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A B S T R A C T

Biomass pyrolysis is typically modeled based on the three reference components cellulose, hemicellulose, and
lignin. Most models rely on an individual decomposition of the materials and a linear superposition of the
individual component products weighted by the present mass fractions. Models of varying complexity exist
for the mathematical description of the pyrolysis process, ranging from the simplest single first-order (SFOR)
model and the multi-step CRECK model to the chemical percolation devolatilization (CPD) model representing
the molecular network of the solid. The models differ not only in their complexity but also in the used data
for initial parameter calibration — thermogravimetric analysis (TGA) data for the CRECK model and mainly
entrained flow, fluidized bed, or wire mesh reactor data for the Bio-CPD model. Within the present study, the
predictive performance of these three models is compared with regard to the time-dependent total volatile
release and the final volatile yield when applying two different thermal boundary conditions: low heating rate
in a TGA and flash pyrolysis conditions realized with a small-scale fluidized bed reactor (FBR). The models are
compared with one other and with experimental data on extracted, separately pyrolyzed biomass components
to examine under which conditions reliable predictions can be made and when the trustability is limited. For
the TGA data, the CRECK model has the closest proximity to the experimental measurements, also resolving
most of the individual reactions, while the SFOR model can resolve only one globally dominating reaction,
and the Bio-CPD model strongly overpredicts the reactivity of the biomass components during the slow heat-
up. Under flash pyrolysis conditions in the FBR, by contrast, the Bio-CPD model predictions are closest to
the experimental results when it comes to predicting the total volatile release rate. However, examining
the integrally released yields, the CRECK model is closer to the experiments. Regarding the tar and light
gas distribution, all models strongly overpredict tar from primary pyrolysis compared to the experimental
results, indicating the presence of secondary gas-phase reactions in the FBR. Although different secondary
gas-phase reaction models are used, the tar yield is significantly overestimated by the models compared to the
experimental data.
1. Introduction

Biomass is crucial for mitigating human-caused greenhouse gas
emissions by transitioning from fossil towards renewable energy
sources. Biomass pyrolysis, the treatment of solid biogenic material
in an oxygen-free environment, raises the value of agricultural and
organic waste by transforming it into valuable products such as bio-
char and bio-oil. At the same time, a sustainable carbon circular
economy can be established while anthropogenic CO2 emissions are
reduced.

∗ Corresponding author.
E-mail address: pielsticker@wsa.rwth-aachen.de (S. Pielsticker).

Modeling of pyrolysis is a challenging problem as pyrolysis is known
to be a multi-component, multi-phase, and multi-scale process [1].
Biomass is typically split into three main components: cellulose, hemi-
cellulose, and lignin. Additionally, depending on the biomass, extrac-
tives such as phenols, tannins, resins, waxes, lipids, and proteins ac-
count for a minor fraction in the mass composition. Most common
modeling approaches assume that each component has its own in-
dependent composition during the pyrolysis process and describe the
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016-2361/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.fuel.2024.131867
Received 10 November 2023; Received in revised form 6 April 2024; Accepted 10
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

May 2024

https://www.elsevier.com/locate/fuel
https://www.elsevier.com/locate/fuel
https://doi.org/10.18154/RWTH-2024-02457
https://doi.org/10.18154/RWTH-2024-02457
https://doi.org/10.18154/RWTH-2024-02457
https://doi.org/10.18154/RWTH-2024-02457
https://doi.org/10.18154/RWTH-2024-02457
https://doi.org/10.18154/RWTH-2024-02457
https://doi.org/10.18154/RWTH-2024-02457
https://doi.org/10.18154/RWTH-2024-02457
https://doi.org/10.18154/RWTH-2024-02457
https://doi.org/10.18154/RWTH-2024-02457
https://doi.org/10.18154/RWTH-2024-02457
https://doi.org/10.18154/RWTH-2024-02457
https://doi.org/10.18154/RWTH-2024-02457
https://doi.org/10.18154/RWTH-2024-02457
https://doi.org/10.18154/RWTH-2024-02457
https://doi.org/10.18154/RWTH-2024-02457
https://doi.org/10.18154/RWTH-2024-02457
https://doi.org/10.18154/RWTH-2024-02457
https://doi.org/10.18154/RWTH-2024-02457
https://doi.org/10.18154/RWTH-2024-02457
https://doi.org/10.18154/RWTH-2024-02457
https://doi.org/10.18154/RWTH-2024-02457
https://doi.org/10.18154/RWTH-2024-02457
https://doi.org/10.18154/RWTH-2024-02457
https://doi.org/10.18154/RWTH-2024-02457
https://doi.org/10.18154/RWTH-2024-02457
https://doi.org/10.18154/RWTH-2024-02457
https://doi.org/10.18154/RWTH-2024-02457
https://doi.org/10.18154/RWTH-2024-02457
https://doi.org/10.18154/RWTH-2024-02457
https://doi.org/10.18154/RWTH-2024-02457
https://doi.org/10.18154/RWTH-2024-02457
https://doi.org/10.18154/RWTH-2024-02457
https://doi.org/10.18154/RWTH-2024-02457
https://doi.org/10.18154/RWTH-2024-02457
https://doi.org/10.18154/RWTH-2024-02457
https://doi.org/10.18154/RWTH-2024-02457
https://doi.org/10.18154/RWTH-2024-02457
https://doi.org/10.18154/RWTH-2024-02457
https://doi.org/10.18154/RWTH-2024-02457
https://doi.org/10.18154/RWTH-2021-05544
https://doi.org/10.18154/RWTH-2021-05544
https://doi.org/10.18154/RWTH-2021-05544
https://doi.org/10.18154/RWTH-2021-05544
https://doi.org/10.18154/RWTH-2021-05544
https://doi.org/10.18154/RWTH-2021-05544
https://doi.org/10.18154/RWTH-2021-05544
https://doi.org/10.18154/RWTH-2021-05544
https://doi.org/10.18154/RWTH-2021-05544
https://doi.org/10.18154/RWTH-2021-05544
https://doi.org/10.18154/RWTH-2021-05544
https://doi.org/10.18154/RWTH-2021-05544
https://doi.org/10.18154/RWTH-2021-05544
https://doi.org/10.18154/RWTH-2021-05544
https://doi.org/10.18154/RWTH-2021-05544
https://doi.org/10.18154/RWTH-2021-05544
https://doi.org/10.18154/RWTH-2021-05544
https://doi.org/10.18154/RWTH-2021-05544
https://doi.org/10.18154/RWTH-2021-05544
https://doi.org/10.18154/RWTH-2021-05544
https://doi.org/10.18154/RWTH-2021-05544
https://doi.org/10.18154/RWTH-2021-05544
https://doi.org/10.18154/RWTH-2021-05544
https://doi.org/10.18154/RWTH-2021-05544
https://doi.org/10.18154/RWTH-2021-05544
https://doi.org/10.18154/RWTH-2021-05544
https://doi.org/10.18154/RWTH-2021-05544
https://doi.org/10.18154/RWTH-2021-05544
https://doi.org/10.18154/RWTH-2021-05544
https://doi.org/10.18154/RWTH-2021-05544
https://doi.org/10.18154/RWTH-2021-05544
https://doi.org/10.18154/RWTH-2021-05544
https://doi.org/10.18154/RWTH-2021-05544
https://doi.org/10.18154/RWTH-2021-05544
https://doi.org/10.18154/RWTH-2021-05544
https://doi.org/10.18154/RWTH-2021-05544
https://doi.org/10.18154/RWTH-2021-05544
https://doi.org/10.18154/RWTH-2021-05544
https://doi.org/10.18154/RWTH-2021-05544
https://doi.org/10.18154/RWTH-2021-05544
mailto:pielsticker@wsa.rwth-aachen.de
https://doi.org/10.1016/j.fuel.2024.131867
https://doi.org/10.1016/j.fuel.2024.131867
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fuel.2024.131867&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Fuel 371 (2024) 131867S. Pielsticker et al.
Nomenclature

Greek

𝛼 Convective heat transfer coefficient
Wm−2 K−1

𝛤 Eulerian gamma function −
𝜀 Emissivity −
𝜇 Mean value
𝜌 Density kgm−3

𝜎 Coordination number −
𝜎 Standard deviation
𝜎 Stefan–Boltzmann constant Wm−2 K−4

𝜑 Volume fraction −

Latin

𝐴 Pre-exponential factor 1∕s
B Boolean function −
Bi Biot number −
𝑐 Specific heat capacity J kg−1 K−1

