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Fig. 1. Our approach automatically generates the shape of silicone molds for casting an input 3D mesh. After computing a segmentation of an input mesh
into moldable pieces (left), we design and 3D print a set of metamolds (middle, in red). The actual mold pieces (right, in green and whitish) are produced by
pouring liquid silicone onto the metamolds, then assembled and used to cast copies of the input model.

We propose a new method for fabricating digital objects through reusable
silicone molds. Molds are generated by casting liquid silicone into custom
3D printed containers calledmetamolds. Metamolds automatically define the
cuts that are needed to extract the cast object from the silicone mold. The
shape of metamolds is designed through a novel segmentation technique,
which takes into account both geometric and topological constraints involved
in the process of mold casting. Our technique is simple, does not require
changing the shape or topology of the input objects, and only requires off-
the-shelf materials and technologies. We successfully tested our method on a
set of challenging examples with complex shapes and rich geometric detail.
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1 INTRODUCTION
While 3D printing technologies are becoming faster and more pre-
cise, classical manufacturing techniques remain the first choice for
most industrial application scenarios. Industrial production is still
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largely dominated by casting techniques: casting scales well with
the number of copies, supports a wide spectrum of materials, and
ensures high geometric accuracy.

A popular casting technique for high-quality reproduction of art
objects is silicone mold casting [Bruckner et al. 2010]. For simple
scenarios, a physical prototype is submerged in liquid silicone; the
cured silicone forms a mold around the object; then, the prototype
is extracted by manually cutting and opening the silicone mold.
Multiple copies can be cast by filling the silicone mold with a liquid
casting material such as resin. Silicone molding has two main practi-
cal advantages over traditional rigid casting: the replicas can be
safely extracted by deforming the flexible mold without damaging
it, and overhanging geometric details do not constitute a severe
limitation.
While conceptually simple, silicone mold casting may become

extremely challenging when applied to non-trivial shapes, and of-
ten requires the intervention of skilled professionals. For example,
objects with handles usually need a set of carefully placed extra
cuts to make the extraction physically possible. Moreover, venting
pipes have to be attached to the prototype object before submersion
in liquid silicone, to let the air flow out and avoid artifacts in the
replicas due to trapped air bubbles.
Recently, some methods tried to reinterpret the manufacturing

process of mold casting using a computational approach [Babaei
et al. 2017; Herholz et al. 2015; Malomo et al. 2016]. However, none
of them was designed to exploit the practical advantages brought
by silicone mold casting. We propose a novel and practical compu-
tational approach based on reusable silicone molds that is capable
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of reproducing objects with complex shapes and high geometric
details.
The main idea is to first estimate the position and shape of opti-

mal cuts in the silicone mold by facing a segmentation problem and
devising appropriate parting surfaces. Then, to generate the molds,
we fabricate via 3D printing a series of custom containers, which we
call metamolds. Finally, metamolds are filled with liquid silicone to
get the actual pieces of the flexible reusable mold. Metamolds are de-
signed to incorporate all geometric features that will make the final
casting successful. The process is simple and practical (Figure 1).
Our main contributions can be summarized as follows:

• we propose a new technique to automatically design and fabri-
cate reusable silicone molds through 3D printed metamolds.
Metamolds automatically define the cuts that are needed to
extract the cast object from the silicone mold;

• we introduce a scalar field defined on the surface of an input
object that measures moldability costs, which reflect how
difficult it is to extract a flexible mold along a given direction.
Moldability costs are computed from visible regions through
a geodesic flow which aligns well with shape features;

• we define a segmentation technique to partition the surface
into moldable parts. Segmentation is formulated as a functio-
nal minimization problem, solved via Integer Linear Program-
ming;

• our pipeline includes a technique to design parting surfaces,
and an optimization strategy to generate silicone molds by
considering the placement of venting pipes.

2 RELATED WORK
Digital fabrication makes extensive use of geometry processing and
shape analysis to solve problems for digitally controlled manufactu-
ring processes [Bermano et al. 2017; Liu et al. 2014; Umetani et al.
2015]. In this section, we place our contributions within the context
of automatic mold design and shape segmentation techniques.

2.1 Mold design
Molding is commonly used in industry to build replicas of a given
model in great quantity and with relatively contained costs. No-
netheless, designing and fabricating a proper mold is still a highly
challenging engineering task [De Garmo et al. 2011]. Expendable,
single-use molds are common practice, for example, for art repro-
duction and wax cast jewelry; reusable molds, in contrast, pose
many engineering problems [Wannarumon 2011].

Reusable molds are generally made out of a rigid material such as
metal (e.g., for injection molding). This severely reduces the class of
shapes that can be manufactured, since the removal of mold pieces
is strongly affected by the presence of undercuts and overhanging
geometric details. Several methods have been proposed to identify
parting surfaces and directions for either two-piece [Chakraborty
and Reddy 2009; Zhang et al. 2010] or multi-piece [Lin and Quang
2014] rigid molds for CAD-like objects.

