A MERGE-FIRST
DEVEDE & CONQUER ALGORITHM

FOR ED DELAUNAY T@EANGU&ATHONS

1/1 A Ny : - "“”M % c
S - T B N Y-

sl O T=
ARCELLILO
LY ««~W

0\1/ """"

s

4

/ / /1) /
] .
J (Lf? / Internal Report C92/16

/ / / >// '/::] ~ QOct. 1992
alg

folr oy |
/ / / /- P. Cignoni, C. Montani
) / : R. Scopigno

i e d
/
! ; 7 {
/ / /
s A i B / i
] p /] i
S VI
\ S / T
N . /
S T e e . i S I

A new Merge-First Divide & Conquer Algorithm

*

for E¢ Delaunay Triangulations

P. Cignoni*, C. Montani**, R. Scopigno™*

* Dip. di Informatica, Universita’ degli Studi, C.so Italia 40, 56100 Pisa, ITALY
“* Istituto Elaborazione dell’Informazione, Consiglio Nazionale delle Ricerche
Via S. Maria 46, 56126 Pisa, ITALY
*** Istituto CNUCE, Consiglio Nazionale delle Ricerche

Via S. Maria 36, 56126 Pisa, ITALY

October 16, 1992

Abstract

The paper deals with Delaunay triangulations in E¢ space, a classic problem in com-
putational geometry, from the point of view of the efficiency and the easy parallelization of
the algorithms. The application field is the processing and visualization of large scattered
datasets; in this field, the real time visualization of time-varying phenomena is a typical
requirement.

An extension in E% of an algorithm originally proposed for E? Delaunay triangulations
and two simple and effective speedup techniques is first proposed and a new algorithm
based on a original interpretation of the well-known Divide and Conquer paradigm is then
presented. Although the computational complexity of the algorithm does not improve the
theoretical results reported in the literature, the technique is very efficient and present a
quasl linear behaviour in real applications. Thanks to the use of a D&C technique, the
algorithm can be easily parallelized on low grain parallel architectures (such as shared

memory MIMD machines or networks of workstations). An evaluation of the performance

*This work was partially funded by the Progetto Finalizzato “Sistemi Informatici e Calcolo Parallelo” of the

Consiglio Nazionale delle Ricerche.

on medium resolution datasets is reported.

1 Introduction

Triangulation is a main topic in computational geometry and is commonly used in a large set
of applications, such as robotics, computer vision, image synthesis, as well as in mathematics
and natural science. Delaunay Triangulation (DT) is a particular triangulation which holds
the property that the circumcircle of any triangle in the triangulation contains no point in its
interior. Many algorithms have been proposed for the DT of a set of sites in E?, E® or E4 [2].

Volume Rendering is one of the more recent applications of DT. A wolume dataset consists of
sampled points in £% space, with one or more scalar or vector sample values associated with
each point. The need for a visual representation of the content of such huge datasets has en-
couraged a substantial research effort and has led to a new computer graphics area, known as
Volume Rendering [5] [9]. The spatial arrangement of the point set can be either structured,
with implicit or explicit topological relations between the sites, or unstructured. In the latter
case, the triangulation of the set of points in E® is a prerequisite to the execution of a class of
surface reconstruction or direct rendering algorithms. The large number of sites common by
present in Volume Rendering applications imposes strong efficiency constraints on the triangu-
lator used.

Unfortunately for the application programmer, implementation evaluations of Delaunay trian-
gulators are lacking in the literature. Few papers report evaluations of real implementations
or give experimental comparisons of different algorithms. Asymptotic time complexities are
generally given, but such analyses are not always sufficient to make the correct decisions. In
fact, theoretically better algorithms can sometimes be outperformed by more naive methods,
because the theoretical asymptotic complexity do not always consider the management of the
complex data structures needed and the optimization techniques that can be applied to reduce
the mean case complexity.

A new Divide & Conquer DT algorithm is proposed in this paper. This algorithm gives a gen-
eral and extremely simple Divide & Conquer solution to the DT in E¢ space. The paper is also
an attempt to use some classical computer graphics techniques to increase the performance of
the triangulator. Our attempt follows Guibas’s proposal for greater cooperation and integration
between computer graphics and computational geometry [6].

