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Abstract

Bandelt and Mulder’s structural characterization of bipartite distance hereditary graphs
asserts that such graphs can be built inductively starting from a single vertex and by re-
peatedly adding either pendant vertices or twins (i.e., vertices with the same neighborhood
as an existing one). Dirac and Duffin’s structural characterization of 2–connected series–
parallel graphs asserts that such graphs can be built inductively starting from a single edge
by adding either edges in series or in parallel. In this paper we give an elementary proof
that the two constructions are the same construction when bipartite graphs are viewed as
the fundamental graphs of a graphic matroid. We then apply the result to re-prove known
results concerning bipartite distance hereditary graphs and series–parallel graphs and to
provide a new class of polynomially-solvable instances for the integer multi-commodity
flow of maximum value.
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1 Introduction
Distance hereditary graphs are graphs with the isometric property, i.e., the distance func-
tion of a distance hereditary graph is inherited by its connected induced subgraphs. This im-
portant class of graphs was introduced and thoroughly investigated by Howorka in [24, 25].
A bipartite distance hereditary (BDH for short) graph is a distance hereditary graph which
is bipartite. Such graphs can be constructed starting from a single vertex by means of the
following two operations [6]:

(BDH1) adding a pendant vertex, namely a vertex adjacent exactly to an existing vertex;

(BDH2) adding a twin of an existing vertex, namely adding a vertex and making it adja-
cent to all the neighbors of an existing vertex.

Taken together the two operations above will be referred to as Bandelt and Mulder’s con-
struction.

A graph is series–parallel [7], if it does not contain the complete graph K4 as a mi-
nor; equivalently, if it does not contain a subdivision of K4. This is Dirac’s [14] and
Duffin’s [15] characterization by forbidden minors. Since both K5 and K3,3 contain a sub-
division of K4, by Kuratowski’s Theorem any series–parallel graph is planar. Like BDH
graphs, series–parallel graphs admit a constructive characterization which justifies their
name: a connected graph is series–parallel if it can be constructed starting from a single
edge by means of the following two operations:

(SP1) adding an edge with the same end-vertices as an existing one (parallel extension);

(SP2) subdividing an existing edge by the insertion of a new vertex (series extension).

Taken together the two operations above will be referred to as Duffin’s construction. Here
and throughout the rest of the paper we consider only 2–connected series–parallel graphs
which can be therefore obtained by starting from a pair of a parallel edges rather than by
starting from a single edge.

The close resemblance between operations (BDH1) and (BDH2) and operations (SP1)
and (SP2) is apparent. It becomes even more apparent after our Theorem 3.1, which estab-
lishes that the constructions defining BDH and series–parallel graphs, namely, Bandelt and
Mulder’s construction and Duffin’s construction, are the same construction when bipartite
graphs are viewed as fundamental graphs of a graphic matroid (Theorem 3.1). Although
this fact is fairly well known and short proofs can be given using the deep and refined
notions of branch width and tree width of graphs and matroids1 (combined with classical
results on graph minors), neither an elementary proof nor an explicit statement seem to be
at hand.

The intimate relationship between BDH graphs and series–parallel graphs was also
already observed by Ellis-Monhagan and Sarmiento in [16]. The authors, motivated by
the aim of finding polynomially computable classes of instances for the vertex–nullity in-
terlace polynomial introduced by Arratia, Bollobás and Sorkin in [5], under the name of
interlace polynomial, related the two classes of graphs via a topological construction in-
volving the so called medial graph of a planar graph. By further relying on the relationships
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Caramia), paolo.franciosa@uniroma1.it (Paolo Giulio Franciosa), g.mascari@iac.cnr.it (Jean-François Mascari)

1In section 5, we give one of such a proof kindly supplied by an anonymous referee of an earlier version of the
paper.
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between the Martin polynomial and the symmetric Tutte polynomial of a planar graph, they
proved a relation between the the symmetric Tutte polynomial of a planar graph H , namely
t(H;x, x)—recall that the Tutte polynomial is a two variable polynomial–and the interlace
polynomial q(G;x) of a graph G derived from the medial graph of G (Theorem 4.1). Such
a relation led to the following three interesting consequences:

– the #P–completeness of the interlace polynomial of Arratia, Bollobás and Sorkin [5]
in the general case;

– a characterization of BDH graphs via the so-called γ invariant, (i.e., the coefficient
of the linear term of the interlace polynomial);

– an effective proof that the interlace polynomial is polynomial-time computable within
BDH graphs.

In view of a result due to Aigner and van der Holst (Theorem 4.6), the latter two con-
sequences in the list above are straightforward consequences of Theorem 3.1 (see Sec-
tion 4.1).

Besides the new direct proofs of these results, Theorem 3.1 has some more applications.

– Syslo’s characterization’s of series–parallel graphs in terms of Depth First Search
(DFS) trees: the characterization asserts that a connected graphH is series–parallel if
and only if every spanning tree of H is a DFS-tree of one of its 2–isomorphic copies.
In other words, up to 2–isomorphism, series–parallel graphs have the characteristic
property that their spanning trees can be oriented to become arborescences so that
the corresponding fundamental cycles become directed circuits (cycles whose arcs
are oriented in the same way). Recall that an arborescence is a directed tree with a
single special node distinguished as the root such that, for each other vertex, there is
a directed path from the root to that vertex.

