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A B S T R A C T

The oxygen reduction reaction (ORR), presently known as the key bottleneck in the mass-scale implementation of 
fuel cells (FCs), typically relies on the exploitation of scarce and expensive platinum group metals (PGMs). 
Meanwhile, as a substitute for PGMs, transition metal-nitrogen carbons (TM-Nx-C) are proving to be reliable 
electrocatalysts (ECs) in which atomically dispersed TMs coordinated with nitrogen are integrated into the 
carbon matrix. Such TM-Nx coordination already exists in metal-porphyrins making them suitable precursors for 
TM-Nx-C. Adler-Longo method is the standard recipe for meso‑tetraphenyl porphyrin realizes ca. 20 % yield 
whereas the residual polypyrromethenes, structurally resembling open porphyrin rings, are often wasted. Herein, 
the possibility of upcycling waste polypyrromethenes into efficient TM-Nx-C for ORR is demonstrated. A 
comprehensive structural and morphological characterization is provided, and the electrocatalytic activity to
wards ORR in an alkaline environment is discussed using Fe and Mn as TMs. The EC synthesized from pure 
porphyrin precursor at 600 ◦C (FeTPP_600) had the best performance recording 0.972 and 0.852 V vs RHE for 
Eonset and E1/2. Mixing porphyrins with their synthetic waste (ratio of 1:4) and pyrolyzing it at 800 ◦C (FeTPP/ 
Waste(1:4)_800) still exhibits appreciable kinetics with similar results (0.977 and 0.853 V vs RHE for Eonset and 
E1/2).

1. Introduction

An efficient way to transform the chemical energy of hydrogen into 
electricity is through electrochemical devices named fuel cells (FCs). [1] 
In hydrogen fuel cells, hydrogen is oxidized at the anode, and oxygen is 
reduced at the cathode. These red-ox reactions generate a flow of elec
trons that is harvested to generate electricity. Low-temperature (low-T) 
FCs are more promising for portable and automotive applications due to 
the lower time and energy required for start-up and shutdown. [2] The 
low-T FC with the higher technology readiness level (TRL) is the proton 
exchange membrane (PEM) FC. PEM-FC relies on anode and cathode 
electrodes of a platinum-containing catalytic layer supported over car
bon (Pt/C) as the electrocatalyst. [3,4] These electrocatalysts are 
necessary for considerably enhancing the anodic and cathodic 

performance, despite substantially increasing the overall cost and hin
dering the widespread application of this technology. [5] From the 
technical point of view, the oxygen reduction reaction (ORR) is the 
limiting reaction and requires a large loading of platinum to overcome 
the large overpotentials and improve kinetics. [6–8] Indeed, one of the 
main focuses of research related to FCs is nowadays centered on ORR to 
enhance the electrocatalytic activity while reducing the quantity of 
platinum used and in the future, if possible, totally replacing it. [5,6,
9–11]

Interestingly, in the past years, due to the development of anion 
exchange membranes (AEMs), great attention has been captured by fuel 
cells operating in an alkaline environment, the so-called AEM-FC. 
[12–16] The ORR in alkaline media can occur (i) through a direct 4e- 

transfer mechanism on a single active site forming hydroxides OH-, (ii) 
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through a direct 2e- transfer mechanism on a single site forming OOH-, 
or (iii) through a more complex 2 × 2e- transfer mechanism where O2 is 
transformed into intermediates first (OOH-) and then into the final 
product (OH-). The last reaction can occur over the same active site with 
the desorption of the intermediate of two different active sites. [17–19]

The operation in an alkaline environment allows substituting Pt/C 
ORR electrocatalysts with platinum group metal-free (PGM-free) mate
rials based on earth-abundant transition metals (TMs) including Fe, Co, 
Ni, Mn, Cu, etc. [20–23] It has been shown that atomically dispersed 
TMs coordinated with nitrogen in the following form TM-Nx (x = 2,3,4) 
integrated into a conductive carbon backbone are extremely active to
wards the ORR in alkaline environment [24,25] and in certain cases, 
they outperform Pt/C. [26] Particularly, Fe-Nx-C can outperform the 
other TM-based electrocatalysts. [27–29] Moreover, atomically 
dispersed Fe-Nx are the desired active sites responsible for the direct 4e- 

or the 2 × 2e- transfer mechanism. TMs in other forms such as metallic 
nanoparticles, oxides, carbides, etc. are not desired since they lead to an 
undesired 2e- transfer mechanism. [30]

In the literature, different synthetic routes are reported for fabri
cating Fe-Nx-C electrocatalysts. [31] The easiest, least sophisticated, 
least expensive, and easily scalable synthetic route to develop Fe-based 
ORR electrocatalysts consists of integrating aza-macrocyclic precursors 
containing the metal of interest into a carbon matrix. [32,33] These 
organic precursors can be purchased if they are available commercially 
or they can be synthesized from scratch. Afterward, the aza-macrocyclic 
complexes are mixed with a high surface area, electrically conductive, 
carbonaceous matrix, and then the mixture is subjected to controlled 
pyrolysis to chemically embed them into the carbon support. Several 
examples following this synthetic route are presented in literature 
exploiting as precursors porphyrins, phthalocyanines, corroles, tetraaza 
[14] annulenes, etc. with successful ORR electrocatalytic activity and 
stability. [34–46,42,47,48] Particularly, the evolution during controlled 
pyrolysis of the active sites of Fe-phthalocyanine supported over high 
surface area carbon was recently studied. [49]

Further approaches for fabricating electrocatalysts are based on 
metal-containing covalent organic frameworks (COFs) or metal-organic 
frameworks (MOFs). [50–54] COFs and MOFs are porous, 
three-dimensional, and crystalline networks that contain the metal of 
interest in their structure, bonded through organic linkers. Generally, 
after their synthesis, for electrochemical purposes, they are subject to 
pyrolysis to carbonize the structure and enhance the electrical conduc
tivity of the materials while maintaining a highly porous 
three-dimensional structure. COFs and MOFs have shown very high 
electrocatalytic activity towards ORR with low intermediate formed and 
almost complete conversion following a direct 4e- transfer mechanism. 
[55–57] Among these ORR materials, interesting results were obtained 
from synthesizing high surface area aerogel that possesses high active 
site density (SD), high turnover frequency number (TOF), and promising 
electrocatalytic activity. [58,59] The major drawback to these ap
proaches is the high synthetic effort and, consequently, the high costs 
associated with EC fabrication.

