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a b s t r a c t 

Time between event (TBE) charts are SPC tools for monitoring the occurrence of unwanted events, such as the 

appearance of a defective item or a failure of a piece of equipment. In some cases, a magnitude, indicating the 

severity of the event, is also measured. Time and magnitude charts, which are based on the assumption that the 

stochastic process underlying the occurrence of events is the marked Poisson process, are the preferred option. 

However, these charts are not suitable to deal with damage events caused by repeatedly occurring shocks or stress 

conditions. To bridge this gap, we introduce a new control chart based on the assumption of a renewal process 

with rewards, where the reward represents magnitude, and a magnitude-over-threshold condition represents the 

occurrence of an event. In particular, we consider two cases for magnitude: (i) magnitude is cumulative over 

time and (ii) magnitude is non-cumulative or independent over time. We use known results in renewal theory to 

provide expressions of the probability distributions needed to compute the control limits and perform a simulation 

analysis of the control chart performance. 
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. Introduction 

Statistical quality control is a collection of statistical methods, which

re used to monitor and improve the quality of a process. Currently, sta-

istical quality control is not limited to the manufacturing industry, but

s also used in environmental science, biology, genetics, epidemiology,

edicine, finance, law enforcement and athletics. Among the SPC tools,

ontrol charts are probably the most technically sophisticated. One of

he main purposes of control charts is to distinguish between the vari-

tion due to chance causes and the variation due to assignable causes

n order to prevent overreaction and under-reaction to the process (cf.

1] ). 

There are different types of control charts in the literature to han-

le different situations [2] . A special type of control chart called time-

etween-events (TBE) is used to monitor rare events or the so-called

igh-quality processes. Traditional TBE charts considered the time in-

erval X between the occurrences of an event by completely ignoring

he magnitude M associated with it, representing the size of the event

tself. However, there are many real applications where both time and

agnitude are important and ignoring one of them leads to misleading

onclusions. If the magnitude is also available, it has been recognised

hat a joint monitoring of time and magnitude improves the performance

f the control chart. For example, Wu et al. [3] proposed control charts
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or the combined monitoring of TBE and magnitude, providing a de-

ision rule based on both individual X and M charts. Later, Wu et al.

4] introduced the rate chart to monitor magnitude and TBE data by

onsidering their ratio, finding that it is more effective than the indi-

idual X or M charts and also than the combined monitoring chart. The

ate chart with an integer magnitude was proposed by Liu et al. [5] .

iu et al. [6] proposed a joint control chart by considering a truncated

oisson distribution for the magnitude, finding that the new chart out-

erforms the individual charts. Recently, Qu et al. [7] also introduced a

ime and magnitude chart by assuming an exponential distribution for

ime and a normal distribution for magnitude. The authors compared

he proposed chart with the existing ones, i.e., time, magnitude, time

nd magnitude, and rate charts, and showed that the new chart is more

fficient. Some works related to CUSUM charts are Wu et al. [8] , Qu

t al. [9] , and Qu et al. [10] . We refer to Ali et al. [11] for a detailed

eview about time and magnitude control charts. 

The importance of control charts for reliability data has been high-

ighted by Xie et al. [12] . More recently, Vining et al. [13] observed that

here is a need to develop process control techniques for reliability data

o ensure that a product or a process maintains the expected reliability

tandard. In this paper we are concerned with damage events caused by

andomly occurring shocks or stress conditions, which eventually lead to

 failure event or require repair when the magnitude of the damage has
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Fig. 1. Process for a standard cumulative damage model. 
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rossed an appropriate threshold. This event can be categorized into two

ailure modes: catastrophic failure, in which the failure occurs by some

udden shock, and cumulative shock failure, in which the failure occurs

y physical deterioration due to age or cumulative wear. The two cases

ill be called independent damage process and cumulative damage process ,

espectively. The renewal process with rewards is suitable to describe

oth, by considering as the time for the occurrence of an event the first

assage time above the threshold either by a single reward or by the ac-

umulated rewards. When a magnitude-over-threshold event happens,

he product or process are renewed and the next TBE is the next first

assage time, so that this chart can be called an FPT-chart. By monitor-

ng this TBE, a reliability engineer can assess whether a product is being

sed according to its design limits or a process is being run according to

pecifications. A too frequent occurrence of magnitude-over-threshold

vents could also indicate deficiencies in the material used for the prod-

ct or for the equipment involved in the process. A simple example of

n independent damage process and of cumulative damage process is

rovided by Gut and Hüsler [14] : a material, such as a rope or a wire,

an break due to fatigue because of the cumulative effect of loads within

esign limits after a long period of time or because a sudden big load

xceeding its capacity; capacity could as well be lower than expected

ue to faulty material. 

The existing time and magnitude control charts are based on the

arked Poisson process, although this is not always explicitly stated.

he renewal reward assumption is a generalisation in the direction of

ny lifetime distribution for the occurrence of shocks. However, time

nd magnitude charts monitor every single magnitude and TBE, not first

assage times, therefore the FPT-chart cannot be viewed as a direct gen-

ralisation, rather as a complement to these. For example, if the mag-

itude is not directly observable and a shock process is in effect (be it

ndependent or cumulative), then the failure time is a first passage time

nd it has a non-exponential distribution even in the simplest settings.

n this case time and magnitude charts cannot be applied, while the FPT-

hart is still usable because it is not necessary to establish a threshold

o observe failures. If the magnitude is observable, both charts can be

pplied, but they are expected to react differently to the same changes

n the underlying process. In case of a zero threshold the FPT-chart is a

imple TBE chart. 

This study is organized as follows. In Section 2 we define the re-

ewal reward process formally and provide expressions for the first

assage time distributions. The compound Poisson process is also men-

ioned as a special case of the renewal reward process. The FPT-chart

onstruction and a numerical study of performance measures are given

n Section 3 . Also, a comparison of FPT charts with rate charts is pre-

ented in Section 3 . An implementation of the FPT-chart is the subject

f Section 4 . Section 5 contains a brief summary of the outcomes, con-

lusions and suggestion for future studies. 

. Cumulative and independent processes 

In this section, we shall introduce the necessary definitions and for-

ulas that are required for the development of FPT-charts, obtained

rom Nakagawa [15] and Nakagawa [16] . 

We denote by N ( t ) a counting process, by X i the TBE and by M i the

agnitude associated with X i for i ≥ 1. 

efinition 2.1. A counting process { N ( t ), t ≥ 0, t ∈T } with indepen-

ent and identically distributed (iid) inter-arrival times 𝑋 1 , 𝑋 2 , … with

 common distribution F is called a renewal process. 

efinition 2.2. Let N ( t ) be a renewal process and let M i denote the

eward (such as damage, wear, fatigue, or cost) that is attached to each

nter-arrival time X i . If the pairs ( X i , M i ) for 𝑖 = 1 , 2 , … are independent

nd identically distributed, then the stochastic process 𝑌 ( 𝑡 ) = 

∑𝑁( 𝑡 ) 
𝑖 =1 𝑀 𝑖 

s called a renewal reward process. 
98 
Therefore, the renewal reward assumption is a generalization of the

arked Poisson process. 

