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We theoretically study the behavior of the critical current of a thermally-biased tunnel Josephson
junction with a particular design, in which the electrodes of the junction are enclosed in two different
superconducting loops pierced by independent magnetic fluxes. In this setup, the superconducting
gaps can be modified independently through the magnetic fluxes threading the loops. We investi-
gate the response of the device as a function of the magnetic fluxes, by changing the asymmetry
parameter, i.e., the ratio between the zero-temperature superconducting gaps δ = ∆10/∆20, and
the temperatures of the two rings. We show a magnetically controllable step-like response of the
critical current, which emerges even in a symmetric junction, δ = 1. Finally, we discuss the optimal
working conditions and the high response of the critical current to small changes in the magnetic
flux, reporting good performances of a magnetic flux-to-critical current transducer, with a high
transfer function that depends on the operating point, the temperature gradient, and the quality of
the junction.

I. INTRODUCTION

Recently, thermal transport at the nanoscale and
the research field of superconducting phase coherent
caloritronics are attracting interest [1–10] due to the im-
portance for the whole field of quantum technologies and
quantum computing. In this context, it was recently
argued that the Josephson transport [11–14] across a
superconductor-insulator-superconductor (SIS) Joseph-
son junction (JJ), formed by different superconductors
residing at different temperatures, can show unexpected,
and quite peculiar, features. For example, strong nonlin-
ear temperature biases can cause a spontaneous breaking
of the particle-hole symmetry, generating even a bipolar
thermoelectric effect, when Josephson coupling is sup-
pressed [15, 16]. Intriguing phenomena have been pre-
dicted also in the Josephson transport, such as a sudden
variation of the critical current in response to a tempera-
ture bias [11]. Surprisingly, the critical current can even
increase with the temperature, thus suggesting to ap-
ply this phenomenon for a wide-band threshold calorime-
ter [12].

All the cases described so far underline the importance
of the alignment mechanism of the two superconducting
singularities in the density of state (DOS) and its anoma-
lous components. This matching of the singularities can
be triggered by different mechanisms determined by tem-
peratures [11], biasing [15], and/or exchange fields [17].

In this work, we propose an alternative device config-
uration, shown in Fig. 1, formed by enclosing each elec-
trode around a superconducting ring, and then tunnel
coupling the electrodes. In this way, the magnetic flux
through these loops gives an effective way to affect the
superconducting gaps.

The main aim of this work is to show the feasibility

(and the benefits) of controlling the non-dissipative char-
acteristics of a junction under thermal gradient, by using
a most convenient “knob”. Furthermore, we evince the
non-trivial experimental advantage of being able to ob-
serve the phenomenology demonstrated in Ref. [11] in a
superconducting system made of only one type of mate-
rial. In this way, it will be possible to access the wide
range of parameters with just one device, instead of using
many.

Tuning the device response by manipulating only the
magnetic flux would be useful for verifying experimen-
tally the reported effect, since typically the precise han-
dling of the temperature gradient is rather demanding. In
particular, we show how to magnetically control the step-
like response of the critical current, and how the effect
of a loop area asymmetry reflects on its tunability. The
feasibility of mastering thermal transport in Josephson
devices via external magnetic fluxes was already exten-
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FIG. 1. Schematic of the device. The electrodes are formed
by superconducting loops interrupted by small proximized re-
gions, which are tunnel-coupled through an insulating barrier
(yellow). The left, S1, and right, S2, loops reside at differ-
ent temperature, T1 and T2, respectively, and are pierced by
independent magnetic fluxes Φi(with i = 1, 2).
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sively demonstrated in different cases [18–24]. Finally,
the proposed setup can operate also at a quite low tem-
perature, thus significantly simplifying the experimental
demand to verify the effect.

The paper is organized as follows. In Sec. II, we study
the behavior of the critical current by varying the mag-
netic fluxes driving of the device, at different values of
the ratio between the critical temperatures of the two
superconductors, both in the symmetric and asymmetric
case. In Sec. III, we introduce the working principles of
a magnetic flux-to-critical current transducer based on a
temperature-biased device, describing also a simple mea-
surement setup. In Sec. IV, the conclusions are drawn.

II. THE CRITICAL CURRENT

The specific setup discussed in this paper is partially
inspired by the superconducting quantum interference
single-electron transistor (SQUISET) [25–28]. The latter
is composed by two identical superconducting quantum-
interference proximity transistors [29], playing respec-
tively the role of source and drain electrodes and pierced
by different magnetic fluxes. Recently, a magnetome-
ter [30] and a thermal diode [31] based on a SQUISET
were proposed. In such a setup, the superconducting
rings are closed by short normal regions, where supercon-
ducting correlations affect locally the weak-link through
the proximity effect. Indeed, a phase difference in the
ring induces a strong modification of the spectrum of the
island, where a minigap is opened [32, 33]. The loop
geometry enclosing the superconducting electrode makes
it possible to change the phase difference ϕ across the
normal island through external magnetic fields. Thus,
in the case of a short N region satisfying the condition
Eth � ∆, where Eth = ~D/L2 is the Thouless energy,
with D and L being the diffusion constant and length of
the region, respectively, both the DOS and the anoma-
lous Green’s function (AGF) can be written in a quite
compact form [32, 34, 35].