This work focuses on the first method described above where an 
azamacrocycle, in this specific case a TM-containing porphyrin, was 
mixed with carbon and subject to controlled pyrolysis. Notably, mes
o‑tetraphenyl porphyrins (TPPs) complexing iron(II/III) cations were 
selected as Fe-containing precursors that were integrated into the car
bon matrix through the pyrolytic process. Porphyrins were synthesized 
from scratch by exploiting the Adler-Longo method, yielding 20 % of the 
desired product. [60] Roughly 80 % of the original mixture is then 
considered a waste and is discarded. The poor yield of this synthetic 
method leads to a high cost of the porphyrins. However, the wastes are 
complex mixtures containing polypyrromethenes, nitrogen-rich organic 
compounds that can still chelate metal cations. Hence, it was decided to 
employ them as valuable precursors to synthesize electrocatalysts.

Importantly, in this work, purified Fe-TPP, unpurified mixture (Fe- 
TPP/waste) and Fe-waste were studied as precursors to synthesize ORR 

Fe-Nx type electrocatalysts. In previous works, the addition of a second 
transition metal to the Fe, especially Mn, in a bimetallic fashion has 
shown promising results for ORR in an alkaline environment. [39,61] 
Therefore, Mn-TPP was also synthesized and mixed with Fe-TPP.

The electrocatalysts synthesized were fully characterized from the 
microscopic and spectroscopic point of view. Moreover, the electro
catalysts were screened from the electrocatalytic perspective to identify 
their activity. This work shows the possibility of upgrading a waste 
synthetic process into a valuable and active ORR electrocatalyst.

2. Materials and method

2.1. Organic synthesis

Meso-tetraphenyl porphyrin (meso‑TTP) (sample 1; Fig. 1) was 
prepared according to the well-known Adler-Longo method. [60] 
Briefly, freshly distilled pyrrole (3.29 mL, 47.7 mmol, Sigma-Aldrich) 
was rapidly added into a refluxing solution of benzaldehyde (4.84 mL, 
47.7 mmol, Sigma-Aldrich) in propionic acid (120 mL, Thermo Fisher) 
and refluxed in air for 2 h. Afterward, the refluxed solution was cooled to 
room temperature, and the purple crystalline solid formed (a) was 
filtered, washed 3 × 10 mL with cold methanol, and oven-dried over
night (1.42 g, 2.31 mmol, 19.4 % yield). The black filtrate was instead 
dried by rotary evaporation and then by high vacuum to afford a black 
sticky powder named “waste” (sample 2; Fig. 1) (5.90 g).

Later on, the two samples were metallated separately according to 
the following procedures.

a). Fe-TPP (sample 3, Fig. 2): tetraphenyl porphyrin (sample 1) (100 
mg, 0.163 mmol) and iron(II) acetate (28.3 mg, 0.163 mmol, BLD 
Pharm) were dissolved into 3 mL of anhydrous dimethylformamide 
(DMF, Acros Organics) under nitrogen atmosphere. The resulting 
solution was heated at 100 ◦C for 24 h and the conversion was fol
lowed by thin layer chromatography (TLC) with n-Hept/AcOEt 2:1 as 
eluent. After cooling to room temperature, the mixture was poured 
into 15 mL of deionized water. The purple precipitate was filtered, 
washed three times with 5 mL of water, and oven-dried under vac
uum overnight (98 mg, 0.147 mmol, quantitative).
b). Fe-Waste (sample 4, Fig. 2): the “waste” (sample 2) (500 mg), 
derived from the synthesis of sample 1 (TPP), and iron(II) acetate 
(141.5 mg, BLD Pharm) were dissolved into 15 mL of anhydrous 
DMF under nitrogen atmosphere. The resulting solution was heated 
at 100 ◦C for 24 h. After cooling to room temperature, the mixture 
was poured into 50 mL of deionized water and extracted with 
dichloromethane (DCM) (3 × 50 mL). The organic phase was dried 
with sodium sulfate anhydrous, and the solvent was removed by 
rotary evaporation to afford a black powder oven-dried under vac
uum overnight (490 mg).
c). Mn-TPP (sample 5, Fig. 2): 96 mg of the product was obtained 
following the same procedure as sample 3 using tetraphenyl 
porphyrin (sample 1) (100 mg, 0.163 mmol) and manganese(II) ac
etate tetrahydrate (39.9 mg, 0.163 mmol, Sigma-Aldrich) as 
reagents.

2.2. Electrocatalysts (EC) fabrication

The suitable amount of metal-nitrogen-containing precursor (sam
ples 3, 4, 5 or their proper mix) was manually blended with the 
appropriate quantity of Ketjenblack EC-600 JD (KJB, Nanografi) to have 
an overall ratio of 20 % precursor and 80 % carbon support (1:4 ratio), 
as summarized in Table 1. The obtained mixture was dispersed in 
dichloromethane (DCM) using probe sonicator (50 % cycles, 50 % 
amplitude) for 10 min. Subsequently, the solvent was removed by rotary 
evaporation and the black powder was oven-dried under vacuum 
overnight. Afterward, each sample was equally divided into two batches 
of the same weight, and pyrolysis was performed. For the pyrolysis, 
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homogenized mixtures achieved in the previous step were transferred 
onto an alumina boat and inserted in a quartz tube, equipped with an 
atmosphere-controlled flange system installed in a horizontal tube 
furnace (Nabertherm). One batch was pyrolyzed at 600 ◦C and the other 
one at 800 ◦C, both for 1 h (300 ◦C/hour ramp rates for both heating and 
cooling) under N2 atmosphere, after purging the tube with the inert gas 
for 30 min. All the samples were collected without any significant loss in 
weight and labeled with the general name: ‘Mixture composition_Pyr
olysis temperature expressed in Celsius degrees’ (e.g., FeTPP_600 for the 
sample pyrolyzed at 600 ◦C).

