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Abstract 

The stochastic models, developed to simulate long-term hydrological data, can be subdivided in “driven 

data” models, which reproduce the principal characteristics of the available data series, and “physically 

based” models, which schematize the generating mechanism of atmospheric precipitation. The initial 

step of a “driven data” stochastic model, able to adequately simulate the sequences of wet and dry days, 

is the definition of the statistics of the model. In this paper, various statistical models for sequences of 

no-rain days are firstly presented: the models are based on an approach which considers the arrival of 

rainfall events as a Poisson process, homogenous or not. Moreover, the first results of an application of 

one of these models to the daily rainfall series registered at the Cosenza rain gauge (Calabria, Southern 

Italy) are also shown. In particular, the model applied is a non-homogeneous Poisson model which 

considers the rainfall as a pulse of random duration. 
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1. INTRODUCTION 

Numerous stochastic models have been developed to simulate long-term hydrological data. All the 

models can be divided in two main categories: a) the “driven data” models, which reproduce the 

principal characteristics of the available data series; b) the “physically based” models, which schematize 

the generating mechanism of atmospheric precipitations.  

In the first category the most popular models are the Autoregressive Moving Average (ARMA) ones [1, 

2, 3, 4 ,5], used in literature to characterize the correlations within a time series [6]. An ARMA model 

captures the deterministic components (dominant linear trends) of a time series and leaves behind the 

stochastic component (residuals). The stochastic component of a time series is defined as persistent if 

the temporally adjacent values are positively correlated. The persistence may be short-term or long-

term depending on the time range over which they are correlated [7].  

The physically based models describe the rainfall occurrence (dry–wet) process and the distribution of 

rainfall amounts on wet days independently [8]. In this category rainfall occurrence can be represented 

in two ways: as a Markov process [9] or as an Alternating Renewal process for dry and wet sequences 

[10]. A major limitation of these models is that the adoption of short term memory neglects the existing 

dependence among different rainfall values separated by longer lags. In absence of such a 

representation of long term memory, annual sums of the daily simulations exhibit a lower variability 

than the one observed in reality [11]. Thyer and Kuczera [12] applied a Hidden Markov Model (HMM) 

for simulating long-term persistence in single site rainfall time series. Their results supported that the 

HMM provides a conceptually more adequate approach, for simulating long-term persistence in 

hydrological time series, than the ARMA-type processes. Successively, Thyer and Kuczera [13] 

presented a Bayesian approach for fully quantifying the parameter uncertainty of a HMM for simulating 

long-term rainfall time series at multiple sites. This extension showed several advantages over the single 

site HMM.  

Generally, a good “driven data” stochastic model has to adequately simulate the sequences of wet and 

dry days, thus requiring the definition of the basic statistics of the data series of rainfall measured on 

ground through rain gauges. To this aim, the no-rain day sequences are strictly embedded to the arrival 

process of the rainfall events, that can be seen as instantaneous pulses (duration=0) or as pulses of 

random duration (duration>0). 
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Usually, the rainfall arrival can be seen as a cluster process, characterized by the variability of both 

intensity and duration in time and space, which are formulated as Poisson cluster processes [14]. 

Anyway, for time scale equal to or greater than one day, simple Poisson models characterized by a 

unique parameter λ (defined as process intensity) can be used. With reference to at-site rainfall 

measurements, if the λ parameter is constant in time, the model can be defined as temporally 

homogeneous. More generally, the Poisson model can be not homogeneous in time, thus requiring a 

time-varying parameter, λ(t).  

In the following, homogeneous and non-homogeneous Poisson models are presented for explaining 

no-rain day sequences, considering both instantaneous pulses and pulses of random duration.  

 

Homogeneous Poisson model with instantaneous pulses 

Let M be the random variable measuring the number of consecutive intervals of length Δt (equal to 1 

day) with zero rainfall, followed by at least one rainy day (Fig. 1).  

 

 	
   

	
   Δt 	
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   iΔt 	
   

Rainy	
  event	
  arrival 	
   	
   m 	
   

 

Fig. 1: Schematization of a no-rain day sequence with rainfall as instantaneous pulses. 

