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Abstract: A fast and sensitive method that is based on Ultra High Performance Liquid Chromatog-
raphy coupled with High Resolution Mass Spectrometry (UHPLC-HRMS) for the measurement of
Sulfavant A, a molecular adjuvant with a sulfolipid skeleton, is described. The method has been
validated over the linearity range of 2.5–2000 ngmL−1 using a deuterated derivative (d70-Sulfavant
A) as internal standard. Chromatographic separation is based on a UHPLC Kinetex® 2.6 µm PS
C18 column and a gradient of methanol in 0.32 mM ammonium hydroxide solution buffered at
pH 8. The lowest limit of quantification of Sulfavant A was 6.5 ngmL−1. The analytical procedure
was tested on an extract of mice lung spiked with 30, 300, and 1500 ng of Sulfavant A. The analysis
revealed a precision and accuracy value (as a mean value of all the quality control samples analyzed)
of 4.7% and 96% in MeOH and 6.4% and 93.4% in the lung extracts, respectively.

Keywords: sulfavant; sulfoquinovosyldiacylglycerols; sulfoglycolipids; mass spectrometry; UHPLC-
MS; lipids

1. Introduction

Sulfur-containing lipids and, in particular, sulfoquinovosyl-diacylglycerols (SQDGs)
have been proposed as factors in inflammation, immunity and infection. However, despite
their dissemination, fast and accurate ultra-performance liquid chromatography–mass
spectrometry (UPLC-MS) or ultra high-performance liquid chromatography coupled with
mass spectrometry (UHPLC-MS) methods for their quantification are still scarce and
mostly focused on sulphate sterols [1–4] and sulfatides [5–7]. Most of the lipid analysis,
also containing sulfolipids, as reported in the literature, are based on a shotgun lipidomic
approach [2,3] or traditional reverse phase (RP) - HPLC columns usually associated with
complex mixtures of solvents used as eluents in order to obtain a good quality chro-
matogram [8].

In our ongoing drug discovery exploration for new active metabolites, we recently
reported the immunomodulatory activity of 1,2-O-distearoyl-3-O-β-D-sulfoquinovosylglycerol,
named Sulfavant A (1) (SULF A; Figure 1). SULF A is a synthetic glycolipid that is featured
by a sugar unit of sulfoquinovose. The molecule is the prototype for a new class of
molecular adjuvants inspired by natural α-sulfoquinovosyl-diacylglycerols (α-SQDGs)
occurring in photosynthetic organisms [9]. SULF A (1) triggers in vitro maturation of
dendritic cells, the master control of innate immune response, and in in vivo antigen-
specific immunization [10–15]. The initiation of a systemic immune response by the
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stimulation of innate immune cells correlates to adjuvanticity and Pattern Recognition
Receptors (PRR) - mediated signaling. SULF A is under preclinical trials as a vaccine
adjuvant and its efficacy has been already proven in a murine model of vaccine against
melanoma [9]. Interestingly, the product is not cytotoxic, but treated mice do not show
progress of the tumour for more than 10 days after subcutaneous injection of B16F10
melanoma cells.
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In the present study, we seek a robust and fast analytical method for the quantification
of SULF A in biofluids and tissues during preclinical studies. To this aim, we report the
implementation of a novel Ultra High-Performance Liquid Chromatography-High Reso-
lution Mass Spectrometry (UHPLC-HRMS) method, together with the use of deuterated
Sulfavant A (d70-SULF A) (2) as internal standard (IS).

2. Materials and Methods
2.1. Chemicals and Reagents

SULF A (1) was prepared, as reported by Manzo et al. [9,10] and purified by HPLC
before the analysis. The compound was eluted from a Phenomenex Phenl-Hexyl column
(250 × 10 mm, 5 µm) in isocratic conditions using MeOH/H2O 87:13 for 20 min. and the sol-
vent was removed by evaporation under reduced pressure. Chromatographic purification
of synthetic lipids was carried out by a JASCO system (PU-2089 Plus quaternary gradient
pump) that was equipped with a MD-2018 Plus photodiode array detector (JASCO Europe
Srl, Cremella, Italy) and Sedex 85 high-sensitivity LT-ELS detector (SEDERE, Alfortville,
Paris, France). The purity of 1 was verified by 1H NMR and LCMS.