In our double-loop configuration, we envisage a tun-
nel barrier connecting the centers of the two proximized
wires [36], so that we can simply assume a BCS-like spec-
trum with a flux-dependent gap like

∆Φ(Tj ,Φj) = ∆j(Tj) |cos (πΦj)| . (1)

This means that the spectral properties of the two elec-
trodes of the tunnel JJ can be tuned via the external
magnetic fluxes Φj through the ring areas.

A tunnel junction formed by different BCS supercon-
ductors S1 and S2, with energy gaps ∆1 and ∆2 and re-
siding at temperatures T1 and T2, can support a Joseph-
son current [37, 38] with a maximum value given by the

relation [39, 40]

Ic =
1

2eR

∣∣∣∣∣
∫ ∞
−∞

{
f1 (ε)Re [F1(ε)] Im [F2(ε)]

+f2 (ε)Re [F2(ε)] Im [F1(ε)]
}
dε

∣∣∣∣∣. (2)

Here, R is the normal-state resistance of the junction and
fj (ε) = tanh (ε/2kBTj). In the center of a proximized
flux-controlled electrode, the AGF reduces to [41]

Fj(ε) =
∆Φ(Tj ,Φj)√

(ε+ iΓj)
2 −∆Φ(Tj ,Φj)

(3)

We included the phenomenological Dynes parameter
Γj = γj∆j0 [42], with ∆j0 = 1.764kBTcj being the zero-
temperature superconducting BCS gap [43] and Tcj is
the critical temperature. The Dynes parameter [42, 44]
would effectively describe a lifetime broadening, and it
phenomenologically reproduces the smearing of the I-
V characteristics at low voltages [45]. In fact, a non-
negligible γj introduces states within the gap, |ε| < ∆j ,
in contrast with the ideal BCS case [46, 47]. In this
work we assume quite good quality junctions, where
γ1 = γ2 = γ ∈ [10−3 − 10−4] [48–50].

According to Eq. (2), the critical current of a
temperature-biased tunnel JJ depends strongly on the
superconductors forming the device, so that it is useful
to define a gap-asymmetry parameter

δ =
∆10

∆20
=
Tc1
Tc2

. (4)

A suitable gap-asymmetry has been achieved by
using electrodes formed by a proximity-coupled
superconductor-normal metal bilayer [51], in order
to fine tune the critical temperature of the film, for
example by appropriately adjusting the film thickness.
Unfortunately, in such a case, to change the gap asym-
metry one needs to grow another sample, so fine-tuning
through the magnetic fluxes discussed below is certainly
experimentally very advantageous.

For the sake of clarity, we use in this work a notation in
which a tilde over a letter labels a dimensionless, normal-
ized quantity. In particular, the quantities Φ̃j = Φj/Φ0

(with Φ0 = h/2e being the magnetic flux quantum) and
T̃j = Tj

/√
Tc1Tc2 are the normalized magnetic flux and

the normalized temperature of the j-th ring, respectively,
and Ĩc = 2eR√

∆10∆20
Ic = 2e

√
δR

∆10
Ic is the normalized critical

current of the device [52].
As already shown in Ref. [11], a temperature gradi-

ent across a JJ formed by different superconductors, i.e.,
with δ 6= 1, may affect its critical current in such a way to
induce a steeper response. In particular, a critical current
“jump” occurs when the electrodes reside at the temper-
atures at which the BCS gaps coincide and the singular-
ities of the AGFs in the two superconductors match [41].
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FIG. 2. Normalized critical current as a function of the normalized magnetic fluxes Φ̃1 and Φ̃2, at δ = 1, T̃1 = 0.1, γ = 10−3,
and T̃2 = 0.1, 0.5 and 0.9, see panels (a), (b), and (c), respectively. The horizontal short-dashed lines indicate the Φ̃1 values at
which the curves in panels (d), (e), and (f) are calculated, while the vertical long-dashed lines indicate the Φ̃2 values at which
the curves in panels (g), (h), and (i) are calculated. The legend in panel (d) refers also to panels (e) and (f), while the legend
in panel (g) refers also to panels (h) and (i).