 

Under the hypothesis that the arrival process of rainfall is a Poisson model with intensity λ, the 

probability that at the generic instant iΔt a sequence of m no-rain intervals (Δt) will start, followed by 

the rainy interval ( ) ( )[ ]tmi,tmi Δ++Δ+ 1 , is given by the following probability density function (pdf): 

( ) ( )
⎪⎩

⎪
⎨
⎧

θ+θ−

=θ−θ
=

startnotdoessequence
,...,mmp

m
M 2

2

1
211

    (1) 

where:  

( )texp Δλ−−=θ 1          (2) 
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The conditional probability of the variable M|M≥m*, that is the number of m consecutive no-rain 

intervals equal to, or greater than, a fixed value m∗>0, is given by: 

pM M≥m*
m( ) =θ 1−θ( )m−m* m =m*,m* +1,...      (3) 

By substituting eq. (2) in eq. (3) it can be obtained: 

( ) ( )[ ] ( )[ ] ,...m,mmtmmexptexpmp ****mMM 11 +=Δλ−−Δλ−−=≥   (4) 

The cumulative distribution function (cdf) of M|M≥m* can be obtained as follows: 

( ) ( )[ ] ,...m,mmtmmexpmP ****mMM 111 +=Δλ+−−−=≥    (5) 

The mean and the variance are equal to: 

( )
( )texp

texp
m**mMM Δλ−−

Δλ−
+=µ ≥ 1

 
( )
( )[ ]2

2

1 texp
texp

*mMM
Δλ−−

Δλ−
=σ ≥   (6) 

 

Homogeneous Poisson model with pulses of random duration 

With reference to a generic instant  iΔt  within a rainfall event, we define the random variable M' as the 

number of consecutive intervals of length Δt (equal to 1 day) without arrival of rainfall events, followed 

by at least one rainy day (Fig. 2). 

The probability that, at the generic instant iΔt, a sequence of m'  intervals of length Δt  without arrival 

of rainfall events will start, followed by a rainy event is equal to eq. (1). 

Within the sequence of m'  intervals, it can be useful to define both the random variable  L (l=0, 1, 2, 

…) as the number of rainy intervals Δt belonging to a rainfall event started before the instant iΔt, and 

the random variable  K'  (k'=0, 1, 2, …) as the number of  consecutive intervals  with no rainfall,  where 

LMK −ʹ′=ʹ′ . 
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Fig. 2: Schematization of variables m'  (sequence of days without arrival of rainfall events),  (sequence of rainy 
days within m')  and     ' (difference of the two variables     ' and     ) with reference to a generic instant  Δ t. 
 

The pdf that at the generic instant  i'Δt   a sequence of  k' intervals of length  Δt  without rainfall will 

start, followed by a rainy interval ( ) ( )[ ]tk'i,tk'i Δ+ʹ′+Δʹ′+ 1 , can be expressed as: 

( ) ( )
( )⎪⎩

⎪
⎨
⎧

θ−−

=ʹ′θ−θ
=ʹ′

ʹ′

ʹ′ startnotdoessequencer
,...,krkp

k

K 11
211

    (7) 

where ( )∑
∞

=
θ=

0l

l
L lpr , being ( )lpL  the pdf of the variable L. 

Given the number of consecutive intervals *k'K'K ʹ′≥ of length Δt with no rainfall equal to, or greater 

than, 0>ʹ′*k ,  the probability that at the generic instant  i'Δt  a sequence of  k'  intervals without rainfall 

followed by a rainy interval will start, is expressed by the pdf: 

( ) ( ) ,...k,k'k'kp ***k'k
*k'K'K 11 +ʹ′ʹ′=θ−θ= ʹ′−
ʹ′≥      (8) 

By substituting eq. (2) in eq. (8), it yields: 

( ) ( )[ ] ( )[ ] ,...k,k'ktk'kexptexp'kp ****k'K'K 11 +ʹ′ʹ′=Δλʹ′−−Δλ−−=ʹ′≥    (9) 

The corresponding cdf is: 

( ) ( ) ,...k,k'k'kP ***k'k
*k'K'K 111 1 +ʹ′ʹ′=θ−−= +ʹ′−
ʹ′≥      (10) 

By substituting eq. (2) in eq. (10), it yields: 

( ) ( )[ ] ,...k,k'ktk'kexp'kP ****k'K'K 111 +ʹ′ʹ′=Δλ+ʹ′−−−=ʹ′≥     (11) 