2.3. Electrochemical analysis

The investigation of the oxygen reduction reaction (ORR) electro
catalytic activity of the synthesized samples was conducted employing a 
rotating ring disk electrode (RRDE) setup, following established 

methodologies as referenced. [62,63] The experimental setup consisted 
of a three-electrode configuration system integrating a titanium wire 
counter electrode, an Ag-AgCl reference electrode (saturated KCl), and 
an RRDE (E6R2 series, Pine Instruments) serving as the working elec
trode. The latter was developed by drop-casting the electrocatalyst in 
the form of ink with 0.2 and 0.6 mg cm-2 mass loading on the glassy 
carbon disk (with an area of 0.2376 cm2) of the RRDE tip. The ink 
formulation involved dispersing 5 mg of the EC in a solution comprising 
985 µL of isopropanol (Alfa Aesar) and 15 µL of Nafion®d-520 (5 wt%, 
Alfa Aesar). [62,64] Subsequently, the suspension underwent sonication 
for 10 min (C 50 %, A 50 %) utilizing a probe sonicator. The assessment 
of ORR activities was conducted under alkaline conditions using 
oxygen-saturated 0.1 M KOH(aq) as the working electrolyte.

The study presents all the potential values referenced according to a 
reversible hydrogen electrode (RHE) using Eq. (1) as follows: 

ERHE = EAg/AgCl + E0
Ag/AgCl + 0.0591⋅pH (1) 

where EAg/AgCl is the measured working potential versus Ag/AgCl elec
trode whereas E0

Ag/AgCl is the standard potential of Ag/AgCl reference. 
pH value is 13 for 0.1 M KOH aqueous solution.

Linear sweep voltammograms (LSVs) at the scan rate of 5 mV s-1 

were obtained by maintaining the potential window between 1.2 V and 
0 V vs RHE while fixing the ring potential of RRDE at 1.2 V vs RHE. The 
rotation speed was kept at 1600 rpm. Before acquiring actual LSVs, the 
electrocatalyst was conditioned by applying multiple cyclic voltamme
try until a stable behavior was obtained. Finally, peroxide produced (%) 
and the number of electrons transferred (n) during ORR were calculated 
by observing the disk current (Idisk) and ring current (Iring) as given in 
Eqs. (2) and (3), respectively. RRDE collection efficiency (N) was 38 %. 

Fig. 1. Adler-Longo synthetic method performed. 1) meso‑tetraphenyl porphyrin (TPP), the product of interest; 2) polypyrromethenes, named “waste”.

Fig. 2. Iron(II) meso‑tetraphenyl porphyrin (Fe-TPP, 3), iron(II) polypyrromethenes (Fe-Waste, 4), and manganese(II) meso‑tetraphenyl porphyrin (Mn-TPP, 5) 
obtained through the metallation process described in Paragraph 2.1.

Table 1 
Mixture composition expressed in weight percentage (wt%) and name assigned 
to the synthesized electrocatalysts. Legend: Fe-TPP: iron(II) meso‑tetraphenyl 
porphyrin (sample 3); Fe-Waste: iron(II) polypyrromethenes (sample 4); Mn- 
TPP: manganese(II) meso‑tetraphenyl porphyrin (sample 5); KJB: Ketjenblack 
EC-600 JD (Nanografi).

Sample name Precursors mixture composition (wt%)

Fe-TPP Fe-Waste Mn-TPP KJB

FeTPP 20 / / 80
FeWaste / 20 / 80
Fe/MnTPP(1:1) 10 / 10 80
FeTPP/Waste(1:4) 4 16 / 80
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Peroxide (%) =
200 ⋅ Iring

N

Idisk +
Iring
N

(2) 

n =
4 Idisk

Idisk +
Iring
N

(3) 

2.4. Advanced characterizations

X-ray diffraction (XRD, Rigaku Miniflex 600) was employed to reveal 
the crystallographic features of the samples in the 2θ range of 15–80◦. 
The structural integrity of the carbonaceous frameworks was studied 
through Raman spectroscopical measurements (LabRam, Jobin Yvon, 
France). He-Ne laser (λ = 632.8 nm) was used to illuminate the samples 
via microscope (BX40, Olympus, Japan) with an objective lens of 50X 
(numerical aperture of 0.60) while a silicon CCD (Sincerity, Jobin Yvon, 
France) was used for the signal collection at 200 K. Energy-dispersive X- 
ray fluorescence (XRF) having an X-ray tube with a molybdenum anode 
(Bruker Artax 200 spectrometer) was utilized to perform qualitative 
elemental analysis.

X-ray photoelectron Spectroscopy (XPS) Analysis through ESCA 
System PHI 5800 of Physical Electronics X-ray photoelectron spec
trometer was employed to investigate the catalysts’ surfaces of six 
samples (FeTPP_600, FeTPP_800, Fe/MnTPP(1:1)_600, Fe/MnTPP(1:1) 
_800, FeWaste_800 and FeTPP/Waste(1:4)_800). The instrument oper
ates with an Al kα monochromatic X-ray source at a power of 350 W, and 
the results were interpreted by a literature study. [65–69]

STEM characterization was performed using a Thermo Fisher Talos 
F200X G2 TEM, equipped with a four-element EDX detector. Samples 
were prepared by dropcasting the dispersion of as-developed EC in 
isopropanol on Cu TEM grids. All the characterizations were performed 
by using a beam energy of 200 keV.