This new algorithm is not an advance in terms of asymptotic complexity, but gives good results

for empirically measured performances showing nearly linear run times.
Moreover, the intrinsic parallelizability of the Divide & Conquer paradigm is one point of
strenght of our proposal with respect to the asymptotically optimal but inherently sequential

“on line” DT algorithm [8].

[n the paper we define the DT in E¢ space and give a brief description of Delaunay triangu-
lation algorithms. We introduce an incremental construction algorithm and some optimization
tecniques which are at the base of the Divide & Conquer algorithm then described in detail.
Finally, an evaluation of the measured performance of the algorithms is reported and some

conclusions are presented.

2 Delaunay Triangulation

Given a point set P in E9, n-simplez is defined as the convex combination of n + 1 affinely
independent points in P (e.g., a triangle is a 2-simplex and a tetrahedon is a 3-simplex), called
vertices of the simplex.

An s-face of a simplex is the convex combination of s 4 1 vertices of the simplex (i.e., a 2-face

is a triangular facet, a 1-face is an edge, a O-face is a vertex).

The Delaunay Triangulation (DT(P)) [14] of the E¢ space defined on a point set P in E4 is

the set of d-simplices such that:

1. a point p in E? is vertex of a simplex in DT(P) iff p € P;
2. the intersection of two simplices in DT(P) is either a empty or common face;

3. the hyper-sphere circumscribed around the n + 1 vertices of each simplex contalns no

other point of the set P.

The DT is the dual of the Voronoi diagram, and therefore algorithms are given for the con-
struction of DT from Voronoi diagrams. But there are also direct methods for the construction
of DT and they are generally more efficient because the Voronoi diagram does not need to be
computed and stored.

DT algorithms [2] can be classified as follows:

e local improvement methods start with an arbitrary triangulation and then locally modify

the faces of pairs of adjacent simplices according to the equiangularity criterion;

Figure 1: Merging of two partial DT in E? space.

e on-line (or incremental insertion) methods start with a simplex which contains the Convez-
Hull(P): for each newly added point in P, the simplex containing that point is partitioned
by inserting the new vertex. All the simplices adjacent to the new one are then recursively

tested for equiangularity in topological order and, if necessary, their faces are flipped;

o incremental construction methods use the empty circle property to construct the DT
by successively adding simplices whose circum-circles/spheres contain no points in P

(Figure 2):

o higher dimensional embedding methods transform the points in the £4+! space and then
compute the convex hull of the transformed points; the DT is obtained by simply pro-

jecting the convex hull in £
R l=]

o divide & conquer (D&C) methods are based on the recursive partition and local triangu-
lation of the point set, and then on a phase in which the resulting subset of simplices are
merged. Current algorithms are not generalized to £ space, but limited to the £E* space

only.

On-line methods [7] [8] hold the lower asymptotic time complexity, O(n log n + nll+),
Moreover, these methods extremely simple to program and can be simply generalized to man-
age pointset in E¢ space.

The increasing complexity of the input dataset and the current technological trend are giving
ever increasing importance to parallel solutions. From this point of view, on-line algorithms
ave clearly penalized for being inherently sequential. On the other hand, D&C methods can
easily be parallelized and have been proved to be optimal for the E? space [10]. Unfortunately,

no general D&C solution has been proposed to manage E® or E¢ pointsets. The problem here

Figure 2: An example of incremental DT construction in E3 space.

is in the specification of the merging phase, which is simple in E* due to the explicit ordering of
the edges incident in a vertex(Figure 1). In E? this ordering is not given, and the specification
of the merge phase is thus hard.

The algorithm proposed in this paper bypasses this problem by reversing the order of the sub-
problem solution and the merging phase. The original D&C algorithm recursively subdivides
the mput dataset, constructs the two DT's and then merges them. The solution here first
subdivides the input dataset. then builds the part of the DT that would be built in the merging
phase of a classical D&C algorithm and finally recursively triangulates the two semi-spaces
taking into account the border of the previously computed merging triangulation. In this way,
the merging phase is executed before the subproblem solution.

The merging triangulation can be built in a very simple manner using a constructive rule similar
to that proposed by Mc Lain [12]. This makes possible the specification of a general E¢ D&C
triangulator, with a simple structure that permits an efficient implementation using some well
known optimization techniques.

In order to simplify the description of the algorithm, we first present a generalized E¢ exten-
sion of the Mc¢ Lain algorithm in the next section togheter with a description of the speedup

techniques adopted.

