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Abstract

To build more accurate and trustworthy artificial intelligence algorithms in deep learning, it is  

essential to understand the mechanisms driving classification systems to identify their targets. 

Typically, post hoc methods provide insights into this process. In this preliminary work, we shift 

the reconstruction of the class activation map to the training phase to evaluate how the model's 

performance changes compared to standard classification approaches. The MNIST dataset and its 

variants, such as Fashion MNIST, consist of well-defined images that facilitate testing this type of 

training process. Specifically, the classification targets are the only significant content in the 

images, excluding the background, allowing for a direct comparison of the reconstruction against 

the input images. To enhance the guidance of the network, we introduce a contrastive loss term to 

complement the standard classification function, which often uses categorical cross-entropy. By 

comparing the accuracy and the extracted pattern of the standard approach with the proposed 

method, we can gain valuable insights into the network's learning process. This approach aims to  
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improve the interpretability and effectiveness of the model during training, ultimately leading to 

higher classification accuracy and reliability.

Keywords: Artificial Intelligence, Trustworthy, Reliability, Loss functions, Image Reconstruction

Introduction

Trustworthy Artificial Intelligence (TAI) is one of the scientific community's main objectives, 

necessitating a multifaceted approach encompassing legal, ethical, and scientific perspectives to 

ensure  these  breakthrough  technologies'  safe  development  and  deployment.  Each  domain 

contributes uniquely. Legal frameworks aim to build regulations to adapt Law to the fast growth of 

AI applications. Ethics proposes guidelines so developers and organisations can create AI systems 

that respect human rights and societal values, promoting a human-centric approach to technology 

[3]. The scientific community of mathematics, physics and computer scientists addresses two main 

questions: what is the system learning, and why is learning that? This paper delves into these latest 

topics, introducing a new possible paradigm to train deep learning (DL) algorithms. In recent years, 

the field of Explainable Artificial Intelligence (XAI) [2] has emerged as a crucial approach to 

understanding the inner workings of AI systems. XAI methods aim to identify the ensemble of 

processes that  define the fully trained algorithm used to solve a specific  task.  Two primary 

solutions employed in XAI are post hoc and transparent approaches. Post hoc methods explain why 

and how trained systems generate outputs given inputs, while transparent approaches concentrate 

on  designing  algorithms  with  more  straightforward  and  precise  inner  workings.  Prominent 

examples  of  post  hoc  methods  in  deep  learning  (DL)  literature  include  LIME,  SHAP,  and 

GradCAM[1,4], commonly used for post-training model evaluation. In contrast, classical machine 

learning (ML) algorithms like decision trees or clustering approaches are more interpretable than 



DL models. Although XAI is now a staple part of AI research, it is essential to recognise that it is 

not the only approach to addressing interpretation problems. The scientific community also uses 

"Reliable AI"[5] to comprehensively identify all  the mathematical approaches to solving DL 

network problems. The main idea is that explainability is just one aspect of developing Plausible 

AI. Other elements include expressivity, learning, and generalisation. The term "expressivity" 

refers to the choice of network architecture, while "learning" encompasses the gradient descent and 

the optimisation issues beyond the choice of the loss function. "Generalisation" includes all the 

statistical robustness problems of the network. These three and the “Explainability” problem are 

the key points towards developing a plausible AI. The proposed research begins with testing 

innovative  training  approaches  to  develop  more  plausible  and  trustworthy  AI  systems.  The 

foundation of this study is the MNIST [9] dataset, which consists of 70,000 images of handwritten 

digits, 60,000 for training and 10,000 for testing. The focal inquiry of this research is: "What 

features  does  the  network  utilise  to  classify  the  digits?"  To  investigate  this,  the  GradCAM 

algorithm or its adaptations can be employed to identify the specific regions of the image that the  

network relies on for its predictions. In the case of the MNIST dataset, the network should focus on 

the digit itself, excluding the background. Given that the images are single-channel grayscale, the 

network should primarily utilise the grayscale values, mostly avoiding black pixels, to classify the 

digits.  The GradCAM output  should ideally  align closely  with  the  digit  images  themselves. 

Traditionally,  network training emphasises optimising hyperparameters,  architecture, and loss 

functions to achieve high accuracy. However, in the MNIST context, evaluating the network's 

performance is feasible before the training phase. This can be accomplished by implementing a  

GradCAM-like function during training, providing the network with a reference to ensure its 

outputs are meaningful and interpretable. The approach outlined here differs from similar methods, 



such as those using prototype networks and attribution maps. Usually, prototype networks [12] use 

a set of representative examples (prototypes) to guide classification, which can sometimes obscure 

the underlying decision-making process of the model. In contrast, the proposed method leverages 

GradCAM to visualise the input areas that influence the model's predictions, offering a more 

intuitive understanding of the model's behaviour. Another similar approach is defined by Concept 

relevance propagation [8]. This method emphasises the extraction of concept relevance, which 

aims  to  translate  model  outputs  into  human-understandable  explanations  by  identifying  the 

underlying concepts that influence decisions, providing a more abstract interpretation of model 

behaviour rather than a direct visualisation of learned and extracted features as in the proposed 

approach.