Let 𝐹 ( 𝑥 ) = 𝑃 𝑟 { 𝑋 𝑖 ≤ 𝑥 } and 𝐺( 𝑚 ) = 𝑃 𝑟 { 𝑀 𝑖 ≤ 𝑚 } be the cumulative

istribution functions of X i and M i , respectively, with finite means. In

ddition, suppose K is a fixed threshold for the damage. In the cumu-

ative damage scenario, the FPT-chart is based on the distribution of

 , the first passage time: Pr { Z ≤ t } where 𝑍 = min 𝑡 { 𝑌 ( 𝑡 ) > 𝐾} . For the

ndependent damage scenario, the first passage time can be defined as

 = 

∑𝑖 ∗ 

𝑗=1 𝑋 𝑗 , where 𝑖 ∗ = min { 𝑗 = 1 , 2 , 3 , … |𝑀 𝑗 > 𝐾} . We remark that K

an be only implied if the damage due to shocks is not observable and

 represents the time of an observable failure. 

In the following subsections we provide expressions for the distribu-

ion of Z , including also the homogeneous compound Poisson process,

s a special case of the renewal reward process. 

.1. Cumulative damage process 

efinition 2.1.1. Let ( X i , M i ) denote a sequence of times between

hocks ( X i ) with an associated damage ( M i ) undergone by a unit or

ystem. Suppose that each damage is additive and the system or unit

ails when the total damage has exceeded a failure threshold K where

 < K < ∞, for the first time (cf. Fig. 1 ). A process with such a behavior

s called a cumulative damage process. 

If Y ( t ) is a renewal reward process, then the distribution of the first

assage time Z is 

( 𝑡 ) = 𝑃 𝑟 { 𝑍 ≤ 𝑡 } = 

∞∑
𝑛 =0 

[ 𝐺 

( 𝑛 ) ( 𝐾) − 𝐺 

( 𝑛 +1) ( 𝐾)] 𝐹 ( 𝑛 +1) ( 𝑡 ) . (1)

.2. Independent damage process 

efinition 2.2.1. Let ( X i , M i ) denote a sequence of times between

hocks ( X i ) with an associated damage ( M i ) undergone by a unit or sys-

em. Suppose that the damage is not additive and the system or unit

ails the first time the amount of damage a threshold level K . This type

f process is called an independent damage model (cf. Fig. 2 ). 

The first passage time distribution is 

 𝑟 { 𝑍 ≤ 𝑡 } = 

∞∑
𝑛 =0 

[ 𝐺 

𝑛 ( 𝐾) − 𝐺 

𝑛 +1 ( 𝐾)] 𝐹 ( 𝑛 +1) ( 𝑡 ) . (2)

otice that Eq. (2) does not have the convolution (.) for the magnitude

istribution as compared to Eq. (1) . 
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Fig. 2. An illustration of an independent damage model. 
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.3. Poisson process 

The cumulative and independent damage concepts can also be mod-

lled through a Poisson process assumption for the process driving the

BE, which is a special case of a renewal process. 

For the cumulative damage process, a compound Poisson process

lays an important role. More specifically, if N ( t ) is a Poisson process

ith rate 𝜆, then the counting process 𝑌 ( 𝑡 ) = 

∑𝑁( 𝑡 ) 
𝑖 =1 𝑀 𝑖 , where the M i ’s

re IID random variables independent of N ( t ) for 𝑁( 𝑡 ) = 0 , 1 , 2 , ⋯ and

 ( 𝑡 ) = 0 when 𝑁( 𝑡 ) = 0 , is called a compound Poisson process. The gen-

ral formulas for the distribution of the first passage time are special

ases of (1) and of (2) where F is an exponential distribution with rate

. Closed-form expressions can be obtained in this case, as shown in the

ollowing examples. 

Example #1 : Suppose that the time and the damage both have

he exponential distribution with mean 1/ 𝜆 and 1/ 𝜃, respectively,

.e., 𝐹 ( 𝑥 ) = 1 − exp (− 𝜆𝑥 ) and 𝐺( 𝑚 ) = 1 − exp (− 𝜃𝑚 ) . Then, to derive the

rst passage distribution for the cumulative process we have to solve
∞
0 exp (− 𝑠𝑚 ) 𝑑𝑃 𝑟 { 𝑌 ≤ 𝑚 } = exp (− 𝜆𝑡 [ 𝑠 ∕( 𝑠 + 𝜃)]) , and its inversion can be

ritten as follows (cf. Barlow and Proschan [17] , and Graf [18] ): 

 𝑟 { 𝑌 ( 𝑡 ) ≤ 𝑡 } = exp (− 𝜆𝑡 ) 
[ 
1 + 

√
𝜆𝜃𝑡 ∫

𝑥 

0 
exp (− 𝜃𝑤 ) 𝑤 

−0 . 5 𝐼 1 (2 
√
𝜆𝜃𝑡𝑤 ) 𝑑𝑤 

] 
(3) 

here I i is the Bessel function of order i for the imaginary argument

efined as 𝐼 𝑖 ( 𝑥 ) = 

∑∞
𝑘 =0 

( 𝑥 ∕2) 2 𝑘 +1 
𝑘 !( 𝑘 + 𝑖 )! . Thus, we have 

 𝑟 { 𝑍 ≤ 𝑡 } = 1 − exp (− 𝜆𝑡 ) 
[ 
1 + 

√
𝜆𝜃𝑡 ∫

𝐾 

0 
exp (− 𝜃𝑤 ) 𝑤 

−0 . 5 𝐼 1 (2 
√
𝜆𝜃𝑡𝑤 ) 𝑑𝑤 

] 
(4) 

nd 𝐸 { 𝑌 ( 𝑡 )} = 

𝜆𝑡 

𝜃
, 𝐸 { 𝑍} = 

𝜃𝐾 +1 
𝜆
, 𝑉 𝑎𝑟 { 𝑌 ( 𝑡 )} = 

2 𝜆𝑡 
𝜃2 

and 𝑉 𝑎𝑟 { 𝑍} = 

2 𝜃𝐾+1 
𝜆2 

,

espectively. It is to be noted that E { Y ( t )} is increasing linearly with

ime t and therefore, we have 
𝐸{ 𝑌 ( 𝑡 )} 
𝐾+ 𝜃−1 = 

𝑡 

𝐸( 𝑍) . 

Example #2 : The first passage time distribution of the independent

amage scenario for the exponentially distributed time and magnitude

s: 

 𝑟 { 𝑍 ≤ 𝑡 } = 1 − exp (− 𝜆𝑡 exp (− 𝜃𝐾)) (5)

hich is again an exponential distribution with parameter 𝜆 exp (− 𝜃𝐾) .
herefore, we have 𝐸 ( 𝑍) = 

exp ( 𝜃𝐾 ) 
𝜆

and 𝑉 𝑎𝑟 ( 𝑍) = 

exp (2 𝜃𝐾) 
𝜆2 

. 

In Eq. (5) , we have considered the exponential distribution for

he magnitude. If we assume a gamma distribution, the real task

s to solve the Laplace integral ∫ ∞
0 exp (− 𝑠𝑥 ) 𝑑𝑃 𝑟 { 𝑌 ≤ 𝑥 } = exp (− 𝜆𝑡 [1 −

 𝜃∕( 𝑠 + 𝜃)) 𝛽 ]) = exp (− 𝜆𝑡 ) exp ( 𝜆𝑡 ( 𝜃∕( 𝑠 + 𝜃)) 𝛽 ) . One can write exp ( 𝜆𝑡 ( 𝜃∕( 𝑠 +
)) 𝛽 ) as 

∑∞
𝑛 =0 

( 𝜆𝑡 ) 𝑛 
𝑛 ! 

