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Abstract
Various studies identified possible drivers of extremes of Arctic sea ice reduction, such as observed in the summers of 2007 
and 2012, including preconditioning, local feedback mechanisms, oceanic heat transport and the synoptic- and large-scale 
atmospheric circulations. However, a robust quantitative statistical analysis of extremes of sea ice reduction is hindered by 
the small number of events that can be sampled in observations and numerical simulations with computationally expen-
sive climate models. Recent studies tackled the problem of sampling climate extremes by using rare event algorithms, i.e., 
computational techniques developed in statistical physics to reduce the computational cost required to sample rare events 
in numerical simulations. Here we apply a rare event algorithm to ensemble simulations with the intermediate complexity 
coupled climate model PlaSim-LSG to investigate extreme negative summer pan-Arctic sea ice area anomalies under pre-
industrial greenhouse gas conditions. Owing to the algorithm, we estimate return times of extremes orders of magnitude 
larger than feasible with direct sampling, and we compute statistically significant composite maps of dynamical quantities 
conditional on the occurrence of these extremes. We find that extremely low sea ice summers in PlaSim-LSG are associated 
with preconditioning through the winter sea ice-ocean state, with enhanced downward longwave radiation due to an anoma-
lously moist and warm spring Arctic atmosphere and with enhanced downward sensible heat fluxes during the spring-summer 
transition. As a consequence of these three processes, the sea ice-albedo feedback becomes active in spring and leads to an 
amplification of pre-existing sea ice area anomalies during summer.
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1  Introduction

The Arctic sea ice cover has been shrinking since at least 
the late 1970s (Notz and Marotzke 2012; Stroeve and Notz 
2018), in large part due to anthropogenic emissions of green-
house gases (Gregory et al. 2002; Notz and Marotzke 2012; 
Stroeve and Notz 2018; Ding et al. 2017). On top of the 
downward trend, internal climate variability contributes to 
the year-to-year variations and associated extreme events of 

the annual sea ice minimum in September (Francis and Wu 
2020; Ono et al. 2019).

Extreme Arctic sea ice reduction, such as observed in the 
summers of 2007 and 2012, may have impacts outside the 
Arctic Ocean. Studies have suggested a possible influence 
of sea ice loss on the integrity of the permafrost (Lawrence 
et al. 2008) and on weather patterns and climate in the mid to 
high latitudes (Petoukhov and Semenov 2010; Francis et al. 
2009; Francis and Vavrus 2012; Screen et al. 2018; Petrie 
et al. 2015; Chripko et al. 2021; Delhaye et al. 2022). Apart 
from its effect on the climate system, Arctic sea ice decline 
leads to increased marine accessibility. This has implica-
tions for the opening of trans-Arctic shipping routes, off-
shore industries, polar ecotourism and the daily life of local 
communities (Eicken 2013; Smith and Stephenson 2013; 
Lloyd’s 2012).

Possible drivers of extreme summer Arctic sea ice reduc-
tion have been suggested in the literature. Both the extreme 
sea ice lows in 2007 and 2012 were attributed to climate 
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change via preconditioning through the ongoing winter sea 
ice thinning and to the occurrence of particular weather 
and climate events (Lindsay et al. 2009; Kauker et al. 2009; 
Zhang et al. 2008, 2013; Parkinson and Comiso 2013). In 
2007, sea ice reduction was favoured by enhanced inflow of 
warm Pacific water through Bering Strait (Woodgate et al. 
2010) and by anomalously persistent southerly winds in the 
Pacific sector associated with the Arctic Dipole (AD) pattern 
(Wang et al. 2009; Lindsay et al. 2009; Overland et al. 2012; 
Kauker et al. 2009). In 2012, a summer storm contributed to 
enhanced sea ice reduction by leading to increased bottom 
melt via anomalously strong vertical mixing in the oceanic 
boundary layer (Guemas et al. 2013; Zhang et al. 2013). 
Further possible triggers of anomalously low summer Arc-
tic sea ice area include enhanced North Atlantic oceanic 
heat transport (Årthun et al. 2012), the positive and negative 
phases of the winter and summer Arctic Oscillation (AO) 
(e.g. Rigor et al. 2002; Ogi et al. 2016), reduced cloudiness 
during summer (Schweiger et al. 2008), and increased sur-
face downward longwave radiation related to enhanced pole-
ward atmospheric moisture transport during spring (Kapsch 
et al. 2013, 2019).

Even though different physical drivers have been sug-
gested to contribute to individual extremes of Arctic sea ice 
reduction, a quantitative statistical analysis of their physical 
drivers is hindered by the poor sampling of extreme events 
in observations and in numerical simulations. The record 
of satellite-based sea ice observations includes only a few 
annual sea ice minima with orders of magnitude compara-
ble to the ones in September 2007 and 2012 (Fetterer et al. 
2017). Moreover, the large computational cost of state-of-
the-art general circulation models makes it unrealistic to run 
them longer than a few thousands of years and to quantita-
tively study sea ice extremes with return times of longer 
than order 102 years. Going beyond individual case studies, 
a generalized analysis of the relative importance of differ-
ent atmospheric and oceanic precursors of extremes of sea 
ice reduction remains therefore a challenge. A better under-
standing of the precursors of extremes of summer Arctic 
sea ice reduction and a more precise estimate of their prob-
abilities are in turn crucial to improve seasonal predictions 
of these events and to assess their risk of occurrence under 
different climate change scenarios.

In this work, we address the problem of computational 
cost limitations by using a rare event algorithm. Rare event 
algorithms are computational techniques developed in sta-
tistical physics to improve the sampling efficiency of rare 
events in numerical simulations (e.g. Ragone et al. 2018; 
Ragone and Bouchet 2020, 2021). Compared to conven-
tional numerical simulations with the same computational 
cost, rare event algorithms enable to increase the number of 
simulated extreme events by several orders of magnitude. In 
this way, these techniques allow to reduce the uncertainty of 

return time estimates and of conditional statistics on extreme 
events (e.g. composites) compared to conventional simula-
tion strategies, and to generate ultra-rare events that are very 
unlikely to be observed using direct sampling. Rare event 
algorithms have been introduced in the 1950s (Kahn and 
Harris 1951) and have been used since for a wide range of 
applications (for an overview and the mathematical analysis 
see e.g. Del Moral 2004; Giardina et al. 2011; Grafke and 
Vanden-Eijnden 2019). Recently, some of these techniques 
have been applied in climate science and in fluid dynamics 
to study heat waves (Ragone et al. 2018; Ragone and Bou-
chet 2020, 2021), midlatitude precipitation (Wouters et al. 
2023), tropical storms (Plotkin et al. 2019; Webber et al. 
2019), weakening and collapse of the Atlantic meridional 
overturning circulation (AMOC) (Cini et al. 2023), and tur-
bulence (Bouchet et al. 2018; Grafke et al. 2015; Lestang 
et al. 2020).

Apart from rare event algorithms, other techniques exist 
that allow to study extreme events with return times beyond 
the range of available data. For example, extreme value 
theory (EVT) can be used to extrapolate return times for 
anomaly values unavailable from the data set (Coles 2001; 
Parey et al. 2010). EVT is used in climate science in particu-
lar for attribution studies, as it is an efficient way to estimate 
probabilities of events outside the range of observational 
data. However, one of the drawbacks is that it does not pro-
vide the dynamics that leads to the extrapolated extreme 
events. Moreover, a recently published approach to focus 
the computational power in climate model simulations on 
trajectories that lead to extreme events is ensemble boosting 
(Fischer et al. 2023; Gessner et al. 2023). In this approach, 
ensemble simulations are re-initialized days to weeks before 
the peak of an extreme event allowing to generate physically 
plausible ultra-rare events with unprecedented amplitude. 
Ensemble boosting thus allows to study the dynamics of 
unprecedented extreme events, but it does not provide the 
probabilities of these events and can therefore be used only 
in a story-line sense. Rare event algorithms instead deliver 
both the dynamical trajectories that lead to the extreme 
events of interest and enable to estimate their probabilities 
of occurrence. This allows for example to explore covariates 
of an observable of interest without the need of assumptions 
on the underlying distributions.

