ≤ 0.05). Hashtag (#) represent significant differences between control and 

treated plants of Giarraffa (p ≤ 0.05). 

3. Discussion 

Among all physiological processes, photosynthesis is one of the most sensitive to the various 

stresses that a plant can undergo, especially to the stress induced by high UV-B radiation [31]. In this 

work, we found that the photosynthetic apparatus of both olive varieties was affected by UV-B. 

Indeed, photosynthetic efficiency varies over time as stress progresses, comparably with data in the 

literature [32,33]. More differences are evident when comparing stressed plants with control plants. 

Before stress (T0), control plants and those to be stressed have Fv/Fm values in the optimal range. 

The first symptoms of stress were found already after the second week (T2) of UV-B exposure, 

particularly in the Giarraffa variety, where the Fv/Fm reach values (<0.75) that are typical of stressed 

plants [34]. However, after this critical point UV-B Giarraffa plants were able to recover and maintain 

the levels of photosynthetic efficiency within the optimal range (around 0.8). Contrarily, the Olivastra 

Seggianese plants were capable to maintain an Fv/Fm value within the optimal range (despite the 

high variability in the T5), but over the time (T8) showed symptoms of stress. These data suggests 

that Giarraffa variety are not able to respond immediately in order to preserve the photosynthetic 

efficiency, but after an adaptive stage triggers a stress protective mechanism allowing the UV-B 

plants to reestablish the performance and continue to photosynthesize. The Olivastra Seggianese 

respond earlier but is not able to maintain this capacity over time following the accumulation of the 

negative effects of UV-B exposure. The pattern of response of the Olivastra Seggianese variety is in 

line with the one reported by Noguès and Backer [24] in olive plants. These authors reported a 

decrease of the Fv/Fm to values lower that 0.75 after 14 days of an UV-B BED of 24 KJ m−2 d−1 (8 h per 

day). On the contrary, Dias et al. [15] in a Portuguese olive variety exposed to a lower UV-B BED (12.4 

KJ m−2 d−1 for 5 days) found only a small decrease of the Fv/Fm (0.84), unable to compromise the 

photosynthetic efficiency. In another Mediterranean species, grapevine plants exposed during 60 

days to a UV-B BED of 9.6 KJ m−2 d−1 were able to maintain the Fv/Fm above 0.75 [25]. The degree of 

damages of UV-B radiation on the PSII functionality seems also to depend on the intensity and 

duration of exposure as well as the plant species. For instance, according to Albert et al. [35] in some 
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artic plants the UV-B radiation can be considered a source of high stress since it causes a decrease in 

Fv/Fm and a progressively increasing damage on the photosystem II.  

The pattern of response of Pi suggests that UV-B conditions reduce the absorption, capture and 

conversion of excitation energy in electron transport [36], being the UV-B Olivastra Seggianese more 

affected at the end of experiment. As observed for the Fv/Fm, after the first week of UV-B exposure 

(T2), the Pi was more affected. As also demonstrated in other studies, Pi seems to be more sensitive 

to environmental stresses than Fv/Fm [37]. The decrease of Pi, as found here for both varieties, is in 

line with what reported in the literature for other species (maize, sorghum, amaranth and cotton) 

exposed to high UV-B radiation [9,38]. 

Taken into account the profiles of Fv/Fm and Pi, we hypothesize that Giarraffa can trigger 

defense mechanisms suitable for long-lasting UV-B stress unlike Olivastra Seggianese. Comparing 

the maps of UV index in the various Italian regions [39] and in the area of origin of the two varieties, 

Giarraffa is widely cultivated throughout southern Italy, where the UV index is higher than in 

Tuscany, the region of origin of Olivastra Seggianese. Possibly the Sicilian variety would adapt over 

time to growth and survive in environments with higher UV radiation, so that Giarraffa is better 

equipped to respond to a prolonged UV-B stress. 