3 An Incremental Construction Algorithm

An algorithm for DT in £? based on the incremental construction approach was proposed by
McLain [12]. In this section we present the InCoDe (Incremental Construction of Delaunay

triangulation) algorithm, that is a generalized E? extension of the Mc Lain’s algorithm.

The algorithm starts from a simplex s in DT(P), where P is the target point set. It

incrementally builds the DT(P), by adding a new simplex in each step and without having to
modify the current triangulation.
The algorithm is based on the existence of a pair of adjacent simplices for each (d-1)face which
does not lie in the Convex Hull(P). Starting from the initial simplex, the (d-1)faces are visited
and the simplex adjacent to each of them is added to the current list of simplices. All of the
(d-1)faces of each added simplex are inserted into the Active Face List (AFL). Insertion in the
AFL is as follows: if the new face f is already contained in AFL, then f is removed from AFL;
otherwise, f is inserted in AFL and this implies that the simplex adjacent to f has not yet
been built. The process continues iteratively (extract a face f’ from AFL, build the simplex
5" adjacent to f'. insert the (d-1)faces of ' in AFL, and then again extract another face from
AFL) until AFL is empty.

The algorithm can be specified in pseudo—-Pascal as follows:

Function InCoDe (P : set_of_points) : d-simplex_ list;
var {: (d-1)face; AFL : (d-1)face list;
t . d-simplex; DT : d-simplex list;
begin
AFL:=0; DT:=0;
t:=MakeFirstSimplex(P);
Insert (DT t);
for each f et do Insert(AFL.f);
while AFL # 0 do
begin
f:=Extract(AFL);
t:=MakeSimplex(f, P);
if ¢t # null
then begin
Insert(DT,t);
for each f': f' € (d—1)face(t) AND f' # f do
if f'€ AFL
then Delete(AFLf)
else Insert(AFL.f)

end;
end;
InCoDe:=DT;

end;

Two questions arise:
(a) how to build the simplex adjacent to a face f (the MakeSimplez function);

{(b) how to identify the initial simplex (the MakeFirstSimplez function).

Given a face f. the adjacent simplex can be simply identified by using the Delaunay simplex
definition. For each point p € P. the ray of the hypersphere which circumscribes p and the d
vertices of the face f is computed. The point p which, generally speaking, minimizes this ray
is chosen to build the simplex adjacent to f.

We limit our analysis of the points p € P by éonsidering only those points which lie in the
outer halfspace with respect to face f (i.e. the halfspace which does not contain the previously
generated simplex that contains face f).

The outer halfspace associated with f contains any point iff face f is part of the Convex Hull
of the pointset P: in this case the algorithm correctly returns no adjacent simplex and, in this
case only, MakeSimplex returns null. The faces on the Convex Hull are the only faces that
belong to only one simplex of the DT(P).

For each point p i the outer halfspace of f, the radius of the circumsphere is evaluated. The

algorithm selects the point which minimizes the function dd (Delaunay distance):

r if ¢ C OuterHalfspace(f
dd(f,p) = pace(l
—r otherwise

with r and ¢ the ray and the center of the circumsphere around f and p.

Two approaches can be adopted to determine the first simplex (MakeFirstSimplex function).
The first is based on a technique used to identify the first face of the convex hull of a set of
points [14], from which the first simplex can be simeasilyply built. .

The second approach is more simple: having randomly chosen a point p; € P, search the point
p2» € P such that the Euclidean distance d(p;,p2) is minimal; then, search the point ps such
that the circum-circle about the 1-face (p1,p2) and the point pz has minimum ray: the points
(p1.po.p3) are a 2-face of the DT. The process continues in the same way until the required

(d-1){face is built.

-1

The InCoDe algorithm is simple and easy to implement though neither is its asymptotic

time complexity optimal nor its practical efficiency good.

3.1 Speedup techniques

An analysis of the algorithm shows that there are two main bottlenecks: the MakeSimplez
function (given face f, dd(f,p) must be computed for each point p € P) and the Active Face
List management (each insertion/extraction has a complexity which is proportional to the

current number of stored faces).
3D Gridding

In the InCoDe algorithm a new simplex is constructed from a simplex face, by finding the
dd-nearest point (i.e. the nearest according the dd metric). This search entails scanning the
whole dataset and an O(n) test for each simplex. However, the construction of a new simplex

in constant time 1s possible.