Different types of rare event algorithms are suited to study 
different problems, as the underlying design mechanisms are 
tailored to target extremes with specific properties. Here we 
use a genealogical selection algorithm (Ragone et al. 2018; 
Ragone and Bouchet 2020, 2021) adapted from Del Moral 
and Garnier (2005); Giardina et al. (2011), that is appropri-
ate to study persistent, long lasting events. We apply this 
rare event algorithm to the intermediate complexity coupled 
climate model PlaSim-LSG (Fraedrich et al. 2005; Drijfhout 
et al. 1996; Maier-Reimer et al. 1993) to investigate extreme 
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negative summer pan-Arctic sea ice area anomalies under 
fixed pre-industrial greenhouse gas conditions. Owing to the 
algorithm, we compute return times two to three orders of 
magnitude larger than feasible with direct sampling and we 
obtain statistically significant composite maps of dynami-
cal quantities conditional on the occurrence of extremely 
low sea ice summers with return times of more than 200 
years. Finally, we elaborate possible physical drivers of these 
events. The paper is structured as follows. In Sect. 2, we 
present the set-up of the model and the control run and we 
describe the methodology of the rare event algorithm and the 
design of the rare event algorithm experiments. In Sect. 3, 
we show that the rare event algorithm performs importance 
sampling of summer seasons with extremely low pan-Arctic 
sea ice area and we discuss possible physical drivers of these 
events. In this context, we describe the average states of the 
atmosphere and of the sea ice during extremely low sea ice 
summers, we discuss the relative contribution of winter pre-
conditoning vs. intra-seasonal sea ice reduction to extreme 
negative summer pan-Arctic sea ice area anomalies and we 
perform a surface energy budget analysis in order to trace 
back extremely low sea ice conditions to anomalous atmos-
pheric conditions. In Sect. 4, we present our conclusions and 
we discuss possible future lines of research.

2 � Materials and methods

2.1 � The Planet Simulator with a Large‑Scale 
Geostrophic ocean circulation model

All the following simulations are conducted with the 
intermediate complexity climate model Planet Simulator 
(PlaSim) version 17 (Fraedrich et al. 2005). To account for 
the importance of oceanic processes for Arctic sea ice vari-
ability, we use a coupled version of PlaSim that includes a 
dynamic Large-Scale Geostrophic (LSG) ocean (Maier-
Reimer et al. 1993; Drijfhout et al. 1996) in addition to a 
mixed-layer ocean model and to a thermodynamic sea ice 
model (PlaSim coupled to LSG is referred to as ”PlaSim-
LSG” in this work). PlaSim-LSG is computationally less 
demanding than Earth system models used in the assess-
ments of the Intergovernmental Panel on Climate Change 
(IPCC). It allows to conduct large ensemble simulations 
at reasonable computational cost, which is suitable for the 
aim of this work to investigate the applicability of a rare 
event algorithm to study extremes of Arctic sea ice reduc-
tion with a numerical climate model. Despite its intermedi-
ate complexity, PlaSim-LSG produces a reasonably realistic 
present-day climate, especially in the northern hemisphere 
(Angeloni 2022). Further applications for which PlaSim-
LSG has been used include aquaplanet and paleoclimate 
studies (Hertwig et al. 2014; Andres and Tarasov 2019) and 

a study on the linkage between high-latitude precipitation 
and low-frequency variability of the AMOC (Mehling et al. 
2023).

The PlaSim-LSG atmosphere includes a wet primitive 
equation dynamical core governing the conservation of 
momentum, mass, energy, the specific humidity and the 
equation of state with hydrostatic approximation (Fraedrich 
et al. 2005; Lunkeit et al. 2012). The equations are solved on 
a terrain following �-coordinate system (pressure divided by 
surface pressure) with a spectral transform method (Orszag 
1970; Eliassen et al. 1970). Parameterizations of unresolved 
subgrid scale processes include moist and dry convection 
(Kuo 1965, 1974), clouds (Slingo and Slingo 1991; Stephens 
et al. 1978, 1984), large-scale precipitation, boundary fluxes 
of sensible and latent heat and of momentum, long-wave 
and short-wave radiation (Sasamori 1968; Lacis and Hansen 
1974), vertical and horizontal diffusion (Laursen and Eli-
asen 1989; Louis 1979; Louis et al. 1981) and a land sur-
face scheme with five diffusive layers for temperature and a 
bucket model for soil hydrology.

The LSG is a three-dimensional global ocean general 
circulation model based on primitive equations under the 
assumption of large spatial and temporal scales, using the 
Boussinesq and hydrostatic approximations and neglecting 
vertical friction (Maier-Reimer et al. 1993; Maier-Reimer 
and Mikolajewicz 1992). Turbulent motions are parameter-
ized by a vertical oceanic diffusion coefficient. The LSG 
model is used to calculate the heat flux from the deep ocean 
to the mixed-layer due to advective and convective pro-
cesses, i.e., advection, horizontal diffusion, vertical trans-
port, vertical diffusion, convective adjustments. In contrast, 
the mixed-layer ocean model is used to compute the tem-
perature tendencies of the mixed-layer due to heat exchanges 
with the atmosphere.

The thermodynamic sea ice model is based on the zero-
layer model of Semtner (1976). This model computes the 
evolution of the sea ice thickness and surface temperature 
from the energy balances at the top and bottom of a sea 
ice-snow layer. The sea ice-snow layer is assumed to have a 
linear temperature gradient and to have no capacity to store 
heat. The sea ice concentration is binary, i.e., either a grid 
cell is fully sea ice covered or open water.

We run the PlaSim-LSG simulations at statistically sta-
tionary state with a fixed pre-industrial effective CO2 vol-
ume mixing ratio of 280 ppmv. We perform the runs without 
diurnal cycle and with seasonal cycle of the solar radiation 
and each year has 360 days. For the atmosphere, we use a 
horizontal spectral resolution of T21 (triangular truncation 
at wavenumber 21 ∼ 5.625◦ × 5.625◦ on the corresponding 
Gaussian grid), ten non-equally spaced sigma-levels up to 
about 40 hPa in the vertical, a computational time step of 
45 min and an output time step of one day. The computa-
tional and output time steps of the mixed-layer ocean and 
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sea ice models are one day. The LSG is run on a 2.5◦ × 5 ◦ 
staggered E-type grid (Arakawa and Lamb 1977) in the hori-
zontal, with 22 levels in the vertical and with computational 
and output time steps of 5 days.

2.2 � Pan‑Arctic sea ice area in the control run

We consider a control run (CTRL) of 3000 years at equilib-
rium state (Fig. 1; labeled as model years 501-3500; model 
years 1-500 are discarded as spin-up). From the control run, 
we derive several experiments with the rare event algorithm 
(see section 2.3.2). We consider the statistics of the pan-
Arctic sea ice area

where SIC�,�(t) is the sea ice concentration at time t in a grid 
cell  centered at  lat i tude � and longitude � , 
G�,� = ∫
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is the earth radius, Δ� and Δ� are the angular distances 
between two grid points in the meridional and zonal direc-
tion. The summation in (1) includes all ocean grid boxes 
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north of 40◦ N (i.e. �min ⋅
180◦

�
= 40◦ ; the black circle in 

Fig. 1a shows the southern boundary of the domain over 
which the pan-Arctic sea ice area is computed). The land-sea 
mask is binary (i.e. a grid cell is either completely ocean or 
land).

The monthly mean pan-Arctic sea ice area anomalies 
show interannual variability superimposed on weak fluc-
tuations on multi-year to centennial time scales (Fig. 1b). 
For example, the sea ice area tends towards positive anom-
alies between model years 2500 and 2700 and towards 
negative anomalies around model year 1000 (Fig. 1b). The 
annual average, the amplitude of the seasonal cycle and 
the timing of the annual minimum and maximum of the 
pan-Arctic sea ice area are representative of the observed 
Arctic sea ice climatology between 1979 and 2015 [cf. 
Fig. 1a, c and Supplementary Fig. S1a, b; we used data 
from EUMETSAT Ocean and Sea Ice Satellite Applica-
tion Facility (2017, 2023) to compare the representation 
of sea ice in PlaSim-LSG with observations (Supplemen-
tary Fig. S1)]. Nevertheless, compared to observations, 
PlaSim-LSG has a delayed melting period, a positive SIC 
bias from the Greenland to the Kara Sea and a negative 

Fig. 1   PlaSim-LSG control run (model years 501-3500): a Black cir-
cle shows the southern boundary of the domain over which the pan-
Arctic sea ice area is computed. Shading shows the climatological 
annual mean sea ice concentration [–] field. b Time series of monthly 
mean pan-Arctic sea ice area anomalies [106 km2 ] relative to the cli-
matology of the control run for (blue) the original monthly values and 
(darkblue) the 101-year running mean. c Distributions of monthly 

mean pan-Arctic sea ice area [106 km2] with respect to the 3000 
model years. The averages and medians are given by the blue squares 
and the horizontal lines in the boxes. The boxes denote interquartile 
ranges and the maximum whisker length is defined as 1.5 times the 
interquartile range. The horizontal gray line shows the annual mean 
pan-Arctic sea ice area
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SIC bias western of Greenland (cf. Fig. 1a, c and Supple-
mentary Fig. S1a, b). Despite this, the representation of 
sea ice dynamics and statistics in PlaSim-LSG is sufficient 
for the purpose of this study.