– New polynomially solvable instances for the problem of finding integer multi-commo-
dity flow of maximum value: if the demand graph of a series–parallel graph is a co–
tree, then the maximum value of a multi-commodity flow equals the minimum value
of a multi-terminal cut; furthermore both a maximizing flow and a minimizing cut
can be found in strongly polynomial time.

Organization of the paper. The rest of the paper is organized as follows: in Section 2
we give the basic notions used throughout the rest of the paper. In Section 3 we prove our
main result (Theorem 3.1) (two more proofs are given in Section 5) and discuss how it fits
within circle graphs and how it relates with edge-pivoting. Theorem 3.1 is then applied in
Section 4: in Section 4.1, we re-prove the previously mentioned couple of results in [16];
in Section 4.2 we re-prove Syslo’s characterization of series–parallel graphs and give a sort
of hierarchy of characterizations of 2–connected planar graphs by the properties of their
spanning trees; finally in Section 4.3, we give an application to multi-commodity flow in
series–parallel graphs.

2 Preliminaries
For a graph G the edge e with endvertices x and y will be denoted by xy. The graph
induced by U ⊆ V (G) is denoted by G[U ]. If F ⊆ E(G), the graph G − F is the graph
(V (G), E(G)− F ).
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A digon is a pair of parallel edges, namely a cycle with two edges. A hole in a bipartite
graph is an induced subgraph isomorphic to Cn for some n ≥ 6. A domino is a subgraph
isomorphic to the graph obtained from C6 by joining two antipodal vertices by a chord.
The domino is denoted by �. A bipartite graph G is a chordal bipartite graph if G has
no hole. Let F be a family of graphs. We say that G is F–free if G does not contain any
induced copy of a member of F . If G is F–free and F = {G0}, then we say that G is
G0–free.

Graphs dealt with in this paper are, in general, not assumed to be vertex-labeled. How-
ever, when needed, vertices are labeled by the first n naturals where n is the order ofG. We
denote labeled and unlabeled graphs with the same symbol. If u and v are two vertices of
G, then a label swapping at u and v (or simply uv-swapping) is the labeled graph obtained
by interchanging the labels of u and v. For a bipartite graph G with color classes A and B,
let A ∈ {0, 1}A×B be the reduced adjacency matrix of G, namely, A is the matrix whose
rows are indexed by the vertices of A, whose columns are indexed by the vertices of B and
where Au,v = 1 if and only if u and v are adjacent vertices of G. The incidence graph of a
matrix A ∈ {0, 1}A×B is the bipartite graph with color classes A and B and where u ∈ A
and v ∈ B are adjacent if and only au,v = 1.

We review very briefly some basic notions in matroid theory [28, 36, 37]. For a {0, 1}-
matrix A the binary matroid generated by A, denoted by M(A), is the matroid whose
elements are the indices of the columns of A and whose independent sets are those subsets
of elements whose corresponding columns are linearly independent over GF (2). A binary
matroid is a matroid isomorphic to the binary matroid generated by some {0, 1}-matrix
A. If T is a basis of a binary matroid M and f 6∈ T , then T ∪ {f} contains a unique
minimal non independent set C(f, T ). Thus, if F is a proper subset of C(f, T ), then F is
an independent set of M . Such a set C(f, T ) is the so called fundamental circuit through
f with respect to T and C(f, T ) − {f} is the corresponding fundamental path. A partial
representation of a binary matroidM is a {0, 1}-matrix Ã whose columns are the incidence
vectors over the elements of a basis of the fundamental circuits with respect to that basis.

A fundamental graph of a binary matroid M is simply the incidence bipartite graph of
any of its partial representations. Therefore a bipartite graph G is the fundamental graph
of a binary matroid M if G is isomorphic to the graph BM (T ) with color classes T and T
for some basis T and co-basis T (i.e., the complement of a basis) of M and where there is
an edge of G between e ∈ T and f ∈ T if e ∈ C(f, T ), where C(f, T ) is the fundamental
circuit through f with respect to T . If Ã is a partial representation of a binary matroid M ,
then M ∼= M([ I | Ã ]), that is M is isomorphic to the matroid generated by [ I | Ã ]. Clearly,
Ã is a partial representation of M with rows and columns indexed by the elements of the
basis T and of the co-basis T , respectively, if and only if Ã is the reduced adjacency matrix
of BT (M), where the color class T indexes the rows of Ã.