The basic concept of local processing is often adopted in computer graphics either to speedup
sequential algorithms or to achieve parallelism. The speedup technique proposed here is based

on the 3D extension of the uniform grid [1]
UG ={ez}; gk €[0.N] (1)

i.e.. a regular, non hierarchical 3D partition of the dataset space. The grid cells partition the
dataset space without overlap or omission, and the grid resolution adapts to the data. For
simplicity, the use of the UG is described here in the case of DT in E®, but it can be easily
generalized to £7.

The main reason why uniform grid techniques are effective in geometric computations is that
two points, which are far apart, generally have little or no effect on each other. A large class
of geometric algorithms possess this property, ranging from visibility (hidden surface removal),
to modeling (boolean operations, intersection detection, etc.) and to computational geometry
(point location, triangulation, etc.) [13]. Local processing can, therefore, generally be adopted

to tackle geometric problems.

The uniform gridis used as an indexing scheme for the fast detection of the dd-nearest point.
The space E is partitioned into cubic cells following a regular pattern. Given the dataset P,

it is possible to associate each cell ¢;;; with the list of points in P that are contained in ¢;jy.

o

UG visiting order:

: first
: second
: third

<
y

\(outer semnispace

Figure 3: An example of the cell visiting order, shown for simplicity in the case of the 2D Delaunay

triangulation.

A preprocessing phase builds the [7G structure.

The idea i1s then to organize the MakeSimplex function so that the points in P are examined in
order of increasing dd-distance from face f. Analogously to Maus’s approach [11], the UG can
be scanned in order of increasing distance from f.

Given this partial ordering of the sites, not all the points in P have to be analyzed for each face
£ In fact, given a point p; such that dd(f, p;) = d;, all the points which are not contained in
the sphere around f and p; will certainly have a dd value greater than d;, and it is pointless to
evaluate their dd value. The analysis of the cells of UG can be stopped when there are no more
cells contained in the circumsphere around f and the current dd-nearest point (Figure 3).
The choice of the right resolution for the uniform grid space crucially affects the efficiency of
the algorithm. In the implementation reported the resolution of the UG is defined as follows.
The length e of the edge of the UG cell is calculated in terms of the volume of the 3D bounding

box (BBozx) of the dataset P :

po @ Vol(BBoxz(P)) 2)

n

with n the cardinality of P.

Face Lists Management via Hash Tables

The following operations are executed on the AFL data structure are:
o Insert(f, AFL): insertion of a face f into the list;

o LErtract(f, AFL): extraction of a face f from the list;

o Delete(f. AFL): removal of a face f from the list;

o Member(f, AFL): true IF face f € AFL.

A time linear to the number of elements in the list considerably reduces the overall efficiency of
the algorithm. Runs of the algorithm with the AFL implemented as a simple list showed that
O(n) accesses to the list were required on n points dataset.

The current implementation of the AFL data structure is based on hash coding: the hash code
associated to each face makes it possible to manage AFL in nearly constant time (1.15 - 1.5

accesses for each operation were measured with the current implementation).

3.2 InCoDe complexity

The asymptotic time complexity Crncope(n) of the InCoDe algorithm can be evaluated as

follows. Given:
e n: number of points in P;
e F(n} : number of (d-1)faces in the DT(P), with F(n):c’7(n[d/21+) in E4;

e MakeSimplex{n) . complexity of the function which builds the Delaunay simplex given a

face f € DT(P);

o AFL(m): complexity of the function which manages the active face list (insertion, ex-

traction and deletion) in terms of the number m of faces contained;

the complexity of the InCoDe algorithm is:

Crncope(n) = F(n) * (MakeSimplex(n) + AF L(m)) (3)

If hash coding is used to manage the AFL, then AFL{m) can be considered a constant time
operation.
L\/Ioreover, if a uniform grid is applied to reduce the MakeSimplex cost, the construction of a
new simplex s over the (d-1)face f implies the computation of the dd distance:
(a) for each grid cell ¢ contained in the cubic subvolume which bounds the circum-sphere over
the simplex s;

{(b) for each p € P contained in c.

10

Given k. the mean number of cells visited in (a), k, the mean number of sites in each cell and

assuming that dd(f, p;) is a constant time operation, the mean complexity of the MakeSimplex

function is:

MakeSimplex(n) = O(k, * kp).