( 𝜃

𝑠 + 𝜃

)𝑛𝛽
. Now its Laplace-Stieltjes inversion is

∞
𝑛 =0 

( 𝜆𝑡 ) 𝑛 
𝑛 ! 

(
− 𝑛𝛽𝜆 ×1 𝐹 1 [1 + 𝑛𝛽, 2 , − 𝑡𝜆] 

)
, where 1 F 1 denotes the Kummer

onfluent Hypergeometric function. By comparing this expression with

q. 5 , one can notice that the first passage distribution has become very

omplicated after replacing the exponential distribution with a gamma.
99 
. Control chart construction 

As illustrated in the preceding sections, the FPT-chart is built using

he distribution of the first passage time Z (which is now the TBE for this

hart) either with the cumulative damage or the independent damage

ssumption, as displayed in Figs. 1 or 2 . The damage is zeroed after a

hreshold crossing, so that in-control 𝑍 𝑖 +1 has the same distribution of

 i . 

Let 𝛼 denote the false alarm probability and let F Z be the cumulative

istribution function of Z . To construct a two-sided control chart the

ower control limit (LCL) and the upper control limit (UCL) are calcu-

ated as percentiles of F Z : 𝐿𝐶𝐿 = 𝐹 −1 
𝑍 

( 𝛼∕2) and 𝑈𝐶𝐿 = 𝐹 −1 
𝑍 

(1 − 𝛼∕2) , for

he two-sided control chart. For the detection of a process deterioration

r of a process improvement only 𝐿𝐶𝐿 = 𝐹 −1 
𝑍 

( 𝛼) or 𝑈𝐶𝐿 = 𝐹 −1 
𝑍 

(1 − 𝛼) ,
espectively, are required. To detect process deterioration the TBE is

onitored and if it falls below the LCL, the process is declared out of

ontrol and an inspection takes place to determine assignable causes.

hen monitoring resumes after the causes have been identified and re-

oved or the out-of-control signal is deemed to be due to chance causes.

 similar procedure is followed for the other cases. 

To assess the performance of the control chart, we shall use the av-

rage run length (ARL) and the average length of inspection (ALI). The

RL is the number of points that, on average, will be plotted on the con-

rol chart until an out-of-control signal appears, i.e., for in-control situa-

ion 𝐴𝑅𝐿 = 1∕ 𝛼 while for out-of-control situation, it is 𝐴𝑅𝐿 = 1∕(1 − 𝜁 )
here 𝜁 denotes the type-II error. The ALI is defined as the average

ime (or length) of inspection which one has to wait before getting an

ut-of-control signal and can be written as 𝐴𝐿𝐼 = 𝐴𝑅𝐿 × 𝐸( 𝑍) . 
Because getting an explicit expression of the first passage time distri-

ution and finding its quantiles is extremely difficult in non-exponential

ases, we propose Algorithm 1 to compute control limits in general

ases. 

lgorithm 1 Control limits computation for the first passage distribu-

ion to a fixed critical threshold. 

1: Select 𝑝 = 1 or 𝑝 = 2 for the Process ⊳ where 𝑝 = 1 - Cumulative,

𝑝 = 2 - Independent 

2: Choose parameters values to generate 𝑋 and 𝑀 from 𝐹 𝑋 and 𝐺 𝑀 

3: Fix 𝐾 

4: for 𝑖 = 1 to 𝑆 do ⊳ where 𝑆 is large, e.g., 10 6 
5: do 

6: Sample 𝑋 𝑗 and 𝑀 𝑗 , 𝑗 ≥ 1 
7: if 𝑝 == 1 then 

8: 𝑅 𝑗 = 

∑𝑗 

𝑙=1 𝑀 𝑙 

9: else 

10: 𝑅 𝑗 = 𝑀 𝑗 

11: end if 

12: while 𝑅 𝑗 < 𝐾 

13: 𝑍 𝑖 = 

∑𝑗 

𝑙=1 𝑋 𝑙 

14: end for 

15: Compute the sample quantiles of 𝑍 𝑖 to find the LCL and UCL, re-

spectively. 

Similarly, Algorithm 2 computes ARL. 

The design of a control chart is often based on ARL, a large in-control

RL is ensured by design, but the variance of the run length distribu-

ion can be large. Thus, in such scenario, the coefficient of variation (CV)

rovides good insights beyond ARL. An advantage of the CV is that dif-

erent control charts with close ARL can be compared. Moreover, it is

 scale-free measure. As noticed by Ali and Pievatolo [19] , ALI is not a

cale-free measure; therefore, we shall report only the CV values of the

ength of inspection (called CVLI). 

In addition to these performance measures of the control charts, the

uartiles of the run length distribution are also studied in detail. We
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Algorithm 2 ARL Computation for the two-sided chart based on the 

renewal reward process with a fixed critical hreshold. 

1: Select 𝑝 = 1 or 𝑝 = 2 for the Process ⊳ where 𝑝 = 1 - Cumulative, 

𝑝 = 2 - Independent 

2: Choose shifted parameters values to generate 𝑋 and 𝑀 from 𝐹 𝑋 and 

𝐺 𝑀 

3: Fix 𝐾 

4: for ℎ = 1 to 𝑆 do ⊳ where 𝑆 is large, e.g., 10 6 
5: i=0 

6: do 

7: i = i+1 

8: do 

9: Sample 𝑋 𝑗 and 𝑀 𝑗 , 𝑗 ≥ 1 
10: if 𝑝 == 1 then 

11: 𝑅 𝑗 = 

∑𝑗 

𝑙=1 𝑀 𝑙 

12: else 

13: 𝑅 𝑗 = 𝑀 𝑗 

14: end if 

15: while 𝑅 𝑗 < 𝐾 

16: 𝑍 𝑖 = 

∑𝑗 

𝑙=1 𝑋 𝑙 

17: while 𝑍 𝑖 ≥ 𝐿𝐶𝐿 ||𝑍 𝑖 ≤ 𝑈𝐶𝐿 

18: 𝑅𝐿 ℎ = 𝑖 , break 

19: end for 

20: Compute Mean of 𝑅𝐿 ℎ . 
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l  
iscuss the detection of process deterioration and improvement using

he one and the two sided control charts, in the following subsections. 

.1. Adjusted values of parameters 

Before presenting the simulation study of the ARL, is worthwhile to

emark that a similar change in the ARL could be determined by a shift in

ither the time or the magnitude distribution. To demonstrate it for the

umulative process, let us suppose that 𝜃0 and 𝜆0 are the in-control rate

arameters of a compound Poisson process and let us denote the mean

f the first passage distribution by 𝑧 ( 𝜃0 , 𝜆0 ) = ( 𝜃0 𝐾 + 1)∕ 𝜆0 (see Example

1 ). Now consider a shift to 𝜃1 , while 𝜆 stays at 𝜆0 and let us look for the

orresponding shifted 𝜆1 while 𝜃 stays at 𝜃0 . This is obtained by equating

 ( 𝜃1 , 𝜆0 ) to z ( 𝜃0 , 𝜆1 ) which would result into 𝜆1 = 

𝜃0 𝐾+1 
𝑧 ( 𝜃1 ,𝜆0 ) 

= 

𝜆0 ( 𝜃0 𝐾+1) 
𝜃1 𝐾+1 . 