The cycle matroid (also known as graphic matroid) of a graphH , denoted byM(H), is
the matroid whose elements are the edges of H and whose independent sets are the forests
of H . If H is connected, then the bases of M(H) are precisely the spanning trees of H and
its co-bases are precisely the co-trees, namely the subgraphs spanned by the complement
of the edge–set of a spanning tree. A matroid M is a cycle matroid if it is isomorphic to the
cycle matroid of some graph H . Cycle matroids are binary: if M is a cycle matroid, then
there are a graph H and a spanning forest of H such that M ∼= M([ I | Ã ]) where Ã is the
{0, 1}-matrix whose columns are the incidence vectors over the edges of a spanning forest
of the fundamental cycles with respect to that spanning forest.
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A fundamental graph of a graph H is simply the fundamental graph of its cycle ma-
troid M(H). For a graph H and one of its spanning forests T , we abridge the notation
BM(H)(T ) into BH(T ) to denote the fundamental graph of H with respect to T (see Fig-
ure 1, where H ∼= K4). If H is 2–connected, then BH(T ) is connected. Moreover, BH(T )
does not determineH in the sense that non-isomorphic graphs may have isomorphic funda-
mental graphs. This because, while it is certainly true that isomorphic graphs have isomor-
phic cycle matroids, the converse is not generally true (see Figure 2). Two graphs having
isomorphic cycle matroids are called 2–isomorphic.
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a 1 1 0

b 1 1 1

c 0 1 1
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Figure 1: Two fundamental graphs ofK4 with respect to two spanning trees T and T ′ along
with the corresponding matrices and the respective fundamental graphs. The fundamental
graph with respect to T ′ arises from the one with respect to T by pivoting along edge αa.
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Figure 2: Two 2–isomorphic graphs that are not isomorphic: x 7→ x′ maps bijectively
fundamental cycles of the graph on the left to fundamental cycles of the graph on the right.
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3 BDH graphs are fundamental graphs of series parallel graphs
In this section we prove our main result.

Theorem 3.1. A connected bipartite graph G is a bipartite distance hereditary graph if
and only if G is a fundamental graph of a 2–connected series–parallel graph.

Proof. For a bipartite graph G let MG denote the binary matroid generated by the reduced
adjacency matrix of G. Let us examine preliminarily the effect induced on a fundamental
graph BH(T ) of a 2–connected graph H by series and parallel extensions and, conversely
(and in a sense “dually”), the effect induced on MG by extending a connected bipartite
graph G through the addition of violated vertices and twins. If MG is a graphic matroid
and H is one of the 2–isomorphic graphs whose cycle matroid is isomorphic to MG, then
Table 1 summarizes these effects.

Operation on H Operation on BH(T )

Parallel extension on edge a of T ↔ adding a pendant vertex in color class T
adjacent to a

Series extension on edge a of T ↔ adding a twin of a in color class T
Parallel extension on edge β of T ↔ adding a twin of β in color class T
Series extension on edge β of T ↔ adding a pendant vertex in color class T

adjacent to β.

Table 1: The effects of series and parallel extension on H on its fundamental graph BH(T ).

We can now proceed with the proof. The only if direction is proved by induction on
the order of G. The assertion is true when G has two vertices because K2 is a BDH graph
and at the same time is also the fundamental graph of a digon. Let now G have n ≥ 3
vertices and assume that the assertion is true for BDH graphs with n − 1 vertices. By
Bandelt and Mulder’s construction G is obtained from a BDH graph G′ either by adding a
pendant vertex or a twin. LetH ′ be a series–parallel graph havingG′ as fundamental graph
with respect to some spanning tree. Since, by Table 1, the last two operations correspond
to series or parallel extension of H ′, the result follows by Duffin’s construction of series–
parallel graphs. For the if direction, let G be the fundamental graph of a series–parallel
graph H with respect to some tree T . By Duffin’s construction of series–parallel graphs
and Table 1, G can be constructed starting from a single edge by either adding twins or
pendant vertices. Therefore, G is a BDH graph by Bandelt and Mulder’s construction.

Before going through applications, let us discuss how Theorem 3.1 relates to circle
graphs, a thoroughly investigated class of graphs which we now briefly describe.

A double occurrence word w over a finite alphabet Σ is a word in which each letter
appears exactly twice, where w is cyclic word, namely, it is the equivalence class of a
linear word modulo cyclic shifting and reversal of the orientation. Two distinct symbols
of Σ in w are interlaced if one appears precisely once between the two occurrences of the
other. By wrapping w along a circle and by joining the two occurrences of the same symbol
of w by a chord labeled by the same symbols whose occurrences it joins, one obtains a pair
(S, C) consisting of a circle S and a set C of chords of S. In knot theory terminology, such
a pair is usually called a chord diagram and its intersection graph, namely the graph whose
vertex set is C and where two vertices are adjacent if and only if the corresponding chords
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intersects, is called the interlacement graph of the chord diagram or the interlacement
graph of the double occurrence word.

A graph is an interlacement graph if it is the interlacement graph of some chord dia-
gram or of some double occurrence words. Interlacement graphs are probably better known
as circle graphs. The name interlacement graph comes historically from the Gauss Real-
ization Problem of double occurrence words [13, 31, 34].

Distance hereditary graphs are circle graphs [8]. Thus BDH graphs form a proper
subclass of bipartite circle graphs. De Fraysseix [11, 12] proved the following.

Theorem 3.2 ([11, 12]). A bipartite graph is a bipartite circle graph if and only if it is the
fundamental graph of a planar graph.

Therefore Theorem 3.1 specializes de Fraysseix’s Theorem to the subclass of series–
parallel graphs.

3.1 BDH graphs and edge–pivoting

It follows from Theorem 3.1 that with every 2–isomorphism class of 2–connected series–
parallel graphs one can associate all the BDH graphs that are fundamental graphs of each
member in the class. Therefore BDH graphs that correspond to the same 2–isomorphism
class are graphs in the same “orbit”. In this section we make precise the latter sentence and
draw the graph-theoretical consequences of this fact.