To deal with free-form objects, Herholz et al. [2015] identify par-
ting and fabrication directions by segmenting a 3D surface into
patches that satisfy the height field constraint; local constraint viola-
tions are removed by deforming the mesh, while trying to minimize

visual distortion. The approach is limited to fairly simple shapes:
when applied to complex geometries, the system might produce
molds composed by multiple tiny pieces which are difficult to as-
semble. Additionally, significant deformations on the original model
may result from fabrication constraints.
By exploiting the flexibility of silicone, our method overcomes

these limitations, and generates valid cut layouts even for complex
models, without imposing any change to the original geometry. The
results in Section 6 and in the supplementary material show that
our method works well for all the failure cases reported in [Herholz
et al. 2015].

To overcome the limitations of rigid molding, Malomo et al. [2016]
propose FlexMolds, single-piece, thin, flexible molds whose cut de-
sign is driven by a physically-based simulation of the extraction
process. FlexMolds are made of a thin layer of flexible plastic mate-
rial (TPU), and fabricated by 3D laser sintering. While FlexMolds
can handle complex shapes, they still have some drawbacks. First,
cuts are manually sealed with silicone, with risk of leakage of the
cast material. Also, the authors of [Malomo et al. 2016] acknowledge
that sealing can be difficult for small objects or involuted regions.
In turn, large objects can be difficult to fabricate, as FlexMolds’ thin
layer of material is prone to deform under the action of casting
material pressure. In addition, FlexMolds can be fabricated with
laser sintering only, as the removal of an internal support structure
may be problematic.

Again, our approach overcomes all the these limitations, by fabri-
cating silicone molds that work for challenging shapes and sizes.

2.2 Shape segmentation
Segmenting 3D objects into parts is fundamental to a number of
applications in Computer Graphics [Chen et al. 2009; Shamir 2008].
Segmentation may be either geometry-based [Zhang et al. 2005] or
semantics-based [Litany et al. 2016]. Recently, 3D segmentation for
efficient fabrication has drawn attention from the research commu-
nity. We first cover the state-of-the-art on the decompose-to-print
problem and then discuss segmentation as a functional minimization
problem.

Shape segmentation for fabrication. Many attempts have been
made to segment a 3D model into small parts which can fit into the
working volume of 3D printers. Chopper [Luo et al. 2012] formula-
tes a number of desirable criteria for the partition (assemblability,
number of components, unobtrusiveness of seams, and structural
soundness). Saving printing time and costs is the aim of Packmer-
ger [Vanek et al. 2014], which converts an input 3D mesh into a
shell composed of multiple segments. Packmerger also includes an
optimization strategy to tightly pack the segments to minimize the
amount of support material. Dapper [Chen et al. 2015] is a segmenta-
tion and packing strategy which builds on an initial decomposition
of a 3D object into a small number of approximately pyramidal
parts [Hu et al. 2014] to progressively pack a pile in the printing
volume. The Shapes in a box solution [Attene 2015] defines a shape
segmentation for 3D printing and an automatic arrangement of
3D printed parts in a small box, to ease the delivery of customized
printed objects and the reassembling at destination.
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Our approach is complementary to the above cited works, as
segmentation is aimed at designing and fabricating multi-piece, re-
usable molds, rather than the simultaneous fabrication of object
parts.

Segmentation via functionalminimization. Segmentation via functi-
onal minimization has a long history in Computer Vision [Zhu and
Yuille 1996]. Segmentation can be posed as a multi-labeling pro-
blem: given a set of data points and a finite set of labels, the goal
is to label each point such that the joint labeling minimizes an ob-
jective function. The labeling induces a segmentation into parts,
with boundaries lying between adjacent points with different labels.
The objective function usually includes a data cost measuring the
cost of assigning a specific label to a given point, and regularization
factors, which usually enforce a preference for spatial smoothness
(smoothing cost) and fewer unique labels in the solution (label cost)
[Delong et al. 2012].
In the graphics community, Shapira et al. [2010] propose a 3D

partitioning algorithm based on the minimization of an energy
functional guided by the shape diameter function. Kalogerakis et
al. [2010] learn the objective function from a collection of segmen-
ted and labeled training meshes: the data energy term measures
consistency between local descriptors of the surface geometry and
the labels through a JointBoost classifier. Sidi et al. [2011] address
the unsupervised co-segmentation of a set of 3D shapes, with group
information entering the optimization through the data term of the
energy functional.
Whereas the above methods rely on the alpha expansion graph-

cut algorithm [Boykov et al. 2001] to solve theminimization problem,
we preferred relying on an Integer Linear Programming formulation
(ILP). Indeed, the ILP formulation comes with a global optimality
guarantee also when large label costs, or label costs on large sub-
sets, are taken into account. ILP does not require the smoothing
coefficients to define a metric, and has the additional advantage
that it can be solved by using available optimization solvers such as
Gurobi [2016].

In terms of segmentation objective functions, the closest work to
ours is [Herholz et al. 2015], where the segmentation problem is a
discrete labeling process of mesh faces, with labels corresponding
to potential fabrication directions; connected components of faces
carrying the same labels form regions which can be manufactured
individually. The only valid labelings are those that assign triangles
to fabrication directions for which the triangles are height fields.
While finalized to a similar objective (partitioning into regions

that are easily castable), our approach is completely different, as
it takes into account a real-valued moldability cost, rather than
a binary decision based on height field constraints, thanks to the
elasticity of silicone. This avoids the need for shape deformations.