Mean number of sites contained in each cell. Assuming that the probability that a site
p falls in cell ¢ is p = 1/n (with n both the number of sites in P and of cells in the UG), the
probability P{k,n) that & sites from a n site dataset are contained in a cell ¢ can be evaluated

as a binomial distribution as follows:

Therefore the mean number of sites contained in a cell is:

n

kp :Zk'P(k,n)SZn:/cz}—l- <3
k=1 '

k=1

Mean number of cells visited. The number k, of cells visited to construct a simplex s
adjacent to the (d-1)face f is 0(;3’%), with 7 the ray of the circum-sphere over s and vol(c)
the volume of a single cell of the uniform grid. In the worst case of Figure 6 each circum-sphere
contains most of the cells, and therefore £, = O(n). For a more general and probable spatial
arrangement of the sites in P, the number k, is at least sublinear with n because the size of the
simplices, and therefore the rays of the associated circum-spheres, decreases as the number of

sites rises.

From the above assumptions and from (3), the complexity of the InCoDe algorithm can be
estimated:

Cincope(n) € O(l/AT « k) (4)

The empirical k; values measured while running the algorithm are reported in Section 5.

11

4 DeWall: a Divide and Conquer Evolution of the In-
CoDe Algorithm

A new algorithm for the DT of a pointset P in E? is presented in this section. The algorithm
is based on the D&C paradigm, applied different by than the usual D&C DT algorithms [10]

(4]. The general structure of the Divide and Conquer algorithms is:

Div&Congq (P : problem_instance, var S : problem_solution);
begin
if|P|<k

then S:=Solve(P)

else begin
Split(P, Py, Py);
Div&Cong(Py, Sy);
Div&Conq(Pa, Sa);
S:=Merge(Sy, Sa):
end:

end;

In our problem, the point set P can easily be split using a cutting plane such that the two
assoclated halfspaces contain two pointsets P; and Pa of comparable cardinality.
The problem is how to implement the merging phase, i.e. how to build the union of the two
triangulations Sy and S». This union requires the triangulation of the space which separates S;
and So. This triangulation generally requires a number of local modifications on S; and Sp. As
described in Section 2, the merging phase can efficiently be solved for Delaunay triangulation
in E? [10] (Figure 1), whereas there is still no solution for generalized Divide and Conquer DT

in E£¢.

Our approach to Divide and Conquer is slightly different and it emerged from an attempt
to design an efficient merging phase for generalized DT in E¢ space.
The main idea is simple. Instead of merging partial results, we first built the merging trian-
gulation and then compute separate triangulations on the two subsets of the input dataset P.

The resulting Merge-FirstD& C paradigm is applied as follows:

12

Merge-firstD&C (P : problem.instance, M : partial_solution, var S : problem.solution);

begin
if | P i<k
then S:=Solve(P, M)
else begin
Split(P, Py, Pa);
Sarerge=Merge(Py, Pa, M);
Merge-first D&C(P1, Sarerge, S1);
Merge-first D&C(Pa, Sarerge. S2);
S = Syrerge UST U S
end:
end:

The efficiency of this approach depends on the complexity of the construction of the Delau-
nay simplicial compleéx Syrerge. The efficiency is increased if the computations of the Merge

phase are exploited in the subsequent recursive invocation of Merge-firstD&C.

The DeWall Algorithm

The DeWall algorithm is an implementation of the above Merge-firstD&C paradigm.

A splitting plane « divides the space E? into two halfspaces, called PosHalfspace(«) and
NegHalfspace(a).

A simplex s intersects the plane a ff 3 f | f € faces(s) A Is.Intersected(f,a).

A splitting plane o divides a triangulation DT(P) into three disjoint subsets: the simplices
that are intersected by the plane, which we call the simplex wall $%, the simplices S* that are
completely contained in the PosHalfspace(a), and those completely contained in the NegSemi-
space(a), S~ (Figure 4).

S is a valid candidate for the required Sprerge: it is part of a valid DT(P) and it partitions the
DT(P) such that the resulting S* and S~ have no intersection, because (a) for each simplex
s € DT(P) s is intersected by a iff s € % and (b) if ST (S~ # {} then at least a simplex s’
must exist such that ' € ST({] S~ and s’ is intersected by ¢, which is absurd by definition of

simplex wall.

