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Abstract
Abrupt transitions leading to algal blooms are quite well known in aquatic ecosystems and have important implications for 
the environment. These ecosystem shifts have been largely attributed to nutrient dynamics and food web interactions. Con-
tamination with heavy metals such as copper can modulate such ecological interactions which in turn may impact ecosystem 
functioning. Motivated by this, we explored the effect of copper enrichment on such regime shifts in planktonic systems. 
We integrated copper contamination to a minimal phytoplankton–zooplankton model which is known to demonstrate abrupt 
transitions between ecosystem states. Our results suggest that both the toxic and deficient concentration of copper in water 
bodies can lead to regime shift to an algal-dominated alternative stable state. Further, interaction with fish density can also 
lead to collapse of population cycles thus leading to algal domination in the intermediate copper ranges. Environmental 
stochasticity may result in state transition much prior to the tipping point and there is a significant loss in the bimodality on 
increasing intensity and redness of noise. Finally, the impending state shifts due to contamination cannot be predicted by the 
generic early warning indicators unless the transition is close enough. Overall the study provides fresh impetus to explore 
regime shifts in ecosystems under the influence of anthropogenic changes like chemical contamination.

Keywords  Copper pollution · Phytoplankton–zooplankton system · Alternative stable states · Stochasticity · Early warning 
signals

Introduction

Ecosystems may undergo abrupt transitions to states 
with fundamentally different characteristics  (Scheffer 
et al. 2001; Scheffer and Carpenter 2003; Rietkerk et al. 
2004; Carpenter et al. 2011). Such transitions, also known 
as regime shifts, are often undesirable and may lead to 
catastrophic consequences in terms of environmental 

health  (Petrovskii et  al. 2017; Sekerci and Petrovskii 
2015a, b). The existence of alternative stable states in 
ecosytems is thought to be the key reason behind such 
phenomenon (Beisner et al. 2003). In the case of lake 
ecosystems, shifts between turbid or algal-dominated 
state and clear water state are known to occur and have 
been of interest to environmental scientists since long 
(Scheffer et al. 1993; Folke et al. 2004). Consequences 
of algal domination in water bodies include anoxic 
conditions leading to losses of fish and wildlife and 
also economic costs in the form of loss of recreational 
activities (Wilson and Carpenter 1999; Carpenter 2008). 
These shifts are induced by interplay of several factors 
which includes food web interactions as well as nutri-
ent dynamics (Scheffer 1997). Overenrichment of water 
bodies with nutrients like phosphorus can enhance algal 
growth resulting in such blooms which are not easily 
reversible (Carpenter 2005). However, chemical pollut-
ants like lipophilic substances and many metals can also 
negatively impact aquatic communities leading to species 
loss. Further, these pollutants may accumulate within the 
organisms through food and water and are passed through 
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trophic interactions to higher levels in the food chains 
(Kooi et al. 2008). The combined effect of how the pol-
lutants’ internal concentration within these organisms 
might affect various life history traits and modulate eco-
logical interactions determines the actual nature of eco-
system functioning (Huang et al. 2013; Kooi et al. 2008; 
Garay-Narváez et al. 2013; Huang et al. 2015). Hence, a 
deeper insight into how contamination-mediated altera-
tions affect aquatic ecology is required to build a better 
understanding of regime shifts in contemporary world.

Industrial wastes and run-offs from agricultural fields 
often end up in water bodies thus making them prone to 
copper pollution (Jorgensen 2010). Elevated copper con-
centrations in water bodies may have a toxic effect on sev-
eral organisms (Flemming and Trevors 1989; Clements 
et al. 1992; WHO 1998) including both phytoplankton and 
zooplankton. Copper stress on phytoplankton cells nega-
tively affect photosynthesis (Havens 1994) and the con-
centration of chlorophyll (Fargašová et al. 1999). Moreo-
ver, direct inhibition of growth has also been reported in 
many species due to bioaccumulation of the metal (Yan and 
Pan 2002). In model zooplankton species like Daphnia, 
there are evidences that toxicity due to copper can lead to 
reduced body length (Knops et al. 2001), growth (Koivisto 
et al. 1992) and survival (Ingersoll and Winner 1982). Nev-
ertheless, copper is also biologically essential for most 
species (Mertz 1981) and may lead to deficiency effects 
when present in very low concentrations (Bossuyt and 
Janssen 2003). This hormetic dose-response relationship 
makes the study of copper even more interesting. Addition-
ally, changing copper concentration can also modulate the 
trophic interaction of plankton in the food chain because of 
modification in behavioral traits like swimming velocity and 
mobility (Sullivan et al. 1983; Gutierrez et al. 2012).

Recent models of copper contamination have reinforced 
our understanding of plankton dynamics in polluted envi-
ronments (Prosnier et al. 2015; Camara et al. 2017; Kim 
et al. 2018). Surprisingly, the impact on zooplankton preda-
tion by fish has been neglected in these studies, albeit fish 
density is a crucial factor in the context of water quality. 
Empirical studies (Mills et al. 1987; McQueen and Post 1988) 
indicate that zooplankton populations collapse when fish den-
sity crosses a critical threshold (top-down effect) (Luecke 
et al. 1990). Trophic cascade via zooplankton allows the 
fish population to indirectly regulate the phytoplankton den-
sity. This has been captured by the classic minimal model 
by Scheffer et al. (2000) which accounts for the complex 
nonlinearities involved in such interactions and the interplay 
between nutrient and fish density. The model demonstrates 
that a critical fish density can switch the ecosystem to the 
phytoplankton-dominated state. Further, predator-prey oscil-
lations have been shown to favour the abrupt shift to phyto-
plankton domination. Although an earlier work by Banerjee 

et al. (2019) took into consideration the effect of copper on 
fish predation, unfortunately it failed to study its impact on 
discontinuous transitions in planktonic systems.