One of the primary challenges of this research is ensuring that the GradCAM outputs are accurate 

and interpretable. If the visualisations do not correlate well with the actual features used for  

classification, it may lead to misconceptions about the model's decision-making process. However, 

the benefits of this approach are substantial. Researchers can develop high-accuracy models by 

integrating interpretability into the training process and providing insights into their operational 

logic.  This  can  enhance  user  trust  and  facilitate  the  adoption  of  AI  technologies  in  critical 

applications where understanding the reasoning behind decisions is essential. In summary, this 

research aims to bridge the gap between model performance and interpretability, fostering the 

development of AI systems that are effective and comprehensible to users.

Methods

The partial preliminary method is tested on MNIST and a subset of Fashion MNIST[11]. The data 

are analysed using the one-channel approach, and the only data transformation is tensorisation and 



normalisation to the one-channel MNIST and Fashion MNIST literature values of [0.1307, 0.3081] 

and [0.2860, 0.3530]. The employed model is a convolutional neural network (CNN). The network 

consists of three convolutional layers, each followed by batch normalisation, ReLU activation, and 

max pooling, progressively increasing the number of filters from 32 to 128. A dropout layer is 

applied before the fully connected layers to mitigate overfitting, which consists of a hidden layer 

with 256 neurons followed by an output layer with ten neurons corresponding to the digit classes. 

Additionally, the model incorporates hooks to capture feature maps and gradients from the last  

convolutional  layer,  enabling the computation of Class Activation Maps (CAM). During the 

forward pass, the model processes input images through the convolutional layers, applies dropout, 

and computes outputs while generating CAMs for each image to visualise the regions contributing 

to the predictions. The model is tested with two different training functions on a GPU; the functions 

are the same, with the only difference that one of them incorporates in the loss evaluation function 

a component of contrastive loss used to evaluate the feature maps. The custom contrastive loss 

function [7] implemented is designed to optimise the similarity between two input tensors, the 

GradCAM reconstructed image and the actual input, based on a given label. The forward pass of 

the losses takes two output tensors and the ground truth label for each image; since the tensor's  

shape differs  in  size,  the  GradCAM image is  reconstructed using bicubic  interpolation.  The 

Euclidean distance between the two-dimension tensors is then calculated, and a constant small 

epsilon value [e-22] is added to prevent division by zero. The loss is computed based on the label  

tensor, where a positive label contributes to the objective based on the squared Euclidean distance. 

In contrast, a negative label contributes based on the squared clamped distance (margin-distance). 

The final loss is the mean of the computed values since it’s evaluated on a batch dimension. It is  



suggested to check for NaN values in the input tensors and return a zeroed tensor if any are found to 

avoid invalid operations. The Contrastive Loss LL can be expressed as:

¿=1
2
( y d2+(1− y )⋅max (0 ,m−d )2) (1)

Where:

● y is the label (1 for similar pairs, 0 for dissimilar pairs).

● d is the Euclidean distance between the two output tensors.

● m is the margin (a hyperparameter).

The Multi-Class Cross-Entropy Loss LCE can be expressed:

LCE=−1
N ∑

i=1

C

∑
i=1

N

y i , c∗log( pi , c ) (2)

One model is trained using only the LCE loss as in classical DL approaches, while the other uses 

LCE and LL in combination as LTOT = LCE + LL. The optimiser employed is the classical ADAM 

optimiser with a one over one thousand learning rate. The two obtained models are then evaluated 

on the test set, and the image that the network generates is used as a final reference. The language 

of the code implemented is Python, and the module used for DL implementation is PyTORCH. The 

GPU employed is an NVIDIA QUADRO RTX 5000, and no data parallelism is employed.

Results

In the following, the trained models are labelled based on the dataset used, with an added postfix. 

Specifically, the postfix 'R' denotes models trained with a combination of contrastive and cross-



entropy loss functions, while the postfix 'C' indicates models trained using only the cross-entropy 

loss.

The  models  MNISTR and  MNISTC show similar  performance:  Table  1  shows  the  training 

accuracy is around 98% for the R model and 99% for the C model. On the testing set, the pattern is 

similar; the R model reaches 98% accuracy while the C model reaches 99% accuracy.