There are few studies on the photosynthetic pigments of O. europaea and on their change 

following UV-B stress. UV-B radiation can cause variations in the levels of chlorophyll between 10-

70% in plants of agricultural interest [40–44] depending on the species and the intensity of applied 

stress agent. Chlorophylls are one of most abundant pigments in plant chloroplasts and they are vital 

to absorb sunlight for photosynthesis. Carotenoids, besides their function as accessory light-

harvesting pigments, also act as antioxidants protecting chlorophylls from photooxidation [9]. Within 

carotenoids, lutein is found mainly in antenna complexes and β-carotene can be found mostly in the 

reaction centers [45,46]. In the Olivastra Seggianese variety, UV-B treatment seems not to affect the 

response profile of chlorophyll a, chlorophyll b, β-carotene and lutein for all the various time points 

analyzed. However, in Giarraffa variety UV-B seems to reduce accumulation of pigments 

(chlorophylls and β-carotene), particularly after a prolonged period of UV-B exposure (T6). This 

suggest an adaptation mechanism triggered in Giarraffa that aims to reduce energy absorption and 

therefore defending against excessive UV-B radiation [47]. Moreover, a reduction of pigments content 

can also represent a degradation by UV-B radiation as suggested for Oryza sativa, Prunus dulcis and 

Bryum argenteum [48–50]. In Eucalyptus globulus [51] and in olive plants [15] exposed to a UV-B BED 

of around 6 and 12 KJ m−2 d−1, respectively, the increase of ROS was associated to pigment decrease 

in UV-B treated plants.  

Abiotic stresses can induce fluctuations in carbohydrates levels due to changes in CO2 

assimilation, in source-sink carbon partitioning and in the activity of enzymes related to sugars 

synthesis [52]. In the present work, the soluble sugars glucose and fructose were the most responsive 

to UV-B treatment. UV-B Olivastra Seggianese plants tend to accumulate less glucose, particularly 

after the second week, possible due to a reduction of the photosynthetic processes and to a higher 

use of this sugar to maintain cellular respiration, to counteract the stress conditions or even to 

restore/increase the levels of other reserve sugars (e.g., starch) or polyols (e.g., mannitol, that tend to 

increase at T2) [52–54]. In turn, UV-B conditions seems, in general, to promote fructose accumulation 

(except at T6), more markedly in Olivastra Seggianese variety. Fructose increase can result from 

sucrose degradation as a response to stress or it can provide the substrate to secondary metabolites 

synthesis (e.g., lignin and phenolic compounds) [52]. Dias et al. [15] reported that olive plants treated 

with a lower UV-B dose (12 kJm−2 d−1) produced less sucrose and starch but maintained glucose and 

sorbitol contents. Also, in eucalyptus plants, UV-B treatment (BED of 6 kJm−2 d−1) decreased the pool 

of starch and soluble sugars [51]. These authors argued that UV-B can induce starch degradation to 

provide more soluble sugars necessary to continue plant metabolic activities and to counteract the 

stress condition. Contrarily, moringa plants treated with a total UV-B dose of 26 kJm−2 showed high 

functional plasticity increasing soluble sugars, but not changing starch levels [55]. Given the key role 

of sucrose [56–58], we may assume that plants under UV-B stress implement mechanisms to maintain 

constant sucrose levels and related metabolic processes. However, this is not always the case because 
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sucrose content in leaves of Eriophorum russeolum decreased as a result of UV-B stress [59] while 

fructose and glucose concentration showed no significant decreases. 

Mannitol is produced in large quantities and accumulated in the leaves of olive trees [60] as well 

as in many other plants [61,62]. Like sucrose, it is transported in non-photosynthesizing tissues of 

plants [63–65]; together with glucose, mannitol contributes to the osmotic potential and thus to cell 

turgor [66] and plays an important role in the response to salt and drought stress [67,68]. In addition 

to osmotic regulation, mannitol increases scavenging of OH-radicals by stabilizing the structure of 

macromolecules [69]. The concentration of mannitol increases significantly in both olive varieties 

analyzed. In Giarraffa at T2 the concentration of mannitol increases in plants subjected to UV-B 

compared to control and this variety maintains high concentrations of mannitol throughout the 

treatment compared to Seggianese; the latter does not show critical differences between control and 

stressed plants. Mannitol concentration may increase in response to UV-B stress for an 

osmoprotective and antagonistic function against free radicals [70]. Since Giarraffa responds better 

than Seggianese to UV-B stress and has a higher concentration of mannitol, it probably developed 

this response mechanism to adapt to the more intense radiation in its area of origin. 