Here, in this paper, we will address this gap and also 
ask whether in the presence of predation pressure by fish, 
copper contamination can independently lead to such transi-
tions in planktonic systems. Since the importance of top-
down effects on planktonic regime shifts are known and 
both chemical influx and fish can be manipulated exter-
nally, with the help of a mathematical model we attempt to 
understand the interplay between contamination and fish 
density. Environmental stochasticity often alters the system 
dynamics from that predicted by its deterministic counter-
part (Dennis 1998; Hastings 2004; Baudena et al. 2007). 
In particular, in the case of bistable models, stochastic-
ity can induce or inhibit attractor switching the manner 
of which is not intuitive (Guttal and Jayaprakash 2007; 
Møller et al. 2009; Sharma et al. 2015). Therefore, we ana-
lyze the stochastic version of our model and lastly investi-
gate whether generic early warnings signals can predict the 
regime shifts in contaminated environment.

Methods

First, the original model by Scheffer et al. (2000) is dis-
cussed briefly before incorporating the effect of copper 
enrichment in the system. A detailed description of the 
deterministic copper enriched model is provided followed by 
addition of stochasticity. Thereafter, the models are analyzed 
in order to understand how changing copper concentration 
influences ecological dynamics, especially regime shifts, in 
plankton ecosystem.

Model description

The model by Scheffer et al. (2000) is a two-dimensional 
phytoplankton–zooplankton model as described below:

Here, P and Z denote phytoplankton and zooplankton densi-
ties respectively. The phytoplankton population is assumed 
to follow a logistic growth with carrying capacity K and 
intrinsic growth rate r. They are predated upon by the zoo-
plankton such that the predation follows a saturating func-
tional response with the maximum predation rate denoted 
by a and the half saturation constant denoted by kP . The 
parameter i in the last term of the first equation represents 
a diffusive inflow of phytoplankton. This is proportional to 

(1)

dP

dt
= rP(1 − P∕K) −

aPZ

kP + P
+ i(K − P),

dZ

dt
= �

aPZ

kP + P
− dZ −

f Z2

k2
Z
+ Z2
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the difference between phytoplankton density in the part 
where the study is assumed to be carried out and the part 
where zooplankton is absent so that the phytoplankton are 
at carrying capacity. Although justification for this term has 
been discussed in detail in Scheffer and De Boer (1995), it is 
worth mentioning here that incorporation of such a stabiliz-
ing term brings the patterns generated by the minimal model 
close to biological reality (Scheffer et al. 2000). Further, 
� denotes the conversion efficiency of the predator and d 
denotes its natural mortality rate. Since zooplankton forms 
only a part of the diet of many fish, the overall fish dynam-
ics may not strongly depend on the zooplankton. Hence, it 
is reasonable to describe the fish predation as an additional 
mortality term in the zooplankton dynamics rather than 
considering explicitly the whole dynamics of fish popula-
tion. This way the model complexity is also significantly 
reduced. The Holling type-III term used to model predation 
by fish signifies a type of learning behavior exhibited by 
fish whereby it switches to increased level of foraging on 
zooplankton once the prey density crosses a certain thresh-
old (Real 1977; Hassell et al. 1977). The rate of predation 
continues to increase until some saturation density of the 
zooplankton is reached. Moreover, in this model, the term is 
actually representative of the average effect of such behavior 
demonstrated by many different fish. Here, f denotes maxi-
mum predation by fish and kZ denotes the half saturation 
constant.

In order to study how copper enrichment affects plankton 
dynamics, we adopt the approach by Prosnier et al. (2015). 
The effect of copper is introduced in the above system (1) 
by multiplying each term in the model with the response of 
the associated trait to different copper concentrations. Such 
a response is denoted by �x , where x denotes the model 
parameter to which it is multiplied and the final model can 
be described as follows:

We make two important assumptions while including cop-
per’s effect in the model. First, the diffusion of phytoplank-
ton in the system is not altered by the changing concentra-
tion of copper. There are no studies that we are aware of 
which have investigated the effect of copper on phytoplank-
ton diffusion. Furthermore, it is important to note that the 
incorporation of the diffusive inflow term does not affect 
any qualitative behavior of the phytoplankton–zooplankton 
model (Scheffer et al. 2000) and so this model assumption 
helps us avoid unwarranted complexity during simulations. 
Second, it is assumed that copper enrichment has neither any 
effect on phytoplankton carrying capacity nor on the half 

(2)

dP

dt
= �r × rP(1 − P∕K) − �a ×

aPZ

kP + P
+ i(K − P),

dZ

dt
= �a × �

aPZ

kP + P
− �d × dZ − �f ×

f Z2

k2
Z
+ Z2

saturation constants of functional responses. It must be noted 
that �x are not parameters but they are dependent on cop-
per concentrations. A particular trait of an organism would 
respond to the change in internal copper concentration, 
C. In the following paragraphs, we explain how �x can be 
expressed as a function of C for each parameter x. Further, 
if the copper concentration in the external environment is 
E, then the copper present within the organism will depend 
on the external environment and thus can be expressed as a 
function of E, i.e., C(E).