UHPLC–HRESIMS analysis was performed on Q-Exactive hybrid quadrupole-orbitrap
mass spectrometer (Thermo Scientific, Waltham, MA, USA) that was equipped with an
Infinity 1290 UHPLC System (Agilent Technologies, Santa Clara, CA, USA). Methanol,
water, and 25% ammonium hydroxide solution were all LC/MS grade. The chemical
solvent and reagents were purchased from Merck Life Science S.r.l. (Milano, Italy).

2.2. Synthetic Strategy of d70-Sulfavant A

The synthesis of d70-SULF A was achieved by the ameliorated synthetic procedure for
SULF A of Manzo et al. [10], which was adapted to the preparation of the analog totally
deuterated on acyl portions; in detail, as compared to the literature procedure, deuterated
stearic acid was used for the acylation of the 2′ 3′ 4′ 6′-O-tetracetyl-β-glucosyl-R/S-glycerol
intermediate (Figure 2) [10,14,15]. Similarly to SULF A, compound 2 was purified by HPLC
prior to use as an internal standard using the same experimental conditions.

2.3. Ultra-High-Performance Liquid Chromatography/High Resolution Mass Spectrometry
(UHPLC/HRMS)

Chromatographic separations were achieved on UHPLC Kinetex® 2.6 µm PS C18 100 Å,
LC Column 30 × 2.1 mm (Phenomenex, Italy), at 28 ◦C by a gradient elution of 0.32 mM
ammonium hydroxide solution (0.005%), adjusted to pH 8.0 by acetic acid, and methanol
(MeOH). Table 1 reports UHPLC gradient details. The flow rate was 0.5 mL min−1. The in-
jection volume was 4 µL, and the autosampler was maintained at 10 ◦C. MS analyses were
carried out in electrospray ionization (ESI) negative mode with source parameters, as fol-
lows: spray voltage of 3.0 kV, capillary temperature of 320 ◦C, S-lens RF level of 60, sheath
gas flow rate of 50, and auxiliary gas flow rate of 30. Full MS scans were acquired over the
range of 150–1800 Da with a mass resolution of 70,000. The target value (Automatic Gain
Control-AGC) was 1 × 106 and the maximum allowed accumulation time (IT) was 100 ms.



Appl. Sci. 2021, 11, 1451 3 of 9

For the data-dependent MS/MS (ddMS2) analyses, the peaks of interest were selected and
fragmented with a stepped normalized energy of 20–40 eV. AGC was 1 × 105 with IT 75 ms
and 17, 500 mass resolution.
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Figure 2. Chemical synthesis of deuterated Sulfavant A.

Table 1. Gradient program of the Ultra High Performance Liquid Chromatography (UHPLC) method.

Time (min) Mobile Phase A (%) a Mobile Phase B (%) b

0 85 15
1 85 15
6 98 2
8 100 0
10 100 0
11 85 15
15 85 15

a methanol b 0.32 mM ammonium hydroxide water solution (pH 8.0).

2.4. Standard Preparation and Stock Solution

SULF A and d70-SULF A were dissolved in methanol to obtain stocks solutions at a
concentration of 100 µg mL−1 stored at −20 ◦C; the dissolution was performed by son-
icating for 30 min. at 30 ◦C. These two solutions were used to evaluate the linearity,
calibration curve, limit of detection, and matrix effect. The evaluation of the above parame-
ters is based on chromatograms of SULF A (C45H85O12S−; m/z 849.57672) and d70-SULF A
(C45D70H15O12S−; m/z 920.01609) that were obtained as base peak extraction at m/z 849.576
and 920.016, respectively, with a mass tolerance of 5 ppm (Figure 3).
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2.5. Calibration Curve, Linearity and Detection and Quantitation Limits (LOD and LOQ)

Before the analysis, the stock solution was sonicated for 30 min. at 30 ◦C The cali-
bration curve was obtained by spiking increasing concentrations of standard solution at
1, 2.5, 5, 10, 50, 100, 500, 1000, and 2000 ngmL−1. The average of three measurements
was used for building up the calibration curve. The linearity of the calibration curve was
also verified in the lipid extract matrix. Visual definition and the approach based on the
“Standard Deviation of the Response and the Slope” (LOD = 3σ/S; LOQ = 10σ/S) was used
in order to establish detection and quantitation limit [16].