3 OVERVIEW
Given an input shape, our goal is to create flexible silicone molds for
casting multiple replicas. Our method works in three steps (Figure 2):

• Shape segmentation into parts corresponding to different mold
pieces. The segmentation is driven by a shape-awaremoldabi-
lity criterion which measures the difficulty of extracting the
mold piece along a candidate parting direction. Moldability

(a)

(b)

(c)

Fig. 2. Our fabrication pipeline: (a) evaluation of moldability costs for can-
didate parting directions (two samples shown, top) and optimal shape
segmentation into castable parts (bottom); (b) design and fabrication of 3D
printed metamolds (top) and silicone mold pieces (bottom); (c) assembly
and object casting.

costs are computed through a shape-aware geodesic flow,
which takes the properties of silicone into account (Figure 2.a,
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top). The segmentation is done by solving an Integer Linear
Program, with regularizers improving the location of segment
boundaries, and favoring fewer segments (Figure 2.a, bottom).
For objects with complex topologies, an algorithm for topolo-
gical simplification supports the automatic placements of the
required cuts in the silicone mold volume.

• Design and fabrication of 3D printed custom containers called
metamolds (Figure 2.b, top), and fabrication of mold pieces by
pouring liquid silicone into metamolds (Figure 2.b, bottom).
We design metamolds by computing parting surfaces through
a variant on Poisson surface reconstruction. Parting surfaces
separate the space around the object following the segmen-
tation boundaries, and create a proper container for liquid
silicone. The final shape of metamolds is defined by searching
for the optimal orientation which minimizes the formation of
air bubbles in the silicone molds. Venting pipes are inserted
to create escape holes for the air.

• Assembly of mold pieces and liquid casting of material inside
the cavity, to get the final object (Figure 2.c). The molds can
then be reused to produce multiple replicas.

The approach is entirely unsupervised. Section 4 details the seg-
mentation process. Section 5 describes the fabrication of metamolds
and silicone molds. Section 6 shows a number of objects cast using
our technique.

4 SEGMENTATION
We consider the segmentation of the input mesh into a set of regions
corresponding to different mold pieces as a discrete labeling problem
where each label corresponds to a direction of extraction for a
mold piece. Specifically, we formulate the labeling problem as an
Integer Linear Program (Section 4.1), where the objective function
is mainly expressed in terms of a moldability cost along a given
parting direction.
With the usage of flexible silicone molds, we assume we can

extract the mold of a surface portion along a given direction even in
the presence of overhangs (e.g., when some faces are are not directly
visible from that direction). Therefore, the main idea is to design
the objective function by taking into account a real-valued score
that reflects the difficulty of extracting a flexible mold from a given
direction, rather than a binary decision based on visibility. In theory,
the score could be computed by running a full volumetric FEM
simulation of the extraction process, in analogy with the approach in
[Malomo et al. 2016]. However, the cost of running such a simulation
can be very high, especially when accounting for precise contact and
frictional forces. Also, given the complex physical behavior of the
solidmolds during the extraction, the detaching forces governing the
process would be very hard to define for a general case. Therefore,
we adopted a purely geometric approach.

For a candidate parting direction, our score has the form of a real-
valued function defined over the mesh. The function takes a zero
value for directly visible portions of the surface, and is interpolated
over the rest of the surface, with values propagating according to

Fig. 3. The k = 650, uniformly sampled, candidate parting directions.

a shape-aware flow which accommodates for complex geometries
(Section 4.2).

Regularization factors are introduced in the ILP formulation to
improve the placement and smoothness of boundaries between
segmented regions, and to enforce a preference for a small number
of segments (Section 4.3). A two-stage strategy based on anisotropic
clustering prior to segmenting helps to speed up the computation
on huge meshes (Section 4.4).

Finally, an algorithm generates cuts in the silicone mold volume
by adding special membranes over the inputmesh, so as to guarantee
that mold pieces can be extracted even in case of high-genus surfaces
(Section 4.5).

The approach is entirely unsupervised. Our formulation can be
easily extended to incorporate fabrication-related linear constraints
(such as the maximum allowed overhanging area, or the maximum
number of segments). The resulting program can be efficiently sol-
ved with any standard optimization package (Gurobi [2016] in our
implementation), with the guarantee of finding the global optimum.

4.1 Integer programming formulation
Our aim is to label the n faces fi of an input manifold triangle mesh
with k candidate parting directions dj . The candidate directions
are uniformly sampled on the unit sphere (Figure 3) following the
approach of Keinert et al. [2015].

To formulate the problem using Integer Linear Programming, we
introduce binary indicator variables bi j , defined as bi j = 1 if face fi
is labeled with view direction dj , and 0 otherwise. Moreover, let us
consider the auxiliary variables дj signaling the use of one of the k
directions for at least one face: дj = 1 if and only if there is an index
i ∈ {1, . . . ,n} so that bi j = 1.