Modeling responses due to copper

From above, if the external copper concentration corre-
sponding to higher EC50 or toxicity is denoted by hx and 
lower EC50 or deficiency is denoted by lx , then the corre-
sponding internal concentration is given by C(hx) and C(lx) , 
respectively. Suffix P and Z have been used henceforth to 
identify the concerned organism as phytoplankton and zoo-
plankton, respectively. mx and nx are the positive and nega-
tive slope of the effect curve �x . The effect of copper, which 
is vital for organisms but at the same time detrimental when 
present in large amount, can be captured using an asym-
metric double sigmoid function (see Fig. 1A, B). In case of 
algae, the growth rate becomes negative in the deficient and 
toxic ranges of copper concentrations and becomes optimum 
at some intermediate ranges of copper. In order to capture 
this, the function, �r has been chosen with a range between 
-1 to 1, where the maximum value is achieved at some in-
between concentrations (Prosnier et al. 2015) (Fig. 1A):

There are hardly any empirical studies which connects cop-
per concentration with grazing effort. However, it has been 
established that the movement of zooplankton like Daphnia 
can be largely affected by copper concentration (Untersteiner 
et al. 2003; Gutierrez et al. 2012). In particular, there is an 
increased movement at an intermediate copper concentration 
which is an advantage for predators like Daphnia. As such, 
the effect curve of copper on grazing by zooplankton, �a can 
also be expressed as a double sigmoid function with maxi-
mum value 1 at the intermediate levels and minimum value 
0 at toxic and deficient levels (Prosnier et al. 2015)(Fig. 1B):

Although the increased mobility of the zooplankton helps 
them in their predation, it also increases their visibility to 
predators like fishes which mostly depend on visual cues 

(3)
�r = − 1 + tanh(mr(CP(E) − CP(lr)))

− tanh(nr(CP(E) − CP(hr)))

(4)
�a =

1

2
tanh(ma(CZ(E) − CZ(la)))

−
1

2
tanh(na(CZ(E) − CZ(ha)))
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to detect their prey (Wright and O’Brien 1982; O’Keefe 
et al. 1998). As such, the predation by fish is also maximum 
at intermediate copper and minimum when copper is toxic 
or deficient. Thus the effect curve, �f  also ranges from 0 to 
1 and it is assumed to have the same functional form as �a 
(Fig. 1B), i.e., �f=�a . Finally, since there is no evidence 
of decrease of mortality at high copper concentration, the 
effect on the death rate, �d can be modeled as a linear func-
tion which is as follows (Prosnier et al. 2015) (see Fig. 1C):

In order to analyze our model, a specific functional form of 
C(E) is required and so we describe in the next paragraphs 
how this function can be derived from a dynamic model of 
internal copper concentration.

Modeling internal copper concentration

The rate of change of internal copper concentration for 
plankton can be expressed with a model adapted from 
Luoma and Rainbow (2005):

(5)�d =1 + md × CZ(E)

The first term on the right-hand side represents bioaccumu-
lation or direct uptake from environment. Such uptake is 
considered to be a saturating function of the copper present 
in the environment (E) where um and uc are the maximal 
intake rate and half saturation constant respectively. This is 
plausible because of the competition that is present among 
the copper ions (Lebrun et al. 2012). The second term takes 
into account the intake from food which is responsible for 
biomagnification. Here, Cfood denotes the copper present in 
the food, IZ denotes the ingestion rate of the zooplankton 
given by aP

kP + P
 and the assimilation efficiency is denoted 

by AZ which is equal to � in our model. This term must not 
be present in the case of photosynthetic organisms like phy-
toplankton which does not prey upon another organism. The 
last term denotes the loss rate of the internal copper. Equat-
ing the right-hand side of Eq. (6) to zero and in view of the 
above, one can easily calculate the steady state internal cop-
per concentration for phytoplankton ( CP ) and zooplankton 

(6)
dC(t)

dt
=

umE

uc + E
+ (Cfood × AZ × IZ) − ue × C(t)

Fig. 1   The effect of internal copper concentration (C) on different parameters: (A) intrinsic growth rate ( �r ), (B) maximum rate of predation 
( �a ) and mortality due to fish predation ( �f  ), (C) natural mortality ( �d)
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( CZ ) in terms of E (Prosnier et al. 2015). An extra subscript 
P or Z is added to each of the parameter to indicate its asso-
ciation with the particular organism.