We study extreme negative anomalies of February–Sep-
tember (FEBSEP) averaged pan-Arctic sea ice area. We 
classify a sea ice area anomaly I�(t) as extremely negative 
if I�(t) ≤ −n�CTRL , where �CTRL is the standard deviation of 
the control run and n is a real-valued number being defined 
in Sect. 3.

2.3 � Rare event algorithm

2.3.1 � Description of the method

In climate modeling and weather forecast, ensemble simu-
lations provide a distribution of possible trajectories of the 
state of the atmosphere or of the climate system. In a con-
ventional ensemble simulation, most of these trajectories 
correspond to typical fluctuations of an observable, e.g., 
the pan-Arctic sea ice area. Only a few trajectories lead 
to extreme states of the observable, which hampers robust 
statistical and dynamical studies on events that correspond 
to the tail of the distribution. The genealogical selection 
algorithm presented in Giardina et al. (2011); Ragone et al. 
(2018); Ragone and Bouchet (2020, 2021) is designed to 
guide ensemble simulations to oversample rare dynami-
cal trajectories that lead to extreme anomalies of the time-
average of an observable where the averaging time is longer 
than the typical decorrelation time of the observable. This 
algorithm is therefore well suited to study the statistics of 
the seasonally averaged pan-Arctic sea ice area.

We describe the main steps of the algorithm in the fol-
lowing and refer to Ragone et al. (2018) and Ragone and 
Bouchet (2020, 2021) for more details. We denote X(t) the 
vector of all model variables at time t. We consider an 
ensemble of N trajectories {Xn(t)} (n = 1, 2, ...,N) , an observ-
able A({Xn(t)}) (i.e., a function that maps for each trajectory 
the state vector to a single scalar), a total simulation time Ta 
and a resampling time �r . We start the ensemble simulation 
from statistically independent initial conditions. We perform 
at regular times ti = i ⋅ �r (i = 1, 2, ...,

Ta

�r
) a resampling pro-

cedure in which trajectories are killed or generate a random 
number of replicates depending on weights that are related 
to the magnitude of the time-average of the observable dur-
ing the past interval. The weights are defined as

where Ri is a normalization term and k is a biasing param-
eter. With a positive (negative) k, the weights favour the 

(2)

wi
n
=

e
k ∫ ti

ti−1
A({Xn(t)}) dt

Ri

with Ri =
1

N

N∑

n=1

e
k ∫ ti

ti−1
A({Xn(t)}) dt ,

replication of trajectories leading to large (small) values of 
the time-average of the observable during the past inter-
val, while trajectories leading to small (large) values of the 
time-average of the observable are likely to be killed. The 
absolute value of k controls the strength of the selection. 
As described in Ragone et al. (2018), each resampling is 
performed in such a way that the ensemble size remains 
constant and equal to N. After the resampling, we slightly 
perturb the surface pressure field of each trajectory to enable 
copies of the same trajectory to separate from each other 
during the subsequent simulation interval (the perturbation 
is performed as described in the Supporting Information of 
Ragone et al. (2018)). When the final time Ta is reached, 
we perform one last resampling and reconstruct an effective 
ensemble by attaching at each resampling event from the end 
to the beginning of the simulation the ancestors to the pieces 
of surviving trajectories. All trajectories that did not survive 
until the end of the simulation are discarded.

As described in Ragone et al. (2018) and Ragone and 
Bouchet (2020), one obtains for a large ensemble size N the 
importance sampling formula

where ℙ0 and ℙk are the probability densities of trajecto-
ries in the standard ensemble simulation and in an ensem-
ble generated with the algorithm and �0 is the expectation 
value with respect to ℙ0 . The importance sampling formula 
describes the ratio of probability densities of trajectories 
in a simulation obtained with the rare event algorithm to 
the probability density of trajectories according to the real 
model statistics. Consequently, expectation values (e.g., 
composites, return times) with respect to the real model sta-
tistics can be computed from the data obtained with the rare 
event algorithm by weighting the contribution of each tra-
jectory to sample averages by the inverse of the exponential 
factor in (3) (see Ragone et al. 2018; Ragone and Bouchet 
2020 Supporting Information of Ragone and Bouchet (2021) 
for more details).

2.3.2 � Set‑up of the rare event algorithm experiments

We use as target observable A({Xn(t)}) the pan-Arctic sea ice 
area and perform two sets of experiments with the rare event 
algorithm. One set is performed with a resampling time of 
�r = 30 days, the other with a resampling time of �r = 5 
days. Both resampling times are chosen to be smaller than 
the decorrelation time of the pan-Arctic sea ice area (the 
autocorrelation function of sea ice area anomalies drops for 
the first time below 1/e after about 75 days). In this way, the 
selection favours the survival of trajectories characterized 

(3)

ℙk({Xn(t)}0≤t≤Ta) ∼
N→∞

ek ∫
Ta
0

A({Xn(t)}) dt

𝔼0[e
k ∫ Ta

0
A({Xn(t)}) dt ]

ℙ0({Xn(t)}0≤t≤Ta),
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by large negative time-persistent sea ice area anomalies dur-
ing the interval prior to a resampling event. In contrast to 
the resampling time of �r = 30 days, the resampling time of 
�r = 5 days is not larger than the persistence time scale of 
the large-scale atmospheric circulation (Baldwin et al. 2003) 
and is only slightly larger than the typical persistence of 
synoptic-scale atmospheric fluctuations (Hoven 1957). We 
therefore expect that the experiments with a resampling time 
of �r = 5 days efficiently sample extremely low sea ice states 
both due to anomalies in the oceanic thermal state and due 
to anomalies in the atmospheric circulation that are in the 
order of or larger than the upper range of the synoptic time 
scale. In contrast, the experiments with a resampling time of 
�r = 30 days are primarily designed to increase the sampling 
efficiency of oceanic drivers of low sea ice states. In this 
case, we expect atmospheric drivers of sea ice reduction to 
be sampled only if they are characterized by an anomalously 
large persistence (e.g., an one month long persistent negative 
phase of the summer AO).

Both sets of experiments include M = 5 ensemble simu-
lations labelled with m = 1, ...,M (Table 1). Each ensem-
ble has N = 600 trajectories and a total simulation time of 
Ta = 240 days between February 1st and September 30th. 
We take different values of the biasing parameter for the 
different experiments: k = −0.06 ⋅ 10−6 km−2 day−1 for 
ensemble m = 1 , k = −0.05 ⋅ 10−6 km−2 day−1 for ensem-
bles m = 2 and m = 4 and k = −0.04 ⋅ 10−6 km−2 day−1 for 
ensembles m = 3 and m = 5 . While the precise values of k 
is chosen empirically, a reasonable order of magnitude of 
the parameter can be derived using a scaling argument pre-
sented in Ragone and Bouchet (2020) and in the Supporting 
Information of Ragone and Bouchet (2021). According to 
this scaling argument, the selected k-values correspond to a 
shift of the peak of the distribution of February-September 
mean pan-Arctic sea ice area anomalies to values between 
−0.5 ⋅ 106 km2 and −0.75 ⋅ 106 km2 , which corresponds to a 
range of estimated return times between 100 and 1000 years 
(see Sect. 3.1).

For each ensemble, the inital condition for trajec-
tory n = 1, ...,N  is taken from February 1st in year 
500 + m + 5(n − 1) of the control run (Table 1). In order to 
have a baseline for the statistics, we also subdivide the 3000-
year control run into five 600-member control ensembles 
such that the rare event algorithm ensemble m has exactly 
the same initial conditions as the control ensemble m. Sam-
pling the initial conditions with a gap of 5 years ensures that 
sea ice area anomalies in the different trajectories within an 
ensemble are approximately independent from each other.