3. Results and discussion

3.1. Research design

Transition metals-based electrocatalysts of the family of TM-Nx-C are 
highly active for the ORR, especially in alkaline media. [70,71] Among 
all the transition metal-nitrogen-containing precursors, iron phthalo
cyanine (FePc) was widely investigated. [72–76] Concerning other 
possible interesting substituents, porphyrins were less studied, also due 
to their associated higher costs (e.g., prices on Sigma-Aldrich website: 
iron phthalocyanine 65 €/g, iron meso‑tetraphenyl porphyrin 394 €/g). 
[77] Essentially, porphyrins are costly due to both limited market de
mand and notably low synthetic reaction yields. The Adler-Longo pro
cess is the standard and cheapest methodology widely used to synthesize 
porphyrins. [60] Its yields in moles are around 20 % in the best-case 
scenario. After the product purification, the remaining mass is consid
ered waste and discarded. However, the latter is mainly composed of 
polypyrromethenes, molecules with chemical structures that resemble 
opened porphyrin rings (Fig. 1). Interestingly, both show the same 
chemical composition and the ability to coordinate metal cations, due to 
the presence of acidic nitrogen atoms.

This study aims to synthesize porphyrins and their metallated 
counterpart (Fe and Mn), integrate them into a carbon matrix, and 
investigate them as TM-Nx-C electrocatalysts. Moreover, the possibility 
of upcycling the as-considered waste material is shown, aiming at 
lowering the costs and pursuing a greener approach. Particularly, the 
electrocatalysts were fabricated by mixing the precursors, including 
porphyrins and their wastes, with the carbon support (KJB EC-600 JD, 
Nanografi) and exploiting the pyrolysis approach to embed them into 
the EC structure. The obtained ORR electrocatalysts were tested in an 
alkaline environment. The materials and method section comprehen
sively discusses the fabrication routes and experimental design.

3.2. Structural and morphological investigation

To perform a crystallographic investigation and phase identification, 
all the developed samples were analyzed through XRD. The achieved 
diffraction patterns in the 2θ range of 15◦ to 70◦ are displayed in 
Figure S1. All the samples show mainly two peaks at ~25◦ and ~44◦

corresponding to (002) and (100) lattices of graphitic carbon, respec
tively. [62,78,79] This evidence is consistent with what was expected, 
due to the high ratio of the carbonaceous substrate compared with the 
N-containing precursors in the synthesized samples. In addition, the ECs 
FeTPP_800, FeWaste_600, FeWaste_800, and FeTPP/Waste(1:4)_800 
exhibit an additional low intense peak at ~35◦, ascribable to the dif
fracting lattices (311) of Fe3O4. [80] This suggests the formation of 
magnetite nanoparticles at higher temperature treatments (e.g. 800 ◦C), 
and at lower ones (e.g. 600 ◦C) if the sample has a high content of 
FeWaste as TM-Nx source. The evolution and growth of metallic oxide 
nanoparticles in the metal phthalocyanine-derived electrocatalysts have 
already been observed during pyrolysis at high temperatures, particu
larly at or above 600 ◦C. [37,49] This evidence is confirmed by the STEM 
analysis displayed later on in Section 3.3.

Involving the Raman spectroscopy, it is possible to further investi
gate the carbonaceous structure of the synthesized electrocatalysts. As 
known from the literature, there are two typical absorption bands 
peculiar to carbon-based materials: G (nearly 1580 cm− 1) and D (nearly 
1310 cm− 1), associated with in-plane stretching of the sp2 carbon atom 
with E2g symmetry and breathing mode of A1g symmetry, respectively. 
[81–83] To summarize, the G band manifests the level of graphitization, 
and the D band the induced defects in the original lattice or the edge of 
graphene crystals. As it is well known, the ratio of D to G band intensity 
(ID/IG) manifests the degree of disorder in carbon-based materials. All 
the synthesized samples show values of ID/IG higher than one, around 
1.3, which indicates the occurrence of a very high defect density 
(Figure S2, Table S1). High defect density can boost the ORR activity due 
to the modified electronic and chemical characteristics of the disrupted 
carbons. [84] Interestingly, the ratio ID/IG increases after the pyrolysis 
treatment (1.06 for pristine KJB), suggesting that the heat treatment 
induces structural changes and defectivity also at the carbon matrix 
level.

Qualitative elemental analysis was carried out using XRF (Figure S3). 
The starting material before the pyrolysis is the same for both the heat- 
treated samples at 600 ◦C and 800 ◦C, therefore only the 600 ◦C samples 
were analyzed. Each collected spectra show clearly the peaks of the 
metal of interest, i.e. Fe and/or Mn, justifying the effectiveness of the 
synthetic process.

3.3. Surface and bulk characterization

It was shown that the surface chemistry of the electrocatalysts plays a 
crucial role in the electrocatalytic activity and the mechanisms that take 
place. [30] Therefore, XPS was used to identify the surface composition 
of the synthesized electrocatalysts. Table 2 displays the surface 
composition derived from the survey spectra of FeTPP_600, FeTPP_800, 
Fe/MnTPP(1:1)_600, Fe/MnTPP(1:1)_800, FeWaste_800 and FeTPP/
Waste(1:4)_800 electrocatalysts. XPS spectra indicate the presence of 

Table 2 
Atomic percentage of C1s, N1s, Fe2p3, Mn2p3, and O1s in the electrocatalysts 
derived from XP survey spectra.