Stochastic model

Random environmental fluctuations are crucial to the under-
standing of ecological system and may have consequences in 
its community stability and persistence. Moreover, the com-
plexity induced by the combined effect of stochasticity and 
nonlinearity in a system is fascinating and its investigation 
is especially warranted when there is bistability (Guttal and 
Jayaprakash 2007). As such, we explore the above system 
in the presence of stochasticity. Let the deterministic model 
(Eq. 2) be denoted as:

Here, Y = [P,Z]T where T denotes transpose of the vector 
and G(Y) are the functions on the right hand side of the 
Eq. 2. Here, we add an extrinsic multiplicative noise to the 
system after which it can be expressed as follows:

where, � denotes intensity of noise and �(t) denotes Gauss-
ian white noise with zero mean and unit variance. While 
other alternatives like additive noise (Kéfi et al. 2013) can 
be used to model stochasticity, multiplying the noise term 
with the state variable is a more commonly used characteri-
zation of environmental fluctuations in ecological models 
(Evans et al. 2013; Sharma et al. 2015). In this case, there is 
significantly reduced fluctuations around low density states 
and when the state is zero, the noise will vanish.

Analyses

Model parameterization and bifurcations

While the parameters related to the population dynamics in 
plankton were largely adapted from Scheffer et al. (2000), 
few parameters were also taken from an empirical study 
by Murdoch et al. (1998). All parameters are chosen with 
respect to algae and the often studied zooplankton, Daph-
nia. The values for model parameters related to modeling 
the internal copper concentration and effect of copper were 
obtained from an earlier study Prosnier et al. (2015). All 

(7)
CP(E) =

(

E × umP

E + ucP

)

×
1

ueP
,

CZ(E) =

(

E × umZ

E + ucZ
+ � ×

a × P

kP + P
× CP

)

×
1

ueZ

(8)
dY

dt
= G(Y)

(9)
dY

dt
= G(Y) + �Y�(t)

model parameters with their values and descriptions are 
enlisted in Table 1. Analyses throughout this paper have 
been carried out using the same set of parameters as given 
therein unless stated otherwise.

We rely on bifurcation theory to study the asymptotic 
behavior of the model with respect to changes in parameters 
which imitate different environmental conditions. Abrupt 
changes in the dynamics of the system as a consequence 
of gradual shift of a parameter lead to a bifurcation. We 
examine the system for such bifurcations with respect to 
environmental copper concentration in the system (E). Also, 
since the predation pressure by fish can be externally manip-
ulated by altering harvesting strategies, it is important to 
understand the simultaneous impact of contamination and 
fishing on the planktonic system. For this, we carry out a 
two parameter bifurcation analysis with respect to E and 
fish predation, f. The bifurcation diagrams were produced 
using numerical continuation software MATCONT (Dhooge 
et al. 2008) in MATLAB environment.

Stochastic simulations

The stochastic model was also simulated in MATLAB using 
Euler Maruyama method (Higham 2001). The time step of 
integration is △t =1 where each unit time represents one 
day in our model. To analyze the stochastic model, we ran 
the simulation up to 20000 days and calculated the mean 
of last 5 years (1825 days). We used 10000 such realiza-
tions in order to plot the probability density of phytoplank-
ton and zooplankton. Since we are interested to understand 
the conditions at which the system shifts to phytoplankton-
dominated state, the initial conditions for all stochastic simu-
lations are zooplankton-dominated (P = 0.5 mgCL−1 , Z = 3 
mgCL−1) . In mathematical terms, this also ensures that in 
the deterministic counterpart, the initial phytoplankton and 
zooplankton density always lie within the basin of attraction 
of the zooplankton-dominated equilibrium. Additionally, we 
increase redness of the noise in the system to understand 
how the dynamics of the system changes with increase in 
lag-1 autocorrelation. For this, we consider the Gaussian 
stochastic process � to have a temporal autocorrelation fol-
lowing 1∕f � frequency spectrum. This has been suggested 
as a good model for many autocorrelated noise in biology 
including environmental fluctuations (Halley 1996). To gen-
erate a stochastic signal with spectral exponent � , we use 
algorithm prescribed in (Stoyanov et al. 2011) where the 
extreme situation � → 0 is a white noise and 𝛽 > 0 means 
red shifted or positively autocorrelated.

Early warning signals

Lastly, we also check the robustness of established early 
warning indicators in predicting critical transition in such a 
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system. Early warning signals are statistical measures which 
precede some catastrophic transition (Scheffer et al. 2009; 
Petrovskii et al. 2017). As the system approaches a bifurca-
tion point, it is predicted that certain features of the time 
series like variance and autocorrelation increases. Although 
these signals were not originally developed to predict sto-
chastic state shift, it has been recently debated upon whether 
the early warning indicators are relevant for stochasticity-
induced attractor switching (Drake 2013; Boettiger and 
Hastings 2013). So it is useful to investigate briefly the 
robustness of metric-based early warning indicators in this 
context. We used Early Warning Signal toolbox to analyze 
the simulated time series preceding a state shift (Dakos 
et al. 2012). The time series were subjected to Gaussian 
detrending with bandwidth 25 before they were analyzed 
to calculate the autocorrelation at lag-1 and the standard 
deviation. The moving window chosen for calculating each 
of the metrics is half the size of the simulated time series.

Results

We begin by demonstrating the dynamics of plankton under 
changing copper enrichment. Since critical transition to the 
phytoplankton-dominated state is known to be possible as 
a consequence of high fish density, we also investigate the 
dynamics due to interplay between changing copper concen-
tration and fish density. Thereafter, the effect of stochasticity 
in the bistable region is discussed and the simulated time 
series is tested for early warning signals of regime shifts.