Given a {0, 1}-matrix A, pivoting A overGF (2) on a nonzero entry (the pivot element)
means replacing

Ã =

(
1 a
b D

)
by Ã =

(
1 a
b D + ba

)

where a is a row vector, b is a column vector, D is a submatrix of A and the rows and
columns of A have been permuted so that the pivot element is a1,1 ([10, p. 69], [32, p. 280]).
If A is the partial representation of the cycle matroid of a graph H (or more generally a bi-
nary matroid), then pivoting on a nonzero entry, C(e, f), say, yields a new tree (basis) with
f in the tree (basis) and e in the co-tree (co-basis) and the matrix obtained after pivoting
is a new partial representation matrix of the same matroid. Clearly the fundamental graphs
associated with the two bases change accordingly so that pivoting on {0, 1}-matrices in-
duces an operation on bipartite graphs whose concrete interpretation is a change of basis in
the associated binary matroid. The latter operation on bipartite graph will be still referred
to as edge–pivoting or simply to as pivoting in analogy to what happens for matrices (see
also Figure 1). In the context of circle graphs, the operation of pivoting is a specialization
to bipartite graph of the so called edge–local complementation. Since any bipartite graph
is a fundamental graph of some binary matroid, the operation of pivoting can be described
more abstractly as follows.

Given a bipartite graph with color classes A and B, pivoting on edge uv ∈ E(G) is
the operation that takes G into the graph Guv on the same vertex set of G obtained by
complementing the edges between NG(u) \ {u} and NG(v) \ {v} and then by swapping
the labels of u and v (if G is labeled). More formally, if `G : V (G) → N is a labeling of
the vertices of G, then

Guv = (V (G), E(G)∆((NG(u) \ {u})× (NG(v) \ {v})))
and `Guv is defined by `Guv (u) = `G(v), `Guv (v) = `G(u) and `Guv (w) = `G(w) if
w 6∈ {u, v}. If e ∈ E(G) has endpoints uv, then we use Ge in place of Guv .
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We say that a graph G̃ is pivot-equivalent to a graph G, written G̃ ∼ G, if for some
k ∈ N, there is a sequence G1, . . . , Gk of graphs such that G1

∼= G, Gk
∼= G̃ and, for

i = 1, . . . , k− 1, Gi+1
∼= Gei

i , ei ∈ E(Gi). The orbit of G, denoted by [G], consists of all
graphs that are pivot-equivalent to G.

For later reference, we state as a lemma the easy though important facts discussed
above. Figure 1 illustrates the contents of the lemma.

Lemma 3.3. Let M be a connected graphic matroid. Then M determines both a class
[G] of pivot-equivalent graphs and a class [H] of 2–isomorphic graphs. In particular, any
graph in [G] is the fundamental graph of some 2–isomorphic copy of H and the fundamen-
tal graph of any graph in [H] is pivot-equivalent to G.

The operations of pivoting and of taking induced subgraphs commute in (bipartite)
graphs.

Lemma 3.4 (see [5]). Let G a bipartite graph, U ⊆ V (G) and e be an edge whose end-
vertices are in U . Then Ge[U ] ∼= (G[U ])e.

The next lemma relates in the natural way minors of a cycle matroid to the induced
subgraphs of the fundamental graphs associated with the matroid.

Lemma 3.5. Let M and N be cycle matroids. Let G be any of the fundamental graphs of
M and let K be any of the fundamental graphs of N . Then N is a minor of M if and only
if K is an induced subgraph in some bipartite graph in the orbit of G. Equivalently, N is a
minor of M if and only if G contains some induced copy of a graph in the orbit of K.

To get acquainted with pivoting, the reader may check Lemma 3.6 with the help of
Figure 3. Refer to Section 2 for the definition of domino and hole.

e

f

g

e ẽ

e

G0 Ge
0 Gf

0 Gg
0

G1 Ge
1 Ge,ẽ

1

G2 Ge
2

Figure 3: The effect of pivoting a graph G along some of its edges when G ∼= �, C8, C6.
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Lemma 3.6. Let k ≥ 6 be an even integer.

– If either H ∼= � or H ∼= Ck, then for each uv ∈ E(H) there exists an induced
subgraph H ′ of Huv such that either H ′ ∼= � or H ′ ∼= Ck.

– IfG ∼= Ck, then there is a graph G̃ in the orbit ofH such that G̃ contains an induced
copy of either � or C6.

Proof. By inspecting Figure 3 one checks that if G ∼= �, then either Ge ∼= � or Ge ∼= C6.
If G ∼= C6, then Ge ∼= � for every e ∈ E(G). If G ∼= Ck, k > 6, then by pivoting on
uv ∈ E(G) and deleting u and v results in a graphG′ ∼= Ck−2. In particular, by repeatedly
pivoting on new formed edges (like edge ẽ of graph Ge

1 in Figure 3), one obtains a graph
in the orbit of G which contains an induced copy of either � or C6. The second part of the
proof is left to the reader.

We are ready to extract the graph-theoretical consequence of Theorem 3.1. To this end
let us recall that besides their constructive characterization, Bandelt and Mulder character-
ized the class of BDH graphs also by forbidden induced subgraphs as follows.