The segmentation problem boils down to finding the values of
binary indicator variables bi j which globally minimize:

E =
k∑
j=1

n∑
i=1

mi jbi j + λ
∑

(u,v)∈I

k∑
j=1

Suv (buj − bv j )
2 + µ

k∑
j=1

дj (1)
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The first unary term (data cost) assesses the consistency of faces
with labels, according to the shape-aware moldability costmi j of
face fi for direction dj , defined in Section 4.2. Being I the set of
index pairs (u,v) of all adjacent faces fu and fv in the mesh, the
second term (smoothing cost) is a pairwise cost penalizing adjacent
faces being assigned different labels, with a weight Suv preventing
fragmentation and helping the localization of optimal boundaries
(Equation (2) in Section 4.3). The third term (label cost) exploits the
auxiliary variables дj , which signal the use of a given direction dj in
the current solution, to enforce the choice of a minimum number of
labels (and hence of mold pieces), with an object-dependent global
label weight µ (Equation (3), Section 4.3).

Segmentation constraints. The segmentation is valid if each face
is labeled exactly with a single parting direction, i.e. if for each
i ∈ {1, . . . ,n}:

k∑
j=1

bi j = 1

For each j ∈ {1, . . . ,k}, the auxiliary binary variables дj are subject
to the constraints:

0 ≤ n · дj −
n∑
i=1

bi j < n

In this way дj can be 0 only if no face is labeled with direction dj
and дj = 1 only if there is at least one face using direction dj . Finally,
to set an upper bound T on the number of chosen directions we
introduce the constraint:

2 ≤

k∑
j=1

дj ≤ T

Note thatT is only a bound: the actual optimal number of segments
is automatically computed by the ILP, thanks to the third term of
Equation (1), encouraging the use of the smallest possible number
of labels.

Linearization. The second term in Equation (1) is quadratic. To
get a linear formulation, it is sufficient to replace the difference
(buj − bv j )

2 with the equivalent formulation (buj XOR bv j ) based
on exclusive disjunction.

4.2 Moldability computation
The factormi j in Equation (1) measures how costly it is to extract
the mold at a given surface location fi along a given direction dj .
Under the assumption of having flexible silicone molds, the cost
takes a zero value on visible faces, and is interpolated over the rest
of the surface according to a shape- and topology-aware flow. The
example in Figure 4.a shows the visible region from a given direction;
Figure 4.b shows the moldability cost for the same direction.

4.2.1 Visible faces computation. Figure 5 sketches the visibility
computation pipeline. Visible portions of the surface with respect
to a direction dj are computed by GPU-accelerated rendering. GPU-
accelerated visibility computation is used in [Jacobson 2017] also,
to evaluate object nesting feasibility. We perform a per-fragment
testing to check which faces are visible from a given direction.
We enforce Lipschitz continuity on the depth map through Jump

(a) (b)

Fig. 4. (a) Visible regions from a given direction are depicted in red. (b) The
corresponding moldability field takes a zero value over visible faces, and is
interpolated over the rest of the surface through a shape-aware geodesic
flow.

Object

Lipschitz depth map

visible regions

dj

θ

φ

Fig. 5. Visibility computation scheme.

Flooding [Rong and Tan 2006] with a threshold angle ϕ = 7◦. This
prevents close locations in screen-space from having largely diffe-
rent depth values. Then, we use the Lipschitz continuous depth map
as a threshold on the depth of visibile fragments. Finally, under the
hypothesis of having flexible molds, we relax the notion of visibility
from a direction dj , by considering a face as visible if it is visible
from at least one direction in a small neighborhood of dj on the
Gauss sphere. The neighborhood is defined as a spherical cap of
polar angle θ = 5◦.

4.2.2 Flow-based moldability estimate. For a given parting di-
rection, we assume that surface portions sufficiently close to visible
areas can be extracted even if they are not directly visible, thanks
to the elasticity of silicone. Therefore, we could assume that the
moldability cost for a non-visible vertex depends on its geodesic dis-
tance from visible areas. However, using geodesic distance as a sole
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criterion could lead to undesirable decompositions in the presence
of tubular features. Indeed, decompositions where tubular protru-
sions belong to a single segment would lead to mold pieces which
could be difficult to extract. Therefore, we prevent small costs from
wrapping around protrusions by defining a shape-aware geodesic
flow which propagates from visible areas by taking into account
tubular regions.
This is done by defining a new metric s on the surface, by weig-

hting the Euclidean arc-length by a scalar function which takes
high values over tube-like regions and low values over flat regions
(Figure 6.b). In other words, the metric s makes traveling through
tubular regions longer. This is similar in spirit to the geodesic active
contours on images in [Caselles et al. 1997], where a new metric
is derived which takes into account the image gradient. Then, for
a vertex vi on a non-visible region, the moldability cost mi j for
direction dj is defined as

mi j = exp(disti j ) − 1

with disti j the shortest distance from vi to the boundary of directly
visible regions for dj , according to the shape-aware metric s . We
use Djikstra’s algorithm for geodesic path computation. In Figure
4.b, it can be noticed how small values do not propagate over the
occluded parts of protrusions (legs, feet, arms, hands and ears), as
they would do if a purely geodesic flow was used.
On the computational side, defining the metric s amounts to

multiplying the Euclidean length l(e) = ∥vi − vj ∥ of an edge e =
(vi ,vj ) by a value (1 +w(e)), withw(e) defined as

w(e) =
t(vi ) + t(vj )