Plankton dynamics under changing copper 
concentration

The bifurcation diagram in Fig. 2 demonstrates the change 
in densities of phytoplankton and zooplankton with respect 
to environmental copper concentration. Similar to the ear-
lier studies (Prosnier et al. 2015; Banerjee et al. 2019), 

Table 1   Parameter values used in our simulation

Parameters Value Unit Description Reference

Population dynamics
K 3 mgCL−1 algal carrying capacity (Murdoch et al. 1998)
r 0.5 d−1 algal intrinsic rate of natural increase
a 0.4 d−1 maximum intake rate of Daphnia The value of these
kP 0.6 mgCL−1 half saturation constant of Daphnia parameters are same
� 0.6 - Daphnia conversion efficiency as used in
kZ 0.5 mgCL−1 half saturation constant for fish predation Scheffer et al. (2000)
f 0.1 mgCL−1d−1 fish predation rate
i 0.03 d−1 diffusive inflow of algae
d 0.05 d−1 Daphnia natural mortality rate (Murdoch et al. 1998)
� 0.035-0.045 d−1 noise intensity
Copper concentration
E 0–100 �gL−1 external copper concentration
umP 20 �gg−1d−1 algal maximal intake rate All parameters
umZ 15 �gg−1d−1 Daphnia maximal intake rate related to copper internal
ucP 6 �gL−1 algal half saturation constant concentration were
ucZ 7 �gL−1 Daphnia half saturation constant taken from
ueP 1 �gd−1 constant loss rate for algae Prosnier et al. (2015)
ueZ 1 �gd−1 constant loss rate for Daphnia
Effect of copper
lr 4 �gL−1 algal growth’s deficiency EC50

hr 50 �gL−1 algal growth’s toxicity EC50 All parameters related
mr 5 - copper effect on algal growth to copper effects on
nr 2 - copper effect on algal growth algae and Daphnia
la 5 �gL−1 Daphnia predation’s deficiency EC50 predation/mortality
ha 16.8 �gL−1 Daphnia predation’s toxicity EC50 were taken from
ma 5 - copper effect on Daphnia predation Prosnier et al. (2015)
na 1 - copper effect on Daphnia predation
md 0.021 g�g−1 copper response coefficient for Daphnia mortality
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zooplankton ceases to exist via a transcritical bifurcation 
(TC) when copper concentration is larger or smaller than 
a certain threshold. Additionally, we find that both toxic 
or deficient copper concentrations lead to a pair of limit 
points or fold bifurcations (LP) resulting in bistability. 
Mathematically, such fold bifurcations are seen when the 
stable interior equilibrium collides with the unstable equi-
librium as parameter passes through these points. These 
bifurcations lead to regime shifts whereby a small change 
in environmental copper concentration can result in an 
abrupt transition of ecosystem state from phytoplankton- 
to zooplankton-dominated state or vice versa. Also, such 
changes are not easily reversible because the parameter 
must return much beyond the initial point of bifurcation 
for the system to return to its original state.

We further investigate how different nutrient enrichment 
(K) might influence the manner in which copper affects the 
behavior of the system (see Fig. 2). For this, we track the 

bifurcations in the system with respect to environmental 
copper concentration for K = 2 mgCL−1 and K = 3 mgCL−1 . 
In both cases, the phytoplankton density is lowest at interme-
diate copper concentration level and when moving towards 
toxic or deficient concentrations, there is bistability between 
phytoplankton-dominated state and zooplankton-dominated 
state. Additionally, when K = 3 mgCL−1 , at some intermedi-
ate concentration, the stable interior equilibrium loses its 
stability via Hopf bifurcation (H) giving rise to population 
cycles. As a result of this, in certain parameter ranges the 
model also exhibits bistability between population cycles 
and phytoplankton dominance.

Interplay between copper contamination and fish 
predation

Since abrupt transition to phytoplankton-dominated water 
has been attributed to zooplankton predation by fish beyond 

Fig. 2   One parameter bifurcation diagram  for (A) phytoplankton 
and (B) zooplankton densities with respect to environmental copper 
concentration (E) for two different carrying capacities when f = 0.1 
mgCL−1d−1 . The interior equilibrium is denoted by the red lines 
for K = 2 mgCL−1 and blue lines for K = 3 mgCL−1 . The red (blue) 
shaded region denotes the parameter ranges for which bistability is 

observed when K = 2 mgCL−1 ( K = 3 mgCL−1 ). In both cases, the 
phytoplankton only equilibrium is denoted by black lines at P = 2 
mgCL−1 and 3 mgCL−1 respectively. The circles denotes the maxi-
mum and minimum amplitudes of oscillation while the solid and 
dashed lines denote stable and unstable equilibria  respectively. LP: 
Limit Point; TC: Transcritical; H: Hopf
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a critical threshold (Scheffer et al. 2000), it is natural to ask 
whether the rate of fish predation can also have an impact on 
how the plankton dynamics might respond to changing envi-
ronmental copper concentration. For this, we carry out the 
bifurcation analysis after increasing the fish predation rate 
to f = 0.15 mgCL−1d−1 (see Fig. 3). From the extreme ends 
of the copper concentration axis, as we move towards the 
intermediate ranges, first there is bistability between popu-
lation cycles and a phytoplankton-dominated equilibrium 
and then cycles grow in amplitude until it vanish abruptly 
via homoclinic bifurcations. Also, unlike the previous case 
in Fig. 2, a phytoplankton-dominated state is always present 
and stable wherever a coexistence is possible thus leading to 
high phytoplankton density through out all ranges of copper 
concentration.