Theorem 3.7 ([6, Corollaries 3 and 4]). Let G be a connected bipartite graph. Then G is
BDH if and only if G contains neither holes nor induced dominoes.

The following two corollaries follow straightforwardly from Theorem 3.1 after Theo-
rem 3.7 and assert that the class of BDH graphs–that is, of {hole, domino}–free graphs–is
closed under pivoting, namely, that the orbit of a bipartite {hole, domino}–free graph con-
sists of {hole, domino}–free graphs.

Corollary 3.8. The following statements about a chordal bipartite graphG are equivalent:

(i) G does not contain any induced domino;

(ii) any graph in the orbit of G is a chordal bipartite graph.

Corollary 3.9. Let G be a bipartite domino-free graph. If G is chordal, then so is any
other graph in its orbit.

4 Applications
4.1 BDH graphs and the interlace polynomial

As already mentioned, Ellis-Monaghan and Sarmiento related series–parallel graphs and
BDH graphs topologically, via the medial graph. Let H be a plane graph (or even a 2-cell
embedded graph in an oriented surface). For our purposes, we can assume that H is 2–
connected. The medial graph m(H) of H is the graph obtained as follows: first place a
vertex ve into the interior of each edge e of H . Then, for each face F of H , join ve to vf
by an edge lying in F if and only if the edges e and f are consecutive on the boundary of
F . Notice that if F is bounded by a digon {e, e′} or if e and e′ share a degree-2 endpoint
in H , then vertices ve and ve′ are joined by two parallel edges. Let m(H) be the plane
(2-cell embedded) graph obtained in this way. The graph underlying m(H) is the medial
graph of H . The medial graph is clearly 4-regular, as each face creates two adjacencies for
each edge on its boundary. Moreover, it can be oriented so that each vertex is entered by 2
arcs and left by 2 arcs. Given a 4-regular labeled graph N and one of its Eulerian circuits
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C, we can associate with N a double occurrence word w which is the word consisting of
the labels of the vertices of C cyclically met during the tour on C. The circle graph formed
from C and chords between repeated pairs of letters of w is called the the circle graph
of N . Ellis-Monaghan and Sarmiento, building also on the relations between the Martin
polynomial and the symmetric Tutte polynomial, proved the following relation between the
symmetric Tutte polynomial t(H;x, x) of a planar graph H and the vertex nullity interlace
polynomial q(G;x) of a graph G derived, as described in the theorem below, from the
medial graph of any of its plane embedding.

Theorem 4.1 ([16]). IfH is a plane embedding of a planar graph andG is the circle graph
of some Eulerian circuit of the medial graph of H , then q(G;x) = t(H;x, x).

The results were then specialized so as to give the following characterization of BDH
graphs.

Theorem 4.2 ([16]). G is a BDH graph with at least two vertices if and only if it is the
circle graph of an Euler circuit in the medial graph of a plane embedding of a series–
parallel graph H .

Using Theorem 4.1 and Theorem 4.2, the authors deduced the following consequences
stated below as Corollary 4.3, Corollary 4.4 and Corollary 4.5.

Corollary 4.3. Computing the vertex-nullity interlace polynomial is #P-hard in general.

Corollary 4.4. If G is a BDH graph, then q(G;x) is polynomial-time computable.

Corollary 4.4 follows because the Tutte polynomial is polynomial-time computable for
series–parallel graphs [29].

Corollary 4.5. A connected graph G is a BDH graph if and only if the coefficient of the
linear term of q(G;x) equals 2.

The latter coefficient referred to in Corollary 4.5, denoted by γ(G), is called the γ-
invariant of G in analogy with the Crapo invariant β(G) which is the common value of the
coefficients of the linear terms of t(G;x, y) whereG has at least two edges. By a result due
to Brylawski [9] (in the more general context of matroids) series–parallel graphs can be
characterized by the value of the Crapo invariant as follows: a graph G is a series–parallel
graph if and only if β(G) = 1. Both the corollaries above can be deduced directly by
Theorem 3.1 after the following result due to Aigner and van der Holst [1].

Theorem 4.6 ([1]). If G is a bipartite graph, then

q(G;x) = t(MG;x, x)

where MG is the binary matroid generated by the reduced adjacency matrix of G and
t(MG;x, x) is the Tutte polynomial of MG.

Theorem 3.1 and Theorem 4.6 have the following straightforward consequence which
re-proves directly Corollary 4.4 and Corollary 4.5.

Corollary 4.7. If G is BDH graph, then

q(G;x) = t(H;x, x)

for some series–parallel graph H having G as fundamental graph and where t(H;x, x) is
the Tutte polynomial of H , namely the Tutte polynomial of the cycle matroid of H .
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4.2 Characterizing series–parallel graphs by DFS-trees

As credited by Syslo [35], Shinoda, Chen, Yasuda, Kajitani, and Mayeda, proved that
series–parallel graphs can be completely characterized as in Theorem 4.8 by a property
of their spanning trees, and Syslo himself gave a constructive algorithmic proof of the
result [35].

Theorem 4.8 (S. Shinoda et al., 1981; Syslo, 1984). Every spanning tree of a connected
graphH is a DFS-tree of one of its 2–isomorphic copies if and only ifH is a series–parallel
graph.