For example, take in-control rate parameters of the time and mag-

itude 𝜆0 = 0 . 0005 and 𝜃0 = 0 . 001 , respectively. If 𝜃1 = 0 . 003 for 𝐾 =
00 , 𝜆1 = 0 . 000342 . Similarly, 𝜃1 is found from 𝜆1 as 𝜃1 = 

𝜆0 𝑧 ( 𝜃0 ,𝜆1 )−1 
𝐾 

=
𝜆0 ( 𝜃0 𝐾+1)− 𝜆1 

𝜆1 𝐾 
. 

To find the shifted/adjusted parameter value in the independent

rocess, we have 𝜃1 = 

ln ( 𝜆0 )+ 𝜃0 𝐾− ln ( 𝜆1 ) 
𝐾 

, i.e., by using the 𝜆1 , and 𝜆1 =
0 exp { 𝐾( 𝜃0 − 𝜃1 )} for 𝜃1 . 

.2. Discussion of an ARL study (cumulative process) 

The performance of the charts has been evaluated for shifts in a wide

ange. This is because in practice the actual shift size is unknown. We

onsidered shifts for the following two cases in the framework of the

ompound Poisson process of Section 2.3 : 

A 𝜆 decreases from 𝜆0 = 0 . 0005 to 𝜆1 ∈ {0.0003, 0.0001, 0.00005}

while 𝜃 increases from 𝜃0 = 0 . 001 to 𝜃1 ∈ {0.005, 0.002, 0.01}. 

B 𝜆 increases from 𝜆0 = 0 . 0005 to 𝜆1 ∈ {0.005, 0.01, 0.1} and 𝜃 de-

creases from 𝜃0 = 0 . 001 to 𝜃1 ∈ {0.00001, 0.0005, 0.0001}. 

When the process is in-control, the ARL values of the one and the

wo sided charts are equal to the specified in-control ARL value, i.e.,

70. 

Case A: an increase in 𝜃 (or decrease in 𝜆): In this case, to detect

rocess improvement, the Upper-sided control chart has been employed
100 
nd further it has been compared with the two-sided chart. We have

omputed the ARL and the CV of the run-length distribution and the

ength of inspection, for the two-sided and the upper-sided charts in

able 1 . The standard deviation of the ARL can easily be recovered using

he ARL and the CV values. 

Table 1 shows some interesting results. By examining the ARL values,

t is evident that the one-sided chart detects the shifts more effectively

han the two-sided control chart, because the latter is more conservative

y construction. This effectiveness is confirmed by the value of the CVs.

he ARL values show a decreasing pattern as the shift in the rate pa-

ameter of the magnitude distribution occurs, therefore the charts are

nbiased. The CV of the run length distribution is smaller and it de-

reases faster than the CV of the length of inspection as the process

mproves, confirming that the distribution of the length of inspection is

ore dispersed than distribution of the run length. The quartiles of the

un-length distribution have also been computed (see Table A.1 in the

ppendix), and we noticed that as the shift in the rate parameter gets

arger, the run length distribution becomes highly skewed and mean of

he run length gets greater than Q 3 . However, for small to moderate

hifts, either in the rate parameter of the magnitude or time distribu-

ion, the ARL is between Q 2 and Q 3 . Thus, runs rules to study the ARL

erformance may not be effective in such highly skewed distribution. 

Case B: a decrease in 𝜃 (or an increase in 𝜆): This is the most impor-

ant case for a reliability engineer, because the parameter shifts are in

he direction of process deterioration, for which the lower-sided control

hart is well suited. Therefore, we compare the ARL and the CV values

f the lower and the two sided control charts in Table 2 . 

Table 2 shows that the lower-sided chart is more efficient in the de-

ection of process deterioration than the two-sided chart (again, the two-

ided chart is more conservative). As the shift in the rate parameter of

he time distribution occurs, the ARL and the CV get smaller. A shift

f large size (either in the magnitude or time distribution) can be de-

ected quickly as compared to a small shift. When the time distribution

s in-control, i.e., 𝜆 = 𝜆0 , but have a shift in the magnitude, i.e., 𝜃 < 𝜃0 ,

hen for the two-sided chart, we observe a reverse behavior of the ARL

s compared to the process improvement case. Here, the ARL is clearly

iased. However, the lower-sided chart is free from such shortcomings,

nd we advocate its superiority over the two-sided chart. Again, in this

ase, the CV values of the run length are smaller than the CV of the

ength of inspection, and both CVs support the superiority of the one-

ided chart over the two-sided chart. We have also computed the quar-

iles in the appendix (cf. Table A.2 ), and observed that ARL value was

maller than Q 3 . Therefore, the run length distribution is not as highly

kewed as we observed in the case of process improvement. 

.3. Discussion of an ARL study (independent process) 

Still using the model of Section 2.3 , we consider shifts for the fol-

owing two cases: 

A 𝜆 decreases from 𝜆0 = 0 . 0005 to 𝜆1 ∈ {0.0003, 0.0001, 0.00005}

while 𝜃 increases from 𝜃0 = 0 . 001 to 𝜃1 ∈ {0.005, 0.002, 0.01}. 

B 𝜆 increases from 𝜆0 = 0 . 0005 to 𝜆1 ∈ {0.005, 0.01, 0.1} and 𝜃 de-

creases from 𝜃0 = 0 . 001 to 𝜃1 ∈ {0.00001, 0.0005, 0.0001}. 

When the process is in-control, the ARL is equal to the specified in-

ontrol ARL value, i.e., 370. 

Case A: an increase in 𝜃 (or decrease in 𝜆): As in the Case A for the

umulative damage process, we consider the upper sided and the two

ided charts for the detection of process improvement. From Table 3 , it is

lear that the one-sided chart is more efficient in the detection of shifts

han the two-sided chart. The CV of the run-length also supports the

uperiority of the upper-sided control chart. The large-size shifts either

n the rate parameter of the time or of the magnitude can be detected

uickly as compared to the small shifts. The ARL gradually decreases

ith the shift in the parameters, so the charts are unbiased. The CV of the

ength of inspection distribution is constant so it is not useful. However,
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Table 1 

Process improvement with upper and two-sided charts for the cumulative damage process. The ARL is based on 

𝛼 = 0 . 0027 , 𝜆0 = 0 . 0005 , 𝜃0 = 0 . 001 and 𝜆1 ∈ {0.0003, 0.0001, 0.00005}, 𝜃1 ∈ {0.002, 0.005, 0.01}. 

𝜃 𝜆 Upper-sided Two-sided 

0.0005 0.0003 0.0001 0.00005 0.0005 0.0003 0.0001 0.00005 

0.001 ARL 370.37 32.0474 3.05326 1.73591 370.37 46.1792 3.46456 1.84701 

CV 0.998649 0.984274 0.820049 0.651102 0.998649 0.989113 0.843424 0.67719 

CVLI 0.999928 0.999169 0.991241 0.984541 0.999928 0.999423 0.992285 0.985478 

0.002 ARL 160.761 17.9681 2.40352 1.52591 231.902 25.2764 2.66728 1.60262 

CV 0.996885 0.971775 0.764162 0.587072 0.997842 0.980019 0.790624 0.613205 

CVLI 0.999563 0.996079 0.970305 0.952807 0.999697 0.997214 0.973282 0.955119 

0.005 ARL 35.3429 6.41082 1.58941 1.22365 57.4729 8.37106 1.69522 1.25651 

CV 0.985751 0.918702 0.608964 0.42752 0.991262 0.938371 0.640394 0.451823 

CVLI 0.994894 0.971517 0.879489 0.840118 0.996863 0.978261 0.88749 0.844684 

0.01 ARL 8.95931 2.69559 1.19192 1.06527 13.0939 3.2243 1.22946 1.07618 

CV 0.942541 0.79311 0.401274 0.247524 0.961056 0.830575 0.432009 0.266064 

CVLI 0.968099 0.889565 0.726687 0.686996 0.978285 0.908594 0.736533 0.690883 

Table 2 

Process deterioration with lower and two-sided charts for the cumulative damage process. The ARL is based on 𝛼 = 
0 . 0027 , 𝜆0 = 0 . 0005 , 𝜃0 = 0 . 001 and 𝜆1 ∈ {0.005, 0.01, 0.1}, 𝜃1 ∈ {0.00001, 0.0001, 0.0005} for lower and two-sided 

cumulative process charts. 