This phenomenon is the non-dissipative counterpart of
the peaks observed in the quasiparticle charge and heat
current flowing through a voltage-biased S1-I-S2 junc-
tion [41, 50, 53–56], both determined by the alignment
of the gap singularities of the BCS superconductors [41].
In Ref. [11] it was demonstrated that a requirement to
observe this peculiar Ic behavior is maintaining a tem-
perature bias across the device. In other words, in these
researches the fine control of temperatures is strictly nec-
essary to observe the phenomenon. Instead, in our setup
this quite demanding requirement can be relaxed through
the alternative proposed design, which allows to accu-
rately tune the superconducting gap separately. In fact,
in the place of temperatures, the magnetic fluxes can be
used to control the matching of singularities in the AGF,
which gives rise to the critical current jumps. Moreover,
the magnetic control of superconducting gaps makes it
possible to observe the step-like response of Ic, always
provided that a temperature gradient is present, even
for identical zero-temperature gaps, i.e., δ = 1, in other
words, in a device formed by electrodes of the same ma-
terial.

So, in short, we point out that the crucial difference

between our device and a SQUISET is that the two prox-
imized regions are tunnel-coupled through an insulating
barrier, see Fig. 1, instead to be coupled to the Coulomb-
blockaded island. For our setup, the critical current of
the device is still given by Eq. (2), but the supercon-
ducting gaps depend on the magnetic fluxes according
to Eq. (1). Consequently, the dependence on the mag-
netic flux of the gaps is reflected first on the AGFs Fj ,
see Eq. (3), and then on the critical current Ic. Assum-
ing the independent control of the magnetic fluxes [57]
or alternatively considering two different loop areas, we
can investigate the system response as a function of the
external magnetic flux. In this way, it possible to observe
the anomalous Ic response also when the rings are made
by the same superconductor, as discussed in the following
section.

A. The symmetric-gap case (δ = 1)

In this section we assume that the rings are made by
the same superconductor, i.e., δ = 1. As we said, this
condition cannot be considered in previous works [11, 12].
Figure 1 shows a possible experimental realization of the
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FIG. 3. (a) Normalized critical current as a function of δ and
Φ̃2. (b) Normalized critical current as a function of Φ̃2 at
different values of δ. Both panels are obtained for Φ̃1 = 0.1,
T̃1 = 0.1, T̃2 = 0.7, and γ = 10−3.

proposed device, where we indicate the magnetic fluxes,
Φ1 and Φ2, piercing the superconducting rings S1 and
S2, which reside at temperatures T1 and T2, respectively.

The density plots in Fig. 2 describe the behavior
of the normalized critical current, Ĩc, as a function of
the normalized magnetic fluxes, Φ̃1 and Φ̃2, consider-
ing normalized temperatures equal to T̃1 = 0.1 and
T̃2 = 0.1, 0.5, and 0.9, see panels (a), (b), and (c), re-
spectively [58]. In all these density plots we observe that
when Φ̃j = 0.5 the critical current is totally suppressed,
since in this case ∆Φ → 0, see Eq. (1) [59].

For comparison, we report first the results obtained
assuming no thermal gradient across the system, i.e.,
T̃1 = T̃2 = 0.1, see Fig. 2(a). In this situation, a mag-
netic flux change produces only a modulation of Ĩc due
to the gap closing, without the appearance of any jumps
[see also Figs. 2(d) and (g)].

Conversely, the density plot in Fig. 2(b), which is ob-
tained by increasing T̃2, shows an abrupt change in color,
i.e., a transition from light to dark shades of blue, which
indicates a sudden change of the critical current. This
phenomenon is highlighted in panel Fig. 2(e), where three
selected profiles of Ĩc as a function of Φ̃2 for different
Φ̃1’s are shown as well. The situations plotted in this
figure corresponds to the horizontal short-dashed lines in

Fig. 2(b). All curves show a step-like response of Ĩc at
specific values of the magnetic flux Φ̃2 = Φ̃∗2. In panel (h)
we show three other selected profiles of Ĩc as a function of
Φ̃1 for fixed Φ̃2 values, which correspond to the vertical
long-dashed lines in Fig. 2(b). In this case we observe
a critical current jump, but these curves behave differ-
ently with respect that in Fig. 2(e). Indeed, the profiles
in Fig. 2(e) and (h), i.e., Ĩc vs Φ̃2 and Ĩc vs Φ̃1, re-
spectively, demonstrate that Ĩc(Φ̃∗2) reduces at the jump,
while Ĩc(Φ̃∗1) increases at the jump.