2
with the function t measuring tubeness, that is, the likelihood of a gi-
ven vertex to lie on a tubular feature. The tubeness t is a region-wise
measure, computed following the intuition that tubes are identified
by shape parts whose intersection with a sphere of proper radius is
homeomorphic to a topological disk with holes, rather than a disk
[Mortara et al. 2004]. For a given vertex vi , we consider the surface
region defined by the points having geodesic distance from vi less
than a radius r , and keep track of the topology of the region as r
increases. The tubeness at the given vertex is then defined as

t(vi ) =
1

ln(1 + Ri )
being Ri the smallest radius at which the region becomes a topolo-
gical disk with holes (Figure 6.a). One of the main advantages is that
the tubeness measure t can be computed and stored once per mesh,
as it does not depend on the candidate parting direction. Figure 6.b
shows an example of tubeness computed on two different meshes.
We derive the per-face moldability costmi j in Equation (1) by

considering the average moldability values of the triangle vertices.

4.3 Regularization factors
Optimizing with respect to moldability alone could lead to over-
segmented meshes. Therefore, we introduce regularizers to improve
the quality of boundaries and reduce the number of segments.

The second term (smoothing cost) in Equation (1) penalizes neig-
hboring faces being assigned different extraction directions. We

geodesic isoline

v

R

(a)

(b)

Fig. 6. (a) Tubeness computation at a vertex v , by tracking the topology of
the surface region defined by the points having geodesic distance from v
less than a varying radius. On tube-like features, the surface region changes
topology for a small radius R ; (b) Tubeness values on two example surfaces.

define the cost Suv of assigning different labels to adjacent faces fu ,
fv as a product taking into account the areas of the two faces and
the normalized difference between their moldability values:

Suv = AuvNuv (2)

with
Auv = Area(fu ) +Area(fv )

and

Nuv = 1 −
(muj −mv j )

2

max(u,v)∈I (muj −mv j )2

withmuj the moldability of face fu for direction dj . The smoothing
term encourages short boundaries in the segmentation, and helps
in preventing fragmentation. As the weight Nuv measures the cost
of being a difference in labels as a function of pairwise moldability
values, it helps to detect better boundaries than face areas alone,
located where there is a significant change in the moldability value.
In Equation (1), the smoothing regularization term is scaled by a
factor λ (λ = 0.1 in our setup).

The third term (label cost) in Equation (1) punishes the use of
many different labels. We adopt a heuristic to define a label weight
µ automatically for a given object. µ gives a lower bound for the
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(a) (b) (c) (d)

Fig. 7. The effect of energy terms in the segmentation results: (a) a detail of the final segmentation on a model, resulting in just two segments, and smooth
boundaries; (b) the segmentation if plain geodesics were used in the data cost, instead of tubeness-weighted geodesics: the segment which wraps around the
model arm (circled in red) would lead to a non-extractable mold piece; (c) the effect of neglecting the smoothing cost, namely poor boundary quality and
isolated fragments near the boundary (circled in red); (d) the result if no label costs were imposed, with too many pieces to be useful in practice.

cost µ j of adding a label dj :

µ =
1
2
· min
j ∈{1, ...,k }

µ j (3)

where the cost µ j of a label dj , in a sense, measures the relative
moldability along dj with respect to its opposite direction d j̃ :

µ j =
n∑
i=1

max{(mi j −mi j̃ ), 0}

The intuition is to relate the cost of introducing an additional label
(hence a mold piece) to the reduction in the energy: the reduction
should be at least half of the reduction brought by adding a trivial di-
rection, namely, the opposite direction to an existing one. Therefore,
the label weight µ helps to select a minimal number of segments,
which are needed to get a moldable object.

Both regularization terms (smoothing and label cost) depend
linearly on face areas, hence they are expressed in the same base
unit.

Figure 7 shows the influence of the design choices for the energy
terms in Equation (1), namely tubeness-modified geodesics, smoo-
thing, and per-object label costs. The images show how the results
worsen whenever a single component is neglected in the energy
definition.

4.4 Two-stage optimization approach

(a) (b) (c)

Fig. 8. Segmenting via a two-stage strategy: (a) anisotropic clustering of
mesh faces; (b) segmenting the clustered mesh to get optimal parting directi-
ons; (c) segmenting the original mesh with respect to the optimal directions.

Solving the problem by optimizing Equation (1) could be too costly
for meshes with a large number n of faces and for a dense sampling
of the parting directions space. To speed up the optimization, we
split the problem into two sub-problems (Figure 8).

In the first step, we compute an anisotropic clustering of the mesh
faces, to getq clusters, withq ≪ n. The clusters are computed by first
deforming the mesh according to the principal curvature directions,
following [Panozzo et al. 2014], then clustering the mesh faces in
the deformed space using Voronoi diagrams with Lloyd relaxation.
Finally, we reverse the deformation. The result is an anisotropic
clustering that aligns with geometric features (Figure 8.a). We define
the moldability of a cluster as the sum of moldability values over
the cluster faces. Then, we seek an optimal labeling of the clusters
which minimizes an energy where only data and label costs are
taken into account. The labeling on the clustered mesh gives as
output a set of segments corresponding to a small set H of optimal
parting directions (Figure 8.b).