In view of the above unintuitive results, it appears nec-
essary to understand the complete dynamics exhibited by 
the system at different external copper concentration and 
fish predation pressure. The interplay between the two is 
demonstrated in Fig. 4. The system is in stable coexist-
ence equilibrium in region 1 when the predation rate, f, 
is very high. On reducing the predation by fish, which is 
equivalent to reducing fish density, the system becomes 

unstable leading to oscillatory dynamics. The population 
cycles can be observed in region 2 and 3 bounded on both 
sides by Hopf bifurcation lines (H). In region 3, along with 
the oscillatory dynamics, depending on initial conditions, 
the system may also converge to phytoplankton-dominated 
state. Embedded within 3, is region 5 where the system has 
only one stable state which is phytoplankton-dominated in 
nature. This bistable system dynamics extends to region 4, 
where the system can switch between two stable coexist-
ence equilibria: high phytoplankton–low zooplankton den-
sity and low phytoplankton–high zooplankton density state. 
Mathematically, such a behavior arise due to the two cusp 
points (CP) which are observed in both toxic and deficient 
copper regimes. When copper concentration is too low or 
high, the system undergoes transcritical bifurcation so that 
the zooplankton population becomes extinct and only the 
phytoplankton is able to survive in region 6.

Effect of stochasticity in the bistable regime

Although deterministic models are easy to analyze, in real-
ity however, ecological systems are subject to environmen-
tal fluctuations and uncertainty that may be captured by a 

Fig. 3   One parameter bifurcation diagram for (A) phytoplankton and 
(B) zooplankton densities with respect to environmental copper con-
centration (E) when f = 0.15 mgCL−1d−1 . The interior equilibrium 
is denoted by blue lines whereas the phytoplankton-only equilibrium 
is denoted by black lines. The shaded region denotes the parameter 

ranges for which bistability is observed. The maximum and minimum 
amplitudes of oscillation is denoted by circles while the solid and 
dashed lines denote stable and unstable equilibria  respectively. LP: 
Limit Point; TC: Transcritical; H: Hopf
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stochastic noise term. It is particularly interesting to study 
how environmental fluctuations influence a system with 
alternative stable states. When carrying capacity, K, is set 
to 2 mgCL−1 we investigate the probability with which dif-
ferent values of phytoplankton and zooplankton densities 
are observed in the long run under three different external 
copper concentrations (see Fig. 5). The concentrations which 
led to bistability between phytoplankton and zooplankton-
dominated state in the deterministic set up were chosen 
and noise with intensity � = 0.04 d−1 was used. When the 
environmental copper concentration, E, was 14.1 �gL−1 
and E = 14.5 �gL−1 , the probability density was unimodal 
with the mode around the zooplankton-dominated and 
phytoplankton-dominated state respectively. Here, the shift 
to phytoplankton domination occurs much prior compared 
to the deterministic model where the system tips only at 
E = 15.84 �gL−1 . An increased noise intensity ( � = 0.045 
d−1 ) under such conditions lead to a decreased skewness 
of the probability density and vice versa. In between these 
two scenarios, when copper concentration is 14.3 �gL−1 , 
the density becomes bimodal where the system has almost 
equal chance to end up in phytoplankton-dominated state or 
zooplankton-dominated state. This bimodality is however 
lost also at this intermediate E value when the noise intensity 
is increased. In the remaining sections, we only focus on 
the effect of stochasticity in the toxic copper concentration 
ranges but the same analyses can also be carried out for the 
bistability range of low copper as well. In fact, a similar 
behavior as described above was demonstrated on addition 
of stochasticity in the deficient copper concentrations (see 
Appendix).

Since the phytoplankton-dominated state in the previ-
ous analyses is close to the environmental carrying capac-
ity of the algae, it is only natural to ask what impact does 

stochasticity have when the environmental carrying capacity 
is increased due to nutrient enrichment. In order to answer 
this, we investigated the effect of noise with intensity 
� = 0.04 d−1 in the bistable regime when K = 3 mgCL−1 
(Fig. 6). We observe a similar transition from unimodal peak 
around the zooplankton-dominated equilibrium at copper 
concentration 15.7 �gL−1 to phytoplankton-dominated state 
at copper concentration 16.2 �gL−1 . At the intermediate con-
centration, E=16 �gL−1 , we observe bimodal peak where 
the system has equal probability to converge to either low 
or high phytoplankton density. Thereafter, we increase the 
redness of the noise to � = 0.15 and then � = 0.3 and subse-
quently compare the probability densities to the � = 0 case 
for all the three copper concentrations (Fig. 6). Our results 
show that, similar to that of increasing noise intensity, red 
shifted noise also decrease the skewness of the probability 
densities. Moreover, in case where there was a bimodal den-
sity in presence of white noise, increasing redness leads to 
significant reduction in the peak height.

For the bimodal cases corresponding to both the carry-
ing capacities (Figs. 5B, E and 6B, E), looking at a specific 
simulated time series of the stochastic model, we observe 
stochastic switching between the equilibria (Fig. 7). In the 
case when K = 2 mgCL−1 , multiple switch is observed unlike 
that of the other case where once the system switches to a 
phytoplankton-dominated equilibrium, it is unable to return 
back.