13

Figure 4. An example of DT in E! « is the splitting line, and T, (the set of gray triangles) is the
associated simplex wall; T, and T, are the triangulations returned by the recursive invocation of

the DeWall algorithm on the two pointset partitions.

The efficiency of the algorithm depends on how well balanced is the partition of P operated

by «.

The DeWall algorithm consists of the following steps:

e select the sphtting plane «;

e construct S% and the two subsets P; and Ps;

e recursively apply DeWall on Py, starting from S%, and build DTy;
o recursively apply DeWall on Pa, starting from S¢, and build DTy;

o return the union of S%, DT, and DT».

Simplex Wall Construction

The technique used is a slight variation of the InCoDe algorithm described in Section 3. The

algorithm works on (d-1)faces and incrementally builds simplices on them. The difference is

14

Figure 5: Some phases of the DeWall algorithm on a pointset in E2.

that instead of using a single list of active faces (AFL), three different lists are defined, which

contain:

e AFL, : the faces which are intersected by the plane «;

e AFL, : the faces which are completely contained in the posiiive halfspace defined by the

plane «;

o AFL_ : the faces which are completely contained in the negative halfspace defined by the

plane «.

For each simplex s, the algorithm inserts each (d-1)face of s in one of the above face lists. It
then extracts faces (on which the next simplices will be searched) from the AFL, only; this
ensures that each simplex is part of the simplex wall 5¢.

The simplex wall construction process terminates when the AFL, is empty. The process returns
both the S¢) and the pair of active face lists AFL, and AFL_.

DeWall is then recursively applied to the tuple (Py, AFL_.) and (P,, AFLy), unless all the

active face list are empty.

15

Function DeWall (P : set_of_points, AFL : {(d-1)face list) : d-simplex_list;
var f: (d-1)face; AFL,, AFL_, AFL, : (d-1)face.list;
t © d-simplex; DT : d-simplexist;
« ¢ splitting_plane;
begin
AFL,, AFL., AFL,:=0; DT:=0;
Pointset_Partition(P, «, Py, Pa);
if AFL =10 then
t:=MakeFirstWallSimplex(P, «);
AFL:=d-faces(t); DT:=t;
for each f € AFL do
if IsIntersected(f,er) then Insert(f, AFL,)
else if f C NegHalfSpace(«) then Insert(f, AFL.)
else Insert(f, AFL;);
while AFL, # 0 do begin
f:=Extract(AFL,);
t:=MakeSimplex(f, P);
if t # null then begin
DT:=DT U t;
for each f": f' € (d—1)faces(t) AND f' # f do
if IsIntersected(f’,«r) then Update(f',AFL,)
else if f' C NegHalfSpace(er) then Update(f' ,AFL_)
else Update(f' AFL.,);
end;
end;
if AFL_ # 0 then DT:=DT U DeWall(P;,AFL_);
if AFLy # 0 then DT:=DT U DeWall(Py,AFL,);
DeWall:=DT,;

end;

Procedure Update (f :face, L : face list);
begin;
if €L then Delete(f, L)
else Insert(f, L);

16

Figure 6: The worst-case input dataset for the DeWall algorithm.

end:

The splitting plane « is cyclically selected as a plane which is orthogonal to the axes of the
Ed space (X.Y or Z in E3), in order to recursively partition the space with a regular pattern

(Figure 5).

The function MakeFirstWallSimplez returns a Delaunay d-simplex which is intersected by
the plane o, the first simplex on which the simplex wall is constructed. This function is a slight
modification of the MakeFirstSimplex used in the InCoDe algorithm. The first simplex returned
must intersect the plane «, so the function selects the point p; € P nearest to the plane «. It
then selects a second point ps such that (a) ps is on the other side of a from p; and (b) p2
is the nearest point to p;. The first d-simplex is constructed with the same algorithm used in

InCoDe, starting from the (1)face {(p1,p2).

17

4.1 DeWall complexity

The asymptotic time complexity Cpewan(n) of the DeWall algorithm can be evaluated as fol-
lows.

In the worst case (Figure 6), the selected splitting plane can define a simplex wall which is
equal to the DT(P). In this case, the DeWall algorithm reduces to the InCoDe algorithm, and
the complexity is that reported in Section 3.2. But the probability of such a worst case input

set 1s very low in real applications.