𝜃 𝜆 Lower-sided Two-sided 

0.0005 0.005 0.01 0.1 0.0005 0.005 0.01 0.1 

0.00001 ARL 275.351 27.9881 14.2486 1.93436 474.139 55.5067 28.0056 3.28049 

CV 0.998182 0.981973 0.96427 0.695006 0.998945 0.990951 0.981984 0.833767 

CVLI 1.0000 1.0000 1.0000 0.999998 1.0000 1.0000 1.0000 0.999999 

0.0001 ARL 282.872 28.74 14.6243 1.97018 470.16 57.0118 28.758 3.35473 

CV 0.998231 0.982449 0.965205 0.701735 0.998936 0.991191 0.98246 0.837803 

CVLI 0.999999 0.999985 0.999971 0.999785 0.999999 0.999993 0.999985 0.999874 

0.0005 ARL 318.868 32.3338 16.4177 2.13813 436.744 64.2106 32.3542 3.70586 

CV 0.998431 0.984415 0.969067 0.72959 0.998855 0.992183 0.984425 0.854492 

CVLI 0.999973 0.999737 0.999482 0.996014 0.999981 0.999868 0.999737 0.997702 

0.001 ARL 370.37 37.4646 18.9721 2.36971 370.37 74.5005 37.4882 4.19766 

CV 0.998649 0.986564 0.973289 0.760268 0.998649 0.993266 0.986572 0.872795 

CVLI 0.999928 0.999289 0.998596 0.9887 0.999928 0.999643 0.999289 0.993636 

Table 3 

Process improvement with upper and two-sided charts for the independent damage process. The ARL is based on 

𝛼 = 0 . 0027 , 𝜆0 = 0 . 0005 , 𝜃0 = 0 . 001 and 𝜆1 ∈ {0.0003, 0.0001 , 0.00005}, 𝜃1 ∈ {0.002, 0.005, 0.01}. 

𝜃 𝜆 Upper-sided Two-sided 

0.0005 0.0003 0.0001 0.00005 0.0005 0.0003 0.0001 0.00005 

0.001 ARL 370.37 34.7682 3.26383 1.80661 370.37 50.5407 3.74536 1.93577 

CV 0.998649 0.985514 0.832833 0.668189 0.998649 0.990058 0.856156 0.695276 

CVLI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

0.002 ARL 79.9636 13.8591 2.40203 1.54985 117.873 18.6488 2.66041 1.63125 

CV 0.993727 0.963247 0.763993 0.59563 0.995749 0.972819 0.790012 0.62207 

CVLI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

0.005 ARL 5.93825 2.91202 1.42801 1.19499 7.29518 3.29797 1.48872 1.22014 

CV 0.911921 0.810306 0.547472 0.40395 0.928937 0.834735 0.572959 0.424764 

CVLI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

0.01 ARL 1.48808 1.26933 1.08274 1.04055 1.55882 1.30522 1.09286 1.0454 

CV 0.572707 0.460636 0.276441 0.197406 0.59874 0.483576 0.29149 0.20839 

CVLI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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he CV of the run of length distribution supports the superiority of the

pper-sided chart. It is observed from the quartiles table (cf. Table A.3 ),

iven in the appendix, that a very large shift either in a damage or time

ill result into a highly skewed distribution of the run-length, i.e., ARL

ill be greater than Q 3 . However, for small to moderate shifts, the ARL

ies between Q 2 and Q 3 . 

Case B: a decrease in 𝜃 (or an increase in 𝜆): This case is more im-

ortant because shifts in the parameters are in the direction of a process

eterioration. As in the previous Case B we compare the lower-sided and

he two-sided control chart in Table 4 . 
w  

101 
By examining Table 4 we noticed that the lower-sided chart is more

fficient in the detection of process deterioration than the two-sided

hart. We observe that the ARL of the two-sided chart is biased as com-

ared to the lower-sided chart, especially when a shift is only in the rate

arameter of the magnitude distribution. However, if we fix the dam-

ge distribution and introduce a shift in the rate parameter of the time

istribution, then the ARL values get small, i.e., the control chart detec-

ion ability improves. A shift of large size either in time or damage will

e detected quickly as compared to the small shift. The CV of the run

ength distribution supports the effectiveness of the lower-sided chart

hereas the CV of the length of inspection distribution is not too infor-
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Table 4 

Process deterioration with lower and two-sided charts for the independent damage process. ARL based on 𝛼 = 
0 . 0027 , 𝜆0 = 0 . 0005 , 𝜃0 = 0 . 001 and 𝜆1 ∈ {0.005, 0.01, 0.1}, 𝜃1 ∈ {0.00001, 0.0005, 0.0001}. 

𝜃 𝜆 Lower-sided Two-sided 

0.0005 0.005 0.01 0.1 0.0005 0.005 0.01 0.1 

0.00001 ARL 275.33 27.986 14.2476 1.93426 511.818 55.5047 28.0046 3.28039 

CV 0.998182 0.981971 0.964268 0.694987 0.999023 0.990951 0.981983 0.833762 

CVLI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

0.0001 ARL 282.852 28.7381 14.6235 1.9703 514.881 57.0099 28.7572 3.35486 

CV 0.998231 0.982447 0.965203 0.701757 0.999028 0.991191 0.982459 0.837809 

CVLI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

0.0005 ARL 318.85 32.3376 16.4227 2.14376 492.206 64.2144 32.3592 3.71177 

CV 0.998431 0.984417 0.969076 0.730432 0.998984 0.992183 0.984427 0.854744 

CVLI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

0.001 ARL 370.37 37.4893 18.998 2.39419 370.37 74.5252 37.5143 4.22369 

CV 0.998649 0.986573 0.973326 0.763101 0.998649 0.993268 0.986582 0.873636 

CVLI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

(a) Upper-sided rate chart and Lower-sided
FPT-chart, K = 300

(b) Upper-sided rate chart and Lower-sided
FPT-chart, K = 4000

(c) Lower-sided rate chart and Upper-sided
FPT-chart, K=300

(d) Lower-sided rate chart and Upper-sided
FPT-chart, K = 4000

Fig. 3. Comparison of the ARL of the FPT and rate control charts for the cumulative damage process. Panels (a) and (b): process deterioration; panels (c) and (d): 

process improvement. The ARL of the rate chart has been scaled. 
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ative. We also computed the quartiles of the run-length distribution in

he appendix (cf. Table A.4 ) and found that the ARL values lie between

he median and Q 3 , which means that the run-length distribution is not

ighly skewed as we have observed in the case of process improvement.