High UV-B radiation can trigger an increase of reactive oxygen species (ROS) at cell level, which 

cause oxidation of proteins, lipids and other biomolecules, thus compromising the entire cellular 

functioning [71]. To deal with the damage caused by ROS, living organisms have developed a 

complex defense system consisting of enzymatic and non-enzymatic antioxidants [72]. The 

antioxidant capacity gives a general information about the antioxidant levels [73] and in the Olivastra 

Seggianese and Giarraffa both control and UV-B plants respond very similar. Polyphenols play an 

important role in O. europaea oxidative stress control and antioxidant responses against abiotic stress, 

such as UV-B radiation, drought and heat [23,29]. Olive leaves contain a large variety of phenolic 

compounds, such as flavonoids (e.g., luteolin-7-O-glucoside, luteolin-5-O-glucoside, luteolin-4-O-

glucoside, quercetin-7-O-rutinoside, quercetin-3-O-glucoside, apigenin-7-O-glucoside and 

chrysoeriol-7-O-glucoside), secoiridoids (e.g., oleuropein), hydroxycinnamic acid derivatives (e.g., 

verbascoside), phenolic alcohols (e.g., hydroxytyrosol and tyrosol) and phenolic acids (e.g., 

chlorogenic and caffeic acids) [23,74,75]. The profile of response of total polyphenols showed 

considerable difference already at T0, which can be attributed to varietal differences. Giarraffa 

respond first (after the first week) to UV-B radiation increasing polyphenols pools. On the other hand, 

Olivastra Seggianese plants respond latter to UV-B triggering only an increase of polyphenols up to 

T2. This response can generally be assumed as an augment of the availability of antioxidant defense 

compounds [76]. Within the class of polyphenols, the flavonoids are one of the most abundant 

compounds with antioxidant properties [77]. They are produced in the epidermal layers of leaves 

and they likely absorb a large portion of incident UV-B radiation reducing the penetration of UV in 

the lower tissues of leaves [22,78]. Moreover, these secondary metabolites also play an important role 

as ROS scavengers [79]. Flavonoids, especially the ortho-dihydroxy B-ring substituted flavonoids 

(e.g., quercetin 3-O-glucoside and luteolin 7-O-glucosides, commonly found in olive leaves), have an 

important role in ROS-scavenging. Flavonoids quench the ROS by reducing the singlet oxygen’s, 

hindering of enzymes involved in ROS generation (lipoxygenase, cyclooxygenase xanthine oxidase, 

monooxygenase), by chelating transition metal ions which trigger the ROS production, and 

quenching lipid peroxidation by number of free radical reactions, and help in the recycling of other 

antioxidants [22,23,77]. Pearson’s [80] correlation coefficient analysis between flavonoid content and 

Pi and between flavonoid content and Fv/Fm, shows us how in both cases there is a correlation 

between these two variables. These correlations are negative with r values of −0.712 and −0.749 

respectively. A negative relationship indicates that low scores on one variable correspond to high 

scores on the other variable [80]. That is, in the specific case of this study, the worsening of the health 

of the plants which results in a decrease in the photosynthetic efficiency values (Fv/Fm and Pi) results 

in an increase in the flavonoid content. This increase, therefore, could be interpreted as a defense 

mechanism that plants put in place in order to cope with stress from UV-B radiation. As observed for 

the total polyphenols, Giarraffa respond first to UV-B stress (during the first weeks), and over time 

total flavonoids levels tend to decrease. In turn, Olivastra Seggianese respond latter (after the second 
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week) and maintain high levels of these compounds until the end of experiment. These distinct 

profiles of antioxidant response and also photosynthetic efficiencies to UV-B treatment triggered in 

the two varieties may be related and may support the hypothesis that Giarraffa is able to activate 

defense mechanisms already after the first weeks of UV-B stress thereby performing, in a long term, 

better than Olivastra Seggianese. This higher defense capacity of Giarraffa is also supported by the 

slight decrease of antioxidants over the second week, which may result from its efficient use to 

neutralize ROS and therefore protect olive plants from oxidative damage, as already reported in olive 

trees under UV-B conditions [23]. The importance of polyphenols, particularly the flavonoids, in olive 

protection against UV-B stress was also highlighted by Noguès and Backer [24]. 