Sample Name Carbon Nitrogen Iron Manganese Oxygen
C1s N1s Fe2p3 Mn2p3 O1s

FeTPP_600 98.0 0.5 0.2 – 1.3
FeTPP_800 96.5 0.3 0.1 – 3.1
FeWaste_800 96.8 0.5 0.1 – 2.8
Fe/MnTPP(1:1)_600 94.8 0.9 0.1 0.1 4.1
Fe/MnTPP(1:1)_800 94.5 0.6 0.1 0.1 4.7
FeTPP/Waste(1:4)_800 97.6 0.5 0.1 – 1.8
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carbon, nitrogen, iron and/or manganese, and oxygen. The most prev
alent species in all these compounds is C1s, whose atomic percentage 
ranges from 94.5 % for Fe/MnTPP(1:1)_800 to 98 % for FeTPP_600. The 
catalysts’ surface is also characterized by a low nitrogen content (<1 %), 
mainly for the catalysts treated at the highest temperature, and by 
remarkably low amount of metal (<0.3 %).

The signals of five distinct nitrogen species were taken into consid
eration for N1s deconvolution even if the spectra in Fig. 3 appear scat
tered for the low nitrogen atomic percentage: imine at 397.5 ± 0.1 eV, 
pyridinic-N at 398.4 ± 0.1 eV, Nx-M (M=Fe, Mn) at 399.7 ± 0.1 eV, 
pyrrolic-N at 400.8 ± 0.1 eV, and graphitic-N at 402.3 ± 0.1 eV. As 
reported in Table 3, FeTPP_600 has the largest pyridinic/pyrrolic con
tent followed by FeTPP_800. The most significant interaction between 
N-moieties and the metals (M=Fe, Mn) was exhibited by FeWaste_800 
with a relative percentage of 35.5 % ± 0.1. Instead, the other catalysts 
are characterized by a similar N-M relative percentage ranging between 
20.2 % and 24.1 %.

The deconvolution of C1s spectra and the corresponding composi
tional analysis are shown in Fig. 4 and Table 4, respectively. The binding 
energy for graphitic carbon is 284.3 eV; for secondary carbons coordi
nated to carbon-nitrogen or carbon-oxides it is 285.0 eV; whereas CNx 
defects appear at 286.2 eV; alcohol and ether groups (C–OH/C–OC) at 
287.1 eV; ketones or aldehydes (C = O) at 288.1 eV and COOH at 289.5 
eV. FeTPP_600 has the highest concentration of graphitic carbon, fol
lowed by FeTPP/Waste(1:4)_800 and FeWaste_800. Regarding C–N 
defects, all the catalysts treated at 800 ◦C are characterized by a slightly 
larger content than the catalysts heat-treated at 600 ◦C. FeWaste_800 
exhibits the largest relative percentage of C–N defects (11.8 %), 
whereas the other catalysts are characterized by C–N defects ranging 
between 8.8 and 9.9 %.

STEM-EDX was performed on the samples to highlight the presence 
of nanoparticles in the various samples (Fig. 5). Interestingly, for the 
samples in which only Fe is present, nanoparticles appeared only after 
the 800 ◦C heat treatment, while the addition of Mn seems to hinder 
nanoparticle formation at the same temperature. The FeTPP_800 cata
lyst contains rounded particles with diameters in the range of 20–25 nm, 
while the waste retains smaller and more dimensionally dispersed 
entities.

3.4. ORR electrocatalytic activity in alkaline media

The synthesized materials described in the present work were 
investigated for ORR in alkaline media (O2-saturated 0.1 M KOH) 
through the RRDE experiment. The results shown in this section refer to 
a catalyst loading of 0.6 mg cm-2. As suggested by the literature, a 
thicker electrode lowers the peroxide production and increases the ki
netics. [85–87] The same trend was observed in this work. The com
parison between 0.2 and 0.6 mg cm-2 loading for the catalysts 
FeTPP_600 and FeTPP/Waste(1:4)_800 is shown in the Supporting Ma
terial (Figure S4 and S5), along with the durability testing for FeTPP_600 
(Paragraph SP1 and Figure S6).

Remarkably, all the samples demonstrated appreciable electro
catalytic activity towards ORR electrocatalysis. For comparison, all the 
performance descriptors are reported in Table 5. From the LSVs pre
sented further (Figs. 6a, 7a, and 8 a), ORR kinetics launched by the ECs 
can be appreciated. In general, the onset potential (Eonset) is above 0.94 
V vs RHE (and the overall range is from 0.94 to 1.01 V vs RHE), the half- 
way potential (E1/2) is above 0.82 V vs RHE (ranging from 0.82 to 0.88 V 
vs RHE) and the limiting current (Jlim) at 0 V vs RHE varied between 
3.17 and 6.4 mA cm-2. The electrocatalytic activity is generally high and 
the higher performance is in line with the activity of the Pt/C electro
catalysts. [88] Furthermore, from the Jring (Figs. 6b, 7b, and 8b), it is 
possible to calculate the percentage of peroxide produced and the 
number of electrons transferred. For FCs, it is pivotal to minimize the 
peroxide yield while promoting the direct tetra-electronic ORR. [30,89] 
The synthesized ECs produced a low content of peroxide, quantified 
below 14 % (Figs. 6c, 7c and 8c). It was noticed that peroxide increased 
with the increased overpotentials. Furthermore, a high number of 
electrons transferred, above 3.7 electrons was observed (Fig. 6d, 7d, and 
8d). Both the data are quite promising, and it is possible to speculate a 
direct 4 and a 2 × 2 electron transfer mechanism. Indeed, due to the low 
peroxide, the majority of the oxygen is reduced to the final product 
without intermediates. Moreover, the low peroxide indicates the pres
ence of active sites of the type Fe-Nx-C responsible for the direct 4 
electrons transfer. Secondary active sites, nitrogen-pyridinic, less active 
but more selective can contribute to reducing the intermediate to the 
final product, reducing the peroxide detected. [90]