From the density plot in panels (b) and (c) we also note
that the critical current undergoes a jump only within
specific Φ̃1 range of values. To understand why in some
cases the step-like behavior does not emerge, we remind
that this phenomenon stems from the alignment of the
singularities in the AGFs Fj . In other words, making
explicit the magnetic flux dependence, a jump appears
only when

∆1(T̃1)
∣∣∣cos

(
πΦ̃1

)∣∣∣ = ∆2(T̃2)
∣∣∣cos

(
πΦ̃2

)∣∣∣ . (5)

In Fig. 2(b) white dashed lines mark the (Φ̃∗1, Φ̃
∗
2) cou-

ples of values solving this equation; these values, i.e., the
“positions” of the jumps, depend on both the working
temperatures and the gap asymmetry. Conversely, for
those fluxes for which Eq. (5) cannot be satisfied, the
critical current shows no jumps.

B. The asymmetric-gap case (δ 6= 1)

Is is intriguing to discuss also how the gap asymmetry δ
affects the behavior of the critical current, i.e., assuming
that the electrodes are made by different superconduc-
tors, still keeping a temperature gradient between them.
This is illustrated in Fig. 3(a), for T̃1 = 0.1 and T̃2 = 0.7.
Here, we show how Ĩc depends on δ and Φ̃2, when Φ̃1 is
kept fixed, e.g., Φ̃1 = 0.1. We note first that for this Φ̃1

value in the symmetric-gap case (δ = 1) Ĩc presents no
jumps, see Fig. 2. Instead, reducing the asymmetry, we
can find matched cases that solve Eq. (5): in fact, below
a certain δ value, i.e., δ . 0.9, we observe that Ĩc(Φ̃2) un-
dergoes two jumps. For strong asymmetries, i.e., when
δ → 0, the positions of these two Ic jumps shift towards
Φ̃2 = 0.5. This behavior is better illustrated in Fig. 3(b),
were we highlight some selected Ĩc(Φ̃2) profiles obtained
at different δ.

C. The asymmetric-ring area case

In the previous sections, we assumed two independent
magnetic fields piercing the superconducting rings. This
strategy, although offering the control upon two indepen-
dent degrees of freedom, is demanding from the point of
view of the device fabrication, which has to include two
independent local coils. For this reason we discuss here
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FIG. 4. Normalized critical current as a function of δ and Φ in the case of asymmetric area loops, with the ratio between the
loops areas equal to α = {0, 0.25, 0.5, 0.75, 1}. The values of the other parameters are: T̃1 = 0.1, T̃2 = 0.7, and γ = 10−3.

a simpler realization, which takes advantages on the fact
that the loop areas may be different. In this way, the de-
vice can be controlled by a single magnetic field threading
the areas Aj of both superconducting rings, as in the case
investigated in Ref. [27]. In this case, we can conveniently
define the area-asymmetry parameter

α =
A1

A2
=

Φ̃1

Φ̃2

. (6)

Once a temperature gradient is established, the only re-
maining control parameter is the common magnetic field
piercing the superconducting ring areas, i.e., Φ̃ = Φ̃1 =

α Φ̃2.
Figure 4 presents a collection of density plots showing

the normalized critical current Ĩc, in the case of loops
with different areas threated by the same magnetic field,
as a function of the control flux Φ̃ at different values of
the gap asymmetry δ. The temperature bias is kept fixed
and the density plots are obtained assuming different area
asymmetries α. Interestingly, the condition α = 0 implies
a zero area A1 of the ring S1. In other words, this is
equivalent to replace the loop geometry with a simple
superconducting stripe for the cold electrode. On the
opposite side, imposing α = 1 means taking two rings
with the same area. Thus, density plots in Fig. 4 serve
to highlight the Ĩc(Φ̃, δ) transition from the single-loop
design, see Fig. 4(a) for α = 0, to the identical-loops
design, see Fig. 4(e) for α = 1.

We observe that even in the single-loop device the crit-
ical current behaves peculiarly, see Fig. 4(a). Then, as α
increases, the density plot becomes more and more asym-
metric in Φ̃. In particular, the right side of the contour
plot, i.e., for Φ̃ > 0.5, tends to evidently distort when
α 6= 0. Conversely, the left side of the contour plot, i.e.,
for Φ̃ < 0.5, seems to be significantly affected by α only
when it is very close to 1. Interestingly, for α = 0.75 a
new kink appears in the Ĩc profiles [see the red dashed
line in Fig. 4(d)]. The kinks in Fig. 4 occur in correspon-
dence of that fluxes that make the cos(πΦ) or cos(απΦ)
terms zero. Thus, for α = 0.75 these are centered in
Φ = 1/2 and Φ = 1/(2α) ∼ 0.67.

Finally, in the identical-loops design, i.e., α = 1, no
jumps are observed changing Φ̃, see Fig. 4(e). However,
in this figure, we observe a clear change in the Ĩc behav-
ior, which is demonstrated by the light-to-dark transition
of the density plot texture, at δ ' 0.87. Even this thresh-
old gap asymmetry can be evaluated as that value that
satisfies Eq. (5), at a given temperature gradient.