Robustness of early warning signals

Since the switch to the phytoplankton-dominated state is 
most likely irreversible when K = 3 , we analyzed the portion 
of the time series prior to such a shift denoted by the yellow 
shaded region in Fig. 7B. Zooplankton biomass is known to 

Fig. 4   Two parameter bifurcation diagram with respect to copper 
concentration (E) and fish (f). Regions (1),(5): Stable coexistence, (2): 
Population cycle, (3): Bistability between stable coexistence and pop-

ulation cycle, (4): Bistability between two stable coexistence states, 
(6): Phytoplankton only state. All parameters are as given in Table 1
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provide early warning of regime shifts in lake community 
composition (Pace et al. 2013). As such the simulated data 
of zooplankton density was considered for a stretch starting 
from 4200 days to 4960 days (Fig. 8A). Both the metric, 
autocorrelation lag-1 as well as standard deviation decreases 
with time thus being unable to provide any early warning to 
the regime shift which we know occurred immediately after 
this time segment. Next, we analyze a shorter time series 
segment from 4700 to 4960 days (Fig. 8B) denoted by darker 
yellow shade in Fig. 7B. Evidently, our analysis shows that 
the early warning signals performed much better in case of 
short time series segments.

Discussion

Abrupt transitions to phytoplankton-dominated tur-
bid water are known to occur in lake ecosystems but the 
impact of chemical pollution on such state shifts is not well 

understood. Fish density has been known to be an important 
driver of regime shifts in plankton community. To this end, 
using the approach prescribed in Prosnier et al. (2015), we 
introduced here a new model which takes into account both 
sigmoidal functional response for zooplankton predation by 
fish and its alteration under variable copper concentrations. 
Our analyses leads to a comprehensive understanding of the 
ecological dynamics due to the interaction between copper 
contamination and fish density. Further, consideration of 
environmental fluctuations in the form of stochasticity led 
to a clearer insight into how changing copper concentration 
of lake water may influence sudden shift to phytoplankton 
domination.

Moving towards the extreme ends of the copper con-
centration axis, first the zooplankton ceases to exist fol-
lowed by the phytoplankton. This is attributed to decreased 
consumption by zooplankton and the inhibition of phyto-
plankton growth in these ranges. Although this behavior 
exhibited by our model is consistent with the earlier works 

Fig. 5   Probability density estimates of the (A, B, C) phytoplankton and (D, E, F) zooplankton populations under three different external copper 
concentrations: 14.1 �gL−1 , 14.3 �gL−1 and 14.5 �gL−1 ; K=2 mgCL−1
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(Prosnier et al. 2015; Banerjee et al. 2019), there is a nota-
ble change in plankton dynamics when both the functional 
groups coexist. Within such ranges, the earlier study by 
Banerjee et al. (2019) demonstrated that toxic or deficient 

copper concentration could lead to destabilization of the 
predator–prey dynamics. However, on incorporating the 
sigmoidal functional response for fish predation, we find 
no such destabilizing behavior in these ranges. Instead a 

Fig. 6   Probability density estimates of the (A, B, C) phytoplankton and (D, E, F) zooplankton populations under three different external copper 
concentrations: 15.7 �gL−1 , 16 �gL−1 and 16.2 �gL−1 ; K=3 mgCL−1

Fig. 7   Time series simulation of the stochastic model for (A) K = 2 
mgCL−1 , E = 14.3 �gL−1 and (B) K = 3 mgCL−1 , E = 16 �gL−1 . The 
red and the blue line denotes the phytoplankton and the zooplankton 

densities respectively. Yellow shades represent the time segments that 
have been analyzed for early warning signals in Fig. 8
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bistable scenario is observed where the system can switch 
to a phytoplankton-dominated state (Fig. 2). This is coun-
terintuitive as fish predation decreases in these ranges and 
so zooplankton dominance is expected. However, it must be 
noted that consumption by zooplankton also decreases in 
toxic or deficient concentrations thus leading to decline in 
its density and transition to phytoplankton-dominated state. 
In the intermediate regimes, the stable coexistence equilib-
rium is characterized by low phytoplankton and high zoo-
plankton density because of increased zooplankton preda-
tion. When carrying capacity is increased here, the system 
may retain a relatively low phytoplankton density but only 

via population cycles (Fig. 2). Such destabilization of the 
system occurs due to increase in energy flux from the phy-
toplankton to the zooplankton relative to the zooplankton’s 
loss rate, as indicated by the ecological theory on stability 
(Rip and McCann 2011). Although oscillatory dynamics 
in intermediate ranges have been observed in earlier stud-
ies of copper enrichment (Prosnier et al. 2015; Banerjee 
et al. 2019), here it resulted in bistability between popula-
tion cycles and phytoplankton-dominated steady state which 
was not reported earlier.