Given:

e SimplexWall(n) : number of simplices intersected by the plane o in the DT(P);

e PPart(n): the function PointsetPartition on P, which can be considered a O(n log n)

sorting process;
the complexity of the DeWall algorithm is:
Cpewan(n) = PPart(n) + Simplex Wall(n)(MakeSimplez(n) + AFL(m)) + 2 Cpewan(n/2) (5)

with MakeSimplex(n) and AFL(m) defined as in Subsection 3.2. The number of d-simplex
SimplexWall(n) is equal to the mean number of simplices intersected by a plane in a tri-
angulation in EY. No bound has been proposed in literature for this value. Empirically
speaking, an acceptable estimate for this value is (’)(T(n)'d'i'l') with T'(n) the number of d-
simplex in the triangulation of n sites. Given T'(n) € O(n[%]+) in E4 space, we estimate here
SimplexWall(n) € C7(nd7_"'[%}+).

Under these assumptions and given the results in Subsection 3.2, we have:

Cpewan(n) € O(nlogn) + ke x O(n T 1) 12 Cpowan(n/2) (6)
Cpewau(n) € O(nlogn) + k, x O(n T ET) (7)

with &, the mean number of cells visited by MakeSimplex.
Under these assumptions, the DeWall algorithm results asymptotically optimal if k. € O(n'«ﬂ%ﬁ).
The empirical results obtained running our implementation of DeWall for E® space, and re-

ported in Section 5, verify this bound for &,.

Random dataset

(numb. of sites) 2000 4000 6000 8000 10000 20000
InCoDE 796 3620 8838 16242
DeWall 119 372 809 1292 1905 5930

InCoDE + Hash + UG 33 82 139 198 263 685
DeWall + Hash + UG 25 56 91 126 162 347

Table 1: Processing times, in seconds, required to triangulate the random dataset (Hash:using

hashing, UG:using 3D gridding).

4.2 Parallel DeWall

The parallelization of the DeWall algorithm is simplified, with respect to other D&C algorithms,
because of the pre-merging. A usual D&C algorithm requires two synchronization points: the
first at the partitioning of the input dataset, before process splitting, and the second at merging
time, when both the splitted processes terminate. In the case of the DeWall algorithm, data
partitioning and merging are performed in the same time stemp, and the two subprocesses can

then run in an asynchronous way. This implies simpler implementation and load balancing.

5 Results and empirical evaluation

The performances of the algorithms were tested on two classes of datasets.

The first class consisted of random datasets, built using a random number generator. The
distribution of the sites in the unitary cube is, therefore, nearly uniform.

In the second dataset group, the sites are organized in a number of bubbles with the density of
each site decreasing as the distance from the bubble center. The point locations in each bubble
are generated randemly.

For each dataset class and for each resolution (number of sites) a number of different dataset
were generated; the times reported in Tables 1 and 3 are the means of the run times measured
on each dataset.

Each time reported in Table 1 is the mean of the times on four different random datasets. The
machine used for timings was a SUN Sparcstation. As can be seen in the graph in Figure 7,

the optimized algorithims yield a near linear performance.

19

Some statistics on the execution of the DeWall algorithm on the random dataset are re-
ported in Table 2.
The total number of tetrahedra returned is considerably lower than the upper bound, O(n?):
it is linear with the number of sites (approximately 7 * n).
The number of tetrahedra in the first wall, SimplexWall(n), has been estimated in Subsec-
tion 4.1 as O(T(n.)%l): the experimental values reported in Table 2 verify this assumption
(with constant factor equal to 3).
The mean number of cells visited for the construction of each simplex is not constant but shows
a low Increase with the dataset resolution. This is due to the fact that, for each face f on the
Convex Hull(P) all of the cells contained in the positive halfspace of f have to be tested. The
simplices which do not lie on the Convex Hull(P), need on average a constant number of cell
tests. The increase in the mean number of cells visited is therefore justified by the increase
with n of the faces on the Convex Hull{ P). In Section 4.1 it has been stated that, under some

assumptions, DeWall results asymptotically optimal if k. € 0(712}[%]+). The empirical results

et

. . +
show that in £% k, < n#l8l" =5

Finally, the maximum number of sites per cell is reported in the last row of Table 2.