III. FLUX-TO-CRITICAL CURRENT
RESPONSE

The physical effects described so far could promptly
find an application as a high sensitivity magnetic flux-
to-critical current transducer. In this section we look at
the performance of the device by adjusting the system
parameters. In particular, we expect the steep change
in the critical current to result in a very high sensitivity
for detecting small flux changes. Indeed, a tiny variation
of the magnetic flux Φ̃j induces a huge variation of the
critical current.

When the device is employed as a magnetic flux-to-
current transducer, an important figure of merit is the
flux-to-current transfer function, defined as the deriva-
tive of the critical current with respect to the driving
magnetic flux (critical current responsivity) [60–63]

ĨΦ̃j
=

∣∣∣∣∣ ∂Ĩc∂Φ̃j

∣∣∣∣∣ . (7)

Since Ĩc and Φ̃j are normalized quantities, in non-
normalized units the transfer function is

IΦj
=

1

2eΦ0

∆10√
δR

ĨΦ̃j
. (8)

In the case of a symmetric Nb-junction, Tc1 = 9.2 K
and δ = 1, with R = 10 kΩ, one obtains ∆10

2eΦ0

√
δR
'

0.07 µA/Φ0, representing the unit of measure of the
transfer function. Moreover, we can also investigate the
height of the critical current jump, ∆Ĩc, as a function of
the various system parameters [64].
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FIG. 5. Flux-to-current transfer functions ĨΦ̃2
at different

values of Φ̃1. The values of the other parameters are: δ = 1,
T̃1 = 0.1, T̃2 = 0.5, and γ = 10−3. The vertical dashed lines
indicate the magnetic fluxes Φ̃∗

2 at which Ic jumps. The max-
imum transfer function, i.e., the ĨΦ̃2

value at the Ĩc jump,
approaches the values Ĩmax

Φ̃2
' {11, 160, and 220} at the driv-

ing fluxes Φ̃1 = {0.1, 0.3, and 0.4}, respectively.

In the following, we consider a device formed by iden-
tical superconductors, i.e., δ = 1, and the independent
control of the magnetic fields. We discuss only the fig-
ures of merit in the case of a monotonic variation of Ĩc
at the jump, e.g., the Ĩc vs Φ̃2 curves in Fig. 2(e) [65].
This means to use the magnetic flux Φ̃1 only as a control
knob to tune the position of the optimal working point
of the device.

In Fig. 5 we present the ĨΦ̃2
profiles obtained by nu-

merical differentiation of the data shown in Fig. 2(e). As
expected, the transfer function is highly peaked in corre-
spondence of each Ic jump, that is when Φ̃2 = Φ̃∗2 (these
values are marked by vertical dashed lines). A magne-
tometer done with feedback loop kept at the optimal op-
erating point promises a very high transfer function and,
correspondingly, a very high sensitivity [63].

Certainly, the height of the ĨΦ̃2
peaks depends on the

steepness of the jump, which in turn depends on its “po-
sition”, Φ̃∗2, that is on the value of the driving flux Φ̃1.
In fact, from Fig. 5(a) one could figure out that when Φ̃1

tends to the value 0.5, also Φ̃∗2 → 0.5. In this case, the
jump of Ĩc becomes more sharp, thus making its deriva-
tive larger. However, we can reasonably expect that Ĩmax

Φ̃2

vanishes for Φ̃1 = 0.5, since at this magnetic flux the
superconducting gap is suppressed. This suggests that
one can search the optimal flux value as the Φ̃1 value at
which the sensitivity reaches a maximum. Similarly, we
can look for the optimal working temperatures, such as
the temperatures that maximize the sensitivity. Thus, we
show in Fig. 6(a), (b), and (c) the behavior of both the
maximum transfer function, Ĩmax

Φ̃2
, (left axis, red sym-

bols) and the height of the critical current jump, ∆Ĩc,
(right axis, blue symbols) as a function of Φ̃1 (at fixed
T̃2 = 0.65 and T̃1 = 0.1), T̃2 (at fixed T̃1 = 0.1 and
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FIG. 6. Maximum flux-to-current transfer function Ĩmax
Φ̃2

(left

axis, red symbols) and height of the critical current jump ∆Ĩc
(right axis, blue symbols) versus: (a) Φ̃1 at fixed T̃2 = 0.65

and T̃1 = 0.1; (b) T̃2 at fixed Φ̃1 = 0.38 and T̃1 = 0.1; (c)
T̃1 at fixed Φ̃1 = 0.38 and T̃2 = 0.65. The insets show the
position, Φ̃∗

2, of the Ĩc jump. The other parameters are δ = 1
and γ = 10−4.

Φ̃1 = 0.38), and T̃1 (at fixed T̃2 = 0.65 and Φ̃1 = 0.38),
respectively, setting δ = 1 and γ = 10−4.