In the second step, we run the optimization on the original mesh,
with data and smoothing terms, by only admitting as candidate
molding directions the optimal directions in the set H . This step
reduces the possible fragmentation, and improves the localization
and smoothness of boundaries (Figure 8.c).
To further speed up the computation in case of huge meshes,

the whole segmentation process can be carried out on simplified
meshes. The results can then be transferred to the corresponding
high-resolution meshes.

4.5 Dealing with positive-genus surfaces
While the shape-aware flow defined in Section 4.2.2 helps with ac-
commodating complex geometries, for objects with genus д > 0 the
segmentation may result in mold pieces that pass through tunnel
holes, and are therefore physically impossible to extract. This pro-
blem can be solved by introducing topological membranes, namely
thin membranes inserted in the surface mesh in correspondence of
tunnels. The membranes reduce the genus of the input model, and
define a cut in the silicone mold volume. This makes it possible to
extract the mold.
To define the presence and location of membranes on surfaces

with genus д > 0 without requiring human intervention, we need
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(a) (b) (c) (d)

Fig. 9. Dealing with positive-genus models: (a) computation of a shortest basis of tunnel loops; (b) topological simplification by inserting membranes; (c)
segmentation of the remeshed model; (d) keeping membranes in the metamold to define proper cuts in the mold volume.

to compute a basis of homology generators, which automatically
locate and hug tunnel loops (Figure 9.a). We rely on the shortest
basis proposed in [Dey et al. 2013], which first computes homology
generators for the family of tunnel loops using Reeb graphs [Bia-
sotti et al. 2008], then tightens them so that they have the desired
geometry.
Once we have identified the shortest tunnel loops, we remesh

the input surface to add topological membranes. Given a loop, the
surface of the corresponding membrane is defined through screened
Poisson surface reconstruction [Kazhdan and Hoppe 2013]. The
membranes are then made solid by duplicating and flipping their fa-
ces, and appended to the input mesh while preserving manifoldness
(Figure 9.b). Running the optimization over the model equipped
with membranes results in a segmentation with properly located
boundaries (Figure 9.c).

After obtaining a valid segmentation, the membranes having the
same label assigned on both their sides are kept in the model, as they
introduce cuts in the molds (Figure 9.d). Conversely, the membranes
which are either assigned two different labels on their sides or are
traversed by a segment boundary can be removed from the object,
as they do not correspond to a required cut in the silicone mold, but
only served to identify proper boundaries in the segmentation.

5 FABRICATION AND ASSEMBLY
After the segmentation process is complete, the obtained regions
identify the different mold pieces and the boundaries between diffe-
rent regions demarcate the parting lines. To get the final silicone
multi-piece mold, we have to define the parting surfaces (Section 5.1)
and design the actual shape of each printable metamold (Section 5.2),
which will be filled with silicone to create the reusable mold piece
(Section 5.3).

5.1 Parting surfaces
To generate the mold pieces we need to extend the boundaries bet-
ween different segmented regions into the space surrounding the
object, so that they correctly define the shape of the molds. Given a
segment of the surface, we define an oriented point set SB ∪ SC . We
create SB by uniformly sampling points along the segment boun-
dary. The orientation of each sample is defined as the cross product
between the normal to the original surface and the direction along
the boundary (Figure 10.a). SC is created by uniformly distributing
points on a circle lying on the best fitting plane to the boundary

samples; these points are oriented according to the plane normal and
they are useful to obtain a fairly planar surface far from the object.
Since SB and SC have coherent orientations, we can construct the
parting surface by using Poisson Surface Reconstruction [Kazhdan
and Hoppe 2013] on SB ∪ SC (Figure 10.b). We use an analogous
approach to generate the membranes, using Poisson surface recon-
struction on a set of points sampled on tunnel loops (Figure 10.c),
oriented using the same procedure as for SB .

For molds composed of more than two pieces, consistent parting
surfaces are generated incrementally. We start from a single piece
and build its parting surface as described above. Then, for the next
piece, we build the parting surface using only the portion of the
boundary that has not been used yet (i.e., that is not shared with
the previous pieces). Finally, we clip the result with all previously
obtained surfaces (Figure 10.d).

5.2 Metamold design and fabrication
The final design of printable metamolds should take into account
material costs (i.e., the amount of silicone required to fill each meta-
mold), as well as practical aspects, such as preventing air trapping
and excessive pressure while casting.
Although there are no strict requirements on the final shape of

the silicone multi-piece mold, for the sake of practicality, we decided
to generate mold pieces that, once assembled, form a box that is
easy to use for casting and for which the metamolds are easy to
be cast too. In other words, for the resulting mold (and metamold),
the direction for which pouring the casting liquid does not induce
trapped air should be orthogonal to one of the sides of the box.

Preventing air trapping during the casting operations is important
to avoid artifacts on the cast model. Ideally, one should create an
escape hole for each local maximum on the object surface with
respect to the gravity direction. However, the presence of high
frequencies on the surface may result in a high number of escape
holes. We follow the approach proposed in [Malomo et al. 2016] that
defines a practical solution to prune unnecessary maxima, based on
the intuition that the cast can be slightly tilted during the casting.