.4. A comparison between FPT and rate charts 

In this section, we compare the FPT-charts to the rate charts on the

asis of the ARL. In Fig. 3 , we have depicted the level curves of the

RL of one and two-sided charts using thresholds 𝐾 = 300 or 𝐾 = 4000
or the cumulative damage process under the compound Poisson pro-

ess assumption. For process deterioration, the lower sided FPT-chart is

ompared to the upper-sided rate chart, whereas for process improve-
102 
ent the reverse is done. The rate charts are built from pairs ( X i , M i ) and

hey monitor M i / X i (cf. Appendix B ), so, for every monitored point on

he FPT-chart, the number of arrivals needed to cross the threshold are

onitored on the rate chart. Therefore, to make the comparison valid,

he ARL of the rate chart was divided by the expected number of these

rrivals, ( 𝜃1 𝐾 + 1) (derived from E ( Z ) in Example #1 and Wald’s equa-

ion). When K is smaller, the FPT-chart is better at detecting process

mprovement; as K gets larger then it can outperform the rate chart also

t detecting process deterioration. The reason why the rate chart does

etter in Fig. 3 (a) is that the FPT-chart is insensitive to 𝜃1 in the selected

ange, because for K in the hundreds the threshold is very often crossed

t the first arrival and so the stopping time depends mainly on the inter-

rrival times (governed by 𝜆1 ) and the information on the magnitude
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(a) Upper-sided rate chart and Lower-sided
FPT-chart, K = 300

(b) Upper-sided rate chart and Lower-sided
FPT-chart, K = 4000

(c) Lower-sided rate chart and Upper-sided
FPT-chart, K = 300

(d) Upper-sided rate chart and Lower-sided
FPT-chart, K = 4000

Fig. 4. Comparison of the ARL of FPT and rate control charts for the independent damage process. Panels (a) and (b): process deterioration; panels (c) and (d): 

process improvement. The ARL of the rate chart has been scaled. 
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s unused, whereas the rate chart uses it effectively. However, as K gets

arger (representing a system with a longer lifetime), the FPT-chart starts

o use the information on magnitude and the performance improves. 

In Fig. 4 , the same analysis is presented for the independent damage

rocess, but dividing the ARL of the rate process by exp ( 𝜃1 𝐾) (see Ex-

mple #2), and we reach similar conclusions for 𝐾 = 300 . Instead, for

 = 4000 , Fig. 4 (b) indicates that no chart dominates the other on the

elected range, but the FPT-chart is more sensitive to larger deteriora-

ions (large 𝜆1 and in particular small 𝜃1 ). Finally, in Fig. 4 (c) the rate

hart is slightly more effective, but the ARL is very small for both charts.

. Real life examples 

In this section, we discuss some illustrative real-life examples with

imulated data sets for the implementation of the proposed control

harts. We have used 𝛼 = 0 . 0027 as false alarm probability. 

.1. Wire rope strength monitoring-cumulative process 

Wire ropes of a properly designed and maintained crane will deteri-

rate throughout their entire service life by two principal deterioration

echanisms, which are: external and internal fatigue, caused by bend-

ng over sheaves or winding on drums, and crushing caused by spooling

n multilayered drums (cf. Weischedel [20] ). An experiment is designed

o test the compatibility of wire rope with two different sheaves/winding

n drums. A dataset of the damage of a wire rope is collected and given

n Table 5 . The dataset was built by assuming that every time a weight

s lifted, the damage to wires is measured by electromagnetic inspection

nd weights continue to be lifted until the cumulative damage crosses

 specified threshold. The first 20 in-control observations as given in
103 
able 5 were generated using 𝜆 = 0 . 0005 , 𝜃 = 0 . 001 , and the next 10 (i.e.,

 new model of the sheave was introduced for testing the wire com-

atibility) from 𝜆 = 0 . 0001 , 𝜃 = 0 . 001 . Similarly, the last 10 (that is, a

econd model of the sheave was introduced for testing wire compatibil-

ty) from 𝜆 = 0 . 01 , 𝜃 = 0 . 001 . Boldface numbers denote the occurrence

f the shift, while values marked with ⋆ represent the detection of the

hift, i.e., a signal of the compatibility of the sheave with wire rope,

y the control chart. Using the first 20 observations, the control limits

re 𝐿𝐶𝐿 = ln (3 . 64695) = 1 . 293891 and 𝑈𝐶𝐿 = ln (16321 . 1) = 9 . 700214 . In
ig. 5 , the natural logarithm of the data and of the control limits are

hown for a better presentation of the chart. From Table 5 or Fig. 5 ,

learly, the first model of the sheave is more compatible with the wire

ope than the second one. Moreover, this conclusion is in accordance

ith the simulation study (cf Section 3 ). 

.2. Water quality monitoring-independent process 

There are environmental protocols which must be followed and en-

ured by each factory before releasing wastage. If a factory leaks poi-

onous waste products into a river, the vegetation and the fish in the

iver may die due to the effect of a cumulative or of an accidental mas-

ive poison pouring. To differentiate between an accidental and inten-

ional poisoning of a river, we propose an independent process to mon-

tor water quality. 

Conductivity of the water can be used to check water quality, be-

ause it depends on the concentration of dissolved electrolyte ions in the

ater. Every creek will have a baseline conductivity depending on the

ocal geology and soils. Higher conductivity will result from the presence

f various ions, including nitrate, phosphate, and sodium. Conductivity

an be measured in Siemens per centimeter (S/cm). Distilled water has
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Table 5 

Simulated failure time data of the cumulative process. 

Failure Inter-failure ln ( X ) Cumulative Failure Inter-failure ln ( X ) Cumulative 

# time (X) Probability # time (X) Probability 

1 924.377 6.8291 0.2921 21 18283.98 9.8138 ⋆ 0.9994 

2 2601.66 7.8639 0.6270 22 4082.99 8.3146 0.7908 

3 2895.77 7.9710 0.6671 23 695.201 6.5442 0.2284 

4 268.329 5.5922 0.0949 24 819.318 6.7085 0.2636 

5 1672.99 7.4224 0.4671 25 7070.88 8.8637 0.9366 

6 2024.72 7.6132 0.6342 26 2716.55 7.9071 0.6432 

7 1002.97 6.9107 0.3128 27 6546.95 8.7868 0.9216 

8 999.332 6.9071 0.3118 28 1478.42 7.2987 0.4261 

9 650.125 6.4772 0.2152 29 2421.04 7.7919 0.6001 

10 526.436 6.2661 0.1780 30 10508.8 9.2599 0.9845 

11 4926.25 8.5023 0.8501 31 29.3991 3.3809 0.0108 

12 1372.49 7.2244 0.4025 32 118.681 4.7764 0.0431 

13 892.819 6.7944 0.2836 33 54.1987 3.9927 0.0199 

14 854.872 6.7509 0.2733 34 22.09 3.0951 0.0082 

15 496.659 6.2079 0.1687 35 1.3452 0.2965 ⋆ 0.0004 

16 10943.1 9.3005 0.9870 36 101.146 4.6166 0.0368 

17 1759.06 7.4725 0.4843 37 39.7277 3.6821 0.0146 

18 2409.34 7.7871 0.5982 38 34.1069 3.5295 0.0126 

19 1972.39 7.5870 0.5248 39 26.2636 3.2682 0.0097 

20 29.2355 3.3754 0.0108 40 220.035 5.3938 0.0784 

Table 6 

Simulated failure time data of the independent process. 