Both Ĩmax
Φ̃2

and ∆Ĩc vs Φ̃1, see Fig. 6(a), behave non-

monotonically. At low Φ̃1, the Ĩc jump is quite smooth
being placed close to Φ̃∗2 ∼ 0 [see the inset of Fig. 6(a)],
but despite this its height ∆Ĩc is still sizable. On the
other side, for Φ̃1 → 0.5 the jump position tends to Φ̃∗2 →
0.5, so that the critical current tends to vanish due to the
reduced gap, and both Ĩmax

Φ̃2
and ∆Ĩc tend to zero.

A non-monotonicity characterizes also the Ĩmax
Φ̃2

vs T̃2

curve in Fig. 6(b), whereas ∆Ĩc tends to increase with T̃2.
Clearly, both figures of merit vanish for low T̃2’s, since
for T̃2 = T̃1 there is no thermal gradient along the system
and, thus, no critical current jump. On the other side,
at large T̃2 values the jump position Φ̃∗2 shifts towards
zero, see the inset of Fig. 6(b), thus making the Ĩc step
smoother, but still sizable: this is why ∆Ĩc remains quite



7

FIG. 7. Flux-to-current transfer function ĨΦ̃2
as a function

of Φ̃2 at different values of the Dynes parameter γ, at a fixed
Φ̃1 = 0.38. The magnetic flux Φ̃∗

2 at which Ĩc shows a jump is
highlighted. In the inset: Maximum flux-to-current transfer
functions Ĩmax

Φ̃2
(i.e., calculated at Φ̃2 = Φ̃∗

2) as a function of

γ. (b) Fitting parameter k as a function of Φ̃1, see Eq. (9).
The other parameters are: δ = 1, T̃1 = 0.1, T̃2 = 0.65.

large even at high T̃2 values.
Finally, increasing T̃1, see Fig. 6(c), both Ĩmax

Φ̃2
and ∆Ĩc

show a plateau at low T̃1 and then reduce until vanish-
ing for T̃1 = T̃2. This is clearly due the fact that low-
ering the thermal gradient reduces the critical current
jump [11]. We observe also that the jump position Φ̃∗2 is
only weakly affected by a change of T̃1, as shown in the
inset of Fig. 6(c).

In summary, the flux-to-current transfer function Ĩmax
Φ̃2

of a symmetric device, i.e., with δ = 1, can be maximized
by making the electrodes to reside at the temperatures
T̃2 ' 0.65 and T̃1 ' 0.1 and setting the driving magnetic
flux to the value Φ̃1 ' 0.38. In this case, Ĩmax

Φ̃2
∼ 2500,

that, in non-normalized units and assuming Tc1 = 9.2 K,
δ = 1, R = 10 kΩ, and γ = 10−4, is equal to Imax

Φ2
∼

175 µA/Φ0 [66].
Since the sensitivity of the device essentially relies

upon the sharpness of the Ĩc jump, it in turn depends
also on the value of the phenomenological Dynes’s pa-
rameters [11]. Thus, in Fig. 7(a) we show the behavior of
ĨΦ̃2

vs Φ̃2 in a neighborhood of a jump, at a few values of
γ and T̃1 = 0.1, T̃2 = 0.65, and Φ̃1 = 0.38. As expected,
the lower γ, the more peaked is ĨΦ̃2

: in particular, as
it is demonstrated clearly in the inset of Fig. 7(a), the

FIG. 8. Readout scheme including a dc SQUID.

maximum transfer function decreases by increasing γ as

Ĩmax
Φ̃2
' k

γ
(9)

(see Appendix A for more details about the origin of
the 1/γ dependence of the critical current responsivity).
From the fit of the data in the inset of Fig. 7(a) we ob-
tain the value k ' 0.26. Being the fitting coefficient k in
Eq. (9) a function of the jump position, a given driving
flux Φ̃1 matches a specific value of k, see Fig. 7(b). There-
fore, according to Eq. (9), an experimental measurement
of the transfer function at the matching conditions could,
in principle, give an estimate of the Dynes parameter γ.

Finally, we observe that the information content we are
interested in can be extracted through a scheme, depicted
in Fig 8, that uses a standard dc-SQUID, drawn in gray in
the figure, along the lines of the readout strategy for prox-
imity Josephson sensors discussed in Ref. [67]. In such a
scheme the current flowing in the inductance L is changed
when the critical current Ic in the double-ring device
is modified. In fact, a constant bias current Ib divides
into two parts, i.e., one flowing through the double-ring
branch and the other (IL) through a load inductor (L),
which is mutually coupled to the dc SQUID. The varia-
tion of the critical current Ic produces a large enhance-
ment of the Josephson kinetic inductance LK = ~/(2eIc),
which in turn results in a modification of IL, thus pro-
ducing a magnetic field which is detected by the SQUID.
Other schemes, which resort to dispersive measurements,
are also possible, but we do not investigate them further.