𝑑 Diameter m
𝐸a Activation energy Jmol−1

𝐻 Height m
ℎ Specific enthalpy J kg−1

𝐿 Length m
𝑀 Molar mass kgmol−1

m Molecular weight u
𝑚 Mass kg
�̇� Mass flow kg s−1

𝑁 Number −
𝑃 Probability −
Py Pyrolysis number −
𝑅 Universal gas constant Jmol−1 K−1

𝑟 Reaction rate 1∕s
𝑟∗ Reaction rate ratio −
𝑆 Surface area m2

𝑇 Temperature K
𝑡 Time s
�̇� Volume flow m3 s−1

𝑋 Bridge fraction −
𝑦 Yield −

Subscripts

∞ Completed pyrolysis process
0 Initial value
10 10%
50 50%
90 90%
a Ash
act Activated
ar Aromatic part
bro Broken
char Char
cl Cluster
conf Configuration
cross Cross-linking

overall product by means of linear superposition. Although the min-
eral components in the biomass influence the product spectrum and
the reaction rates (typically the tar yield is reduced at the expense
2

exp Experimental
ext External from particle
FB Fluidized bed
FP Fedd pipe
frag Fragment
g Gas
GPR Gas-phase reaction
i 𝑖th component
int Intact
lab Labile
LG Light gas
N2 Nitrogen
n Norm conditions
p Particle
PT Percolation theory
reac Reaction
s Solid material
SC Side chain
stab Stable
tar Tar
tot Total
v Volatiles

Superscripts

’’ Gaseous phase
’ Liquid phase

Abbreviations

CFD Computational fluid dynamics
CPD Chemical percolation devolatilization
CRECK Chemical reaction engineering and chemi-

cal kinetics
FBR Fluidized bed reactor
FTIR Fourier-transform infrared (spectrometer)
IR Infrared
PT Percolation theory
SFOR Single first-order reaction
TGA Thermogravimetric analysis
VLE Vapor–liquid equilibrium

of the char and light gas yields), this is only considered in some
models, e.g., by Ranzi et al. [2], but still neglected in most current
models [3]. Compared to natural biomass, the extracted components
– especially hemicellulose – may even show higher concentrations of
catalysts originating from the extraction process [4]. Hameed et al.
[5] and Vikram et al. [3] describe the spectrum of prevailing biomass
pyrolysis models, which can be grouped into three categories: kinetic
models, network models, and mechanistic models. Mechanistic models
can help understanding decomposition behavior at a molecular level
but exceed available computational resources when it comes to the
full-scale simulation of biomass pyrolysis processes [5].

Network models attempt to represent the molecular structure at an
abstract level by interpreting biomass as a network with connections of
variable stability without resolving any elemental reaction. This cate-
gory is most suitable for understanding the effects of particle heat-up,
particle-internal transport phenomena, and structural changes such as
fragmentation. Notable examples of the network models commonly em-
ployed for pyrolysis include the chemical percolation devolatilization
model (CPD) [6–8], the functional group depolymerization vaporiza-
tion crosslinking model (FG-DVC) [9–11], and the flash distillation
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chain statistics model (FLASHCHAIN) [12–15]. In addition to the
consideration of purely chemical processes, for the (Bio-)CPD model,
various extensions have also attempted to take into account the effects
of particle-internal heat and mass transfer [16,17], the feedback of
cross-linking on the network structure [18], or the catalytic activity of
mineral components [19].

Purely kinetic models describe the conversion process as a system-
atic combination of parallel and sequential reactions. The discretization
of educts and products can involve one lumped component, e.g., in
the single first-order model (SFOR) [20] or multiple individual reaction
species, e.g., in the chemical reaction engineering and chemical kinetics
model (CRECK). Purely kinetic models have the advantage of being
easily coupled with simulations of the computational fluid dynamics
for full-scale reactors [5]. In addition to primary decomposition,
secondary reactions in the gas phase or between volatiles and char [3]
determine product quantity and composition. Charring reactions are
expected to be mostly important for larger particles, where particle-
internal volatiles (metaplast) have longer contact times with the char
matrix [21]. The level of detail of the available secondary gas-phase
reaction models ranges from simple one-step models for tar cracking to
detailed gas-phase kinetic models with multiple reaction pathways and
species [22].

Most primary pyrolysis models were initially developed based on
pyrolysis experiments with coal and have been subsequently adapted
for biogenic solids. During the calibration and validation procedure,
experimental data from different laboratory setups and different fu-
els (biomass vs. extracted components) were used. While the CRECK
model is mainly validated against experimental data from thermo-
gravimetric analyses (TGA) performed at relatively low heating rates
(3–80K min−1) [2,23,24], the biomass version of the CPD model is
mainly validated against experiments with high heating rates (103–
105 K s−1). In most calibration scenarios, integrally released fractions of
light gas, tar and the remaining char [25–30] were used to compare the
experiments and the model’s predictions [31–35]. The usage of time-
dependent data on the pyrolysis products released from biomass under
flash pyrolysis conditions is only documented by Lewis and Fletcher
[34] and Rabaçal et al. [35]. In both studies, mainly the final phase is
captured, while the main conversion is only reflected by one data point.
This makes it impossible to judge whether the model correctly predicts
the relevant time scales. For extracted and separated biomass compo-
nents, to the author’s best knowledge, no comprehensive evaluation on
the performance of flash pyrolysis modeling using time-dependent data
can be found in the literature.

In addition to the comparison with experimental data, the model’s
performances were also compared with one other. Using coal as a
fuel, the study by Maffei et al. [36] compared the CPD model against
the CRECK model, while Richards and Fletcher [37] compared the
CPD model with other simple kinetic models. The comparison of the
final volatile yields for four different coals performed by Maffei et al.
[36] showed that the CRECK model was more sensitive with respect
to the origin of the coal, but no clear trend was found that showed,
which model better predicted the experimental results. In the study
by Richards and Fletcher [37], the aim was to evaluate how simple
kinetic models (e.g., the SFOR model) can represent the CPD predic-
tions without having any experimental reference data. The SFOR model
could not represent any effect of the heating rate and strongly overpre-
dicted the total volatile release rate compared to the CPD predictions.
For biomass, Xing et al. [38] recently compared the CRECK and Bio-
CPD (version found in Fletcher et al. [33]) models with regard to TGA
experiments on various biomass samples. The Bio-CPD model did not
accurately predict the pyrolysis process and overestimated the final
volatile yields for all samples. The study by Rabaçal et al. [35] is the
only one that compares the CRECK and Bio-CPD models for biomass
pyrolysis at high heating rates against experimental reference data
from a drop-tube reactor operated between 973 and 1673K [28,29].
3

Both models underpredicted the total volatile release compared to f
the experimental findings at all temperatures for both the biomasses
investigated, with the CRECK model producing even lower total volatile
yields than the Bio-CPD model. While the CRECK model was able to
correctly reflect the temperature trends, the Bio-CPD model did not
show any sensitivity with regard to the final yield to the temperature.
Regarding the volatile composition, the Bio-CPD model predicts high
tar yields around 70 to 80% and low light gas yields while the CRECK
model gives tar yields between 40 to 70%. As tar cracking is taken into
account by the model developed by Vizzini et al. [32], the tar yields
indicated using CRECK and Bio-CPD approach converge but are still
significantly higher than in the experimental data at levels around 10
to 30%.

The goal of this study is to comprehensively compare the simple
(SFOR) and complex (CRECK) kinetic models on the one hand with the
Bio-CPD network model on the other hand. To minimize the effects
of interactions between the components, experimental reference data
on extracted and separately pyrolyzed samples are used. To simultane-
ously achieve the high heating rates of flash pyrolysis and investigate
the entire pyrolysis process, data from a fluidized bed reactor with
coupled ex-situ and time-resolved gas analysis is utilized [39]. Due
to the particles’ unlimited residence time inside the fluidized bed,
these data make it possible to analyze time-dependent release rates
and the integrally released volatile reaction products. To complete the
model comparison, the relevance of secondary pyrolysis reactions in the
fluidized bed reactor is evaluated and the models’ performance at low
particle heating rates is investigated using thermogravimetric analyses.
Comparing the model performance also at other than the calibration
conditions is important as both models are also widely used for the
opposite boundary conditions: e.g., the CRECK model for high heating
rates [40–44] or the Bio-CPD for low heating rates [38]. However,
the aim of the study is not to select the best overall model but to
raise awareness of the conditions under which model predictions can
be trusted and when model predictions should be viewed carefully.