3 � Results

3.1 � Importance sampling of summer seasons 
with extremely low pan‑Arctic sea ice area

Our goal of using the rare event algorithm is to improve 
the sampling efficiency of extreme negative pan-Arctic sea 
ice area anomalies on average over the extended summer 
season between February and September. We show the sea-
sonal evolution of daily pan-Arctic sea ice area anomalies 
merged over the two rare event algorithm experiments with 
k = −0.05 ⋅ 10−6 km−2 day−1 (Fig. 2a, b). Throughout the 
season, trajectories generated with the rare event algorithm 
show a systematic shift towards lower sea ice area values 
compared to the control run. The amplitude of this shift does 
not differ between the 5-days and the 30-days resampling 
time experiments and is more than twice as large after July 
than between February and June. The amplification of the 
shift during July coincides with an increase in the climato-
logical sea ice area variability of the control run (cf. Figs. 1c 
and 2a, b).

The systematic biasing towards negative sea ice area 
anomalies both in the 5-days and 30-days resampling 
time experiments emerges from the trajectory resampling 
at intervals shorter than the decorrelation time of the sea 
ice area. During each resampling event, trajectories char-
acterized by large negative time-persistent sea ice area 
anomalies form replicas at the expense of trajectories with 
less negative sea ice area anomalies. After the simulation, 
the surviving pieces of trajectories are reconstructed into 
an effective ensemble. As a consequence, the rare event 
algorithm efficiently performs importance sampling of 
trajectories that lead to extreme negative February–Sep-
tember time-averaged sea ice area anomalies (Fig. 2). The 
control distribution of February–September mean sea ice 
area anomalies has a standard deviation of about 0.25 ⋅ 
106 km2 and a minimum value of −0.80 ⋅ 106 km2 . In con-
trast, the sea ice area anomalies obtained with the rare 
event algorithm fluctuate around a mean value of −0.6 ⋅ 
106 km2 and have minima at −0.89 ⋅ 106 km2 (30-days resa-
mpling time experiments) and at −0.99 ⋅ 106 km2 (5-days 

Table 1   600-member rare event algorithm ensemble simulations run-
ning between February 1st and September 30th

This set-up applies both to the experiments with a resampling time of 
�r = 5 days and to the experiments with a resampling time of �r = 30 
days

m Model years for initial condi-
tion

Biasing param-
eter k [10−6 km−2 
day−1]

1 501, 506,..., 3496 − 0.06
2 502, 507,..., 3497 − 0.05
3 503, 508,..., 3498 − 0.04
4 504, 509,..., 3499 − 0.05
5 505, 510,..., 3500 − 0.04
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resampling time experiments). The simulations with the 
rare event algorithm require the same computational cost 
as the control run, but strongly populate the lower tail of 
the distribution of FEBSEP mean pan-Arctic sea ice area 
anomalies (Fig. 2c, d; we refer to the Supplementary Infor-
mation S2 and Supplementary Figs. S5 and S6 for more 
details about the adequacy of the rare event simulations 
used in this work, i.e., of the extent to which the effective 
ensembles contain sufficiently enough different initial-time 
ancestors with a non-zero number of final-time decendants 
to gather robust statistics).

Return times are an important characterization of extreme 
events. They indicate the average waiting time between 

events of size larger than a given amplitude. We compare 
return times of FEBSEP mean pan-Arctic sea ice area anom-
alies between the control run and the experiments with the 
rare event algorithm (Fig. 3a, b). For the computation of 
the return times, we proceed similarly to the modified block 
maximum estimator presented in Lestang et al. (2018) and in 
the Supporting Information of Ragone et al. (2018). Accord-
ingly, an estimate of the return time is given by

(4)

r(a) = −
ΔT

ln[1 −
1

N

∑N

n=1
1a(In)]

with 1a(In) =

�
1, In ≤ a

0, In > a
,

Fig. 2   a, b Trajectories (thin blue lines) and ensemble mean (thick 
blue line) of daily pan-Arctic sea ice area anomalies in rare event 
algorithm ensemble simulations two and four, i.e. with k = −0.05 ⋅ 
10-6 km-2 day-1, for a a resampling time of 5 days and b a resampling 
time of 30 days. The anomalies are evaluated relative to the daily cli-
matology of the control ensembles two and four. Only the trajectories 
that survived until the final simulation time are plotted and are used 
for the computation of the ensemble mean. The gray lines show the 
climatological standard deviation of daily sea ice area anomalies in 

the control ensembles m = 2 and m = 4. c, d Probability distribu-
tion functions of February–September mean pan-Arctic sea ice area 
anomalies relative to the control climatology for c a resampling time 
of 5 days and d a resampling time of 30 days. (Black) Anomalies of 
the control run itself merged over ensembles m = 2 and m = 4 and 
(blue) anomalies in the rare event algorithm experiments correspond-
ing to ensembles m = 2 and m = 4, i.e. with k = −0.05 ⋅10-6 km-2 
day-1 (exclusively based on the trajectories that survived until the end 
of the simulation)
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where In is the February-September time-averaged pan-Arc-
tic sea ice area anomaly in trajectory n, a is the return level 
of a sea ice area anomaly, N the number of trajectories, ΔT  
is the block length of one year and 1a(In) is the indicator 
function. As described in Lestang et al. (2018) and in the 
Supporting Information of Ragone et al. (2018), Eq. 3 can be 
used to compute the return times from the simulations with 
the rare event algorithm. Note that for large values of the 
return time, the formula in (4) is approximately equivalent to 
r(a) = Td∕

∑N

n=1
1a(In) , where Td = NΔT  is the total length 

of the time series (see Lestang et al. (2018)).
In Fig.  3, the red curves show return time estimates 

obtained from the 3000-year control run. In order to esti-
mate uncertainty ranges, we subdivide the control run into 
five 600-member ensembles (see Sect. 2.3.2) providing five 
return time estimates. We compute the average over these 
five estimates (black curve) and use their empirical standard 
deviation to construct 95% confidence intervals (black shad-
ing; see Supplementary Information S1 for more details). In 
the same way, the blue lines and blue shading show the aver-
age return time estimates and confidence intervals obtained 
from the overlapping output of at least three out of the five 
600-member rare event algorithm experiments (note that 
rare event algorithm experiments with slightly different k 
values cover slightly different ranges of sea ice area anoma-
lies). Both for the 5-days and for the 30-days resampling 
time experiments, the return curves for the control run and 
for the rare event algorithm overlap in a range of sea ice 
area anomaly values. This range corresponds to an over-
lap between the probability distribution functions of sea 

ice area anomalies obtained with the control and rare event 
algorithm ensembles (cf. Figs. 2c, 3a, Supplementary Fig. 
S2a, c and Figs. 2d, 3b, Supplementary Fig. S2b, d). Conse-
quently, the rare event algorithm consistently computes the 
probabilities that trajectories generated with the algorithm 
have with respect to the real model statistics (an analysis of 
the differences between the control and rare event algorithm 
estimates of the return levels shows that both estimates are 
statistically consistent with each other at least for a return 
time range between a couple of decades and about 750 years 
(Supplementary Fig. S3a, b)).

The major advantage of computing the return times with 
the rare event algorithm compared to the control run is the 
access to much rarer events with the former than with the 
latter. From the control run, we cannot accurately estimate 
return times of more than 1000 years. The rare event algo-
rithm experiments are conducted with the same computa-
tional cost as the control run (i. e. 3000 years), but allow to 
compute return times up to 105 years with uncertainty ranges 
comparable with the control run ones for return times of 
several hundreds of years. Hence the algorithm increases 
the sampling efficiency of extreme negative February–Sep-
tember mean sea ice area anomalies by two to three orders 
of magnitude. The plateaux at return times larger than 105 
years (Fig. 4a) and larger than 5 ⋅ 104 years (Fig. 4b) are due 
to undersampling as discussed in Lestang et al. (2018) and 
in the Supporting Information of Ragone et al. (2018).