Failure # Inter-failure time (X) ln ( X ) CP Failure # Inter-failure time (X) ln ( X ) CP 

1 28.1469 3.3374 0.0104 21 1.6689 0.5122 ⋆ 0.0006 ⋆ 

2 5375.9799 8.5897 0.8635 22 38.7736 3.6577 0.0143 

3 4899.0753 8.4968 0.8371 23 30.4048 3.4146 0.0112 

4 326.0282 5.7869 0.1138 24 6.0719 1.8037 0.0023 

5 3792.8213 8.2409 0.7546 25 7.2365 1.9791 0.0027 

6 468.8966 6.1504 0.1594 26 1.6809 0.5193 ⋆ 0.0006 ⋆ 

7 7043.6737 8.8599 0.9264 27 9.3069 2.2308 0.0034 

8 8111.0884 9.0009 0.9504 28 14.0128 2.6399 0.0052 

9 1824.1795 7.5089 0.4912 29 8.7200 2.1656 0.0032 

10 524.2249 6.2619 0.1765 30 4.8538 1.5798 0.0018 

11 5259.7901 8.5679 0.8575 31 2710.1264 7.9048 0.6335 

12 1500.3225 7.3134 0.4264 32 4673.8559 8.4497 0.8229 

13 2280.1749 7.7320 0.5703 33 834.6655 6.7270 0.2659 

14 1772.6952 7.4803 0.4814 34 91.5559 4.5169 0.0334 

15 2828.1483 7.9474 0.6492 35 13853.8589 9.5363 0.9941 

16 2570.5627 7.8519 0.6141 36 33313.4361 10.4137 ⋆ 0.9999 ⋆ 

17 498.3389 6.2113 0.1686 37 1697.9908 7.4372 0.4669 

18 3595.0558 8.1873 0.7359 38 418.0323 6.0356 0.1435 

19 2743.4973 7.9169 0.6380 39 33.6614 3.5164 0.0124 

20 1489.9068 7.3065 0.4241 40 2546.4320 7.8425 0.6106 
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t  
 conductivity ranging from 0.5 to 3 μ S/cm, while most streams range

etween 50 to 1500 μ S/cm. Freshwater streams ideally should have a

onductivity between 150 to 500 μ S/cm to support diverse aquatic life.

Let us suppose that conductivity should be at most 300 μ S/cm for

 particular river or stream which is near a factory. Forty observations

ave been generated in Table 6 to check the stream water quality where

ata are the hours between crossings of the conductivity threshold.

he first 20 in-control observations (cf. Table 6 ) were generated using

 = 300 , 𝜆 = 0 . 0005 , 𝜃 = 0 . 001 , the next 10, to represent process deteri-

ration, from 𝜆 = 0 . 1 , 𝜃 = 0 . 0001 and the last 10, i.e., process improve-

ent, from 𝜆 = 0 . 0001 , 𝜃 = 0 . 001 . The bold values in Table 6 denote the

ccurrence of a shift while values with a ⋆ represent the detection of the

hift by the FPT-chart. Using the first 20 observations, the control lim-

ts are 𝐿𝐶𝐿 = ln (3 . 64708) = 1 . 293927 and 𝑈𝐶𝐿 = ln (17838 . 8) = 9 . 789131 .
ote that process improvement means that conductivity is decreasing,

hile process deterioration means that conductivity is increasing. In

ig. 6 , the natural logarithm of the data and of the control limits are

aken for a better presentation of the chart. From Fig. 6 , clearly, the

rocess is in-control for the first 20 observations. A shift of the process

eterioration occurred at sample number 21, and it was immediately de-

i  

e  

104 
ected by the chart. Similarly, another shift occurred at sample number

1 which was detected at sample number 36. 

. Conclusion 

In this article we have proposed the FPT-chart, a control chart based

n the monitoring of first passage times above a threshold. This chart is

seful to monitor sequences of times between substitutions of a product

r of a piece of equipment due to failure or damage (regarded as first

assage times) . A change in the distribution of first passage times may

ignal usage beyond design limits or other permanent deficiencies that

ere inadvertently introduced in the product or process, degrading its

eliability. The FPT-chart assumes that the underlying damage process

s a shock process, where shocks occur following a renewal process with

ewards, representing the magnitude of the shocks. 

There is a relationship with the existing literature on the joint mon-

toring of time and magnitude, in which the marked Poisson process is

ommonly used. The FPT-charts are not a direct generalisation of the

ime and magnitude charts, however they constitute an advancement

n several respect: they are built under the assumption of a more gen-

ral underlying stochastic process; they can be a substitute for the rate
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Fig. 5. Control chart for the cumulative process monitoring. 
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Fig. 6. FPT chart for the independent damage process monitoring. 
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Table A.1 

Quartiles of the run-length distribution based on 𝛼 = 0 . 002
0.00005}, 𝜃1 ∈ {0.005, 0.002, 0.01} for the upper and two

𝜃 𝜆 Upper-sided 

0.0005 0.0003 0.0001 0.0000

0.001 Q 1 106.405 9.07486 0.725039 0.3352

Q 2 256.374 21.8652 1.74692 0.8076

Q 3 512.749 43.7303 3.49385 1.6153

0.002 Q 1 46.1041 5.02389 0.534773 0.2700

Q 2 111.084 12.1047 1.28849 0.6507

Q 3 222.169 24.2093 2.57699 1.3014

0.005 Q 1 10.023 1.69637 0.290004 0.1692

Q 2 24.1496 4.08728 0.698742 0.4078

Q 3 48.2992 8.17455 1.39748 0.8157

0.01 Q 1 2.43076 0.620557 0.157529 0.1030

Q 2 5.85671 1.49518 0.379553 0.2482

Q 3 11.7134 2.99037 0.759106 0.4964

105 
harts, by which proportional changes of time and magnitude would go

ndetected; they can be used when the magnitude of the damage is not

bservable, which is not possible for the time and magnitude charts;

ike the time and magnitude charts, they are en extension, in another

irection, of the simple TBE charts; they can be more effective than the

ime and magnitude charts in the detection of out-of-control situations,

s shown by a numerical study on the ARL in the case of a compound

oisson process. 

An advantage of the renewal reward process is that it allows for any

istribution of the TBE and of the magnitude. A drawback is that there

re not general closed form expressions for the calculation of control

imits. We have proposed simple Monte Carlo algorithms to compute

he control limits and the ARL, however, when reliability is very high,

he simulation of first passage times can be very time consuming and

ery long runs may be required to reduce the Monte Carlo variance

o acceptable values. So, while we have used Monte Carlo simulation

ffectively in this study, there is the need for developing specialised

umerical method for the computation of quantiles of first passage time

istributions available from renewal theory, with a view to actual appli-

ations of the FPT-charts. Other possible developments are the study of

he effect of parameter estimation on FPT-charts (and, more generally,

n charts for the monitoring of time and magnitude) and the relaxation

f the assumption of independence of magnitude from time. 
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ppendix A 

Quartiles of the run-length distribution for the cumulative and inde-

endent processes are given in Tables A.1, A.2, A.3 , and A.4 . 

ppendix B 

To compare the FPT-chart and the rate chart, we derived the cu-

ulative probability function of the random variable 𝑅 = 𝑀∕ 𝑋 as
7 , 𝜆0 = 0 . 0005 , 𝜃0 = 0 . 001 and 𝜆1 ∈ {0.0003, 0.0001, 

-sided cumulative process charts. 