In conclusion, we observe that the flux-to-critical-
current transducer discussed in this work shares the same
applicative contexts of SQUIDs and phase coherent am-
plifiers. Here, the key figure of merit is the flux-to-current
response function, which in a simple SQUID typically de-
pends only on the critical currents and the asymmetry
between the two embedded JJs; these physical parame-
ters are fixed and given by the device-specific implemen-
tation. Instead, in our case we have demonstrated that
the figure of merit can be “controlled” also by the temper-
ature gradient, the Dynes parameters, or simply by fix-
ing the operating point tuning the controlling flux. This
feasibility to adjust the flux-to-current response is a cru-
cial advantage when the dispersive detection is eventually
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adopted. We are confident that the control flexibility of
this device may be beneficial in different context, such as
the phase coherent amplification or even in the quantum
sensing of temperature and/or temperature gradient.

IV. CONCLUSIONS

In conclusion, in this paper we explored the behav-
ior of the critical current, Ic, of a Josephson device with
a very specific design. In fact, we considered a tunnel
Josephson junction formed by proximized electrodes en-
closed in two different superconducting loops pierced by
independent magnetic fluxes, which allow the indepen-
dent tuning of the superconducting gaps. We discussed
the device response by changing both the temperatures of
the electrodes and the ratio, δ, between the critical tem-
peratures of the superconductors. In particular, at a fixed
temperature bias, we discuss the step-like response of Ic
when the system is driven by magnetic fluxes at which
the BCS superconducting gaps coincide. Markedly, un-
like the asymmetrical junction case discussed in Ref. [11],
this peculiar step-like response appears even in a sym-
metric device, that is formed by electrodes of the same
material, i.e., δ = 1.

We also discussed the optimal working conditions to in-
crease the transfer function of a magnetic flux-to-critical
current transducer, considering even the relevant figures
of merit. In this case, we also illustrated how the value of
the Dynes parameter in the superconductors influences
the sharpness of the Ic transition, being an important
factor to increase the sensitivity.

The proposed setup can be imaged as a novel super-
conducting flux transducer [63], where the sensitivity to
magnetic fluxes is determined by non-equilibrium tem-
perature conditions. The feasibility of controlling the
superconducting gaps, and therefore the transport prop-
erties, by means of magnetic fluxes allows to relax the
rather tight requirement of fine tuning of the tempera-
tures of the two electrodes previously discussed [11, 12].
Indeed, once a temperature difference across the system
has been established, we only need to adjust the mag-
netic fluxes to properly establish the operating point, so
to highlight the steep jump of the critical current. Fur-
thermore, we can search for the best conditions that give
a more abrupt response, or a more intense jump, simply
by changing the magnetic flux, thus making the proposed
device flexibility very appealing.

Finally, although the showed peculiar response of the
critical current has only been discussed theoretically and
it was not yet observed experimentally, we should note
that under similar (not identical) conditions (i.e., an
asymmetric temperature biased junction) a thermoelec-
tric effect on the quasiparticle current [15] has been re-
cently observed experimentally [51]. However, in this
case the focus is on the dissipative current, whereas the
Josephson current must be suppressed. So, even if there
is still not a “fine” temperature control, in the proposed
setup we think the line is traced and we hope that the

Josephson current can be soon investigated. Our pro-
posal offers a possible experimental route to verify the
effect without the requirement of highly detailed control
of the junction electrode temperatures.

Appendix A: Scaling of the critical current
responsivity, the role of γ

In this section we delve into the role of the Dynes pa-
rameter, with a focus on the origin of the scaling of the
transfer function Eq. (9) with γ around the matching
point.

Actually, in our work we have chosen γ values lying in
a range often used for good quality superconducting sys-
tems; moreover, these values seem to predict well the be-
havior of quasiparticle current in realistic device. Despite
its phenomenological nature, the Dynes-like picture has
been shown to give an excellent match for experimentally
observed DOS in a wide variety of diverse superconduct-
ing systems. However, at the moment there is not enough
information on its value, at least from the behavior of
the non-dissipative current. Thus, the measurement of
the device proposed in this work could potentially shed
light also on the role of this phenomenological parameter
in the non-dissipative regime.

In the inset of Fig. 7(a), we observed that the deriva-
tive of the critical current with respect to the driving
magnetic flux,

∣∣∣ ∂Ĩc
∂Φ̃j

∣∣∣, when the other magnetic flux (Φ̃i)
is kept fixed, scales as 1/γ when the superconducting
gaps coincide, see Eq.(1). Firstly, we note that the criti-
cal current can be written as the sum of two terms, i.e.,
Ic = Iij + Iji, with i, j = 1, 2, where

Iij =
1

2eR

∫ ∞
−∞

fi (ε)Gij(ε,∆i,∆j)dε, (A1)

fi (ε) = tanh (ε/2kBTi), and we have defined the function
Gij(ε,∆i,∆j) = Re [Fi(ε,∆i)] Im [Fj(ε,∆j)] in terms of
the AGFs and stressing the role of the superconducting
gaps.