MNISTR MNISTC

Test Accuracy 98.44% 99.17%

True predictions 9844 9917

False predictions 156 83

True Low confidence 119 30

Table 1 Results of MNISTR and MNISTC models on the test set.

As shown in Table 2, the training time is different: while the R model stops early, at epoch 9, at 

18.88 hours of training, the classification model stops at epoch 13, at 23.49 hours.

Both models employ the same number of parameters as exposed in the following table.

Number of parameters: 390.86 K

FLOPS: 16.53 M

MACs: 7.75 M

Table 2 Model information shared between the two models.

The fundamental difference is the quality of the explanations given in which, theoretically, the R 

model surpasses the C model.



Figure 1 The digits five on the right and the reconstructed map on the left at epochs 1 of the R model, MNIST.

Figure 2 The digits five of MNIST on the right and the reconstructed map on the left at epochs 1 of the C model.

Figure 3 The digits five of MNIST on the right and the reconstructed map on the left at epochs 9 of the R model.



Figure 4 The digit five of MNIST on the right and the reconstructed map on the left at epoch 1 of the R model.

The model R can detect the shape of the five much better in the first epoch and progressively  

improve during the nine epochs (Figures 1 and 3). In contrast, the C model more accurately  

delineates  something  else  (Figures  2  and  4).  The  results  of  FASHIONMINSTR  and 

FASHIONMNISTC follow a similar pattern. Naturally, the accuracy on the test set, considered a 

subset of 15%, is lower, around 65% on the test set for the R model and 64% for the C model.

In both cases, the reconstructed images (Figures 5 and 6) are of lower quality.

Figure 5 A shoe of Fashion MNIST on the right and the reconstructed map on the left at epochs 1 of the R model.



Figure 6 A shoe of Fashion MNIST on the right and the reconstructed map on the left at epochs 1 of the C model.

Discussion

Model accuracy on MNIST has been consistently high since the Convolutional Neural Networks 

(CNNs)  advent.  In  contrast,  the  impressive  accuracy  achieved  in  initial  studies  may not  be 

groundbreaking, but it is nonetheless promising, as illustrated in Table 1. Using contrastive loss 

reconstruction approaches has yielded exciting results, with the network effectively identifying the 

shapes  of  the  desired  digits,  thereby  enhancing  reconstruction  over  successive  epochs  and 

seemingly mitigating overfitting without significantly impairing generalisation. However, specific 

images classified with low confidence or misclassified by the model can still pose interpretative 

challenges for an average observer (Figures 7 and 8). Preliminary results from Fashion MNIST 

highlight  the  necessity  for  more  refined  methodologies,  either  in  model  architecture  or  in 

evaluating complexity regarding the target class. To further enhance model performance, it is 

crucial to investigate the dimensions of the feature maps relative to the input images and the target 

sign [6]. Understanding how the feature maps evolve throughout the network can provide insights 

into the model's ability to capture essential patterns and shapes relevant to classification tasks.  

Exploring different optimiser functions, such as RMSprop and SGD, and potential learning rate 

schedulers could significantly impact convergence speed and accuracy. 



Figure 7 Digits four of MNIST on the right and the reconstructed map on the left in the test set of the C model.

Figure 8 Digits three of MNIST on the right and the reconstructed map on the left in the test of the R model.

The choice of optimiser and its configuration can influence how effectively the model learns from 

the data.  At the same time,  a  well-tuned scheduler  can help maintain optimal  learning rates 

throughout  training,  preventing  issues  like  overshooting  minima.  Moreover,  considering 

alternative reconstruction loss functions, such as triplet loss or variational loss, may provide further 

improvements in capturing the nuances of the data distribution. By systematically evaluating these 

dimensions, feature map sizes, optimisation strategies, and reconstruction losses, the research can 

refine its approach to achieve higher accuracy and robustness in both MNIST and more complex 

datasets like Fashion MNIST.



Conclusion

This  work  connects  the  training  and  explanation  steps  in  developing  plausible  AI.  To 

comprehensively  evaluate  the  proposed  approaches,  it  is  essential  to  explore  further  the 

relationship  between  these  steps,  expressivity,  and  optimisation.  Testing  different  and  more 

advanced backbones for feature extraction, particularly those utilising residual connections[10], is 

recommended.  This  strategy  will  enhance  the  network's  ability  to  determine  whether 

reconstruction contrastive loss improves its interpretation of classification problems. Minimising 

information loss in the reconstructed portions of the image is crucial. Future research will focus on 

a detailed analysis of the Fashion MNIST dataset and validating the developed approach using 

medical images.
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