Our production pipeline involves two casting operations: we first
cast silicone into the metamolds, then resin into the assembled final
mold. Therefore, we need to address air trapping for both these steps
(Figure 11). The casting directions for silicone implicitly restrict the
possible resin casting directions, as we place the silicone mold box
on one of its flat faces while pouring the resin. Then, the idea is to
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(a) (b) (c) (d)

Fig. 10. Modeling parting surfaces: (a) the oriented sampling on the boundary of a segment: the normal to each sample (green) is the cross product between
the normal to the original surface (blue) and the direction along the segment boundary (purple); (b) the parting surfaces for the armadillo model; (c) internal
membranes and parting surfaces for an object with high genus; (d) parting surfaces for a model segmented into three pieces.

Up direction

Fig. 11. A visualization of the trapped air problem for both silicone and
resin casting. During silicone casting, the mold volume (green area) could
trap air bubbles around downward maxima (blue dot). During resin casting,
the model cavity (pink area) could trap air bubbles in correspondence of
upward maxima (yellow dots).

explore contemporarily the space of possible good directions for
both silicone and resin casting.
Let P = {P1, . . . , Pq } denote a mold composed of q pieces Pi

(q ≤ 3 in all our examples). Let Pi be obtained by pouring silicone
in the metamoldMi . For each mold piece Pi , we compute the best
fitting plane to the corresponding parting line, then define a first
set of candidate directions by sampling directions in a cone around
the plane normal vector. These directions are assumed to be good
candidates for pouring silicone in the corresponding metamoldMi .
Among these, we pick a subset of directions which would reduce
the presence of air-trapped bubbles in the silicone, following the
strategy in [Malomo et al. 2016].
Let Ci denote the subset of good candidate directions for each

mold piece Pi , i ∈ {1, . . . ,q}. We now search a set of box-compatible
q-tuples of directions (c1, . . . , cq ), ci ∈ Ci , for which there could
exist a box that contains all the mold pieces and with faces approx-
imately orthogonal to (c1, . . . , cq ); that is, we search for q-tuples
of directions which are approximately either mutually orthogonal
or mutually parallel. Finally, among these box-compatible tuples
of directions, we choose the one for which we can define a box
with minimal height (to minimize the amount of silicone and the
pressure of casting material) and minimum risk of generating air
bubbles while casting inside the box cavity. Note that in many cases
box-compatible tuples can leave a degree of freedom, for example
when they are composed of parallel, opposite directions. In this case,

we simply choose the remaining box axis by minimizing the box
volume.

Given the final pouring directions, we automatically add the
final details over the metamolds geometry. Small pegs are placed in
correspondence of each local maximum, defining the anchor points
for 3D printed pipes that will be attached to form the air vents in
the mold volume. We take the global maximum as the anchor point
for a larger vent, from which resin will be poured. Sealing dams
are added as a plug and slot structure surrounding the object in a
closed loop over the parting surface to secure the sealing between
different mold pieces (Figures 12.a and .b). Also, to ensure a perfect
interlock of the mold pieces, registration pegs and holes are added
on the parting surface in correspondence of topological membranes
shared among different mold pieces.

(a) (b)

Fig. 12. (a) Details on the metamold geometry: 3D printed pipes (in blue)
anchored to pegs, and sealing dams closing a loop around the object on
the parting surface; (b) the 3D printed pipes create air vents in the mold
volume, to let air escape while casting.

Robust CSG Boolean operations [Zhou et al. 2016] are used to
generate the final metamold geometry.

5.3 Silicone mold fabrication and assembly
The final silicone mold pieces are obtained by filling each metamold
with liquid silicone. For the sake of simpler removal of the mold
and faster fabrication, we 3D print just the bottom of the metamold
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Fig. 13. 3D printed walls used for the silicone pouring procedure.

Model Time (min) Model Time (min)
Armadillo 8 Gargoyle 11
Lucy 15 Fertility 8
Heptoroid 8 Magali’s hand 17
Bunny 12 Hammer 6
Horse 8 Goblet 48

Table 1. Timings for deriving the optimal segmentation.

and we attach to them generic vertical sides of the container (see Fi-
gure 13). We used in most cases four L-shaped plastic pieces that can
be easily assembled to build the sides of any rectangular container,
but cheaper solutions, like hand cut, taped, disposable cardboard
sides, were equally successful. Finally, once the silicone mold pieces
have been created and assembled, resin can be poured in the cavity
to cast the sought object. Then, silicone molds can be removed and
re-used to cast multiple copies.

6 RESULTS
We evaluated our approach by fabricating metamolds and molds for
many different objects, ranging from fairly simple shapes to shapes
with highly challenging geometries and topologies.

To segment objects, we uniformly remeshed surfaces to 60K fa-
ces. The space of possible parting directions was uniformly sampled
with k = 650 candidate parting directions. Then, the segmenta-
tion pipeline included: evaluating tubeness (once per mesh), which
took between 2 and 4 minutes on an Intel I7-6700K 4GHz machine;
computing moldability costs for the whole set of candidate parting
direction, which took between 5 and 10 minutes;clustering meshes
with q = 1000 clusters, which took around 30 seconds; solving the
ILP problem on both clustered and original meshes, with timings
for different objects reported in Table 1. The final parting lines were
then transferred from simplified meshes to high-resolution meshes
(up to 1.5M faces).