The mean and the variance are: 
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( )
( )texp

texp
k**k'K'K Δλ−−

Δλ−
+ʹ′=µ ʹ′≥ 1

 
( )
( )[ ]2

2

1 texp
texp

*k'K'K
Δλ−−

Δλ−
=σ ʹ′≥     (12) 

 

Non-homogeneous Poisson model with instantaneous pulses 

The variability of the meteorological conditions triggering rainfall are clearly time dependent [15, 16, 

17]. Meteorological phenomena show statistically significant seasonal and daily features due to the 

revolution of the earth around itself and the sun. Particularly, the storm events in the Mediterranean 

area show non-stationary behavior with intensity depending on time, λ(t), as shown by their marked 

reduction in summer. Due to this evident periodicity, occurrences of rainfalls can be considered reliably 

homogeneous only in short temporal intervals. In this case, a stochastic model based on a non-

homogeneous Poisson process, characterized by a time-dependent intensity of rainfall occurrence λ(t), 

can be well fitted to explain seasonal variation of no rainfall sequences. Since the probabilistic 

distribution of λ(t) depends on the starting time of the no-rain day sequence, the temporal variation of 

the intensity parameter λ(t) can be statistically developed through a truncated Fourier series. Thus the 

temporal variation of rainfall intensity λ(t) can be expressed as a function of period D: 

( ) ∑
=

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛ π
+⎟
⎠

⎞
⎜
⎝

⎛ π
+=λ

hn

j
jj t

D
j

sinbt
D
j

cosaat
1

0
22

2
1

     (13) 

where 0a , hjj n,...,,j;b,a 21=  are the coefficients of the truncated Fourier series, hn  is the number of 

harmonics and D  is the period of the function ( 25365.D =  for 1=Δt  day). The integral of the 

intensity function of non-homogeneous Poisson process is: 

( ) ct
D
j

sinat
D
j

cosb
D

tat
hn

j
jj +⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛ π
−⎟
⎠

⎞
⎜
⎝

⎛ π

π
+=Λ ∑

=1
0

22
22

1
    (14) 

where c  is an integration constant. The mean value of the arrival number in the generic interval 

( ]21 t,t  is given by:  

 ( ) ( )12 tt Λ−Λ           (15) 
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Considering the random variables M and *mMM ≥ defined above, the pdf and cdf expressed by 

equations (4) and (5), respectively, assume the expressions: 

( )

( )[ ] [ ] ,...m,mmexpexp

mp

**mi,*mimi,mi

*mMM

11 11 +=ΔΛ−ΔΛ−−=

=

++++++

≥
  (16) 

where ( ) ( )tjtjj,j ΔΛ−ΔΛ=ΔΛ 1221 , and: 

( ) ( ) ,...m,mmexpmP **mi,*mi*mMM 11 1 +=ΔΛ−−= +++≥    (17) 

The mean and the variance of the random variable *mMM ≥ are: 

( )∑
∞

=
+++≥ ΔΛ−+=µ

*mm
mi,*mi**mMM expm 1       (18) 

( ) ( )( )**mMM**mMM
*mm

mi,*mi

*mMM

mmexpm −µ+−µ−ΔΛ−=

=σ

≥≥

∞

=
+++

≥

∑ 12

	
  

1

2

  (19) 

 

Non-homogeneous Poisson model with pulses of random duration 

With reference  to the random variables M' and K'  introduced above,  in the case of non-

homogeneous Poisson model, it can be verified that the pdf of the random variable K' assumes the 

following expression: 

( )

( )[ ] [ ] ,...k,k'kexpexp

'kp

**'k'i,*k'i'k'i,'k'i

*k'K'K

11 1 +ʹ′ʹ′=ΔΛ−ΔΛ−−=

=

+ʹ′++++

ʹ′≥
   (20) 

and the cdf is: 

( ) ( ) ,...k,k'kexp'kP **'k'i,*k'i*k'K'K 11 1 +ʹ′ʹ′=ΔΛ−−= ++ʹ′+ʹ′≥     (21) 

The mean and the variance are:  
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( )∑
∞

ʹ′=
++ʹ′+ʹ′≥ ΔΛ−+ʹ′=µ

*k'k
'k'i,*k'i**k'K'K expk 1       (22) 