Two-sided 

5 0.0005 0.0003 0.0001 0.00005 

24 106.405 13.1406 0.844703 0.369009 

96 256.374 31.6612 2.03525 0.889097 

9 512.749 63.3223 4.07049 1.77819 

7 66.57 7.12675 0.612266 0.29412 

11 160.395 17.1713 1.47521 0.708659 

2 320.79 34.3427 2.95041 1.41732 

73 16.3897 2.26131 0.322751 0.181054 

51 39.4896 5.44845 0.777643 0.436235 

02 78.9791 10.8969 1.55529 0.87247 

2 3.62113 0.774853 0.17138 0.10864 

18 8.72482 1.86695 0.412928 0.261759 

36 17.4496 3.73389 0.825855 0.523518 
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Table A.2 

Quartiles of the run-length distribution based on 𝛼 = 0 . 0027 , 𝜆0 = 0 . 0005 , 𝜃0 = 0 . 001 and 𝜆1 ∈ {0.005, 0.01, 

0.1}, 𝜃1 ∈ {0.00001, 0.0001, 0.0005} for the lower and two-sided cumulative process charts. 

𝜃 𝜆 Lower-sided Two-sided 

0.0005 0.005 0.01 0.1 0.0005 0.005 0.01 0.1 

0.00001 Q 1 79.0695 7.90695 3.95347 0.395347 136.257 15.824 7.912 0.7912 

Q 2 190.512 19.0512 9.52558 0.952557 328.301 38.1267 19.0633 1.90633 

Q 3 381.023 38.1023 19.0512 1.90511 656.602 76.2534 38.1267 3.81267 

0.0001 Q 1 81.2334 8.12328 4.06161 0.406102 135.113 16.257 8.12847 0.812788 

Q 2 195.725 19.5724 9.78612 0.97847 325.543 39.17 19.5849 1.95835 

Q 3 391.451 39.1448 19.5722 1.95694 651.086 78.34 39.1698 3.9167 

0.0005 Q 1 91.5887 9.15726 4.57774 0.456243 125.499 18.328 9.16312 0.914742 

Q 2 220.676 22.0637 11.0297 1.09928 302.381 44.1599 22.0778 2.204 

Q 3 441.351 44.1274 22.0594 2.19857 604.762 88.3198 44.1556 4.408 

0.001 Q 1 106.405 10.6334 5.31279 0.524807 106.405 21.2883 10.6402 1.05723 

Q 2 256.374 25.6203 12.8008 1.26448 256.374 51.2924 25.6367 2.54732 

Q 3 512.749 51.2407 25.6015 2.52896 512.749 102.585 51.2735 5.09464 

Table A.3 

Quartiles of the run-length distribution based on 𝛼 = 0 . 0027 , 𝜆0 = 0 . 0005 , 𝜃0 = 0 . 001 and 𝜆1 ∈ {0.0003, 0.0001, 

0.00005}, 𝜃1 ∈ {0.002, 0.005, 0.01} for the upper and two-sided independent process charts. 

𝜃 𝜆 Upper-sided Two-sided 

0.0005 0.0003 0.0001 0.00005 0.0005 0.0003 0.0001 0.00005 

0.001 Q 1 106.405 9.85764 0.786353 0.356762 106.405 14.3953 0.926198 0.39577 

Q 2 256.374 23.7512 1.89465 0.85959 256.374 34.6844 2.2316 0.953576 

Q 3 512.749 47.5024 3.78931 1.71918 512.749 69.3689 4.4632 1.90715 

0.002 Q 1 22.86 3.84138 0.534335 0.277613 33.766 5.21977 0.610252 0.303013 

Q 2 55.0793 9.25551 1.28744 0.668887 81.3565 12.5766 1.47035 0.730086 

Q 3 110.159 18.511 2.57487 1.33777 162.713 25.1532 2.94071 1.46017 

0.005 Q 1 1.56007 0.683841 0.238762 0.158684 1.95132 0.796283 0.258269 0.167995 

Q 2 3.75886 1.64766 0.575279 0.382336 4.70155 1.91858 0.62228 0.404771 

Q 3 7.51772 3.29532 1.15056 0.764672 9.4031 3.83716 1.24456 0.809542 

0.01 Q 1 0.258066 0.185566 0.111873 0.088654 0.280431 0.197979 0.116683 0.091715 

Q 2 0.62179 0.447107 0.269548 0.213606 0.675676 0.477014 0.281138 0.220981 

Q 3 1.24358 0.894213 0.539096 0.427211 1.35135 0.954029 0.562277 0.441961 

Table A.4 

Quartiles of the run-length distribution based on 𝛼 = 0 . 0027 , 𝜆0 = 0 . 0005 , 𝜃0 = 0 . 001 and 𝜆1 ∈ {0.005, 0.01, 

0.1}, 𝜃1 ∈ {0.00001, 0.0001, 0.0005} for the lower and two-sided Independent process charts. 

𝜃 𝜆 Lower-sided Two-sided 

0.0005 0.005 0.01 0.1 0.0005 0.005 0.01 0.1 

0.00001 Q 1 79.0636 7.90636 3.95318 0.395318 147.097 15.8234 7.91171 0.791171 

Q 2 190.497 19.0497 9.52487 0.952487 354.419 38.1253 19.0626 1.90626 

Q 3 380.995 38.0995 19.0497 1.90497 708.838 76.2505 38.1253 3.81253 

0.0001 Q 1 81.2274 8.12274 4.06137 0.406137 147.978 16.2565 8.12823 0.812823 

Q 2 195.711 19.5711 9.78555 0.978555 356.541 39.1687 19.5843 1.95843 

Q 3 391.422 39.1422 19.5711 1.95711 713.083 78.3373 39.1687 3.91687 

0.0005 Q 1 91.5836 9.15836 4.57918 0.457918 141.455 18.3291 9.16456 0.916456 

Q 2 220.664 22.0664 11.0332 1.10332 340.824 44.1626 22.0813 2.20813 

Q 3 441.327 44.1327 22.0664 2.20664 681.649 88.3251 44.1626 4.41626 

0.001 Q 1 106.405 10.6405 5.32025 0.532025 106.405 21.2954 10.6477 1.06477 

Q 2 256.374 25.6374 12.8187 1.28187 256.374 51.3096 25.6548 2.56548 

Q 3 512.749 51.2749 25.6374 2.56374 512.749 102.619 51.3096 5.13096 

f  

∫  
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ollows: 𝐹 𝑟 ( 𝑅 ) = 𝑃 ( 𝑅 ≤ 𝑟 ) = 𝑃 
(𝑀 

𝑋 
≤ 𝑟 

)
= ∫ ∞

0 𝑃 
(
𝑋 ≥ 

𝑀 

𝑟 
|𝑀 

)
𝑓 ( 𝑀) 𝑑𝑀 =

∞
0 exp 

(− 𝜆𝑀 

𝑟 

)
𝜃 exp (− 𝜃𝑀) 𝑑𝑀 = 

𝑟𝜃

𝜆+ 𝑟𝜃 . Then 𝐿𝐶𝐿 = 𝐹 −1 ( 𝛼) and 𝑈𝐶𝐿 =
 

−1 (1 − 𝛼) . To detect deterioration we used the upper-sided rate chart

nd the lower-sided FPT-chart. Similarly, to detect improvement we

sed the lower-sided rate chart and the upper-sided FPT-chart. 
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