2. Experimental reference data

In a previous study entitled ‘‘Flash Pyrolysis Kinetics of Extracted
ignocellulosic Biomass Components’’ [39], the pyrolysis kinetics of cel-
ulose, hemicellulose, and lignin were investigated individually us-
ng two different experimental setups: a thermogravimetric analyzer
nd a small-scale fluidized bed reactor. To minimize the impact of
ntra-particle transport limitations and moisture evaporation, pre-dried
nd pulverized fuel samples were used with mesh sizes of 90–125
m (cellulose and lignin) and 60–90 μm (hemicellulose). Important
uel characteristics derived via ultimate, proximate, and microscopic
article size analysis are given in Table 1.

Thermogravimetric analyses (TGA) using a TGA8000 from Perkin
lmer Inc. were used to determine the pyrolysis kinetics of lignocel-
ulosic components at low temperatures and low heating rates. The
ample (0.8–1.2mg in an alumina crucible) was heated in N2 (volume
low 50mlmin−1, purity > 99.996%) from 303K to 1173K with a
onstant heating rate of 5K min−1 [39].

.1. Fluidized bed reactor

Pyrolysis kinetics are determined in a fluidized bed reactor (FBR)
as illustrated in Fig. 1 – by analyzing the released volatiles with an
x-situ Fourier-transform infrared spectrometer. The FBR setup offers a
ombination of high particle heating rates, up to around 104 K s−1, and
oderate temperatures ranging from 𝑇b = 623–1073K. The unlimited

esidence time of the particles further enables the entire conversion
rocess to be captured.

The system consists of three main parts: a controlled gas supply, the
eaction zone in the fluidized bed, and the ex-situ FTIR spectrometer

or gas analysis. The gas supply and the electrically heated furnace
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Fig. 1. Scheme of the fluidized bed reactor setup for pyrolysis experiments [39]. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
Table 1
Physical and chemical properties of the investigated isolated biomass components
cellulose (Cel.), hemicellulose (Hem.), and lignin (Lig.) using ultimate, proximate, and
microscopic particle size analysis [39].

Cel. Hem. Lig.

C [wt%] dafb 42.43 41.12 60.69
H [wt%] daf 6.32 6.23 5.57
N [wt%] daf 0.30 0.21 1.22
S [wt%] daf 0.00 0.10 0.81
Oa [wt%] daf 50.95 52.34 31.71

Ash [wt%] dry 0.30 2.00 1.30
Water [wt%] aac 6.00 3.50 4.10
Volatiles [wt%] daf 95.19 76.13 68.19

𝑑p,10 [μm] 135.8 71.3 114.7
𝑑p,50 [μm] 164.8 93.7 125.9
𝑑p,90 [μm] 195.4 114.7 158.0

a From difference.
b Reference state: dry, ash-free.
c Reference state: as analyzed.

allow the reaction atmosphere and temperature to be adjusted inde-
pendently. The fluidized bed ensures good heat and mass transfer and
homogeneous boundary conditions over time and space. In the above-
mentioned study, pyrolysis experiments were carried out in a pure N2
atmosphere in a temperature range of 573–973K. Pulverized samples
of the extracted biomass structural components with masses between
15 and 50mg were injected batch-wise from position 0⃝ via a double-
lock system into the reaction zone in the fluidized bed, marked as
position 1⃝ and shown with a blue line in Fig. 1. The fuel transport was
4

supported by a gas flush (also N2) from a syringe to prevent particles
from sticking to the feed tube walls, to ensure high particle heating
rates in the range of 104–105 K s−1, and to minimize the reaction time
within the feed tube under conditions other than those provided by the
fluidized bed. After reaching the bed, the particles remain there until
final conversion. All the gaseous reaction products (volatiles) that are
released mix with the fluidization gas and leave the reactor through
an exhaust pipe before passing the FTIR gas cell (red line). There, the
volume fractions 𝜑i(𝑡) of 22 different IR-active gas species are measured
simultaneously with a time resolution of 10Hz [39]. From these volume
fractions, the time-dependent total volatile release rate

d𝑦vol,exp(𝑡)
d𝑡

=
22
∑

𝑖=1

⎛

⎜

⎜

⎝

𝜌N2 ,n ⋅𝑀i

𝑀N2

⋅
�̇�N2 ,n

𝑚0
⋅

𝜑i(𝑡)

1 −
∑22

𝑗=1 𝜑j(𝑡)

⎞

⎟

⎟

⎠

(1)

is derived. The first term contains constants (N2 density at standard
conditions 𝜌N2 ,n, molar mass 𝑀 ,) that are identical for all experiments.
The variables given in the second term (volume flow �̇�N2 ,n, sample
mass 𝑚0) are parameters of the respective test series. They are adjusted
to the temperature and fuel reactivity but remain constant within an
individual experiment. The third term contains the time-dependent
volume fractions 𝜑(𝑡), measured individually for every single experi-
ment. It should be noted that the rates are observed in the gas cell.
They cannot be compared directly with the release rate at the particle,
instead, suitable models (see Section 3.4) must be used to reflect the
transport behavior between the reaction zone and the analyzer.

The working principle of the experimental setup for the determi-
nation of the kinetic data has been proven in advance both exper-
imentally [45] and theoretically [46], with special emphasis on the
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limitations resulting from the gas transport between the reaction zone
and the analyzer. All experimental reference data are available online
(10.18154/RWTH-2021-05544 [47]).

3. Modeling

In this study, three models of varying complexity are evaluated in
terms of the predictability of the volatile release during the pyrolysis
of extracted and separated biomass components. In order of increasing
complexity, they are the single first-order model (SFOR), the chemical
reaction engineering and chemical kinetics model (CRECK), and the
chemical percolation devolatilization model (CPD).

3.1. Single first-order model (SFOR)

The SFOR model is the least complex model. In this model, the solid
conversion rate
d𝑦s
d𝑡

= −𝑟(𝑇 ) ⋅
[

𝑦s(𝑡) − 𝑦s,∞(𝑇 )
]

. (2)

is proportional to the remaining fraction of reactive material – given
by the difference between the actual solid yield 𝑦s(𝑡) and the final solid
ield fraction 𝑦s,∞(𝑇 ) as a function of the temperature – and the global
haracteristic reaction rate 𝑟. Typically, the temperature dependency
f the reaction rate is taken into consideration using an Arrhenius
pproach

(𝑇 ) = 𝐴 ⋅ exp
(

−𝐸a
𝑅 ⋅ 𝑇

)

(3)

nvolving the pre-exponential factor 𝐴, the activation energy 𝐸a, and
niversal gas constant 𝑅. Due to its simplicity, the SFOR model cannot
ccount for the complex chemistry of biomass pyrolysis with different
ond types, multiple competing reactions, or intermediate species.
evertheless, its reasonable description of the process, combined with

ts low numerical cost, makes it a popular model for use in CFD
imulations of large-scale systems, such as combustion chambers [48–
1] or pyrolysis apparatuses [52], where the focus is on understanding
he overall process or designing and optimizing entire systems. In
tand-alone investigations of laboratory-scale pyrolysis experiments,
he model is mostly used as reference for more complex single-particle
yrolysis models. As the SFOR model is fuel-dependent, it always needs
o be calibrated with either experimental reference data or predictions
rom more sophisticated pyrolysis models. In this study, the SFOR
odel is calibrated against the experimentally obtained total volatile

elease rates (see Eq. (1)) from the fluidized bed reactor.

.2. Chemical reaction engineering and chemical kinetics model (CRECK)

The CRECK model (in this study the version CRECK-S-2003-Bio)
s a multi-step, branched kinetic mechanism first described by Ranzi
t al. [23] and updated by Debiagi et al. [24]. Biomass is assumed to
onsist of various reference components: not only cellulose but also
ifferent types of hemicellulose and lignin and some representatives
f extractives. The model includes chemisorbed intermediate lumped
pecies but produces clearly defined molecular species (permanent light
ases and condensable components) and residual char. Fig. 2 gives an
verview of the product species and reaction pathways of the three
ain components cellulose, hemicellulose (xylan), and lignin.