The result has the following implications. Firstly, the rare 
event algorithm provides access to ultra-rare sea ice area 
anomalies that do not occur in the control run. An unrealistic 

Fig. 3   Return curves for February–September mean pan-Arctic sea 
ice area anomalies relative to the control run. (Red stars) The direct 
estimate of return times from the 3000 year control run, (black line) 
the average estimate over the five 600-member ensembles of the 
control run and (blue line) the average estimate over the overlap of 
at least three out of five 600-member rare event algorithm experi-
ments. Shading denotes the 95% confidence interval obtained from 

the statistics of the three to five estimates assuming a Student’s t dis-
tributed estimator (see Supplementary Information S1). a Rare event 
algorithm with 5-days resampling time and b with 30-days resam-
pling time. The dashed lines in a and b indicate anomalies of minus 
two, minus two and a half and minus three standard deviations with 
respect to the control run
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amount of computational cost would be required to observe 
them with direct sampling. Secondly, the algorithm enriches 
the general statistics of the extremes. While the control run 
delivers only a few events with a sea ice area anomaly in 
the order of three standard deviations away from the clima-
tology, hundreds of them are available in the experiments 
with the algorithm. Thirdly, the return curve obtained with 
the 5-days resampling time experiments extends only to 
marginally larger amplitudes of sea ice area anomaly val-
ues than the one obtained with the 30-days resampling time 
experiments. Thus, the targeted sampling of drivers of sea 
ice reduction acting on the upper range of synoptic and on 
submonthly time scales only marginally increases the mag-
nitude of the most extreme negative February–September 

mean pan-Arctic sea ice area anomalies. We will further 
address this point in section 4.

3.2 � Sea ice conditions and state of the atmosphere 
during summer seasons of extremely low sea 
ice area

We perform composite analyses to investigate and character-
ize the average states of the sea ice and of the atmosphere 
during summer seasons of extreme negative February–Sep-
tember mean pan-Arctic sea ice area anomalies. Composites 
mathematically correspond to conditional expectation values 
that we estimate as

Fig. 4   Composite mean February-September averaged a, d sea ice 
concentration (SIC [-]), b, e two metre temperature (T2M [K]) and 
c, f 500 hPa geopotential height (Z500 [gpm]; contour interval two 
gpm) anomalies conditional on extreme negative February–Septem-
ber mean pan-Arctic sea ice area anomalies equal or smaller than −
2.5 standard deviations of the control ensembles (corresponds to 
extremes with return times of more than 200 years). Composite maps 
are presented as an average over a–c the five control and d–f the five 

rare event algorithm experiments with a resampling time of �r = 5 
days. All anomalies are estimated with respect to the climatology of 
the control ensembles. The hatching in (a, b, d, e) and shading in (c, 
f) denote statistical significance at the 5% level according to a two-
sided t test (see the Supplementary Information S1 for more details). 
The black contour line in (b, e) indicates the climatological Febru-
ary–September mean sea ice edge defined as the 15% sea ice concen-
tration line
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where O({Xn(t)}) and In are the anomalies of a target climate 
variable (e.g., 500 hPa geopotential height) and of the Feb-
ruary–September mean pan-Arctic sea ice area in trajectory 
n, � is the control run standard deviation of I, m a positive 
integer and 1(−In − m�) is the indicator function with

All anomalies are evaluated relative to the climatology of 
the control ensembles and �0 is the expectation operator 
with respect to the unbiased model statistics (i.e. the sta-
tistics of the control run). By using Eq. 3, composites can 
be computed from the output of the rare event algorithm as 
described in Ragone and Bouchet (2020) and in the Sup-
porting Information of Ragone et al. (2018) and of Ragone 
and Bouchet (2021).

One advantage of the rare event algorithm is that it pro-
vides more accurate composite estimates for large return 
times than the control run. For the subsequent analyses, we 
compute composite estimates for each of the five rare event 
algorithm ensembles and consider the average over the five 
estimates respectively. We assess the statistical significance 
of the composite maps by applying a two-sided t-test to the 
set of the five estimates (see Supplementary Information 
S1). We apply the same procedure to five 600-member con-
trol ensembles obtained from the 3000-year control run (see 
Sect. 2.3.2). All subsequent results obtained with the rare 
event algorithm are based on the experiments with a resa-
mpling time of �r = 5 days. As explained in Sect. 2.3.2, this 
value of resampling time allows to increase the sampling 
efficiency of a broader range of physical processes compared 
to a resampling time of �r = 30 days.

3.2.1 � Seasonal mean states of the sea ice 
and of the atmosphere

We compare the control run and rare event algorithm esti-
mates of average seasonal mean SIC, two metre temperature 
(T2M) and 500 hPa geopotential height (Z500) anomalies 
during summer seasons of extreme negative pan-Arctic sea 
ice area anomalies with return times of more than 200 years 
(i.e. In ≤ −2.5� ) (Fig. 4). For this threshold, we have access 
to several hundreds of events with the algorithm and to 13 
events with the control run. While the algorithm and control 
estimates consistently indicate a warm Arctic state during 
extremely low sea ice seasons, the benefit of the algorithm 
manifests in the larger statistical accuracy of the estimates 
compared to the control run. The algorithm composites indi-
cate statistically significant negative mean SIC anomalies 

(5)

�0[O({Xn(t)}) | In ≤ −m�] =
�0[O({Xn(t)}) ⋅ 1(−In − m�)]

�0[1(−In − m�)]
,

(6)1(−In − m𝜎) =

{
1, − In − m𝜎 ≥ 0

0, − In − m𝜎 < 0
.

in the North Atlantic side of the Arctic, along the Russian 
coast and in the marginal seas of the Pacific side of the Arc-
tic Ocean (Fig. 4d). Statistically significant positive T2M 
anomalies occur over the entire Arctic Ocean with largest 
amplitudes over the Canadian Archipelago, Greenland and 
Kara Seas (Fig. 4e). The anomalously warm surface condi-
tions are accompanied by positive Z500 anomalies over the 
Arctic reaching statistical significance from the Canadian 
Archipelago over Svalbard to the Barents and Kara Seas. 
Compared to the algorithm, the control run estimates of the 
mean SIC, T2M and Z500 anomalies are statistically signifi-
cant in a much smaller amount of grid cells. Apart from the 
formal statistical significance, the larger amount of extreme 
events available through the algorithm decreases the likeli-
hood that the composite maps include noisy patterns that 
are not statistically related to the sea ice area anomalies and 
that are occurring in the control run by the effect of sampling 
(Fig. 4b, c, e, f).

3.2.2 � Seasonal evolution of the states of the sea ice 
and of the atmosphere

We are interested in the physical processes favouring anoma-
lously warm Arctic states with extremely low pan-Arctic sea 
ice area during summer. From the physical point of view, 
understanding the drivers of extremely low pan-Arctic sea 
ice area is hindered by at least two factors. Firstly, a variety 
of feedback mechanisms occur in the Arctic climate sys-
tem (e.g., Screen and Simmonds 2010; Serreze and Fran-
cis 2006) and can lead to ambiguities of cause and effect 
relationships between different quantities. This applies, for 
example, to the relationship between the anomalously warm 
Arctic atmosphere and the negative sea ice concentration 
anomalies shown in Fig. 4. The negative sea ice concentra-
tion anomalies are potentially driven by the anomalous warm 
atmosphere. At the same time, however, the positive T2M 
and Z500 anomalies are potentially a consequence of the 
anomalous heat flux from the ocean to the atmosphere that 
results from the reduced sea ice cover. Secondly, extremely 
low summer pan-Arctic sea ice area may be generated in 
two different ways. Are we sampling trajectories in which 
processes on intra-seasonal time scales lead to an extreme 
reduction of the pan-Arctic sea ice area within a season? 
Or are we sampling trajectories in which extreme negative 
February–September mean pan-Arctic sea ice area anoma-
lies are related to preconditioning (cf. Chevallier and Salas-
Mélia 2012; Holland et al. 2011; Kauker et al. 2009)?