Generating metamolds required computing parting surfaces on
high-resolution meshes, inserting air pipe pegs, and defining the
optimal final geometry. The whole process took up to 20 minutes.
Metamolds were printed using different 3D printers, namely a

Ultimaker 2+, a Stratasys J750, and a Stratasys Fortus 450 MC. Molds
were fabricated using common silicone, available at hobby stores.

Fig. 14. Resulting segmentation for basic shapes. Red arrows represent the
extraction direction chosen for each segment.

Fig. 15. Some simple models cast with our technique. Left: the optimized
segmentation; right: the fabricated metamolds and the cast object.

Finally, once we obtained the metamolds and their corresponding
silicone molds, we could easily produce multiple copies of the same
geometry in a cost- and time-effective manner. We used simple
bi-component resin for casting.

Figure 14 shows the resulting segmentation for basic shapes, with
the chosen extraction directions highlighted. Figure 15 shows two fa-
bricated models with relatively simple geometries. Figure 16 shows
successful examples of fabricated objects with complex geometric de-
tail. Our method handles well both models with protrusions (Figure
16.a) and models that have high-frequency surface details (Figure 1
and 16.c). Figure 17 shows a model which required a three-piece
mold.

All objects were reproduced without appreciable difference with
respect to the digital mesh. We measured the error introduced in
the casting process on the fertility model, based on the Hausdorff
distance between a 3D scan of the cast model and the digital ver-
sion. The physical model is 120mm long. For the digitization process
we used a GOM Atos scanner that yields a precision of 0.2mm. As
shown in Figure 18, approximatively 88% of the surface has an error
less than 0.5mm.
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(a)

(b)

Fig. 16. Somemore complex models cast with our technique. Left: optimized
segmentation; right: fabricated metamolds, molds and cast object.

Fig. 17. A goblet model that required three mold pieces.
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Fig. 18. The error (in mm) induced by the casting process over 1M samples
(0 is deep blue, 1.87 is red). The statuette is 120mm long. The histogram
shows that the resulting error is ≤ 0.5mm for 88.11% of the samples.

6.1 Comparison with other techniques
Figure 19 demonstrates how we can successfully cast objects which
could not be fabricated with previous techniques. In particular, the
hand, fertility and heptoroid models are the failure cases reported
in [Herholz et al. 2015], as models for which mold pieces could not
be assembled and disassembled due to interlocking. Our approach
is successful as it enables one to relax the height field constraints,
by exploiting the flexibility of silicone. Therefore, we are able to
reproduce the models without inducing any deformation on the
original geometry.
The fertility and heptoroid models also show how we can cope

with positive-genus surfaces, thanks to the insertion of membranes
which simplify the object topology and define properly located cuts
in the silicone volume. Notice howwe are able to cast the high-genus
heptoroid with just a two-piece mold.

The heptoroid model was a failure example also in [Malomo et al.
2016]. Though FlexMolds can theoretically handle high-genus sur-
faces, on the heptoroid it produced a mold with a very long and
complex cut, making the manual sealing process unfeasible. Mo-
reover, FlexMolds would have required printing techniques which
allowed for the easy removal of the support material, while our
metamolds can be fabricated with a common 3D printer.

6.2 Limitations
While our approach has proven successful on objects for which
no previous technique was able to provide a practical molding, we
found that at least two classes of complex shapes still remain beyond
the capabilities of metamolds. First, shapes with long, thin involuted
structures (like the floating strips of the model in Figure 20) cannot
be safely molded mostly because the cast material is not able to sus-
tain the forces applied by the mold during the extraction. Secondly,
models where a large part of the surface is not easily accessible from
the outside, or even a simple bottle, cannot be molded. Such shapes
would require decomposing the object itself into multiple pieces to
be molded separately; this is an interesting research direction.

7 CONCLUSIONS
We presented a novel technique for the computational design of
flexible, reusable molds for resin casting. The framework is based
on metamolds: automatically generated, 3D printed custom contai-
ners, which can be filled with silicone to produce silicone molds for
casting multiple replicas of objects. A novel segmentation technique
allows one to find optimal parting directions for mold pieces. The
surface decomposition drives the design of the shape of the mold
pieces, including the choice of appropriate parting surfaces and
casting directions. The placement of sound air vents and sealing
and registration features supports the practical usage of the molds.

We generated the metamolds, fabricated the corresponding molds
and finally used them to cast various 3D models, demonstrating
that our approach works for challenging examples, up to shapes
extremely complex in topology or rich in fine geometric details
which could not be fabricated with previous techniques. Thanks to
the great capacity of silicone to seal external slits, our method can
also be applied to produce ice models (see Figure 21).
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Fig. 19. Successful casting of objects which could not be fabricated with the approach in [Herholz et al. 2015]. The heptoroid (third row) is a failure case also
for FlexMolds [Malomo et al. 2016], which derives an extremely complex cut layout (left), whereas our approach requires just a two-piece mold (right).

Fig. 20. A failure case: a model with extremely long thin features may
require additional cuts that cannot be detected by our technique.

While some limitations in the class of shapes that can be handled
still exist, we significantly expanded the range of objects that it is
possible to cast in a simple and practical way, thus bringing silicone
mold casting into the realm of personal fabrication.
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Fig. 21. An Ice-Age bunny.
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