Each reaction is assumed to progress individually with a single first-
rder reaction characterized by the reaction rate 𝑟i. The corresponding

reaction rate is modeled with an Arrhenius approach (Eq. (3)). All
parameters (pre-exponential factor 𝐴i, activation energy 𝐸a,i and stoi-
hiometric factors) are listed in Debiagi et al. [24]. As the hemicellulose
sed in the experiments is xylan extracted from beech wood [39],
he model scheme only shows the reaction pathways of hardwood
ylan. In total, the reaction mechanism for cellulose includes 22 species
5

nd 8 reactions, the one for hemicellulose has 32 species and 13
reactions, and the one for lignin features 33 species and 16 reactions.
For comparison with the Bio-CPD model, all species are categorized
either as tar or light gas. Tar includes all hydrocarbons with either
more than four carbon atoms or the presence of an oxygen atom (not
including CO, CO2 and H2O).

3.3. Chemical percolation devolatilization model (CPD)

The chemical percolation devolatilization model (CPD) originally
developed for coal [6–8] – like the version adapted for biomass (Bio-
CPD) [31–34,53] – is a phenomenologically based pyrolysis model that
attempts to include the chemical-physical processes in the particle and
the molecular structure, respectively. The model assumes the solid to be
a network of aromatic macromolecules linked together by means of var-
ious chemical bonds. The bonds between the aromatic ring structures
have different levels of stability and are grouped into labile and stable
bridges. Labile bridges can be converted into stable bridges during the
pyrolysis process or break apart to form side chains.

Fig. 3 illustrates the reaction steps and names the corresponding
reaction rates in the population modeling for the bridge fractions 𝑋i
according to the following differential equations for labile bridges
d𝑋lab
d𝑡

= −𝑟lab ⋅𝑋lab, (4)

activated bridges
d𝑋act
d𝑡

= 𝑟lab ⋅𝑋lab − (𝑟stab + 𝑟SC) ⋅𝑋act , (5)

stable bridges
d𝑋stab
d𝑡

= 𝑟stab ⋅𝑋act (6)

and side chains
d𝑋SC
d𝑡

= 2 ⋅ 𝑟SC ⋅𝑋act − 𝑟LG ⋅𝑋SC. (7)

All reaction rates 𝑟i (the ratio of 𝑟SC to 𝑟stab is named 𝑟∗) are modeled
using an Arrhenius approach with activation energies distributed ac-
cording to a Gaussian profile characterized by the mean 𝜇𝐸a,i

and the
standard deviation 𝜎𝐸a,i

as a function of the reaction progress. Table 2
lists these parameters for all three biomass components in conjunction
with the initial population of intact (𝑋int,0) and stable (𝑋stab,0) bridges.
A previous study found that out of the four proposed sets of parameters
that are available in the literature [31,32,34,53] for each component,
the listed ones best describe the reaction behavior under the boundary
conditions of the fluidized bed reactor [55]. For lignin, the kinetic
parameter set originally derived for coal, as proposed by Grant et al.
[6] and the Genetti correlation [56], designed to estimate structural
parameters based on proximate and ultimate analysis data, are used in
combination as this showed the best performance in comparison with
the parameter sets found in the literature [55].

According to the percolation theory (PT), the bridge population is
used as an input to compute the mass fractions of finite fragments that
are separated from the infinite char matrix. The probability 𝑃𝑁cl

of
finding fragments with a particular number of aromatic clusters 𝑁cl is
determined by the fractions of intact 𝑋int and broken bridges 𝑋bro as
well as the number of possible configurations 𝑁conf :

𝑃𝑁cl
= 𝑁conf ⋅𝑋

𝑁int
int ⋅𝑋𝑁bro

bro . (8)

The number of possible configurations is calculated under the as-
sumption of a Bethe lattice (no ring structures) using the correlation
developed by Fisher and Essam [57]:

𝑁conf =
𝜎 + 1

𝑁int +𝑁bro
⋅
(

𝛤 (𝑁cl ⋅ 𝜎 + 2)
𝛤 (𝑁cl) ⋅ 𝛤 (𝑁bro + 1)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
⎛

⎜

⎜

𝑁int +𝑁bro
⎞

⎟

⎟

, (9)
⎝

𝑁int ⎠

http://dx.doi.org/10.18154/RWTH-2021-05544
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Fig. 2. Reaction pathways of the CRECK model.
Source: Based on Debiagi et al. [24].
o

Table 2
Structure and kinetic parameters of the Bio-CPD model evaluated as best fitting
parameter combinations for the fluidized bed reactor [55].

Cel.a Hem.b Lig.c

mcl [u] 162 162 380.7
mSC [u] 15.96 37 57.98
𝑋int,0 [−] 0.999 0.999 0.65
𝑋stab,0 [−] 0 0 0.15
𝜎 [−] 1.005 1 1.85

𝐴lab
[

s−1
]

2.14 ⋅ 1015 1 ⋅ 1018 2.6 ⋅ 1015

𝜇𝐸a,lab

[

kJmol−1
]

226.38 215.62 231.79
𝜎𝐸a,lab

[

kJmol−1
]

11.145 10.467 7.531
𝐴LG

[

s−1
]

1.19 ⋅ 108 5 ⋅ 1012 3.0 ⋅ 1015

𝜇𝐸a,LG

[

kJmol−1
]

111.97 159.93 288.70
𝜎𝐸a,LG

[

kJmol−1
]

3.680 20.934 33.890
𝐴𝑟∗ [−] 3.02 0.01 0.9
𝜇𝐸a,𝑟∗

[

kJmol−1
]

0 −20.52 0

a Data set derived by Vizzini et al. [32].
b Data set derived by Sheng and Azevedo [31].
c Kinetic parameters proposed by Grant et al. [6] for fossil fuels in combination with
the Genetti correlation [56].

where 𝑁int = 𝑁cl − 1 and 𝑁bro = 𝑁cl ⋅ (𝜎 − 1) + 2 represent the numbers
of intact and broken bridges in the corresponding fragment as a func-
tion of the coordination number 𝜎. The Eulerian gamma function 𝛤 is
required to represent the binomial coefficient even for a non-integer 𝑁 ,
resulting from averaging different lattices.

To calculate the mass fractions 𝑦f rag,𝑁cl
, it is necessary to consider
6

the molecular structure of the fragments, which is described by the
molecular weights (mi) of the building blocks. Eq. (10) gives the change
in mass fraction for a given fragment size class (consisting of 𝑁cl
clusters) caused by variations in the bridge population based on the
principles of percolation theory [54]:

d𝑦f rag,𝑁cl ,PT

d𝑡
= d

d𝑡

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑃𝑁cl

𝑁cl ⋅mcl
⋅

(

𝑁cl ⋅mar

⏟⏞⏟⏞⏟
mass of

aromatic rings

+𝑁int ⋅mlab ⋅
𝑋lab
𝑋int

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
mass of

intact bridges

+𝑁bro ⋅mSC ⋅

𝑋SC
2

𝑋bro
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

mass of
side chains

)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(10)

As depicted in Fig. 3, the finite fragments that are forecasted using
the percolation theory can undergo further reaction steps: reattachment
to the infinite char matrix (cross-linking) or evaporation and outgassing
from the particle. Eq. (11) controls the overall change rate of the
fragments:
d𝑦f rag,𝑁cl

d𝑡
⏟⏞⏞⏟⏞⏞⏟
verall change

=
d𝑦f rag,𝑁cl ,PT

d𝑡
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
source from PT

−
d𝑦f rag,𝑁cl ,cross

d𝑡
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

cross-linking

−
d𝑦f rag,𝑁cl ,ext

d𝑡
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
particle release

. (11)

The aggregate state of the fragments (liquid or gaseous) decides which
reaction path is possible for the respective fragment. While fragments
in the liquid phase are able to crosslink with the infinite char matrix,
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Fig. 3. Structure, reaction pathways and variable names of the Bio-CPD model [54,55].

only gaseous fragments can be released from the particle. Thus, a
vapor–liquid equilibrium (VLE), as developed by Fletcher et al. [8]
and based on the principles proposed by King [58], is used to split
the mass fractions of fragments 𝑦f rag,𝑁cl

into a liquid fraction 𝑦′frag,𝑁cl
nd a gaseous fraction 𝑦′′frag,𝑁cl

. The calculation of the VLE takes into

onsideration the effects of the temperature, pressure, and fragment
ize.

The rate of cross-linking is then formulated for the liquid fraction
sing Eq. (12) :
d𝑦f rag,𝑁cl ,cross

d𝑡
= 𝑟cross ⋅ 𝑦

′
frag,𝑁Cl

. (12)

The cross-linking reaction rate 𝑟cross is modeled with an Arrhenius
approach (𝐴cross = 3 ⋅ 1015 s−1, 𝐸a,cross = 272.14 kJmol−1 [8]). For sim-
licity, the reaction rate is assumed to be the same for all fragments,
lthough larger fragments have a higher crosslinking probability due to
ither their larger number of side chains or the fragments from different
iomass components may exhibit different functionalities.