We firstly identify to what extent extreme negative Febru-
ary–September mean pan-Arctic sea ice area anomalies are 
related to intra-seasonal sea ice reduction vs. pre-existing 
anomalies in the sea ice state originating from the previ-
ous winter. For this purpose, we analyse the seasonal evo-
lution of mean pan-Arctic sea ice area and sea ice volume 
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anomalies conditional on the occurrence of summer sea-
sons of extremely low pan-Arctic sea ice area (Fig. 5). On 
average, extreme negative FEBSEP pan-Arctic sea ice area 
anomalies are related both to persistent sea ice area anoma-
lies originating from the previous winter and to anomalous 
sea ice area reduction between late spring and late sum-
mer (Fig. 5a). The sea ice area anomalies between Feb-
ruary–March and May–June are in the order of one and 
two-thirds of the interannual standard deviation and have 
an approximately constant level of about −0.2 ⋅ 106 km2 
to −0.5 ⋅ 106 km2 . In contrast, the sea ice area anomalies 
in August–September are in the order of −1 ⋅ 106 km2 to 
−1.5 ⋅ 106 km2 , two to three times as large in magnitude 
as the interannual standard deviation. As a consequence, 
the anomalies in the sea ice area reduction between Febru-
ary–March and August–September are about twice as large 
in magnitude as the pre-existing sea ice area anomalies in 
late winter. The relative importance of intra-seasonal sea 
ice area reduction over pre-existing sea ice area anomalies 
slightly increases with the amplitude of the extremes of the 
February–September mean pan-Arctic sea ice area anoma-
lies (Fig. 5a).

In contrast to the pan-Arctic sea ice area, pan-Arctic sea 
ice volume anomalies are directly related to the amount of 
energy required to produce these anomalies and their sea-
sonal evolution does not directly depend on the open-water-
formation-efficiency given by the sea ice thickness field. Pre-
existing pan-Arctic sea ice volume anomalies originating 
from the previous winter are three to four times as large as 
the anomalies in their reduction from February–March to 
August–September (Fig. 5b). This result points at a strong 
contribution of preconditioning of extreme anomalies of the 

FEBSEP mean pan-Arctic sea ice area through an extremely 
low winter pan-Arctic sea ice volume, which is both due to 
negative anomalies in the winter pan-Arctic sea ice area and 
in the winter pan-Arctic mean sea ice thickness field (cf. 
Fig. 5 and Supplementary Fig. S4a, b). On top of the pre-
conditioning, an anomalous intra-seasonal reduction in the 
sea ice volume occurs between April–May and July–August. 
This suggests a contribution of intra-seasonal dynamics to 
extreme negative FEBSEP sea ice area anomalies in addition 
to the preconditioning.

We analyse the seasonal evolution of T2M and Z500 
anomalies conditional on extremely low sea ice summer sea-
sons to establish a link between the sea ice lows and the ther-
modynamic and dynamic states of the atmosphere (Fig. 6). 
During extremely low sea ice summers, positive temperature 
anomalies pre-exist over the Arctic during the beginning of 
the simulation period in February–March, especially from 
the Greenland to the Kara Seas and over the Canadian Archi-
pelago (Fig. 6a). Positive T2M anomalies over the Arctic 
Ocean persist until spring before they largely disappear in 
June-July (Fig. 6a–d). A reemergence of significant positive 
two metre temperatures occurs in August–September over 
the Arctic Ocean, though with a much smaller amplitude 
than at the beginning of the season (Fig. 6a, e). Possible 
causes for the anomalously warm atmosphere in late winter 
and spring include enhanced poleward atmospheric heat and 
moisture transport (e.g., Alekseev et al. 2019), enhanced 
poleward oceanic heat transport (e.g., Swaluw et al. 2007; 
Jungclaus and Koenigk 2010), an anomalously strong con-
ductive heat flux within an anomalously thin sea ice (see 
Semtner (1976) for a description of the thermodynamics of 
sea ice) and enhanced open water area related to negative 

Fig. 5   Rare event algorithm experiments with a resampling time of 
�r = 5 days: Composite mean a pan-Arctic sea ice area anomalies [ 106 
km2 ] and b pan-Arctic sea ice volume anomalies [ 103 km3 ] condi-
tional on extreme negative February–September mean pan-Arctic sea 
ice area anomalies equal or smaller than (black) -2 standard devia-
tions, (gray) −2.5 standard deviations and (red) -3 standard devia-
tions of the control ensembles (roughly corresponds to extremes with 
return times of more than 40, 200 and 1000 years). The anomalies are 

computed with respect to the control climatologies of the five control 
ensembles. The composite estimates are presented as an average over 
the five rare event algorithm ensembles and the error bars represent 
95% confidence intervals (see Supplementary Information S1). “AS-
FM” denotes the difference between August–September (AS) and 
February–March (FM) and the green “x” markers indicate the clima-
tological standard deviation in the control run
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sea ice area anomalies (Screen and Simmonds 2010). Since 
the positive T2M anomalies in late winter and spring coin-
cide with negative sea ice area and thickness anomalies 
(cf. Figs. 5a, 6a–c and Supplementary Fig. S4), we expect 
that an increased upward surface sensible heat flux both 
due to enhanced upward conductive heat flux within an 
anomalously thin sea ice and due to reduced sea ice area 
contributes to the positive T2M signal. The decline of the 
magnitude of the T2M anomalies in summer is consistent 
with a constraint due to the climatological sea ice melting. 
Near-surface temperatures are at the freezing point and any 
additional heat input would accelerate sea ice melt, but not 
warm the air. The weak positive T2M signal in August–Sep-
tember could both be a consequence of an anomalously large 
amount of open water and a driver of sea ice reduction.

Positive geopotential height anomalies pre-exist over the 
Arctic at the beginning of the simulation period, even though 
they are statistically significant only in a few grid points 
(Fig. 6f, g). From April–May to May–June, they become 
instead statistically significant over large part of the Arctic 
(Fig. 6g, h), while the positive T2M anomaly signal at the 
surface is decreasing (Fig. 6b, c). This suggests that anoma-
lies in the atmospheric circulation in late spring and summer 
are not a pure consequence of the diabatic heating from the 
anomalously warm surface, but that on the contrary in this 

period it is the atmospheric dynamics that plays an active role 
in contributing to the reduction of sea ice.

3.3 � Surface energy budget and feedback 
mechanisms

We perform a surface energy budget analysis for two purposes. 
Firstly, we are interested in the amount of anomalous energy 
accumulation in the snow-sea ice-ocean system that is related 
to surface-atmosphere energy flux anomalies between Febru-
ary and September. Secondly, we exploit the impact of the 
thermodynamic atmospheric state (e.g., temperature, water 
vapour, clouds) on the surface energy fluxes to understand how 
extreme negative pan-Arctic sea ice area anomalies are physi-
cally related to anomalous atmospheric conditions. We define 
the surface energy budget for an infinitesimally thin interface 
without heat storage located between the atmosphere and the 
snow-sea ice-ocean system (cf. Serreze and Barry (2014)). The 
different terms of the budget are then given by

where RSW and RLW are the downward shortwave and down-
ward longwave radiative fluxes, respectively; � is the surface 
albedo, S and L are the sensible and latent heat fluxes, � 

(7)RSW (1 − �) + RLW + S + L = −��T4

s
+ Q +M,

Fig. 6   Composite mean a–e two metre temperature (T2M [K]) and 
f–j 500 hPa geopotential height (Z500 [gpm]; contour interval two 
gpm) anomalies conditional on extreme negative February–Septem-
ber mean pan-Arctic sea ice area anomalies presented as an average 
over the five rare event algorithm ensembles. The T2M and Z500 
anomalies are averaged over a, f February–March (FM), b, g April–
May (AM), c, h May–June (MJ), d, i June–July (JJ), e, j August–Sep-

tmeber (AS) and are respectively estimated relative to the climatology 
of the control ensembles. The sea ice area anomalies are classified 
as “extreme” if the sea ice area anomaly is smaller than −2.5 stand-
ard deviations of the control ensembles. The hatching in a–e and the 
shading in f–j denote statistical significance at the 5% level according 
to a two-sided t test
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is the surface emissivity, � = 5.67 ⋅ 10−8 W m −2 K −4 is the 
Stefan–Boltzmann constant and Ts is the surface tempera-
ture. Q summarizes conductive and turbulent energy fluxes 
between the surface and the snow-sea ice-ocean system. M 
is the energy exchange associated with melting and freez-
ing at the surface. Energy fluxes related to bottom sea ice 
growth, to temperature changes in the snow-sea ice-ocean 
system and the vertical energy flux from the ocean into the 
sea ice are implicitly included in Q. If not stated otherwise, 
we define upward (downward) energy fluxes and associated 
flux anomalies to be positive (negative).