Fig. 3. Comparison of XPS N1s signals for FeTPP treated at a) 600 ◦C (FeTPP_600) or d) 800 ◦C (FeTPP_800); Fe/Mn-TPP treated at b) 600 ◦C (Fe/MnTPP(1:1)_600) 
or e) 800 ◦C (Fe/MnTPP(1:1)_800); c) FeWaste_800 and f) FeTPP/Waste(1:4)_800.
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3.4.1. Effect of temperature treatment on ORR electrocatalytic activity
Firstly, the pyrolysis temperature (T) was varied to evaluate the ef

fects on the electrocatalytic activity depending on the nature of the 
pyrolyzed material (Fig. 6). Two temperatures, 600 ◦C and 800 ◦C, were 
chosen according to the latest literature results. [49] Pure iron(II) 
porphyrin mixed with carbon pyrolyzed at 600 ◦C (FeTPP_600) showed 
higher values of Eonset and E1/2 compared with the values obtained for 
the sample treated at 800 ◦C (FeTPP_800; Table 5 Entries 1–2). Also, the 
percentage of peroxides for FeTPP_600 is lower and the number of 
electrons transferred is close to being equal to four. Interestingly, con
trary results were obtained by pyrolyzing the FeWaste supported on 
carbon. In this case, higher temperature treatments (e.g., 800 ◦C) 
generate higher electrocatalytic activity in terms of Eonset, E1/2, and Jlimit 
but slightly worse results in terms of peroxide production and electrons 

transferred (Entries 3–4). Moreover, this trend is confirmed by evalu
ating the electrocatalytic activity of the samples FeTPP/Waste(1:4) 
(Entries 5–6). It is worth noticing that this sample is mainly composed of 
“waste” precursor, simulating the true composition of the mixture before 
porphyrin purification, therefore the behavior is aligned with the LSV 
results described above for the FeWaste_800 sample. Nevertheless, the 
mixed EC contains a small percentage of porphyrin, which helps 
decrease the peroxide production and increase the electrons transferred 
compared to the FeWaste_800 sample, reaching values comparable to 
FeTPP_800.

3.4.2. Effect of the addition of the second transition metal on ORR 
electrocatalytic activity

It was previously shown in the literature that the addition of Mn as 

Table 3 
Nitrogen speciation from N1s deconvolution spectra.

Composition of N (relative %)

Sample Name N, (at. %) Imine, (397.5 eV) Pyridinic, (398.4 eV) Nx-M, (M=Fe, Mn), (399.7 eV) Pyrrolic (400.8 eV) Graphitic, (402.3 eV)

FeTPP_600 0.5 0 57.6 21.9 18.0 2.5
FeTPP_800 0.3 0 48.3 22.5 19.0 10.2
FeWaste_800 0.5 0 32.9 35.4 31.1 0.6
Fe/MnTPP(1:1)_600 0.9 0.2 36.1 24.1 38.2 1.4
Fe/MnTPP(1:1)_800 0.6 0 44.8 20.2 35 0
FeTPP/Waste(1:4)_800 0.5 0 39.3 22.6 37.7 0.4

Fig. 4. Comparison of XPS C1s signals for FeTPP treated at a) 600 ◦C (FeTPP_600) or d) 800 ◦C (FeTPP_800); Fe/MnTPP treated at b) 600 ◦C (Fe/MnTPP(1:1)_600) or 
e) 800 ◦C (Fe/MnTPP(1:1)_800); c) FeWaste_800 and f) FeTPP/Waste(1:4)_800.

Table 4 
Carbon speciation from C1s deconvolution spectra.

Composition of C (relative %)

Sample Name C (at. 
%)

Graphitic (284.3 
eV)

Secondary carbons (285.0 
eV)

C-Nx defects (286.2 
eV)

C–OH/C–OC (287.1 
eV)

C = O (288.1 
eV)

COOH (289.5 
eV)

FeTPP_600 98 58.6 25.7 8.8 1.1 3.5 2.3
FeTPP_800 96.5 51.2 31.5 9.1 1.3 4.4 2.5
FeWaste_800 96.8 55.5 23.1 11.8 2 5.6 2
Fe/MnTPP(1:1)_600 94.8 45.9 37.3 9.8 1.3 3.9 1.8
Fe/MnTPP(1:1)_800 94.5 47.7 34.6 9.9 0.9 4.7 2.2
FeTPP/Waste(1:4) 

_800
97.6 58.3 24.9 9.2 0.7 5.0 1.9
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Fig. 5. STEM and EDX images of the samples: leftmost column related to the samples treated at 600 ◦C, rightmost column related to 800 ◦C samples. Label a) and b) 
FeTPP, c) and d) FeWaste, e) and f) FeTPP/Waste(1:4), g) and h) Fe/MnTPP(1:1).

N. Giulini et al.                                                                                                                                                                                                                                  Electrochimica Acta 507 (2024) 145113 

7 



co-metal to Fe has a positive effect on ORR. [39,91,92] Therefore, the 
electrocatalytic activity of the synthesized materials was also evaluated 
after the addition of Mn. However, this strategy does not significantly 
improve the electrocatalytic performances. As shown in Fig. 7 and 
summarized in Table 5 Entries 7–8, the samples pyrolyzed at 600 ◦C 
exhibit some differences, especially in terms of the LSV results. Indeed, 
the measured values for FeTPP_600 and Fe/MnTPP(1:1)_600 were 0.972 
and 0.957 V vs RHE for Eonset, and 0.852 and 0.817 V vs RHE for E1/2, 

respectively. Furthermore, the results regarding peroxide production 
and number of electrons transferred worsen for the Mn-containing 
sample. Concerning the ECs pyrolyzed at 800 ◦C, neither significant 
changes in LSV results can be appreciated, nor in terms of the overall 
kinetic reduction mechanism. It is possible to conclude that, in this 
work, the addition of Mn as a co-metal to Fe is redundant.