In contrast to the liquid fractions, the gaseous fractions can leave
he particle. This is also modeled via a differential equation:
d𝑦f rag,𝑁cl ,ext

d𝑡
= 𝑟ext ⋅ 𝑦

′′
frag,𝑁cl

. (13)

Here, the rate of external release 𝑟ext controls how gaseous fragments
inside the particle are transported to the surrounding gas phase. In
principle, the quantity and rate of fragments released from the particle
depend on the internal particle structure (porosity) and the particle
size. The larger the particle, the larger the internal transport resistance
and the lower the tar yield [59]. This study only investigates pulverized
particles (see Table 1) with particle diameters 𝑑p < 200 μm. Taking the
rate 𝑟ext ≤ 105 s−1, internal transport processes are considered to be

uch faster than all chemical reaction steps. Once released from the
article, the fragments of all different size classes are cumulated and
reated as tar.

In addition to the released fragments, the CPD model also predicts a
ight gas fraction originating from the bridge stabilization reaction and
7

a

from side chains splitting off. The fraction of bridges already transferred
to light gas can be expressed using Eq. (14):

𝑋LG = 2 ⋅𝑋bro −𝑋SC
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

𝑋LG1

+2 ⋅
(

𝑋stab −𝑋stab,0
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑋LG2

. (14)

f the molecular weights of the cumulated released light gas are placed
n relation to the initial total molecular weight of the network, the
hange rate of the mass-based light gas fraction 𝑦LG,PT can be expressed:

d𝑦LG,PT
d𝑡

= d
d𝑡

⎡

⎢

⎢

⎢

⎣

cumulated light gas molecular weight
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

mSC ⋅
𝑋LG
2

⋅ (𝜎 + 1) ⋅
(

1 − 𝑦tar
)

mar +mSC ⋅ (𝜎 + 1) ⋅
(

1 −𝑋stab,0
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
initial total molecular weight

⎤

⎥

⎥

⎥

⎦

. (15)

he term
(

1 − 𝑦tar
)

represents the release of potential light gas sources
ue to the release of fragments designated as tar. The released frag-
ents still have the potential to be further decomposed in the gaseous
hase or to split off side chains. However, since the released fragments
ay be subject to temperature boundary conditions that are different

han the particle temperature, the light gas release due to these de-
omposition processes is not taken into account in the CPD model.
owever, this effect is handled by the tar cracking model. Further
n, light gas is assumed to always be in the gaseous phase and to be
eleased with the same release rate 𝑟ext as the fragments.

Keeping all model formulations in a purely differential notation
eans they can easily be coupled with the particle model and the

eactor model, respectively [54].

.4. Particle model and reactor model

All the pyrolysis models described above require a temperature as
n input parameter. For the primary pyrolysis models, the particle
emperature 𝑇p is required. This is derived from a particle model
oupled bidirectionally with the pyrolysis model. As the comparison
ith the experimental data determined from ex-situ measurements is

not possible at the particle level, the particle model and pyrolysis model
are further coupled bidirectionally with a gas-phase model that takes
into account transport phenomena and secondary gas-phase reactions.

Particle mass and energy balance
The particle temperature is calculated from an energy balance

around one single fuel particle approximating the boundary conditions
of the experimental setup. In Eq. (16), the differential equation for
the transient homogeneous particle temperature is given considering
convective heat transfer, radiation, and reaction enthalpies:

𝑚p ⋅ 𝑐p ⋅
d𝑇p
d𝑡

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
heat-up

= 𝛼 ⋅ 𝑆p ⋅
(

𝑇g − 𝑇p
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
convection

+
d𝑚p

d𝑡
⋅ 𝛥ℎreac

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
reaction

+ 𝜎 ⋅ 𝑆p ⋅
(

1
𝜀p

+ 1
𝜀FB

− 1
)−1

⋅
(

𝑇 4
FB − 𝑇 4

p

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
radiation

(16)

Here, 𝑚p is the particle mass of one single representative fuel
article derived from the mass balance (Eq. (17)) and 𝑐p is the particle’s
pecific heat capacity estimated using the correlation proposed by Mer-
ick [60]. The convective heat transfer coefficient 𝛼 is calculated based
n the Nusselt correlation provided by Gunn [61] for single spherical
articles intermixed in a fluidized bed. The particle surface area 𝑆p
s calculated for a representative spherical particle with a constant
iameter 𝑑p = 𝑑p,50 according to the microscopic particle size analysis
iven in Table 1. The gas temperature 𝑇g and the bed temperature 𝑇FB
re equal to the oven set temperature and are cross-checked with the
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thermocouple in the reaction zone (see Fig. 1). The radiative heat trans-
fer is modeled according to Lienhard I.V. and Lienhard V. [62] with an
apparent bed emissivity 𝜀FB = 0.7, a particle emissivity 𝜀p = 0.8 and
he Stefan–Boltzmann constant 𝜎. The reaction term with the specific
eaction enthalpy 𝛥ℎreac = 418.4 kJ kg−1 takes into account the heat sink
ue to the endothermic pyrolysis reaction. Apart from endothermic
eactions, also exothermic pyrolysis reactions (especially lignin) have
een reported [63]. However, the effect of reaction enthalpy on the
bserved volatile release rates is small [55].

As the particle mass influences the heat-up process, the transient
article mass 𝑚p is calculated with the mass balance

d𝑚p

d𝑡
= 𝑚p,0 ⋅

(

1 − 𝑦a,0
)

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
initial reaction mass 𝑚reac,0

⋅
d𝑦vol
d𝑡

. (17)

he mass change rate is derived from the initially available reactive
ass by excluding the ash mass and the volatile release rate d𝑦vol

d𝑡
extracted from one of the pyrolysis models introduced in Sections 3.1
to 3.3.

Gas transport
The particle model is coupled with a gas-phase model to take into

account the gas transport from the reaction zone in the fluidized bed
to the gas analysis in the FTIR gas cell, as well as secondary reactions
of the primary pyrolysis products. Thus, the released volatiles are
embedded as a source term in a 1D gas-phase model as described by
the following differential equation:
d𝑚i,j

d𝑡
= �̇�i(𝑡) ⋅

( 𝑚i−1,j

𝑚i−1,tot
−

𝑚i,j

𝑚i,tot

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
advective mass transfer

+ 𝑁p ⋅ 𝑚reac,0 ⋅
d𝑦j
d𝑡

⋅ Bi
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

source from particles

±
d𝑚i,j,GPR

d𝑡
⏟⏞⏞⏟⏞⏞⏟

gas-phase reaction

(18)

The advective term results from the mass transport due to the
fluidizing N2 gas flow and the gas flush during the particle injection
phase. Products and fluidization gas are assumed to be perfectly mixed
within each cell of the 1D model. Further on, isobar conditions are
assumed. The source term from the pyrolysis model is multiplied by
the number of particles 𝑁p and a Boolean function that controls the
release of volatile only in the fluidized bed cell.

Gas phase reactions
Depending on the pyrolysis model, different approaches are used

to model the effect of secondary gas-phase reactions. While the Bio-
CPD model only provides the lumped products light gas and tar as
output variables, the CRECK model predicts single species with known
molecular formulas. Thus, for simulations using the Bio-CPD model a
single first-order tar cracking approach is used that converts tar into
light gas depending on the local gas temperature 𝑇g,i given by the 1D
model:
d𝑚i,tar,GPR

d𝑡
= −𝐴tar,GPR ⋅ 𝑒

−
𝐸a,tar,GPR

𝑅⋅𝑇g,i ⋅ 𝑚i,tar = −
d𝑚i,LG,GPR

d𝑡
(19)

The parameter sets developed by Fagbemi et al. [64] (𝐴tar,GPR = 4.34 s−1

𝐸a,tar,GPR = 23.4 kJmol−1) and by Pielsticker and Kneer [55] (Cellu-
lose/Hemicellulose: 𝐴tar,GPR = 1.58 ⋅ 103 s−1, 𝐸a,tar,GPR = 38.06 kJmol−1,
Lignin: 𝐴tar,GPR = 6.71 s−1, 𝐸a,tar,GPR = 18.20 kJmol−1) are used to
analyze the effect of secondary tar cracking reactions.