During summer seasons of extremely low pan-Arctic 
sea ice area, negative net surface-atmosphere energy flux 
anomalies occur over the Arctic Ocean and correspond to 
an anomalous energy accumulation within the snow-sea 
ice-ocean system (Fig. 7a). The domain-average of these 

anomalies over all ocean grid boxes north of 70◦ N is −
2.14 Wm−2 , which corresponds to a domain- and season- 
(February–September) integrated net energy accumulation 
of about 4.5 ⋅ 1020 J. This amount of energy would be 
sufficient to melt about 1.48 ⋅ 103 km3 of sea ice, which 
is about three quarters of the February–September mean 
pan-Arctic sea ice volume anomaly being present during 
summer seasons of extremely low pan-Arctic sea ice area 
(Fig. 5b). A direct contribution of the net accumulation of 
energy to the anomalies in the sea ice volume is, however, 
difficult for following reasons. One part of the energy is 
used to increase the temperature of the snow-sea ice-ocean 
system instead of being used for melting and an important 
part of the sea ice volume anomaly is already existing in 
late winter (Fig. 5b). Likewise, the domain-average north 
of 70◦ N is limited to representing the vertical surface 

Fig. 7   Rare event algorithm experiments with a resampling time of 
�r = 5 days: Composite mean surface energy flux [Wm−2 ] anomalies 
conditional on extreme negative February–September mean pan-Arc-
tic sea ice area anomalies equal or smaller than −2.5 standard devia-
tions of the control ensembles. Mean anomalies are presented as an 
average over the five rare event algorithm experiments and are evalu-
ated relative to the control run. Hatching in a indicates statistical sig-
nificance at the 5% level and error bars in b–c show 95% confidence 
intervals obtained from the statistics of the five estimates (see Supple-
mentary Information S1). a February–September mean net surface-

atmosphere energy flux anomalies (sensible + latent + net longwave 
+ net shortwave). February–September and bimonthly mean domain-
averaged b net surface-atmosphere energy flux anomalies and c sur-
face sensible and latent heat flux and net shortwave and net longwave 
radiative flux anomalies. The averaging is performed over all ocean 
grid boxes north of 70◦ N. The “x” markers respectively indicate the 
climatological standard deviations in the control run. The black con-
tour line in a indicates the climatological February–September mean 
sea ice edge defined as the 15% sea ice concentration line
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energy flux anomalies in the high Arctic, while the sea 
ice extends much further to the south during winter and 
spring. Nevertheless, the result indicates that the net Feb-
ruary–September mean energy exchange between the 
atmosphere and the Arctic Ocean surface provides a sub-
stantial amount of energy potentially available to contrib-
ute to enhanced intra-seasonal sea ice reduction.

We are interested in the physical processes that drive 
the anomalous net energy transfer from the atmosphere to 
the Arctic Ocean during extremely low sea ice summers. 
For this purpose, we investigate how the net atmosphere-
surface energy flux anomalies are partitioned into their dif-
ferent components over the course of the season (Fig. 7b, 
c). Both the net atmosphere-surface energy flux anomalies 
and their different components exhibit a pronounced sea-
sonality. An enhanced net energy transfer from the atmos-
phere to the snow-sea ice-ocean system occurs between 
April–May and August–September, which includes the 
period of anomalous intra-seasonal reduction in the pan-
Arctic sea ice area and sea ice volume (cf. Figs. 5 and 
7b). In contrast, slightly positive net atmosphere-surface 
energy flux anomalies indicate a small anomalous release 
of energy from the Arctic Ocean to the atmosphere in late 
winter (Fig. 7b). The latter is consistent with a contribu-
tion of preconditioning via the winter sea ice-ocean state 
to extremely low FEBSEP pan-Arctic sea ice area (see 
Sect. 3.2.2).

Regarding the entire season, the net atmosphere-surface 
energy flux anomalies are dominated by the radiative (net 
shortwave and net longwave radiation) compared to the 
non-radiative (sensible and latent heat) fluxes (Fig. 7c). 
Slightly positive non-radiative flux anomalies explain the 
small anomalous energy transfer from the Arctic Ocean to 
the atmosphere in late winter, while negative sensible heat 
flux anomalies in May–June suggest a direct contribution 
of anomalously high air temperatures to enhanced snow-
sea ice-ocean warming or to enhanced snow-sea ice melt. 
The negative sensible heat flux anomalies in May–June 
coincide with the appearance of a statistically significant 
positive Z500 anomaly pattern and thus with an anoma-
lously warm state of the lower troposphere (cf. Figs. 6 
and 7c). A strong contribution of net shortwave radiative 
fluxes to the seasonal accumulation of energy in the Arctic 
Ocean occurs between April–May and August–September. 
The net longwave radiative flux anomalies are smaller in 
magnitude than the shortwave ones, but still contribute to a 
statistically significant anomalous accumulation of energy 
in the Arctic Ocean between March–April and June–July. 
An enhanced net longwave radiative forcing on the Arctic 
sea ice during spring is consistent with Kapsch et al. (2013, 
2019). Kapsch et al. (2013, 2019) establishes a link between 
observed extremely low September Arctic pan-Arctic sea ice 
area and an anomalous early melt onset due to the footprint 

of an anomalous cloudy and moist atmosphere on the net 
longwave radiative fluxes.

In order to trace back the net radiative flux anomalies 
to anomalous atmospheric conditions, we subdivide the net 
shortwave and longwave radiative surface fluxes into their 
downward and upward components (Fig. 8a, b). Strongly 
enhanced downward longwave radiation occurs between late 
winter and late spring, which is partly balanced by enhanced 
upward longwave radiation in accordance with anomalously 
high (near-)surface air temperatures during that period (cf. 
Figs. 6a–e and 8a). In June–July and July–August, positive 
downward radiative flux anomalies are much smaller than 
in spring, but counteracting upward longwave radiative 
flux anomalies drop to zero because sea ice-snow melting 
constraints surface temperatures to be close to the freez-
ing point. In August–September, weakly enhanced upward 
and downward longwave radiative flux anomalies compen-
sate each other. Regarding the shortwave radiative fluxes, 
reduced downward fluxes are overcompensated by reduced 
upward fluxes, leading to an anomalous net accumulation of 
energy in the snow-sea ice-ocean system due to shortwave 
fluxes between April–May and August–September (Fig. 8b).

The combination of enhanced downward longwave 
and reduced downward shortwave radiation suggests 
that extremely low sea ice summers are characterized by 
enhanced cloudiness. During extremely low sea ice sum-
mers, statistically significant positive cloud cover anomalies 
are present from late winter to late spring (Fig. 8c). The 
enhanced cloud cover is accompanied by positive integrated 
water vapour anomalies being statistically significant from 
late winter to mid-summer (Fig. 8c). Consequently, apart 
from anomalously high air temperatures, enhanced cloudi-
ness and water vapour in the atmosphere contribute to the 
positive downward and net longwave radiative surface fluxes 
during extremely low sea ice summers. Reduced upward 
shortwave radiative fluxes are naturally emerging due the 
reduction in the downward shortwave radiative fluxes. How-
ever, a strongly reduced surface albedo due to reduced sea 
ice cover, i.e. the sea ice-albedo feedback, likewise contrib-
utes to the accumulation of energy related to the reduced 
upward shortwave fluxes (Fig. 8d).

4 � Discussion and conclusions

The present study demonstrates the applicability of a rare 
event algorithm to improve the sampling efficiency of 
extremely low pan-Arctic sea ice area during the melt-
ing season. The simulations with the rare event algorithm 
produce several hundreds of times more extremes than the 
control run for the same computational cost, and allow us 
to compute return times of extremes two to three orders of 
magnitude larger than feasible with direct sampling. Owing 
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to the rare event algorithm, we compute statistically signifi-
cant composites of dynamical quantities conditional on the 
occurrence of extremely low sea ice summers with return 
times of more than 200 years. In this way, we identify four 
processes and conditions that lead to extreme negative Feb-
ruary–September mean pan-Arctic sea ice area anomalies 
in PlaSim-LSG: (1) preconditioning through the winter sea 
ice-ocean state, (2) enhanced downward longwave radiation 
due to an anomalously moist and warm Arctic atmosphere in 
spring, (3) enhanced downward sensible heat fluxes in May-
June and (4) the sea ice-albedo feedback becoming active 
throughout late spring and summer.