2.6. Method Validation: Intra-and Inter-Day Accuracy and Precision

Three quality control (QC) samples of SULF A were prepared to validate the method:
low-concentration (30 ngmL−1), medium-concentration (300 ngmL−1), and high-concentration
(1500 ngmL−1). Validation for intra-day and inter-day assay accuracy and precision was
assessed on three independent days while using a triplicate of three QC. Each batch of
runs comprised mobile phase blanks, calibrators (eight samples spanning the range of
2.5–2000 ngmL−1), and quality control samples. Intra-day and inter-day accuracy and pre-
cision were determined by obtaining the mean concentration of the quality control samples
from the calibration curve and the percent accuracy and coefficient of variation. The pre-
cision was expressed as a coefficient of variation [CV = (standard deviation/measured
mean concentration) × 100], while the accuracy was expressed as [measured mean con-
centration/nominal concentration] × 100. The overall method accuracy and precision
were determined by calculating the mean of accuracy and mean of the precision estimates,
respectively, of all the quality control samples.

2.7. Evaluation of Matrix Effect on Mice Lung Extracts

The matrix effect (ME) was assessed on mice lung tissue post-extraction. Lipid extracts
were achieved from five different frozen samples by homogenization of the tissues in
MeOH (300 µL) at 12 ◦C for 2 min. and then following with MTBE extraction [17]. In detail,
1000 µL of MTBE were added to the samples and then left to mix for 5 min. Later, 250 µL
of Milli-Q water was added and mixed again for 2 min. Subsequently, to induce the phase
separation, the sample was centrifuged at 1000 g for 10 min. at 4 ◦C and the upper organic
phase was recovered. Finally, the aqueous phase was re-extracted with MTBE, the upper
phases combined, and the organic solvent removed under nitrogen stream. Each extract
was weighted and resuspended in MeOH:CH2Cl2 (4:1) and then diluted with MeOH for
LC/MS analysis.

Three different concentrations of SULF A (30, 300, and 1500 ngmL−1) were spiked
into 50 µg mL−1 of lipid extracts, together with 50 ngmL−1 of IS (d70-SULF A), in order
to evaluate normalized matrix effect (nME). Each concentration was compared with the
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corresponding solution in pure MeOH. When considering peak area as instrument response,
the percentage of nME was calculated, as reported in [18]:

nME% = [(Asolvent/ISsolvent)/(Amatrix/ISmatrix) − 1] × 100

in which Asolvent = peak area of the analyte SULF A in MeOH; Amatrix = peak area of the
analyte SULF A in the post-extraction spiked matrix; IS solvent = peak area of the Internal
Standard d70-SULF A in MeOH; and, IS matrix = peak area of the Internal Standard d70-SULF
A in the post-extraction spiked matrix.

Moreover, standards solutions at 2.5, 5, 10, 50, 100, 500, 1000, and 2000 ngmL−1 were
also prepared in matrix (50 µg mL−1 of mice lung lipid extract) in order to evaluate whether
the matrix effect (ME) affected the slope of the calibration curve. The average of three
measurements was used. Chromatograms of SULF A and d70-SULF A (as in MeOH) were
obtained as base peak extraction at m/z 849.576 and 920.016, respectively, applying a mass
tolerance of 5 ppm.

3. Results and Discussion
3.1. Synthesis and Preparation of d70-Sulfavant A

The synthesis of d70-SULF A was achieved by the ameliorated synthetic strategy of
Manzo et al. [10], which was adapted to the preparation of the analog with deuterated fatty
acids (Figure 2). In detail, the procedure started with acetylation of D-glucose, followed by
selective anomeric deacetylation by benzylamine. Coupling with 1,2-O-isopropylidene glyc-
erol by trichloroacetimidate methodology [14,15,19,20] gave 3-O-(2′,3′,4′,6′-tetra-acetyl)-
β-D-glucosyl-glycerol that was condensed with d35-stearic acid in order to obtain the
intermediate 1,2-O-d70-distearoyl-3-O-β-D-glucosyl glycerol. The sulfonation of the 6′-
carbon through an iodinate derivative in agreement with Manzo et al. [10] was performed
to finally obtain d70-SULF A after the last hydrazinolysis step.

3.2. Method Development

Many of the studies of ultra- and ultra-high-performance liquid chromatography–mass
spectrometry (UPLC- and UHPLC-MS) methods have addressed analysis of lipids [17,21].
However, no specific method for sulfoglycolipids has been reported so far.