At the matching point, ∆i = ∆j = ∆, it is convenient
to express the energies in terms of ∆, such as ε = ε/∆,
and the current in unit of ∆/(2eR). In this case, the
product between real and imaginary parts of the AGFs
reduces to a simple combination of Lorentzian functions:

G0(ε) =
γ

4

[
1

γ2 + (ε− 1)2
− 1

γ2 + (ε+ 1)2

]
. (A2)

This simple expression holds only for a specific case, i.e.,
at the matching point, so it tells us nothing about how
the critical current behaves when the gaps slighlty differ,
for example due to a magnetic flux modulation. To bet-
ter explore this situation, it is convenient to expand Gij
and Gji around the matching-gap condition, by setting
∆i = ∆ and expanding ∆j = ∆(1 + D). In this way, in
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FIG. 9. Ic(T+, T−, 0) versus γ, with T± = T ± δT/2, at T =
0.4 and δT = {0, 0.2, 0.4}.

normalized units, one can write

Gij(ε,D) ' G0(ε) + ∂DG+ D (A3)
Gji(ε,D) ' G0(ε) + ∂DG− D (A4)

where

∂DG± =
i

4

(
1√

(ε+ iγ)2 − 1
± 1√

(ε− iγ)2 − 1

)
(A5)

×

(
(ε+ iγ)2

[(ε+ iγ)2 − 1]
3/2
∓ (ε− iγ)2

[(ε− iγ)2 − 1]
3/2

)
.

Indicating, for the sake of convenience, the temperatures
(Ti, Tj) as (T+, T−), the critical current can be approxi-
mated as

Ic (T+, T−,D)'Ic,0(T+, T−)+D
∑
s=±

δIs(Ts)+O(D2),(A6)

where

Ic,0(T+, T−) =

∫ ∞
−∞

G0(ε) [f(ε, T+) + f(ε, T−)] dε (A7)

δI±(T±) =

∫ ∞
−∞

∂DG± f(ε, T±)dε. (A8)

Interestingly, Ic(T+, T−, 0) depends very little on γ, see
Fig. 9 where we set T± = T ±δT/2 and we vary δT . This
behavior reflects the general fact that at the matching
point the value of the critical current is weakly depen-
dent on γ. See, for example, Fig. 4 of Ref. [11], where
one gap deviates from the matching condition due to the
temperature change of a superconducting electrode. This
happens also when the variation of the gap is due to a

change in the magnetic flux, see Eq. (1), as considered in
the present case.

In the low-temperature limit, T � ∆, the tanh (ε/T )
can be approximated with the sgn (ε) function, so that
the integrals δI±(T±) can be even solved analytically.
Anyway, in the absence of a temperature gradient, i.e,
T+ = T− = T , one finds that δI+(T ) + δI−(T ) ' π/2.
This means that the change of the critical current from
the matching condition value is independent from the
Dynes parameter, at least in the range of γ values phys-
ically relevant and considered in the manuscript.

In order to observe the steep-like behavior of Ic, a
temperature gradient across the system is necessary, i.e.,
T+ 6= T−. So, it is interesting to investigate if the pres-
ence of a temperature gradient can eventually determine
also the reported γ-scaling. Thus, to retrieve it, we
can first look separately at the behavior of the functions
δI±(T±). Using again the approximation tanh (ε/T±) ∼
sgn (ε) we can calculate the δI± analytically, thus allow-
ing us to immediately appreciate how they vary with γ

δI± '
1

2γ

[
πγ − 2γ tan−1(γ)

2
+
γ2 ± 1

γ2 + 1

]
=
I±(γ)

γ
, (A9)

where the functions I±(γ) ' 1/2 + O(γ)2 are almost
constant for small γ values (that is, in non-normalized
units, for a Dynes parameter much smaller than the su-
perconducting gaps). Finally, when adding the δI± con-
tributions into Eq. (A6), in the presence of a temperature
gradient the 1/γ scaling in the critical current survives, as
discussed in the main text. To conclude, we stress that
Eq. (A9) has been derived assuming a deviation from
the matching condition, regardless of what may cause
this modulation. Thus, the result obtained is general,
being valid whether we consider the effect of tempera-
ture [11], magnetic flux changes, or any other mechanism
that could affect the superconducting gap.
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.
[66] We additionally stress that the sensitivity can be fur-

ther optimized by assuming an asymmetric device, that
is made by different superconductors. In fact, the value
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