UV stress as other environmental factors including oxygen shortage or pathogen invasion 

induces oxidative stress by generation of ROS and the plants defend themselves by the activation of 

an antioxidants system. Flavonoids may work as ROS scavenging compounds in a cooperative or 

compensative activity within this complex antioxidant system. All this considered, a trait as a higher 

production of flavonoids, which this study demonstrated to vary within the cultivars, could be 

helpful in explaining olive fitness in hostile environment. Breeding of this species will take advantage 

of any information relative to parental lines to be used for crossing with superior metabolic 

performances. In our opinion, after our study, Giarraffa could be one of the cultivars to be further 

analyzed and used to obtain new plants with metabolic features fit to challenge the environmental 

stresses caused by climate changes. 

4. Materials and Methods 

4.1. Plant Growth Conditions 

Olive trees (Olea europaea L.) of 18 months of two varieties (Olivastra Seggianese and Giarraffa) 

were taken from the nursery of the “Società Pesciatina di Orticultura” (Pescia, PT, Italy) where the 

plants were grown in a greenhouse. Subsequently, plants were transferred to climatic cells with the 

following environmental conditions: temperature: 21 °C; relative humidity (RH): 60%; photoperiod: 

14 light h, 10 dark h [81]; light intensity: 500 µmol m−2 s−1 ; watering: 400 mL water for each plant once 

a week; commercial substrate type: “Vigor Plant soil” (Vigor plant Italia srl Fombio,Fombio, Italy). 

4.2. Application of UV-B Treatment 

Ultraviolet radiation was provided by two TL20W / 12 lamps (Philips, Milano, Italy) that emit 

in the wavelength of UV-B rays and that have already been widely used and described in the 

literature; lamps were prepared and used exactly according to the protocol of Allen et al. [81]. Plants 

(n = 16 for each variety) were positioned under UV-B lamps in the climatic cell. Every day, the 

homogeneity of the UV-B radiation emitted by the lamps was verified using a Power Meter 840 with 

Sensor 818-UV (Newport Optical, California, USA ). The UV-B biologically effective dose (BED), 25 

kJm−2 d−1, was calculated according to Correia et al. [82]. Control plants (n = 16 for each variety), 

present in the same climatic cell, have been carefully separated from those treated by means of a 

plasterboard panel that shielded most of the UV radiation (BED of 1 kJm−2 d−1). The UV-B treatment 

corresponds to a high UV-B dose, but within the natural values already reported in some parts of the 

earth surface [5]. 

4.3. Determination of Photosynthetic Defficiency 

Photosynthetic efficiency has been estimated by induction of chlorophyll fluorescence using a 

Handy PEA 2000 fluorimeter (Hansatech Instruments, King’s Lynn, Norfolk, UK). Fluorometric 

analysis of leaf chlorophyll were performed in vivo at ambient temperature, and the changes of the 

level of fluorescence emission were measured in order to obtain the effectiveness of light use in the 

photosynthetic process. After 30 min of dark adaptation, the leaf was illuminated for about one 

second (peak at 650 nm, 3000 µmol m−2 s−1, an intensity of excitation sufficient to ensure the closure 

of all PSII reaction centers) and the fluorescence signal was recorded. For each plant (control and 

stressed), the values of Fv/Fm and PI were collected weekly for 8 weeks in order to identify the time 
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when plants begin to perceive UV-B stress. The following equations were used to calculate Fv/Fm 

and PI parameters [83] (Equation (1–2)):  

�� ��⁄ = (�� − ��) ��⁄  (1) 

����� =
1 − (�� ��)⁄

�� ��⁄
 � 

�� − ��

��

 � 
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��
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where Fm is the maximum fluorescence value, F0 is fluorescence value at zero instant, Fv is a difference 

between Fm and F0, VJ is relative Fv, and M0 is the initial slope of fluorescence kinetics. Fv/Fm, therefore, 

represents an index from the maximum value of 1.00, equivalent to 100% of the maximum 

photochemical efficiency of photosystem II. The performance Index (Pi), a more sensitive parameter 

indicating the possible variations of the entire photosynthetic apparatus, including photosystems I 

(PSI) and II (PSII). Pi is a multiparametric expression that considers all the main photochemical 

processes, such as absorption and capture of excitation energy, transport of electrons over the 

primary plastoquinone (QA) and dissipation of excess excitation energy. 