UHPLC Kinetex® PS C18 column is a reversed-phase product that is recommended
by the manufacturer for the analysis of polar compounds and weakly acidic compounds.
We tested several eluting conditions with gradients of methanol with aqueous buffers at
different pH and temperatures to optimize the chromatographic result for SULF A and
d70-SULF A. The best result in terms of sensitivity, shape of the peak and retention time
was obtained with a short gradient (run time 10 min.) of increasing amount of methanol
in 0.32 mM ammonium hydroxide solution (0.005%), adjusted to pH 8.0 by acetic acid,
at 28 ◦C. Deuterated analogue of SULF A (2), synthesized in-house, was also used during
the tests as internal standard (IS). Figure 3 shows chromatograms obtained by base peak
extraction of SULF A (analyte) and d70-SULF A (IS). The IS and the analyte eluted with a
slightly different retention time due to the isotope effect at 2.9 and 3.0 min., respectively.
The quantitation (LOQ) and detection (LOD) limits were 6.5 ngmL−1 and 1.9 ngmL−1,
respectively, both established in methanol.

3.3. Linearity, Accuracy, Precision and Matrix Effect

The liquid chromatography-mass spectrometry (LC-MS) method was validated for
linearity and by an evaluation of intra-and inter-day precision and accuracy in accordance
with the currently-approved EMEA and FDA guidelines for the validation of bioanalytical
methods [22,23]. Moreover, with the aim to demonstrate the consistency and robustness
for the analysis of biological samples, we also tested the above-mentioned parameters in
five different replicates of lipid extracts derived from mice lung tissues.

Samples of SULF A and d70-SULF A were tested in triplicates between 1 and 2000 ngmL−1.
The resulting calibration curve was found to be linear in the concentration range between
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2.5 and 2000 ngmL−1, as shown in Figure 4. Analogously, SULF A and d70-SULF A were
spiked at the maximum concentration into MeOH and in a lipid extract of mice lung in
MeOH in order to evaluate matrix effect (one of the five extracts available). Samples of the
two calibration curves (in pure MeOH and in matrix) were carried out by dilution from
the more concentrated solution. Table 2 outlines the slope values and R2 parameters of the
calibration curves acquired at different days (T0 and T48). The R2 was found to be 0.999 and
stable during the days (slight differences in the slope could be appointed to the variability
linked to the instrument response). The difference in the mean ordinate between SULF A
and d70-SULF A is in agreement with the isotope effect that can cause a different degree of
ion suppression. However, although the ionization and chromatographic response was not
identical, the peak area ratio of the analyte versus the IS was constant over the range of
tested concentrations, with a correlation coefficient (r2) that is always higher than 0.9991.
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Figure 4. Calibration curve of d70-Sulfavant A (a) and Sulfavant A (b).

Table 2. Calibration curve of d70-Sulfavant A and Sulfavant A at T0 and T48, both in MeOH and in matrix.

T0 T48

MeOH Matrix MeOH Matrix

SULF A y = 40229x
R2 = 0.9996

y = 47981x
R2 = 0.9997

y = 50537x
R2 = 0.9991

y = 46508x
R2 = 0.9993

d70-SULF A y = 23689x
R2 = 0.9998

y = 24546x
R2 = 0.9991

y = 28250x
R2 = 1

y = 24185x
R2 = 0.9996

The matrix effect (ME) is one of the most important parameters to investigate during
the development of an analytical method. In order to evaluate the ME, five mice lung lipid
extracts were aliquoted and spiked with three different quantities (30, 300, and 1500 ng)
of SULF A (Figure 5), while the same known amount of d70-SULF A (50 ng per sample)
as IS was added to compare the area of the analyte in matrix with the area measured
in pure MeOH (normalized matrix effect-nME). A higher CV was observed for the high
concentrations in comparisons with the low ones, as can be seen in Table 3. However, all of
the datasets (intra- and inter-day) passed the 15% acceptance criterion, with an overall
nME average of 10%. This finding was the first evidence of the robustness of the proposed
analytical procedure.
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Figure 5. Chromatograms and mass spectrum acquired at 3 min. of pure matrix extract (A), matrix spiked with 300 ng (B)
and 1500 ng (C) of Sulfavant A. Chromatograms were obtained as m/z mass range between 400 and 1200.

Table 3. Accuracy and precision of quality control (QC) samples of Sulfavant A during intra-day and inter-day analysis.