When H is assumed to be 2–connected (an assumption that guarantees the connected-
ness of its fundamental graphs), Theorem 4.8 will be equivalently stated as statement (1)
below.

Let T be a family of trees (or a family of oriented trees) and let G be a bipartite graph
with color classes A and B. We say that G is a path/ T bipartite graph on A if there exist
a member T of T and a bijection ξ : A → E(T ) such that, for each v ∈ B, {ξw | w ∈
NG(v)} is the edge–set (arc–set if T is oriented) of a simple cycle (directed circuit if T is
oriented) in the (oriented) graph (V (T ), A∪B). Path/ T bipartite graphs onB are defined
similarly. G is a path/ T bipartite graph if it is a path/ T bipartite graph on A or on B. G
is a self–dual path/ T bipartite graph if it is a path/ T bipartite graph on both A and B. In
any case T will be referred to as a supporting tree for G. For instance, if G ∼= K1,3 and G
has color classes A = {a} and B = {α, β, γ} and if T is any family of paths containing
paths of order 2 and order 4, then G is a path/ T bipartite graph: G is supported on A by a
path of order 2 whose unique edge is labeled a and G is supported on B by a path of order
4 with three edges labeled α, β and γ.

Recall that an arborescence is a directed tree with a single special node distinguished as
the root such that, for each other vertex, there is a directed path from the root to that vertex.
A DFS tree for a connected graph H (in the sense of [35]), is a pair (T, φ) consisting of
a spanning tree T and an orientation φ of H , such that φT is a spanning arborescence of
φH and for each f ∈ E(H) \ E(T ), φC(f, T ) is a directed circuit in φH (i.e, all arcs
of φC(f, T ) are oriented in the same way). By choosing for T the class arborescence of
arborescences, one can reformulate Theorem 4.8 in the following way

(1) H is series–parallel if and only if for each spanning tree T of H the fundamental
graph BT (H) is a self–dual path/arborescence bipartite graph.

Indeed, if (T, φ) is a DFS-tree in a 2–isomorphic copy H ′ of H , then T is a spanning
tree of graph H ′ whose cycle matroid is M(H); hence BH(T ) ∼= BH′(T ) and φT is a
supporting arborescence for BH(T ). Conversely, suppose that G is a fundamental graph
of H and that G is a path/arborescence bipartite graph. Let G have color classes A and
B. Since G is a path/arborescence bipartite graph, then there is a supporting arborescence−→
T for G that induces an orientation φ of the graph H ′ = (V (T ), A ∪ B), T being the
underlying undirected graph of

−→
T . Clearly (T, φ) is a DFS tree in H ′ which in turn is

2–isomorphic to H because G is one of its fundamental graphs (i.e., H and H ′ have the
same cycle matroid).

Statement (1) is now a rather straightforward consequence of Corollary 3.8 and the
fact that BDH graphs are self–dual path/arborescence bipartite graphs as shown by the
following result proved in [4].
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Theorem 4.9 ([4]). Every connected BDH graph is a self–dual path/arborescence bipartite
graph.

Proof of (1). LetH be a 2–connected series–parallel graph. Then, by Theorem 3.1BH(T )
is BDH for each spanning tree T of H . Hence, for every spanning tree T of H , BH(T ) is
a self–dual path/arborescence bipartite graph by Theorem 4.9. Conversely, suppose that
for every spanning tree T of a 2–connected graph H , the fundamental graph BH(T ) is a
path/arborescence bipartite graph. ThusBH(T ) is chordal (see, e.g., [8]). Moreover, since
if T ′ is any other spanning tree of H , then BH(T ′) is in the orbit of BH(T ), we conclude
that each bipartite graph in the orbit of BH(T ) is a chordal bipartite graph. Therefore
BH(T ) is a BDH graph by Corollary 3.8 and, consequently, H is a series–parallel graph.

It is worth observing that, in the same way as Theorem 3.1 specializes de Fraysseix’s
Theorem 3.2, Statement (1) specializes the following statement (see also [12]):

(2) a bipartite graph is a bipartite circle graph if and only if it is a self–dual path/tree
bipartite graph, tree being the class of trees.

Proof. By Whitney’s planarity criterion [38] a graph is planar if and only if its cycle ma-
troid is also co-graphic, namely, it is the dual matroid of another cycle matroid. Let now
G be the fundamental graph of a 2–connected graph H with respect to some spanning tree
T of H . Let A be the reduced adjacency matrix of G with rows indexed by the edges of
T and columns indexed by the edges of T . Then, while [ I |A ] generates M(H), [ I |At ]
generates M∗(H), the dual of M(H). Hence, when H is planar, by Whitney’s planarity
criterion, M∗(H) is the cycle matroid of a 2–isomorphic copy of a plane dual H∗ of H .
Therefore the neighbors of each vertex in the color class T spans a path in the co-tree T
which is in turn a spanning tree of a 2–isomorphic copy of plane dual H∗ of H .

In view of such a discussion it is reasonable to wonder whether there is a class of self
dual path/ T0 bipartite graphs closed under edge–pivoting, where T0 is a family of trees
sandwiched between trees and arborescences. The next result gives a negative answer in
a sense. In what follows di-tree is the class of oriented trees.