4.4. Analysis of Photosynthetic Pigments 

Analysis of the photosynthetic pigments was carried out on frozen leaf samples using high 

performance liquid chromatography technique (HPLC—Waters LC Module One, Waters S.p.A., 

Milano, Italy) following the method of Suzuki et al., [84]. Olive leaves were powdered with liquid 

nitrogen, approximately 20 mg of each leaf sample was mixed in Eppendorf tubes with 1 mL of 

ethanol. Subsequently, samples were homogenized by Ultra-turrax (IKA®-Werke GmbH & Co. KG, 

Staufen im Breisgau, Germany  ) for about 2 min until complete rupture of cells. The homogenate 

was centrifuged at 13,000 g for 5 min at 4 °C. After that, supernatants containing pigments were 

transferred to a glass test tube. Then 20 µL aliquots of sample were injected into the HPLC column. 

The column used was a C18 (25 cm × 4.6 mm, grain size 5 µ). The mobile phase is a ternary mobile 

phase with the following gradient conditions (Table 1): 

Table 1. Gradient values used in HPLC analyses for pigment separation. 

Time (min.) % A % B % C 

Initial 75 25 0 

4 75 25 0 

5 100 0 0 

11 80 0 20 

20 65 0 35 

30 75 25 0 

Solvent A: methanol; Solvent B: water; Solvent C: acetone. 

The chromatographic run was carried out at a flow of 1 mL min−1, room temperature; the eluate 

was monitored at the wavelength of 440 nm and the separation time was 30 min. The following 

reference pigments have been used: xanthophyll (lutein) 10 µg mL−1 (elution time 17.59 min); trans β-

carotene 50 µg mL−1 (elution time 37.49 min); chlorophyll a 10 µg mL−1 (elution time 25.23 min); 

chlorophyll b 10 µg mL−1 (elution time 21.7 min). Identification of the various components was 

obtained by programming the integrated UV detector with specific excitation wavelengths (440 nm) 

by comparing the retention times with those of reference standards and by comparing the 

characteristics of the absorption spectra of individual chromatographic fractions with those found in 

the literature. Subsequently, the concentrations of the 4 pigments were determined through the CSW-

32 analysis software (Clarity—Data APEX, Prague, The Czech Republic ) calculating each peak area. 

The protocol was repeated three times for each sample. 
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4.5. Analysis of Sugars 

Analysis of sugars (sucrose, fructose, glucose, glucose 6-phosphate and mannitol) was 

conducted by HPLC. Approximately 100 mg of leaf samples were first powdered with liquid nitrogen 

and then supplemented with 1 mL of water in 2 mL Eppendorf tubes. Subsequently, samples were 

homogenized using the Ultra-turrax homogenizer for about 2 min until complete rupture of cells. 

The homogenate was subjected to centrifugation at 3000 g for 5 min, the supernatants transferred to 

2 mL Eppendorf tubes and then centrifuged again at 12,000 g for 5 min. Samples were filtered (0.45 

µm) and about 20 µL of each extract was injected and examined using a Waters Sugar-Pak I ion 

exchange column (6.5 × 300 mm) at a temperature of 90 °C. The mobile phase consists of MilliQ water 

(pH 7) with a flow of 0.3 mL min−1. The overall duration of the separation was 30 min. The elution 

times of sugars are as follows: glucose 6-P—about 5 min; sucrose—about 8 min; glucose—about 10 

min; fructose—about 11 min; and mannitol—about 13 min. Identification of the components was 

obtained using a Waters 2410 refractive index detector, by comparing the retention times with those 

of reference standards. For each peak, the retention factor allows to identify the type of eluted 

molecule, while the curve area is proportional to the quantity. The protocol was repeated three times 

for each sample. 