SULF A in MeOH

Nominal Concentration (ngmL−1) Mean ± SD a Accuracy (%) b Precision (CV %) c

T0
30 27.8 ± 2.2 92.6 8.0

300 315.0 ± 19.4 105 6.1

1500 1247.8 ± 69.2 84.2 5.5

T12
(Intra-day)

30 27.7 ± 1.14 92.4 4.1

300 313.9 ± 17.6 104.6 5.6

1500 1265.2 ± 27.6 84.3 2.2

T48
(Inter-day)

30 30.7 ± 1.5 102.2 4.9

300 327.7 ± 16.3 109.2 5.0

1500 1353.6 ± 15.0 90.2 1.1

SULF A in Matrix

Nominal Concentration (ngmL−1) Mean ± SD a Accuracy (%) b Precision (CV %) c

T0
30 26.0 ± 2.2 86.6 8.6

300 283.1 ± 6.5 94.4 2.3

1500 1459.9 ± 79.7 97.3 5.4

T12
(Intra-day)

30 28.6 ± 2.0 95.2 7.1

300 274.4 ± 16.6 91.5 6.1

1500 1457.3 ± 84.1 97.1 5.8

T48
(Inter-day)

30 27.0 ± 1.2 90.0 4.3

300 279.8 ± 22.0 93.3 7.9

1500 1432.5 ± 46.2 95.5 10.2
a SD = Standard Deviation b [Measured mean concentration/ nominal concentration] × 100. c [Standard deviation/ measured mean
concentration] × 100.

This analytical method allowed for the detection of SULF A at nanomolar concentra-
tion (LOD was below 2.5 ngmL−1) with a LOQ of 6.5 ngmL−1, in both only MeOH and in
the presence of matrix. Indeed, at the LOD the analyte in the samples can be identified by
only HR-MS, but it cannot be quantitatively determined with appropriate precision and
accuracy, whereas, at starting from the calibration point at 5 ngmL−1, the peak of SULF
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A is also identifiable with MSMS and the signal appears to be defined and reproducible.
Moreover, no carryover effect was detected during analysis of a blank sample after the
injection of a standard sample at the highest calibration point (2000 ngmL−1).

The reliability of this UHPLC-MS method was evaluated by measuring intra-day and
inter-day accuracy and precision (n = 3 in MeOH; n = 5 in matrix) of SULF A in quality
control (QC) samples at three different concentrations (30, 300, and 1500 ngmL−1). Table 3
reports the results in intra-day and inter-day accuracy and precision. The accuracy of QC
samples ranged from 84.2 to 109.2 %, and precision ranged from 1.1 to 10.2% (Table 3).
The overall assay accuracy (mean of accuracy estimates of all quality control samples)
was 96% in MeOH and 93.4% in matrix, and overall assay precision (mean of precision
estimates of all quality control samples) was 4.7% in MeOH and 6.4% in matrix.

Revalidation using two different batches of synthetic SULF A (namely, BS90A and
BS90A1) was carried out at the same concentrations in the range between 2.5 and 2000 ngmL−1

to further support the reliability of the method. The results showed an absolute repro-
ducibility of the analysis with two superimposable calibration curves (BS90A: y = 31579x,
R2 = 0.9999; BS90A1: y = 31331x, R2 = 0.9999).

4. Conclusions

An UHPLC-MS analytical procedure of SULF A, a 1,2-O-distearoyl-3-O-β-D-
sulfoquinovosylglycerol with promising therapeutic application as a molecular adjuvant,
was developed using a new deuterated analog (d70-SULF A) as an internal standard.
The method was realized on a high-resolution benchtop Q-Exactive spectrometer using
a UHPLC Kinetex® 2.6 µm PS C18 100 Å, LC Column and a gradient elution with water
buffered at pH 8 and methanol. The sulfolipids (analyte and internal standard) were
quantified in negative ion mode and the calibration curve covers a concentration range
of 2.5–2000 ng mL−1 with an LLOQ of 6.5 ng mL−1. The new method was validated
measuring the precision and accuracy on the quality control samples in the intra-day and
inter-day study and its robustness was proven by applying it on a sample matrix.

The efficacy of this analytical method is of general interest to study sulfoglycolipids
that are chemically correlated to SULF-A, and suggests that it could be extended for the
study of both the physiological and biological role of this class of compounds. Furthermore,
the short time of the UHPLC chromatographic analysis and sensitivity makes the procedure
adapt to analysis of large number of biological samples.

Pharmacokinetic and drug metabolism tests are mandatory for expediting the progress
of compounds with promising properties from discovery to development phase. Mass spec-
trometry is one of the key technologies in bioanalysis during preclinical and clinical
studies [24]. The presented LC-MS method has been designed to provide a mechanis-
tic understanding of the pharmacokinetics, pharmacodynamics, and toxicity of SULF-A.
The excellent results in accuracy, sensitivity and reproducibility indicate that the analytical
protocol can be utilized in pharmacological and translational research on this negatively-
charged lipid, providing accurate results with a high value for further decisions in the
drug development.
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