( ) ( )( )**k'K'K**k'K'K
*k'k

'k'i,*k'i

*k'K'K

kkexp'k ʹ′−µ+ʹ′−µ−ΔΛ−=

=σ

ʹ′≥ʹ′≥

∞

ʹ′=
++ʹ′+

ʹ′≥

∑ 12 1

2

   (23) 

 

2. RESULTS	
  AND	
  DISCUSSION	
  

In this paper, in order to analyse no-rain day sequences, the non-homogeneous Poisson model with 

pulses of random duration has been applied to the Cosenza rain gauge, which has been chosen due to 

the high quality data. In fact, the observation period of daily rainfall data for this rain gauge spans from 

1916 to 2010 and presents missing data only during the Second World War period. Thus, only data 

from 1951 to 2010 have been selected. 

To ensure parsimony of the model, Fourier series has to be limited to the minimum number of 

harmonics. The estimation of the Fourier coefficients for one harmonic has been obtained through the 

maximum likelihood method, expressed as: 

( )

( )[ ]∏

∑

=
+ʹ′+ʹ′+

=
ʹ′+ʹ′+

ΔΛ−−+

+ΔΛ−=

dN

n
nkn'i,nkn'i

dN

n
nkn'i,*kn'i

)b,a,a(expln

)b,a,a(b,a,aLln

1
1101

1
110110

1

     (24) 

where Nd is the number of no-rain day sequences. To guarantee stability in the statistical estimation, the 

sequences used in the application are the ones with duration equal to or greater than 5 days ( 5=ʹ′*k ). 

Moreover, with the aim to analyse temporal change in the sequences, the whole series has been 

subdivided in two subseries, each composed by 30 years of observation: 1951-1980 and 1981-2010. The 

estimated Fourier parameters are reported in Tab. 1. 
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30-year subperiod Nd a0 a1 b1 

1951-1980 485 0.307 0.0613 0.0280 

1981-2010 469 0.279 0.0626 0.0231 

Table 1: Statistical features of the different subperiods and estimated values of Fourier coefficients. Nd=number of 
data of no-rain day sequences; a0, a1, b1: Fourier coefficients. 
 

In order to analyse the seasonality of the no-rain sequence duration,  K', fig. 3 shows,  for each day of 

the year, the mean value of this variable (in log scale) for both the 30-year periods. The distribution of 

K' presents maximum values between about  the 150th and  the 250th day of the year,  a time span which 

roughly corresponds to the summer period, while minimum values are detected in winter.  Moreover, 

by using the estimated Fourier parameters (Tab. 1),  the expected values of K',  obtained through a 

Monte Carlo simulation, have been compared with the corresponding observed values derived by the 

historical data series.  

 

 

Fig. 3: Comparison between observed and expected values (maximum likelihood method) of K'   for the two 
subperiods (left: 1951-1980; right: 1981-2010). 
 

In Fig. 4  the difference between  the daily distributions of the expected values of K',  E(K'),  estimated 

for both the subperiods, is shown.  For each day of the year,  E(K') values estimated in the 1981-2010 

subperiod are higher than the ones estimated in the 1951-1980 subperiod, and this difference is more 

evident during the summer period.  Moreover, the maximum value of E(K')  for the 1981-2010 

subperiod falls few days before the correspondent value of the 1951-1980 subperiod.  
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Fig. 4: Comparison between expected values of K ' for the two subperiods. 

 

These results show a change in rainfall distribution during the year, with a longer duration of the no-

rain day sequences in the last 30-year period, even if the number of sequences (Nd) slowly decreases. 

The longer duration of the no-rain day sequences matches with the general tendency of increasing 

frequency of the drought periods, observed in various part of the world [18]. 

The research is the first step of a wider investigation regarding the probabilistic modelling of both 

occurrence and intensities of wet and dry rainfall periods, by considering, in particular, the cumulated 

rainfall lower than fixed thresholds. Anyway, the procedure presented in this work needs an 

improvement as regards parameters estimation and validation on a larger number of data series, that 

will be the object of a further application. Moreover, the at-site procedure can be replaced by adopting 

spatial analysis, taking into account the rainfall variability within a region. The tendency showed in this 

study, if confirmed by further analyses based on more detailed rainfall stochastic models applied to 

larger data base, could be very useful in water resources planning and management of specific drainage 

basins.  
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