3.4.3. Effect of the presence of synthetic waste on ORR electrocatalytic 
activity

A final, pivotal, consideration should be done about employing also 
the waste material of the porphyrin synthesis to fabricate ORR electro
catalysts. As shown in Fig. 8, the Eonset and the E1/2 of FeTPP_600 and 
FeTPP/Waste(1:4)_800 are essentially equal (0.97 and 0.85 V vs RHE, 
respectively; see Table 5, Entries 1 and 6), manifesting good kinetics for 
both ECs. However, the limiting current of the latter is two points lower 
than the one of the former (4.38 and 6.33 mA cm-2, respectively), dis
playing lower activity for the diffusion regime. Concerning the peroxide 
production and the number of electrons transferred, both materials 
show good results, keeping the values below 8 % and above 3.8, 
respectively. On the contrary, the sample obtained exclusively from the 
functionalized waste material (FeWaste_800, Table 5, Entry 4) exhibits 
slightly worse catalytic performances. Its kinetics regime is as good as 
the two previously discussed ECs (Eonset = 1.077 V vs RHE; E1/2 = 0.842 
V vs RHE), but its diffusion one is not (3.32 mA cm-2). The peroxide 
production is near 12 % and the trend of electrons transferred is above 
3.75.

These results endorse the idea of exploiting the unpurified 

Table 5 
Electrochemical results of the synthesized ECs experimentally obtained by 
rotating ring disk electrode (RRDE) setup applied for the oxygen reduction re
action (ORR) in alkaline media (0.1 M KOH(aq)).

Entry Sample Name E onset 

(V vs 
RHE)

E 1/2 

(V vs 
RHE)

Jlimiting 

(mA cm- 

2)

% 
peroxide 
at 0 V vs 
RHE

n◦ of e- 

transf. at 
0 V vs 
RHE

1 FeTPP_600 0.972 0.852 − 6.33 1.9 3.96
2 FeTPP_800 0.952 0.872 − 4.45 6.6 3.87
3 FeWaste_600 0.937 0.830 − 3.17 9.9 3.80
4 FeWaste_800 1.007 0.842 − 3.32 11.7 3.76
5 FeTPP/Waste 

(1:4)_600
0.952 0.861 − 3.66 14.3 3.71

6 FeTPP/Waste 
(1:4)_800

0.977 0.853 − 4.38 8.3 3.83

7 Fe/MnTPP 
(1:1)_600

0.957 0.817 − 5.50 4.9 3.90

8 Fe/MnTPP 
(1:1)_800

0.977 0.879 − 4.59 8.3 3.84

Fig. 6. Effect of temperature treatment on ORR electrocatalytic activity of the synthesized ECs (0.6 mg cm-2 loading in 0.1 M KOH, oxygen saturated) recorded with 
an RRDE setup at 1600 rpm. a) linear sweep voltammetry (LSV) at 5 mV s-1; b) ring current densities; c) trends of produced peroxide; d) trends of the electrons 
transferred.

N. Giulini et al.                                                                                                                                                                                                                                  Electrochimica Acta 507 (2024) 145113 

8 



porphyrins as N-containing precursors to fabricate ECs. Following this 
approach, good electrocatalytic performance could be achieved, signif
icantly lowering the process costs. Therefore, it could be a good strategy 
to exploit the crude mixture TPP/Waste (about 20:80 wt%) to fabricate 
good electrocatalysts for ORR in an alkaline environment.

3.4.4. Remarkable considerations on ECs ORR activity
The selective ORR activity is influenced by the active site structures 

that evolve during the synthesis of the electrocatalyst. Since TM-Nx-C 
are composed of numerous active moieties and each of them contributes 
differently, the overall performance is a cumulative response deter
mined by the proportion and distribution of the primary and secondary 
active sites. [30,93,94] It is well known in the community that the 
atomically dispersed TM-Nx (x = 2–4) are the primary active sites to 
launch a direct 4-electron ORR pathway. [95,96] Whereas pyrrolic and 
pyridinic nitrogen act as secondary active sites. The former is respon
sible for the two-electronic reduction of O2 into peroxide while the latter 
stepwise converts the produced peroxides into water and completes the 
reaction. [97,98] It is also important to highlight that the coalescence of 
metallic species into nanoparticles not only affects the kinetic activity 
but also increases the peroxide yield [49,67,99] and similarly the higher 
content of graphitic nitrogen is linked with performance decay 
(lowering the Eon and E1/2) and higher peroxide yield. [100,101] Quite 
interestingly, the sample FeTPP_600, fabricated with pure Fe porphyrin, 
demonstrated higher Eonset and E1/2 together with peak Jlimiting. More
over, the same sample exhibited an amazingly low peroxide yield while 
maintaining the direct 4e ORR. Such a remarkable performance can be 

attributed to a suitable combination of higher pyridinic content and 
lower graphitic nitrogen along with the absence of metallic nano
particles as confirmed by the HRTEM analysis. On the other hand, 
increasing the pyrolysis temperature from 600 to 800 ◦C not only gave 
rise to the evolution of nanoparticles but also increased graphitic ni
trogen while reducing the pyridinic nitrogen in the derived sample i.e. 
FeTPP_800. This could be a reason behind the relative performance 
degradation observed in the case of FeTPP_800. Notably, the enhanced 
Eonset and E1/2 of FeWaste_800 could result from a higher proportion of 
TM-Nx sites but the higher peroxide yield could be due to the presence of 
metallic nanoparticles and excess pyrrolic nitrogen. Contrary to previ
ous research on bimetallic electrocatalysts, the Fe/MnTPP samples 
didn’t show any significant difference from the monometallic samples, 
however, the slight decay can be stemmed from higher pyrrolic nitrogen 
and lower pyridinic nitrogen content. Nonetheless, it is crucial to note 
that the waste-derived electrocatalysts exhibited similar structural at
tributes and consequently comparable performance metrics. These ob
servations support the lucid idea of repurposing the waste generated 
during the synthesis of porphyrins in the production of efficacious 
TM-Nx-C.