For simulations using the CRECK model, a detailed gas-phase reac-
tion mechanism is used, with 339 species and 9781 reactions (CRECK-
G-2003 [22,65,66]) considered. Due to the higher complexity, a direct
coupling to the 1D model from Eq. (18) is not possible. Instead of
considering the effects of secondary gas-phase reactions and gas trans-
8

port simultaneously, two separate modeling approaches are used to t
cover these aspects. First, the detailed gas-phase reaction mechanism
is calculated for fixed conditions, and second, the gas transport is cal-
culated with a convolution function, which is based on the Aris-Taylor
dispersion theory as proposed by Abad et al. [67]. For simplification, all
reactions take place under a constant reaction temperature equal to the
bed temperature 𝑇FB of the corresponding experiment for a previously
fixed gas residence time. The gas residence time is taken from the
1D simulation, taking into consideration different temperatures and
volume flows in the FBR and ranges between 1.03 and 2.97 s. The
onvolution function also considers the effects of temperature and
olume flow on the transport behavior, but neglects any reactions on
he way from the reaction zone to the FTIR gas cell.

. Results

To achieve a comprehensive comparison of the predictivity and
erformance of the different models, aspects regarding the heating
ate are addressed by comparing TGA data (Section 4.1) and FBR
ata (Sections 4.2 to 4.4) while Sections 4.2 and 4.3 focus on the
ifferent model outputs: the volatile release rate and the final yield.
ection 4.4 highlights the relevance of secondary gas-phase reactions.
ll simulation results are provided as open-access data [68].

.1. Conversion during thermogravimetric analysis

Fig. 4 shows the fraction of remaining solid during the thermo-
ravimetric analysis for the three individually investigated biomass
omponents. The experimental reference values come from Pielsticker
t al. [39] and were recorded with a constant heating rate of 5K min−1.
he different-colored lines represent the model predictions using the
FOR, CRECK, and Bio-CPD models.

Overall, the models can predict the decomposition of cellulose
etter than that of the compared other fuels. The main reason is
he comparatively simple molecular structure of cellulose, which is
haracterized by high linearity and a limited number of different bond
ypes. Nevertheless, non-negligible deviations can be found between
he model predictions and the experimental reference data. One aspect
s that all models predict a slightly later onset of the reaction (shift in
he moment that the yield drops as the temperature rises) and a slightly
ower reactivity (lower gradient) compared to the experimental data.
he CRECK model makes the most accurate prediction while that of
he Bio-CPD model is least accurate. The main reason might be that
he kinetics of the CRECK model are calibrated against experimental
ata from TG experiments [23,69], while the Bio-CPD parameters used
or cellulose are derived from experiments at high heating rates in

fluidized bed reactor [32]. The tendency for the reaction to start
lightly later is already seen in the study by Ranzi et al. [23].

The models’ predictions also differ in terms of the final remain-
ng char yield. The Bio-CPD model already reaches full conversion
t approximately 700K and thus does not leave any solid residue.
n contrast, the amounts of final residues left by the SFOR model
𝑦s,∞ = 6.8%) and the CRECK model (𝑦s,∞ = 8.7%) are slightly
bove the final char yield obtained experimentally (𝑦s,∞ = 3.6%).
he complete decomposition of cellulose in the Bio-CPD model results
rom the network structure that is assumed to result from the high
inearity (𝜎 = 1.005), low number of initially available stable char
ridges (𝑋stab,0 = 0) and high proportion of bridge-breaking reactions
𝐴𝑟∗ = 3.02) compared to stabilization reactions. Cross-linking reactions
annot compensate for this effect. The same effect is also found in the
inal yields of the fluidized bed experiments in Fig. 6, as discussed later.

Similar assumptions about the network structure of hemicellulose
𝜎 = 1, 𝑋stab,0 = 0) compared to cellulose lead to a similarly strong
verestimation of pyrolytic decomposition by the Bio-CPD model. This
s compensated for to some extent by the temperature-dependent re-
ction rate ratio 𝑟∗, which favors a stabilization reaction at higher
emperatures and results in a marginal final yield of 2.0%. Similar
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Fig. 4. Experimentally obtained solid mass fraction as a function of temperature (fixed
heating rate 5K min−1) [39] in comparison with predictions from SFOR, CRECK, and
Bio-CPD models for the three extracted components cellulose, hemicellulose, and lignin.
The gray-shaded area marks the deviation obtained between repeated runs.

observations of the Bio-CPD model overestimating the volatile yield
have also been made by Xing et al. [38]. Although the final yield
predicted by the SFOR model (𝑦s,∞ = 21.6%) is comparatively higher
than the experimental one (𝑦s,∞ ≈ 11%), it can reproduce the reaction
progress within the scope of its possibilities very well over a wide
9

temperature range. The offset mainly results from a second reaction
step above 1000K, which cannot be captured by the simplified model
structure of the SFOR model with only one global reaction rate. The
CRECK model is the only model that can capture the entire reaction
progress including the second reaction step above 1000K. Detailed
analysis of the CRECK model reveals that this release mainly results
from the metaplastically trapped species COH2 (see Fig. 2), which is
released from the particle as CO, H2 and H2O at temperatures above
1000K.

All models predict a slightly earlier onset of the reaction for hemi-
cellulose compared to cellulose and lignin. One potential reason for
this might be that some model parameters are calibrated based on
biomasses where all three components are coexistent. Thus, some ef-
fects might be compensated for by another component. There may also
be small differences between the actual sample temperature and the
measured temperature.

The CRECK and Bio-CPD models’ predictions for lignin are in a sim-
ilar range of accuracy compared to the experimental data. By contrast,
the SFOR model shows a significantly lower decomposition, especially
at higher temperatures. The molecular structure of lignin with a lot
of different bond types is too complex to be modeled with only one
characteristic reaction rate. The procedure to calibrate the SFOR model
for lignin to the experimentally obtained total volatile release rates
from the fluidized bed reactor is mainly driven by the fast reactions,
as they are responsible for the peak in the release rate. Slow reactions
only have a minor impact on the derivative and are thus taken into
account to a lower extent in the calibration process [39].

In summary for the TGA experiments, the CRECK model predictions
are closest to the experimental results. The reason for this is that
it is calibrated against TGA experimental data gained with extracted
and separated basic biomass components. The SFOR model shows
satisfying results for the decomposition of solids with comparatively
simple molecular structures such as cellulose or hemicellulose, where
the amount of different chemical reactions is limited and the decom-
position is characterized by a distinct peak in the DTG curve. Once the
molecular structure gets more complex and the diversity of bond types
increases, the prediction by the SFOR model deviates considerably. The
Bio-CPD model is mainly not well suited describing the decomposition
in the case of pyrolysis with slow heating rates. As this model was
originally developed for flash pyrolysis with high heating rates and
temperatures, the reaction pathways for a slow heat-up (especially
stabilization reactions and cross-linking) might not be well calibrated.
Of all the fuels, the Bio-CPD model shows the lowest deviation from the
experiments for lignin. As the molecular structure of lignin is closest
to that of fossil fuels, this indicates that improvements may have to be
undertaken for molecules with a low degree of connectivity.

4.2. Total volatile release rates in the fluidized bed reactor

Fig. 5 shows the total volatile release rate d𝑦vol
d𝑡 obtained experi-

mentally from concentration measurements in the FTIR gas cell and
subsequent evaluation with Eq. (1) in comparison to predictions from
the SFOR, CRECK, and Bio-CPD models. Since the experimental data
are only available for the analyzed location, gas transport effects from
the reaction zone to the gas cell have been taken into account for all
model predictions. As only the total volatile release rate is compared
here, it is not necessary either to differentiate between into individual
product classes or to take into account secondary gas-phase reactions
in the models. While the CRECK and Bio-CPD models do not use any
of the experimental data from the FBR for calibration and are thus
entirely predictive, the SFOR model uses the total volatile release rate
as calibration data and can thus only be regarded as descriptive.