Theorem 4.10. If G is a connected bipartite graph whose orbit consists of self–dual
path/di-tree bipartite graphs, then the orbit of G consists of path/arborescence bipartite
graphs.

Proof. Path/di-tree bipartite graphs are balanced (see [2]). Recall that a bipartite graph
Γ is balanced if its reduced adjacency matrix does not contain the vertex-edge adjacency
matrix of a chordless cycle of odd order. Equivalently, Γ is balanced if each hole of Γ
has order congruent to zero modulo 4. Hence, since G and any other graph in its orbit is
a self–dual path/di-tree bipartite graph, then G, and any other graph in its orbit must be
balanced as well. Let G̃ be any member of [G] and suppose that G̃ contains a hole C. Let
e ∈ E(C). The order t of C is at least eight, because G̃ is balanced. Nevertheless G̃e

contains a hole of order t − 2 by Lemma 3.6. Since t − 2 ≡ 2 (mod 4) we conclude
that any graph in the orbit of G must be hole-free. Therefore G is BDH by Corollary 3.9,
and, by Theorem 3.1, it is the fundamental graph of a series–parallel graph. The thesis now
follows by Statement (1).
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Remark 4.11. It is worth observing that by the proof above, if A is a class of balanced
matrices closed under pivoting over GF (2), then A consists of totally balanced matrices,
namely those matrices whose bipartite incidence graph is hole-free. Actually, and more
sharply, in view of Corollary 3.9, every member of A is the incidence matrix of a γ-acyclic
hypergraph [3].

4.3 Packing paths and multi-commodity flows in series–parallel graphs

In this section we give an application of Theorem 3.1 in Combinatorial Optimization. We
show that a notoriously hard problem contains polynomially solvable instances when re-
stricted to series–parallel graphs. Let H = (V,E) be a graph and let F ⊆ E be a set of
prescribed edges of H called the nets of H . Following [19] a path P of H will be called
F -admissible if it connects two vertices s, t of V with st ∈ F and E(P ) ⊆ E − F . Let
U be the set of end-vertices of the nets. In the context of network-flow, vertices of U are
thought of as terminals to be connected by a flow of some commodity (the nets are in fact
also known as commodities). Let PF denote the family of all F -admissible paths of G
and let PF,f ⊆ PF be the family of those F -admissible paths connecting the endpoints
s,t of net f . An F -multiflow (see e.g. [33]), is a function λ : PF → R+, P 7→ λP . The
multiflow is integer if λ is integer valued. The value of the F -multiflow on the net f is
φf =

∑
P∈PF,f

λP . The total value of the multiflow is the number φ =
∑

f∈F φf . Let
w : E − F → Z+ be a function to be though of as a capacity function. An F -multiflow
subject to w in H is an F -multiflow such that,

∑

P∈PF :E(P )3e

λP ≤ w(e), ∀e ∈ E − F (4.1)

When w(e) = 1 for all e ∈ E − F , an integer multiflow is simply a collection of edge–
disjoint F -admissible paths of H . The F -Max- Multiflow Problem is the problem of find-
ing, for a given capacity function w, an F -multiflow subject to w of maximum total value.
An F -multicut of H is a subset of B edges of E − F that intersects the edge–set of each
F -admissible path. The name F -multicut is due to the fact that the removal of the edges of
B from H leaves a graph with no F -admissible path: in the graph H − B it is not possi-
ble to connect the terminals of any net. The capacity of the F -multicut B is the number∑

e∈B w(e).
Multiflow Problems are very difficult problems (see [18], [19] and Vol. C, Chapter 70 in

[33]). In [20] it has been shown that the Max-Multiflow Problem is NP-hard even for trees
and even for {1, 2}-valued capacity functions. The problem though is shown to be polyno-
mial time solvable for constant capacity functions by a dynamic programming approach.
However, even for constant functions, the linear programming problem of maximizing the
value of the multiflow over the system of linear inequalities (4.1) has not even, in general,
1
2Z-valued optimal solutions. In [26], the NP-completeness of the Edge–Disjoint–Multi
commodity Path Problem for series–parallel graphs (and partial 2–trees) has been estab-
lished while, previously in [39], the polynomial time solvability of the same problem for
partial 2–trees was proved under some restriction either on the number of the commodities
(required to be a logarithmic function of the order of the graph) or on the location of the
nets.

Theorem 4.12. Let H = (V,E) be a 2–connected series–parallel graph and let F be the
edge–set of any of its spanning co-trees. Then the maximum total value of an F -multiflow
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equals the minimum capacity of an F -multicut. Furthermore, both a maximizing multiflow
and a minimizing multicut can be found in strongly polynomial time.