The complexity of the dynamics exhibited by the system 
can be better understood by studying the interaction between 

Fig. 8   Early warning signals for a simulation of the stochastic model. Two time segments of different lengths (A) 4200–4960 days and (B) 
4700–4960 days which precedes the regime shift from zooplankton-dominated state to phytoplankton-dominated state were analyzed
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fish density and copper enrichment (Fig. 4). The above-
mentioned bistability which was observed at specific levels 
of copper enrichment, vanishes when fish density is com-
paratively high. Increase in zooplankton mortality at higher 
fish predation leads to stabilization of population cycles and 
phytoplankton domination across all copper concentrations. 
At intermediate fish density, the oscillatory dynamics may 
lead to collapse of the zooplankton population due to food 
shortage (Scheffer et al. 2000). Mathematically this occurs 
via homoclinic bifurcation resulting in phytoplankton domi-
nation being the only stable state in the middle ranges of 
copper concentration. This is significant from an ecological 
point of view because under such parameteric ranges, once 
the system reaches the condition of phytoplankton domina-
tion, changing copper concentrations has no effect on the 
ecosystem state. However, maintaining copper concentration 
at proper levels, the chance of switch to a phytoplankton-
dominated equilibrium can be reduced (Fig. 3). When fish 
density is very low, the oscillations ceases and coexistence 
equilibrium is stable for a large range of copper concen-
tration. This can be attributed to the diffusive inflow term 
which is stabilizing in nature (Fig. 4).

When stochasticity is added to the system, the bistabil-
ity is weakened as the dynamics spends most of the time 
near the phytoplankton-dominated state. In fact, starting 
from a zooplankton-dominated condition, the system may 
become phytoplankton-dominated much prior to the fold 
bifurcation. Only a very small range of copper concentra-
tion parameter demonstrates bimodality in the probability 
density of the observed values. This bimodality is lost on 
increasing noise intensity or redness. It is interesting to note 
here that, for a higher carrying capacity value, the bimo-
dality is more prominent as the system can only be at the 
two extremes which in the deterministic set up represent 
a population cycle near lower phytoplankton equilibrium 
and a phytoplankton-dominated equilibrium (see Fig. 2). At 
any point of time after a long run, the probability that the 
system displays intermediate values is very low. This hap-
pens mainly because for high carrying capacity, the bound-
ary separating the basin of attractions is sufficiently distant 
from the two equilibria. As a result, once the system has 
switched to an alternate equilibrium, it is unable to switch 
back and continue in the same state unless the system is 
perturbed by noise of sufficiently large strength. In con-
trast, when the carrying capacity is comparatively low, both 
the phytoplankton-dominated and zooplankton-dominated 
equilibria are close to borderline separating the two basin 
of attractions thus allowing a frequent switch back and forth 
(Fig. 7 A, B and Appendix, Fig. 10).

Analyzing the time series prior to such regime shift, we 
find that generic measures like autocorrelation and variance 

failed to indicate the approaching state shift. This is not 
remarkably unexpected since it has already been argued that 
such measures were primarily developed to predict bifurca-
tions and not stochasticity induced state shift (Boettiger and 
Hastings 2013). Nevertheless, the early warning indicators 
performed relatively well where a shorter time segment was 
analyzed. Similar results were reported in other bistable eco-
logical systems which demonstrate noise induced regime 
shift (Sharma et al. 2015). However, it has been argued that 
it is not appropriate to conclude that the signals were suc-
cessful because they failed to predict the upcoming transi-
tions longer ahead. This failure to predict impending shifts 
further highlights the importance of the present study.

Summing up, our work reveals how both copper pollu-
tion as well as deficiency of copper can bring about regime 
shifts in lake ecosystems. Thereby, we want to stress the 
importance of deeper understanding of how human driven 
factors like nutrient enrichment, fishing and chemical pol-
lution can interact with the complex ecosystem dynamics to 
bring about undesirable outcomes. The study also points to 
the importance of considering stochasticity in such modeling 
efforts as noise can influence the outcome which might be 
quite different from what is predicted from the deterministic 
model. Our results suggest that more efforts to understand 
the nonlinearity involving complex anthropogenic changes 
and their interaction with stochasticity is required to get a 
better insight into the present day scenario.

Appendix

Effect of stochasticity in low copper 
concentrations

Deficient copper concentrations also lead to bistable sys-
tem dynamics resulting in planktonic regime shifts. The 
effect of stochasticity on such low ranges of copper concen-
tration is examined when carrying capacity K = 2 . Simi-
lar to the toxic concentration case, the system switches to 
phytoplankton-dominated state prior to the fold bifurca-
tion. The probability density of the observed values from 
the simulation is unimodal with mode around zooplankton-
dominated equilibrium at copper concentration 5.1 �gL−1 . 
Subsequent small decrease of copper results in the system 
demonstrating bimodality at concentration 5.095 �gL−1 and 
unimodal mode around phytoplankton-dominated state at 
concentration 5.085 �gL−1 (see Fig. 9). Increased intensity 
of noise leads to decreased skewness of the probability 
densities.
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Basin of attraction for the alternative stable 
states

The stochastic switch between the attractors in Fig. 7 
can be understood with the help of basin of attraction 
for the two equilibria under different carrying capaci-
ties. When K = 2 , the boundary separating the basin of 
attraction is very close to both the phytoplankton and 
zooplankton-dominated equilibrium which facilitates 

multiple stochastic switching. On the other hand, the 
boundary is relatively farther away from the two attrac-
tor in case of higher carrying capacity, i.e., K = 3 result-
ing in very infrequent switch.
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