The most obvious finding is that the CRECK model tends to over-
estimate the total volatile release rate. In particular, the release rates
for lignin are overestimated at all three operating temperatures. Those
for cellulose show good agreement at 973K but are overpredicted at
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Fig. 5. Experimentally obtained volatile release rates in the FTIR gas cell at different fluidized bed reactor temperatures [39] in comparison with predictions from SFOR, CRECK,
and Bio-CPD model for the three biomass components cellulose, hemicellulose, and lignin. The gray-shaded area marks the double standard deviation obtained during multiple
repetitions of single batch experiments.
lower temperatures. The release rates for hemicellulose are only over-
predicted in the 673K case. This is unlikely to be due to intraparticle
transport processes not considered in the model (assumption of Biot
number Bi ≪ 1) or to the limitations of heat transfer compared to
the particles’ required heat of reaction (pyrolysis number Py ≫ 1),
since the simulated reaction time is significantly larger than the heating
time. As the final yields (see Fig. 6) are captured quite well with the
CRECK model, these results indicate that the kinetic parameters of key
reactions should be recalibrated to improve the rate predictions. It
should be noted that a common approach with two competing reactions
to cover different reaction rates in the high- or low-temperature regimes
will not achieve the desired effect of decreasing reactivity. Decreasing
10
the pre-exponential factor of key lignin reactions and adjusting the
activation energies of key hemicellulose and cellulose reactions would
make it possible to capture the measured release rates in all cases.
However, while directly calibrating the kinetic parameters would de-
crease reactivity in the fluidized bed, the good agreements found in
the TGA experiments would be lost. To improve the comprehensive
predictions, a more intricate modeling solution would require a com-
peting high-temperature reaction path, including an initial step that
is faster than the low-temperature mechanism, forming a solid inter-
mediate, followed by slower decomposition kinetics that can predict
the experiments in the fluidized bed. Since the focus of this paper is
on comparing the models, not on improving them, no adjustment is
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performed. For that step, experimental data from other reactors in the
high-temperature range (e.g., drop tube or wire mesh reactors) must
also be taken into account.

In contrast, the total volatile release rate can be predicted well
with the Bio-CPD model. Good agreement with experimental data is
achieved using the proposed parameter sets from Table 2, especially
for cellulose and hemicellulose. It should be noted that these sets have
been evaluated in a previous study [55] and were found to be the
best combination of four available parameter sets [31,32,34,53] in
the literature for each biomass component. For other parameter sets,
similar or even higher deviations have been observed [55]. Notably,
the parameter sets for lignin all overpredicted the release rates in a
similar manner to the CRECK model, meaning that the fossil fuel-
derived combination of structural and kinetic parameters [6,56] was
identified as leading to the best model performance. One presumed
reason for the good predictive accuracy of the Bio-CPD model is the
use of experimental data from setups with high particle heating rates,
so that flash pyrolysis conditions are achieved. The parameter set
by Vizzini et al. [32] that was used for cellulose was calibrated against
pure cellulose experiments performed by Scott et al. [25] in a fluidized
bed reactor with particle heating rates in the range of 104–105 K s−1.

he set developed by Sheng and Azevedo [31] for hemicellulose was
erived based on experimental data from a wire mesh reactor achieving
article heating rates of 103 K s−1. Nevertheless, the use of biomass
n which all three components are present at once might affect the
etermination of correct kinetic parameters. This fact might also be one
f the reasons why the prediction of lignin conversion seems to be the
ost challenging problem as the contribution of lignin is tendentially

he lowest compared to the other two fractions. Additionally, lignin
hows the highest variety of structures and functional groups, making
he origin of the extracted and separated lignin samples an influencing
actor. Consequently, modeling and experimental investigation of lignin
yrolysis should be the focus of future research.

In general, the SFOR model is well suited describing the pyrolysis
ehavior in the fluidized bed reactor in terms of the total volatile
elease rates. A slightly better performance is obtained at higher tem-
eratures and shorter reaction times and with simpler molecules (cel-
ulose and hemicellulose). Thus, using the SFOR model to describe the
yrolysis process in CFD simulations with multiple other phenomena
hat have to be considered is an acceptable approach even bearing in
ind the overall numerical effort in mind. Nevertheless, the user must

e aware that certain characteristics of the pyrolysis process cannot
e mapped. This can be seen, for example, in the final yields shown
n Fig. 6. The SFOR model for lignin can approximately describe the
elease rate but underestimates the final yield since the contribution of
ery slow reactions in the SFOR model cannot be taken into account
ith the chosen calibration strategy.

.3. Volatile yields in the fluidized bed reactor

Fig. 6 shows the final volatile yield split into a light gas and
tar fraction, wherever this differentiation is possible. The yield is

btained for an integration time of five times the time interval shown
n Fig. 5, corresponding to 𝑡 = 375 s for 𝑇FB = 673K, 𝑡 = 60 s for
FB = 823K, and 𝑡 = 40 s for 𝑇FB = 973K. The predictions from CRECK
nd Bio-CPD models that are shown here only reflect the output of
rimary pyrolysis reactions and do not include any effects of secondary
as-phase reactions. This topic will be discussed in Section 4.4.

Besides the volatiles release rates d𝑦vol
d𝑡 , the SFOR model is also

able to predict the total volatile yield 𝑦vol. This is unsurprising as the
function for the final solid yield as a function of temperature 𝑦s,∞(𝑇 )
compare Eq. (2)) is calibrated against the same experimental data.
he deviation for lignin results from the fact that the SFOR model is
itted against the volatile release rate and thus is most sensitive to
ast pyrolysis reactions. The products of the multiple slow reactions
11

aking place in the lignin molecule are not taken into account in the
Fig. 6. Experimentally obtained total volatile yield separated into tar and light gas
fractions in comparison with predictions from SFOR, CRECK, and Bio-CPD models at
three different bed temperatures, not taking gas phase reactions into consideration.
For the Bio-CPD model, predictions with different structure/kinetic parameter sets are
given: (1) Sheng and Azevedo [31], (2) Vizzini et al. [32], (3) Lewis and Fletcher [34],
(4) Wan et al. [53], and (5) Grant et al. [6] + Genetti et al. [56] (only for lignin).

fitting process. Different solutions to address this issue are discussed

by Pielsticker et al. [39].
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Across all the biomass components and models, the CRECK model
shows the closest prediction of temperature- and component-dependent
total volatile yield compared to the experiments. Especially for the
two higher temperatures 𝑇FB = 823K and 𝑇FB = 973K, the model
predictions come very close to the experimental results (deviating
by less than 7%). Only at the lower temperature 𝑇FB = 673K is
the yield overestimated by 11 to 48% compared to the experimental
results. Overall, the temperature sensitivity is less pronounced in the
CRECK model than in the Bio-CPD model, which is in contrast to the
observations of Rabaçal et al. [35].

The blue bars show the final yield predictions of the Bio-CPD
model using all kinetic/structure parameter sets tested in the previous
study [55], where the best-describing set was found via the compar-
ison of the total volatile release rates. The shown rates from Fig. 5
correspond to parameter set (2) for cellulose, (1) for hemicellulose,
and (5) for lignin in Fig. 6. Although the Bio-CPD model with these
specific parameter sets makes the closest predictions of the volatile
release rate (see Fig. 5) to the experiments, its predictions of the final
volatile yield are more off than those of the other models. For cellulose
and lignin, at least the temperature trend is shown correctly with
the parameter sets (2) for cellulose and (5) for lignin, whereas the
yield for hemicellulose decreases again for higher temperatures using
the parameter set (2). However, this trend is also seen with all other
parameter sets and not only for hemicellulose but also for cellulose
and lignin, indicating a general improvement potential compared to
the fossil-based parameter set (5), which captures the trend correctly.
The wide range of predicted yields with the different parameter sets
also presumably shows the strong dependence on the calibration data
selected in each case.

Although the total yield of volatiles, or at least the trend, correlates
well with the experimental results in many cases, the yield of tar is
strongly overpredicted by all primary pyrolysis models. Consequently,
secondary reactions in the gas phase must be present that convert parts
of the tar into light gas. Thereby, the primary light gas yields given
by the CRECK model are always higher than those from the Bio-CPD
model.

4.4. Relevance of secondary reactions in the fluidized bed reactor

To evaluate the importance of secondary gas-phase reactions in
the fluidized bed reactor, predictions employing and not employing
different gas-phase reaction models are compared with one other and
with the experimental data. Depending on the output of the primary
pyrolysis model, the complexity of the usable gas-phase reaction models
varies. While the CRECK model provides single gas species with known
chemical formula and enables the use of the detailed gas-phase reaction
mechanism CRECK-G-2003, the Bio-CPD model only gives the lumped
species tar and light gas as output variables, meaning that only sim-
plified tar cracking models can be used. As the SFOR model does not
differentiate between any categories, it is not considered for secondary
gas-phase reactions. The distribution of permanent light gases and
condensable tar species is shown in Fig. 7.

