Electronic Supplementary Information

Hybrid MoS₂/PEDOT:PSS transporting layer for Interface Engineering of Nanoplatelets based Light-Emitting Diodes

Roberto Sorrentino,^{*a} Robyn Worsely,^b Paola Lagonegro,^a Christian Martella,^c Adriana Alieva,^b Guido Scavia,^a Francesco Galeotti,^a Mariacecilia Pasini,^a Benoit Dubertret,^d Sergio Brovelli,^e Alessandro Molle,^{*c} Cinzia Casiraghi^{*b} and Umberto Giovanella^{*a}

- ^a CNR, Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), via A. Corti 12, 20133, Milano, Italy, roberto.sorrentino@scitec.cnr.it, umberto.giovanella@scitec.cnr.it
- ^b The University of Manchester, Department of Chemistry, Oxford Rd, Manchester M13 9PL, UK. <u>cinzia.casiraghi@manchester.ac.uk</u>
- ^c CNR-IMM, Unit of Agrate Brianza, via C. Olivetti 2, 20864 Agrate Brianza (MB), Italy. <u>alessandro.molle@mdm.imm.cnr.it</u>
- ^d Laboratoire de Physique et d'Etude des Matériaux, ESPCI-ParisTech, PSL Research University, Sorbonne Université UPMC, Université Paris 06, CNRS, 10 rue Vauquelin, 75005 Paris, France.
- ^e Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca, via Cozzi 55, 20125 Milano, Italy.

Figure S1: MoS₂ size characterization. Lateral size (on the left) and thickness (on the right) statistic of LPE MoS₂ nanosheets.

Figure S2: MoS₂ µ-raman spectra deposed on glass.

obtained out of 5 measurements.				
Layer	Thickness (nm)	Thickness (nm)	Thickness (nm)	Roughness
(on glass)	3500 r.p.m.	2500 r.p.m.	1500 r.p.m.	(nm)
PEDOT:PSS	30 ^{a,b)}	32	35	1.4
1.3% MoS ₂	28	30	32	2.0
3.3% MoS ₂	19	26 ^{a,b)}	35	5.2
5.0% MoS ₂	21	25	33	5.7
6.6% MoS ₂	22	29 ^{a)}	34	5.8
10% MoS ₂	15	24	30 ^{a,b)}	6.2
45% MoS ₂	12	16	25	8.2
MoS ₂	< 10	15	25 ^{b)}	11.9

 Table S1: Optimization thicknesses of thin films for PEDOT:PSS and nanocomposite material. Reported the average value obtained out of 5 measurements.

^{a)} used for LEDs; ^{b)} used for Kelvin Probe measurement.

Figure S3: Transmittance spectra of spin coated thin films of PEDOT:PSS, MoS_2 and with different ratios.

Figure S4: CdSe/CdZnS nanoplatelets: a) absorbance and steady state normalized photoluminescence, b) TEM image of the nanoplatelets.

Figure S5: Electroluminescence spectra under different bias for a) PEDOT:PSS only and b) PEDOT:PSS + MoS₂ (3.3%) -based devices.

Figure S6: a) Comparison between current density and luminance versus bias of two representative devices with HTL made of PEDOT:PSS (D0) and PEDOT:PSS+MoS₂ (3.3%, D1) featuring highest luminance; b) luminance versus bias to highlight turn on voltage at 0.1 cd/m² for representative D0-2 devices.

Figure S7: Electrical characterization. Current density vs bias for ITO/HTL/Al structure.