4.6. Determination of the Antioxidant Capacity, Polyphenols and Flavonoids 

Frozen leaves (1 g) were macerated with 3 mL of 70% acetone. Subsequently, samples were 

homogenized with a Miccra rt homogenizer (IKA®-Werke GmbH & Co. KG, Staufen im Breisgau, 

Germany ) for about 2 min, and then inserted in a sonicator for 20 min for the complete breakage of 

cellular components. The homogenate was centrifuged at 4000 g for 5 min at 4 °C. Then, the 

supernatants were taken and used for analysis. 

4.6.1. Ferric Ion Reducing Antioxidant Power—FRAP 

For determination of total antioxidants, each reaction tube contained 2040 µL of acetate buffer, 

200 µL of 2,4,6-Tri(2-pyridyl)-s-triazine (TPTZ), 200 µL of ferric chloride and 20 µL of leaf extract. 

Subsequently, samples were placed at 37 °C for 60 min. After incubation, samples were read at a 

wavelength of 593 nm. The antioxidant content was calculated based on a calibration curve of 

standard solutions of ferrous sulphate. The experiment was conducted in triplicate for each sample. 

4.6.2. Folin-Ciocalteu method for the determination of total polyphenols 

Each reaction tube contained 500 µL of leaf extract, 3000 µL of distilled water, 250 µL of FC reagent, 

750 µL of sodium carbonate (Na₂CO₃) and 950 µL of distilled water. Subsequently, samples were 

placed at 37 °C for 30 min. After the incubation, samples were read at 765 nm. Polyphenols content 

was calculated based on a calibration curve of standard solutions of gallic acid. The experiment was 

conducted in triplicate for each sample. 

4.6.3. Aluminum Chloride method for the determination of total flavonoids 

Each reaction tube contained 500 µL of leaf extract, 1.5 mL of 95% ethanol, 100 µL of aluminum 

chloride, 100 µL of potassium acetate and 2.8 mL of distilled water. Samples were maintained at room 

temperature for 30 min, and then were read at 415 nm. Total flavonoids were determined based on a 

calibration curve of standard solutions of quercetin. The experiment was conducted in triplicate for 

each sample. 

4.7. Statistical Analysis 

In order to verify the significance of the data obtained, the ANOVA test of the two-factor 

variance with replication and the t-test (* p < 0.05, ** p < 0.01) were carried out. To verify the correlation 

between the performance index and the flavonoid content and between Fv/Fm and the flavonoid 

content, the Pearson correlation coefficient was carried out. ANOVA and the Pearson correlation 

coefficient were performed by Systat 11 statistical package (Systat Software Inc., Richmond, CA, 

USA). 
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5. Conclusions 

Given the high and multiple importance of the olive tree, it is essential to study its responses to 

stressful agents, such as excessive UV-B radiation, in order to understand the defense mechanisms 

and identify the most resistant varieties. This study confirms that UV-B radiation is a dangerous 

source of stress for olive tree, especially in today’s increasingly changing environmental conditions. 

Although the two varieties showed symptoms of UV-B stress and activate antioxidant defence 

mechanisms, they exhibited evident different response patterns and timescales. The T2 could be the 

critical stage, since around this time point started to be more notorious the stress symptoms (e.g., 

reduction of Fv/Fm) and antioxidant defenses are activated. Giarraffa variety seems better suited to 

prolonged UV-B stress, possible due to a more efficient and quick activation of the antioxidant 

response (e.g., flavonoids use to counteract ROS) and due to its capacity to maintain the 

photosynthetic efficiency as well as a relatively higher content of mannitol. Moreover, pigments 

reduction after a long period of UV-B exposure can also be an adaptation mechanism triggered by 

Giarraffa to reduce energy absorption under UV-B stress. Olivastra Seggianese seems less suited to 

overcome UV-B stress for a long period (e.g., higher reduction of Fv/Fm) and has a higher necessity 

to use sugars (e.g., glucose) possible to counteract stress and to restore energy. 
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