Proof. Let A be a {0, 1}m×n−valued matrix and b ∈ Zm
+ be a vector. Let 1d be the all

ones vector in Rd. Consider the linear programming problem

max
x∈Rn

+

{
1Tnx | Ax ≤ b

}
(4.2)

and its dual
min
y∈Rm

+

{
bT y | AT y ≥ 1n

}
. (4.3)

By the results of Hoffman, Kolen and Sakarovitch [23] and Farber [17], if A is a totally
balanced matrix (i.e., A is the reduced adjacency matrix of a bipartite chordal graph), then
both the linear programming problems above have integral optimal solutions and, by linear
programming duality, the two problems have the same optimum value. Furthermore, an
integral optimal solution x∗ to the maximization problem in (4.2) satisfying the additional
constraint

x∗ ≤ 1n (4.4)

and an integral optimal solution y∗ to the minimization problem in (4.3) satisfying the
additional constraint

y∗ ≤ 1n (4.5)

can be found in strongly polynomial time.
Let now H be a 2–connected graph and let F be the edge–set of a co–tree T of some

spanning T tree of H . By giving a total order on the edge–set of T , one can define a vector
b whose entries are the values of the capacity function w : E(H) − F → Z+. If A is the
incidence matrix of PF , namely the matrix whose columns are the incidence vectors of the
F -admissible paths of H , then A is a partial representation of M(H). Moreover, if H is
series–parallel, then A is totally balanced: by Theorem 3.1, A is the reduced adjacency ma-
trix of a BDH graph which is chordal being hole-free (by Theorem 3.7). On the other hand,
integral solutions to the problem in (4.2) satisfying constraint (4.4) and to the problem
in (4.3) satisfying constraint (4.5) are incidence vectors of F -multiflows and F -multicuts,
respectively. Hence, both an F -multiflow of maximum value and an F -multicut of mini-
mum capacity can be found in strongly polynomial-time by solving the linear programming
problems above. Moreover, linear programming duality implies that the maximum value
of an F -multiflow and the minimum capacity of an F -multicut coincide.

5 Two more proofs of Theorem 3.1
In this section, we give two more proofs of Theorem 3.1: one is due to an anonymous
referee of an earlier version of the paper and it relies on the deep and refined notion of
branch- and rank-width of a matroid (for the undefined terms given in the proof we address
the reader to the references therein); the other fits the theory of double occurrences words
and relies on a result in [5].

Second proof of Theorem 3.1. Suppose that a connected bipartite graphG is a fundamental
graph of a 2-connected series parallel graph H . Since 2-connected graphs of branch-width
at most 2 are exactly 2-connected series parallel graphs ([30]), the branch-width of H is
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at most 2. As proved in [22], the branch-width of a graph equals that of its cycle matroid.
Hence, the branch-width of H equals the branch-width of M(H). By a result in [27], the
branch-width of a binary matroid (in particular of a cycle matroid) equals the rank-width
of any of its fundamental graphs plus 1. By definition, G is a fundamental graph of M(H)
and thus rw(G) + 1 = bw(M(H)) = bw(H) ≤ 2, where rw(·) and bw(·) denote the rank-
width and branch-width parameters, respectively. Hence the rank-width of G is at most 1
and we conclude that G is bipartite distance hereditary because, still by a result in [27],
distance hereditary graphs are precisely the graphs of rank-width at most 1.

For the other direction, suppose that a connected bipartite graphG is distance-hereditary.
Let MG be the binary matroid generated by the reduced adjacency matrix of G. By the
same reasons (and the same notation) given above, it holds that bw(MG) = rw(G)+1 ≤ 2.
By a result in [21], MG is a series parallel matroid (see [36] for the definition) and any
such a matroid is the cycle matroid of a series parallel graph (see Lemma 4.2.12 in [36]).
Hence MG = M(H) for some series parallel graph H . Furthermore, H is 2-connected,
otherwise, G is disconnected.

The third proof will require a result in [5]. Let C be an Eulerian cycle in a 4-regular
labeled graph H and let w be the double occurrence word it induces (Section 3, following
the first proof of Theorem 3.1). Recall that two vertices, say labeled a and b, are interlaced
in w if w = uaxbyaz for some (possibly empty) intervals u, x, y and z of w. For
two vertices u and v, labeled a and b, respectively, the uv-transposition of w is the word
wuv = uaybxaz [5]. Thus a uv-transposition of w amounts to replace one of the subpaths
of C connecting u and v with the other one. The relation between uv-transposition and uv
pivoting is given in the next lemma which specializes a more general result in [5] (see also
[13]).

Lemma 5.1. LetH be a 4-regular graph and let w be any of the double occurrence words it
induces. Further, letG(H,w) denote the interlacement graph of w. Suppose thatG(H,w)
is a bipartite graph. Then, for any edge uv of G(H,w) of H , one has G(H,w)uv =
G(H,wuv).

Third proof of Theorem 3.1. If G is a fundamental graph of a series–parallel graph, then
MG is a binary matroid with no M(K4) minor by Dirac and Duffin’s characterization.
Dominoes are fundamental graphs of K4 and holes can be pivoted to either dominoes or
C6 (recall Lemma 3.6)—notice that C6 is a fundamental graph of K4 as well (Figure 1)–it
follows that G is BDH-free by Lemma 3.3. Conversely, if G is BDH, then by Theorem 4.2
(in the language of Lemma 5.1), G ∼= G(m(H),w) for some series–parallel graph H
(observe that m(H) is a 4-regular graph) and some code w. By Lemma 5.1, pivoting
on edges G affects neither H nor m(H). Consequently, every graph in [G] is a BDH.
ThereforeMG has noM(K4) minor by Lemma 3.3 and Lemma 3.5 andG is a fundamental
graph of such a matroid and therefore the fundamental graph of a series–parallel graph.
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