These results show how common computer graphics techniques (e.g. gridding used to give
an indexing scheme and therefore optimized point selection) can solve problems in computa-
tional geometry with great efficiency. As shown in Section 3.2 and 4.1 where some not proven
assumptions were used, the optimality of the DeWall algorithm from the viewpoint of asymp-
totic complexity is hard to prove. However, the experimental results are extremely interesting
and show an empirical complexity lower than O(nlogn) in E3.

Another way to empirically evaluate DeWall is to compare it with other implementations. Un-
fortunately, implementations and evaluations of E2 Delaunay triangulators are not so common;
the authors are only acquainted with one paper which reports timings and evaluation of a DT
implementation [3]. The paper reports on an incremental construction method which needs 220
sec. triangulate 1000 points on an IBM R6000, i.e. more than an order of magnitude slower

than the optimized DeWall (without considering differences in machine performances).

6 Concluding remarks

The paper has addressed the requirements of unstructured dataset rendering and has explained

the need for fast and general triangulation algorithms.

20

Time (sec.)

Random dataset

(numb. of sites)

2000

4000 6000

8000 10000 20000

total tetrahedra

12976

26257 39677

52974 66394 133490

first wall tetrahedra

1371

2113 2811

3330 3901 6059

cells visited

82 96

96 100 116

max no. of sites per cell

Table 2: Number of tetrahedra in the final triangulation, number of tetrahedra on the first simplex

wall, mean number of cells visited to build a single tetrahedra, and maximum number of sites per

cell.

Number of sites

800 ..
700 .-
600 -
500 -
400 -
300 ..
200 ..
100 ..

-+ InCoDe

=¥ DeWall

0

Number of sites

Figure 7: Graph of the algorithm timings: on the right the optimized timings.

21

Two different Delaunay triangulation algorithms have been presented. The second one is an

original solution to the Delaunay triangulation, based on the Divide and Conquer paradigm.

Optimization techniques are proposed and implemented. The timings presented show the ef-

fectiveness of the solution proposed.

The DeWall algorithm can easily be made parallel: each recursion in the Divide and Conquer

paradigm can be assigned to a different processor. The structure of the algorithm is well suited

for an implementation on a low grain parallel architecture (such as a shared memory MIMD

architecture or a workstation network).

References

(4

V. Akman, W.R. Franklin, M. Kankanhalli, and C. Narayanaswami. Geometric computing

and uniform grids tecnique. Computer-Aided Design, 21(7):410-420, Sept. 1989.

I Aurenhanumer. Voronot diagrams - a survey of a fundamental geometric data structure.

ACM Computing Survey, 23(3):345-405, September 1991.

[. Beichl and F. Sullivan. Parallelizing computational geometry: First steps. SIAM News,

24(6):1-17, 1991.

R.A. Dwyer. A faster divide and conquer algorithm for constructing delaunay triangula-

tions. Algorithmaca, 2:137-151, 1987.
KA. Frenkel. Volume rendering. Comm. ACM, 32(4):426-435, April 1989.

L.J. Guibas. Computational geometry and visualization: Problems at the interface. In
N.M. Patrikalakis, editor, Scientific Visualization of Physical Phenomena, pages 45-59.
Springer-Verlag, 1990.

L.J. Guibas, D. E. Knuth, and M. Sharir. Randomized incremental construction of delau-
nay and voronoy diagrams. In Lect. Note Comp. Science {43, pages 414-431. Springer-

Verlag, 1990.

H. Hedelsbrunner and N. R. Shah. Incremental topological flipping works for regular trian-
gulations. In Proceedings of the 8th Annual ACM Symposium on Computational Geometry,
pages 43-52, June 1992.

22

[9] A. Kaufman. Volume Visualization. IEEE Computer Society Press, Los Alamitos, CA,
1990.

(10] D.T Lee and B.J. Schachter. Two algorithms for constructing a delaunay triangulation.

Int. J. of Computer and Information Science, 9(3):219-242, 1980.

[11] A. Maus. Delaunay triangulation and the convex hull of n points in expected linear time.

Bit, 24:151-163, 1984.

(12] D.H. McLain. Two dimensional interpolation from random data. The Computer J.,

19(2): 178181, 1976.

[13] C. Narayanaswami. Parallel Processing for Geometric Applications. PhD thesis, Rensse-

laer Polytechnic Institute, Troy, NY, December 1990.

(14] F.P. Preparata and M.I. Shamos. Computational Geometry - An Introduction. Springer-
Verlag, 1985.

23