4. Novelty and take-home message

The atomic level coordination between TM (in monometallic or 
bimetallic configuration) with nitrogen i.e. TM-Nx is essentially impor
tant to produce primary active sites for the ORR electrocatalysis while 
replacing the scarce and expensive PGMs, particularly in the alkaline 

Fig. 7. Effect of the addition of the second transition metal on ORR electrocatalytic activity of the synthesized ECs (0.6 mg cm-2 loading in 0.1 M KOH, oxygen 
saturated) recorded with an RRDE setup at 1600 rpm. a) linear sweep voltammetry (LSV) at 5 mV s-1; b) ring current densities; c) trends of produced peroxide; d) 
trends of the electrons transferred.
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medium. Such configuration already exists in the aza-macrocycles such 
as phthalocyanine (Pc), porphyrins, etc. and hence they carry out oxy
gen electro-reduction while bio-mimicking the natural enzymes such as 
cytochrome c oxidase and ubiquinol oxidase. [70] In the paradigm of 
aza-macrocycles for ORR, FePc is one of the most popular candidates 
owing to suitable electronic configuration and Fe(III)/(II) formal redox 
potential. [102] However, the planar symmetric Fe-N4 sites in FePc lead 
to inadequate ORR activity due to its inferior O2 adsorption and 
reduction and therefore require structural substitutions and redesigning. 
[72,103,104] On the other hand, porphyrins are another promising 
competitor to improve the cathodic reaction of FCs. [105–108] In any 
case, both types of chelated metal macrocyclic have to be embedded in a 
carbonaceous framework via pyrolysis to improve structural stability. 
[109,110] During pyrolysis, the structural parameters, coordination 
chemistry, and active sites go on transforming depending on the py
rolysis conditions i.e. temperature, and hence original configuration 
may be lost. [37,49,111].

Despite being an excellent TM-Nx source, porphyrins are relatively 
less studied for this purpose because they are much more expensive 
compared to Pc. The low synthetic yield (around 20 % involving the 
Adler-Longo procedure) is one of the major drawbacks regarding these 
organic compounds. Importantly, the huge amount of waste (around 80 
% of the total mass) produced by the synthetic process contains nitrogen 
that can coordinate metal cations. This consideration is pivotal in pur
suing a greener approach to fabricating new ECs. Recently, following the 
theme of Circular Economy waste-derived TM-Nx-C type electrocatalysts 
have acquired significant attention where organic wastes (plastics and 

biomasses) have been utilized as a carbon source but still nitrogen and 
metal precursors are required to induce the active moieties. [112–116] 
The residue of porphyrin synthesis can resolve this problem. Instead of 
the direct employment of expensive pure porphyrins, the generated 
chemical waste can itself be utilized for the realization of efficacious 
electrocatalysts of ORR. Following similar concepts, such as integration 
with high surface carbons and/or introducing a secondary metal source, 
i.e. Mn or other metals, during pyrolysis can provide a strategic pathway 
to enhancing the selective activity and operative robustness. In this 
consideration, the presented study coines the notion of repurposing the 
discarded porphyrin wastes in the fabrication of the electrocatalysts. 
Finding a suitable pyrolysis temperature and the proportion of the 
precursors (both pure and waste-derived) can dictate the surface 
chemistry and morphology evolved to ensure appreciable ORR perfor
mance. Anyhow, the remarkable electrocatalytic performance exhibited 
by the fabricated electrocatalyst justifies the intellectual approach of 
this study and of course, the prospective endeavors can further improve 
the kinetic performance of waste-derived electrocatalysts.

5. Conclusions

The presented work demonstrated the possibility of using transition 
metal porphyrins, particularly based on iron, as organic, metal- 
containing precursors for the synthesis of ORR-active ECs. Moreover, 
the possibility of integrating the discarded porphyrin synthetic waste 
into the active electrochemical material was presented. This strategy 
allowed the upcycling of the waste and unused material for porphyrin 

Fig. 8. Effect of the presence of synthetic waste on ORR electrocatalytic activity of the synthesized ECs (0.6 mg cm-2 loading in 0.1 M KOH, oxygen saturated) 
recorded with an RRDE setup at 1600 rpm. a) linear sweep voltammetry (LSV) at 5 mV s-1; b) ring current densities; c) trends of produced peroxide; d) trends of the 
electrons transferred.
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synthesis, increasing the overall sustainability of the final ECs. 
Remarkably, the sample made using purified porphyrin precursor and 
pyrolyzed at 600 ◦C (FeTPP_600) showed the best performance in terms 
of overall linear sweep voltammetry metrics (0.972 and 0.852 V vs RHE 
for Eonset and E1/2, respectively; - 6.33 mA cm-2 for Jlimiting) and direct 
four-electron reduction pathway. Nevertheless, the sample obtained by 
mixing porphyrins with their synthetic waste in the ideal ratio of 1:4 and 
pyrolyzed at 800 ◦C (FeTPP/Waste(1:4)_800) still exhibits appreciable 
kinetics results but less efficient diffusion regime (0.977 and 0.853 V vs 
RHE for Eonset and E1/2, respectively; - 4.38 mA cm-2 for Jlimiting). 
Nevertheless, the obtained results are encouraging for both the materials 
and open the possibility of utilization of unpurified porphyrins in ECs 
development for ORR, at ultra-low loading of atomically dispersed 
transition metal (0.2 atomic % of iron on the sample FeTPP _600, XPS 
results).
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