The preconditioning manifests in large negative winter 
pan-Arctic sea ice volume anomalies as a result of both neg-
ative sea ice area and sea ice thickness anomalies (Fig. 5 and 
Supplementary Fig. S4a, b). The preconditioning of anoma-
lously low summer pan-Arctic sea ice area through nega-
tive winter sea ice thickness anomalies is in agreement with 
Chevallier and Salas-Mélia (2012), Holland et al. (2011) 
and Kauker et al. (2009), who emphasize the important role 
of winter-spring sea ice thickness for the probability of sea 
ice to survive the melt season. Chevallier and Salas-Mélia 

(2012) further argues that the winter-spring sea ice thick-
ness, in particular the area covered by sea ice thicker than a 
critical thickness, is a better predictor of the summer pan-
Arctic sea ice area than the winter-spring sea ice area itself. 
Anomalous states in the winter–spring sea ice thickness and 
sea ice area can be generated by a variety of mechanisms, 
including the dynamical forcing of the atmospheric circula-
tion on the sea ice (e.g. Ogi et al. 2016; Rigor et al. 2002), 
mechanisms related to the sea ice memory itself (Blanchard-
Wrigglesworth et al. 2011) and an anomalous heat content 
in the ocean (Polyakov et al. 2012; Comiso 2012). While a 
future study is required to examine the precise cause of the 
preconditioning in PlaSim-LSG, direct dynamical causes 
can be excluded due to the fact that a purely thermodynamic 
sea ice model is used in the present work.

The second process is related to an anomalously moist 
and warm atmosphere, which manifests in enhanced down-
ward longwave radiation between February–March and 
July–August accompanied by enhanced downward sensible 
heat flux in May–June. Enhanced spring downward long-
wave radiation as one driver of extremely low summer Arc-
tic sea ice area is consistent with Kapsch et al. (2013, 2019), 

Fig. 8   Rare event algorithm experiments with a resampling time of 
�r = 5 days: February–September and bimonthly mean domain-aver-
aged anomalies of different variables conditional on extreme negative 
February–September mean pan-Arctic sea ice area anomalies equal or 
smaller than −2.5 standard deviations of the control ensembles. Mean 
anomalies are presented as an average over the five rare event algo-
rithm experiments and are evaluated relative to the control run. Shad-
ing indicates 95% confidence intervals obtained from the statistics of 
the five estimates (see Supplementary Information S1). The domain is 

defined as in Fig. 7. Surface upward and downward a longwave and 
b shortwave radiative flux anomalies. Direction-independent abso-
lute values of the downward and upward fluxes are considered, i.e., a 
positive (negative) anomaly indicates a radiative flux that is stronger 
(weaker) in magnitude than the climatology. c (black) Total cloud 
cover [%] and (red) integrated water vapour [kg m −2 ] and d surface 
albedo [%] anomalies. a–d The “x” markers indicate respectively the 
climatological standard deviations in the control run
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who demonstrate a linkage between observed extremely low 
September pan-Arctic sea ice area and a persistent anoma-
lously moist and cloudy atmosphere in the preceding spring. 
Kapsch et al. (2019) and Persson (2012) argue that enhanced 
downward longwave radiation in spring can lead to enhanced 
surface warming prior to the melt onset and to an earlier melt 
onset compared to climatology. Kapsch et al. (2013, 2019) 
further demonstrate that the observed anomalously moist 
spring atmosphere prior to extremely low September Arctic 
sea ice area is related to enhanced meridional water vapour 
transport. In PlaSim-LSG, the anomalously moist and warm 
atmosphere may both be a trigger, i.e. via enhanced meridi-
onal heat and water vapour transport into the Arctic, and a 
response of extreme negative sea ice area anomalies, i.e. 
due to enhanced evaporation and sensible heat loss from 
the Arctic Ocean to the atmosphere due to positive surface 
temperature and open water fraction anomalies.

The third process suggests that the atmosphere may act 
not only as an amplifier but also as a trigger of sea ice retreat. 
In May–June, enhanced downward sensible heat fluxes over 
the Arctic Ocean are associated with a reinforcement of 
positive 500 hPa geopotential height anomalies compared to 
earlier months, while positive T2M anomalies are decreasing 
in amplitude (cf. Figs. 6 and 7c). Consequently, the positive 
500 hPa geopotential height anomalies and thus the anoma-
lously warm lower troposphere during the spring-summer 
transition cannot be explained alone by a diabatic forcing 
through an anomalously warm surface. The atmospheric 
dynamics and energy fluxes in May–June are compatible 
with the characteristics of midlatitude heatwaves. The pos-
sible role of Arctic heatwaves as drivers of extreme sea 
ice retreat is relatively understudied in the literature, and a 
detailed analysis of their impacts and dynamical origin will 
be subject of a future study.

The fourth process is given by the sea ice-albedo feed-
back, which sets in during April–May as a consequence and 
amplifier of extremely low sea ice cover. Compared to the 
different atmosphere-surface flux components discussed in 
Sect. 3.3, the sea ice-albedo feedback explains the largest 
amount of anomalous Arctic Ocean net energy accumulation 
during extremely low sea ice summers. Future rare event 
algorithm simulations with a prescribed surface albedo are 
a possibility to quantify the relative contribution of the sea 
ice-albedo feedback to extreme negative pan-Arctic sea ice 
area anomalies.

Overall, two reasons let us conclude that, in PlaSim-LSG, 
the preconditioning through the winter-spring sea ice-ocean 
state is a more dominant driver of extreme negative Feb-
ruary–September mean pan-Arctic sea ice area anomalies 
than the anomalous atmospheric conditions. Firstly, pan-
Arctic sea ice volume anomalies prior to extremely low sea 
ice summers are about one and a half standard deviations 
away from the climatology (Fig. 5b), while anomalies of 

atmospheric quantities and of downward atmosphere-surface 
energy fluxes are mostly less than one standard deviation 
away from the climatology (Figs. 7c and 8a–c). Secondly, 
the most extreme February–September mean sea ice area 
anomalies obtained with the 5-days resampling time experi-
ments only have marginally larger amplitudes than the ones 
obtained with the 30-days resampling time experiments 
(Fig. 3). Consequently, the targeted sampling of atmospheric 
drivers of sea ice reduction that act on the upper range of 
synoptic and on submonthly time scales do not substantially 
increase the magnitude of the most extreme sea ice area 
anomalies compared to the 30-days resampling time experi-
ments, which are primarily designed to efficiently sample 
oceanic drivers of low sea ice states. We highlight, however, 
that this study is based on a relatively low resolution climate 
model with a purely thermodynamic sea ice model. A direct 
dynamic forcing of the atmospheric circulation on the sea 
ice, e.g., related to synoptic-scale storms or to the AO and 
the AD pattern, are therefore not captured by the model.

We point out that, even though the experiments with the 
rare event algorithm presented in this paper are designed 
to improve the sampling efficiency of February–Septem-
ber mean pan-Arctic sea ice area anomalies, the method 
indirectly also oversamples trajectories characterized by 
negative anomalies of the pan-Arctic sea ice area during 
the annual sea ice minimum in September (Fig. 2a, b; note 
that the correlation coefficient between FEBSEP and Sep-
tember (SEP) pan-Arctic sea ice area in the control run is 
0.69). This suggests a potential applicability of the rare 
event algorithm to study extremes of the annual Arctic 
sea ice minimum. This could also be obtained by chang-
ing the observable used to weight the trajectories from the 
pan-Arctic sea ice area to its time derivative. Finally, we 
highlight that in the experiments presented in this paper 
the initial conditions of the ensemble have been taken from 
the control run in order to have an unbiased sampling of 
the invariant measure of the dynamics. In this way, the 
return times and statistics computed with the algorithm 
are related to unconditional probability distributions. A 
different type of experiment would consist in starting each 
ensemble member from the same initial condition, as done 
for ensemble weather and seasonal climate predictions. In 
this case, the algorithm would give access to the statistics 
of extreme events conditional on the chosen initial condi-
tion. This approach could be of great interest in the context 
of seasonal predictions in order to estimate the risk of 
observing a record low of Arctic sea ice in summer given 
the conditions at the beginning of the melting season. This 
strategy and the extent to which the accuracy of statistical 
estimators based on the importance sampling formula in 
these type of experiments improves the results compared 
to direct sampling constitute an exciting line of research 
that will be explored in future works.
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