When the CRECK primary pyrolysis model is combined with the
CRECK-G-2003 secondary gas-phase reaction kinetics, almost no effect
of secondary reactions is seen for the temperatures 673 and 823K. Only
at the bed temperature 𝑇FB = 973K does any significant decomposition
of tar into light gases take place, and even then, it is far too low to reach
the experimental results for all three fuels. A similar observation was
already made for experiments using Columbian coal as a fuel [70]. To
gain a deeper insight into the model output, the hatched areas show the
tar fraction subdivided into different molecular sizes. The size classes
are chosen based on the output of the Bio-CPD model in such a way
that the fragment size consisting of 𝑁cl = 1 clusters represents the
reference unit, marked with the cross-hatched area. The hatched area
12

above indicates smaller tar molecules, while the area below represents
larger ones. For cellulose, this categorization is identical of using the
monomer unit C6H10O5 as a reference value.

With increasing temperature, for cellulose, the fraction of C6H10O5
decreases, while the fraction of C6H10O5 fragments (area with smaller
molecular size) and primary light gas increases. While the CRECK
model allows the monomer units to decompose further into small
molecules, the Bio-CPD model requires the smallest tar fraction to
be equal to the monomer unit and also does not allow the smallest
fragment size to transition to the light gas fraction in the Bio-CPD model
inside the particle. Consequently, the fraction of the C6H10O5 fragment
size increases as the temperature rises and decomposition progresses,
while the light gas fraction stays comparably low. However, the
predicted tars from the Bio-CPD include a large fraction of molecules
with high molecular weight, which is not present in the predicted tars
from the CRECK model. As all the fragments released to the gas phase
are lumped as tar, it is impossible to further differentiate the different
fragment sizes in the case of simulations with an active tar cracking
model.

In the Bio-CPD model, the primary pyrolysis products from cellulose
have the highest tar ratio of all the biomass components (95.8–97.8%).
This comes on the one hand from the high linearity of the cellulose
molecule, characterized by the low coordination number 𝜎, and on the
other hand from the low molecular weight mSC of the side chains (16 u
compared to 37 u for xylan and 58 u for lignin). While for cellulose and
hemicellulose fragments with 𝑁cl > 1 are present in significant amounts
in the tar, the high molecular weight for lignin fragments hinders the
transition from the liquid to the gaseous phase and thus the release
from the particle.

Using the tar-cracking parameter set proposed by Fagbemi et al.
[64], the tar yield is reduced by approximately 8 to 11%, but the
temperature and residence time are too low to achieve a decomposition
fraction similar to the experimental results. To achieve a light gas
fraction of more than 80% in the volatiles, kinetic parameters as pro-
posed by Pielsticker and Kneer [55] are required. While the activation
energies in the two sets are almost identical, the pre-exponential factor
is more than two orders of magnitude higher. The faster reaction may
be provoked by the contact between the gases and hot solid particles
in the bed [64,71].

Another reason might be the contribution of minerals included in
the solid samples. Those minerals are either already present in the
natural biomass or stem from the extraction process to gain the struc-
tural components [4]. The minerals have a catalytic effect, which may
influence the reaction rates and the product spectrum depending on
the ion concentration. Within the present study, only the CRECK model
accounts for those catalytic effects. Thereby the activation energies
of key reactions are adjusted based on the ash content (non-mineral
specific). Low ash contents will higher the activation energy, while
larger ones will lower it, whereby a saturation of the effect is assumed
for ash contents higher than 4–5% [2]. For the Bio-CPD model, no
implementation is considered in this study. However, Hameed et al.
[19] recently tried to consider this effect for cellulose by changing the
reaction kinetics of the bridge breaking (𝐴lab, 𝜇𝐸a,lab

, and 𝜎𝐸a,lab
) and

light gas formation (𝐴LG, 𝜇𝐸a,LG
, and 𝜎𝐸a,LG

) depending on the loading
of NaCl. However, the parameters have been obtained individually for
each doping condition and no direct correlation with the NaCl mass
fraction has been derived. Considering the catalytic effect of mineral
components in the model leads to a decrease of tar by approximately
20wt%, while light gas and char increase ≈10wt% each. Within the
study conducted by Ranzi et al. [72], the tar reduction during pri-
mary pyrolysis is approximately 10wt%. Both studies highlight that
the catalytic effect might be significant. However, the lack of detailed
information on the mineral composition in the present samples and
the current development status of the models prevent a more detailed
consideration in this study but show clear development potential for

further investigations.
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Fig. 7. Comparison of experimental light gas and tar yields obtained from pyrolysis in the FBR at three bed temperatures with model predictions using different secondary
gas-phase reaction models (CRECK-G-2003 [22,65,66], first-order tar cracking model with either the parameter set from (1) Fagbemi [64] or (2) Pielsticker [55]). The hatched
areas characterize the subdivision of the tar fraction into different molecular sizes, whereby the smallest fragment of the Bio-CPD model (𝑁cl = 1) serves as the reference. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
5. Conclusions

In the present study, a comprehensive analysis was undertaken
regarding how three different pyrolysis models – namely the single first-
order (SFOR), the chemical reaction engineering and chemical kinetics
(CRECK), and the bio-based chemical percolation devolatilization (Bio-
CPD) models – can predict the pyrolysis process of the extracted and
13
separately pyrolyzed biomass components cellulose, hemicellulose (xy-
lan) and lignin. Experimental reference data from thermogravimetric
analysis and a small-scale fluidized bed reactor were used to evaluate
the model performance under different thermal boundary conditions
(low and high particle heating rate) regarding various output parame-
ters, including the total volatile release rate, the total volatile yield, and
the distribution of permanent light gases and condensable tar species.
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s:
One limiting factor for the SFOR model is that it cannot be con-
sidered fully predictive but always requires experimental data for cal-
ibration. In this study, the total volatile release rates in the FBR were
chosen. In terms of its descriptive character, the SFOR model provides a
better description when the molecule structure is simple (e.g., cellulose
or hemicellulose) and the reactions mainly take place in parallel (fast
heating in the FBR). Once the heating rate is lower and reactions
become more sequential or the molecule structure becomes more com-
plex (e.g., in lignin), the SFOR model is not capable of capturing the
decomposition process correctly.

In contrast, the CRECK model predictions are closest to the exper-
imental results regarding the decomposition in the TGA experiments,
as the model includes several successive and parallel reactions whose
reaction rates were determined using TGA experiments. Equally, the
CRECK model was able to predict the total volatile yield under high
heating rates at different bed temperatures for the three biomass com-
ponents. However, the CRECK model tends to overestimate the release
rate under flash pyrolysis conditions. Some reaction rates will most
likely have to be recalibrated to suit experiments with high heating
rates.

The peak of the total volatile release rate in the experiments is
calculated with the smallest deviation from the Bio-CPD model. Its
prediction of the total amount of volatiles released under flash pyrolysis
conditions in the FBR also showed acceptable results in most cases. Po-
tential for improvement was identified for the temperature dependency
of the stabilization/side chain formation reaction for hemicellulose and,
in general, for the lignin parameter set. In contrast, the Bio-CPD model
was not able to correctly reflect the decomposition behavior in the
TGA. This was mainly traced back to the fact that the CPD model, with
its vapor–liquid equilibrium, originally stems from high-temperature
flash pyrolysis performed with fossil fuels. These fuels have a molecular
structure that consists of interconnected aromatic rings and thus differs
strongly from the molecular structure of the biomass components,
especially the polymers cellulose and hemicellulose, where the highest
deviations are found.

The combination of primary pyrolysis models with secondary gas-
phase reaction models allows a better comparison with the experimen-
tal results, obtained ex situ after a certain gas residence time in the bed
and the pipe system. Neither the detailed CRECK-G-2003 mechanism
nor the simplified tar cracking mechanism developed by Fagbemi et al.
[64] predict the strong decomposition seen in the experimental results.
It is only when the tar cracking reactivity is increased by two orders
of magnitude that good accordance is found between the Bio-CPD
prediction and experimental results, which may be explained by the hot
surface of the bed material. The need for these high tar decomposition
rates also results from the fact that the structure of the Bio-CPD model
does not allow for decomposition extending further than the monomer
unit, and thus only allows very small primary light gas contents com-
pared to the CRECK model. Likewise, the catalytic effect of mineral
components can lead to a significant reduction in the tar fraction and
an increase in the light gas yield, requiring further investigation.
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