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Abstract

Purpose: The aim of this work is the development and characterization of a model observer
(MO) based on convolutional neural networks (CNNs), trained to mimic human observers in
image evaluation in terms of detection and localization of low-contrast objects in CT scans
acquired on a reference phantom. The final goal is automatic image quality evaluation and
CT protocol optimization to fulfill the ALARA principle.

Approach: Preliminary work was carried out to collect localization confidence ratings of human
observers for signal presence/absence from a dataset of 30,000 CT images acquired on a
PolyMethyl MethAcrylate phantom containing inserts filled with iodinated contrast media at
different concentrations. The collected data were used to generate the labels for the training
of the artificial neural networks. We developed and compared two CNN architectures based
respectively on Unet and MobileNetV2, specifically adapted to achieve the double tasks of clas-
sification and localization. The CNN evaluation was performed by computing the area under
localization-ROC curve (LAUC) and accuracy metrics on the test dataset.

Results: The mean of absolute percentage error between the LAUC of the human observer and
MO was found to be below 5% for the most significative test data subsets. An elevated inter-rater
agreement was achieved in terms of S-statistics and other common statistical indices.

Conclusions: Very good agreement was measured between the human observer and MO, as well
as between the performance of the two algorithms. Therefore, this work is highly supportive of
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the feasibility of employing CNN-MO combined with a specifically designed phantom for
CT protocol optimization programs.

© 2023 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 1.JMI.10.S1.S11904/1.JMI.10
.S1.S11904]

Keywords: artificial intelligence; computed tomography; dose optimization; model observer;
image quality evaluation.
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1 Introduction

Computed tomography (CT) applications represent one of the most well-established diagnostic
tools in current medical imaging; CT is capable of providing very detailed anatomical images of
many biological tissues at one time due to its large dynamic range. With the widespread avail-
ability of CT equipment and the increasing number of patient examinations,1 the issues of the
quantification of risks related to X-ray exposure, and consequently the need for further optimi-
zation of CT protocols to fulfill the ALARA (“As Low As Reasonably Achievable”) principle,
have arisen.2,3 The main international organizations dealing with ionizing radiation protection
and safety standards, the International Commission For Radiological Protection (ICRP) and the
International Atomic Energy Agency (IAEA), have provided patient dose management recom-
mendations and have identified lacunae in justification and optimization, thus providing guid-
ance and improving practice.4–7 In the Directive 2013/59/EURATOM,8 the European Union
Council stated the need to develop and put into action optimization programs to achieve the
best compromise between radiation dose and image quality, with the aim to reduce patients dose
to the minimum level compatible with diagnostic accuracy.

The choice of the optimum dose level requires the evaluation of CT image quality, which can
be measured by receiving operator characteristic (ROC) analysis in reader studies in which
trained medical staff perform a specific clinical task. Such an approach is especially suitable
in the case of iterative reconstruction techniques because the standard physical quantities are
no longer suitable for a thorough image quality assessment.9 However, the extremely high num-
ber of different CT protocols in use even within small radiological facilities makes de facto the
evaluation of all necessary ROC curves almost impracticable as it would require too much obser-
vation time to be provided by medical staff. In the recent past, this fundamental limitation has
been addressed by replacing human observers with algorithmic approaches (i.e., model observ-
ers); in particular, the channelized Hotelling observer (CHO) model10–12 demonstrated great
potential, but it is still limited by poor generalization capability to different CT settings.13,14

The appreciable results obtained through such algorithmic methods have encouraged researchers
to proceed by employing artificial intelligence (AI) algorithms, which are seemingly more
powerful than CHO.15–21 Recently, the increasing availability of computational resources has
driven the scientific research toward the use of the latter approach, which has shown remarkable
effectiveness in mimicking the human observers’ performances in different diagnostic imaging
evaluation tasks.17,21–24 To take into account the inefficiency and variability of human responses,
several strategies have been proposed. Previous adopted approaches consist of the introduction
of an internal noise component in the output statistics of convolutional neural networks
(CNNs)13,16,23 and the use of human-labeled data for training.17,21,25 When actual patient CT
data are used, the dose level dependency is commonly studied by introducing appropriate noise
into the images.16,21–23,26–28

Within this context, our goal is to build a solid model observer (MO) framework based on
CNNs that is capable of reproducing the performances of human observers in the identification
of low contrast-to-noise ratio (CNR) objects in reference phantom CT images. Compared with
the current state-of-the-art methods, our work is characterized by the concurrence of large dataset
variability in terms of size and CNR of the imaged objects, CTacquisitions at eight different dose
indices, two reconstruction techniques, and labels by a large group of 30 human observers,
including 19 radiologists from four different radiological departments.
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The use of a specifically designed phantom allowed for the collection of a large dataset of
30,000 images at various dose indices and under controlled acquisition conditions.

Two intrinsically different CNN architectures were optimized for the double task of locali-
zation and classification of low CNR objects within the phantom CT images to get insight into
the relation between CNN behavior and architectures.

We performed an extended statistical analysis of the results to address the overall observers
performances in terms of localization-area under curve (L-AUC), which is expected to be more
accurate than the conventional AUC metric because it takes into account both localization and
classification capabilities.29

Several statistical indices and the accuracy metric were computed to obtain a better under-
standing of the CNNs response and the limitations of this AI approach.

The results are very promising: both approaches are capable of miming human detectability
performance in phantom CT images. We believe that these CNN-based MOs, combined with
specifically designed phantoms, may effectively support the optimization of CT protocols,
avoiding the time-consuming limitations of medical staff evaluations.

2 Materials and Methods

2.1 Image Dataset

The annotated dataset used to train, validate, and test the proposed CNNs is a subset of the large
dataset extensively described in our previous work.30 The dataset consists of CT images of
a specifically manufactured PolyMethyl MethAcrylate (PMMA) phantom (Fig. 1), containing
10 cylindrical inserts of different diameters (3, 4, 5, 6, and 7 mm); each couple of inserts with the
same diameter provides two different contrast values (45 and 55 HU) with respect to the PMMA
background obtained by filling the inserts with aqueous solutions of iodinated contrast media at
two distinct concentrations. The phantom consists of three adjacent blocks, each with an
ellipsoidal shape with a major axis of 31 cm, a minor axis of 21 cm, and a thickness of 7 cm:
two blocks have five inserts each and the third, with no inserts, is finalized to obtain homo-
geneous background images.

Acquisition was performed with a 128 slice CT scanner (Somatom Definition Flash, Siemens
Healthcare) at eight different volumetric CT Dose Index settings (CTDIvol [mGy] = 4.4, 5.1, 6.0,
6.9, 7.8, 8.6, 9.6, and 10.2), with the following protocol for abdomen selected: 120 kVp,
AEC on, helical mode, pitch = 1, beam collimator = 38.4 mm, and slice thickness = 2 mm).

Both filtered back projection (FBP) and Iterative Reconstruction (IR, SAFIRE force 3) image
reconstruction techniques were applied to the acquired data, with convolution kernels B41s
and IF41s, respectively. The CT image reconstruction FoV (RFoV) was chosen to be 5 cm2

(512 × 512 pixels per image) to produce reconstructed images containing one single insert each.
Images without inserts were also similarly reconstructed and added to the dataset. To further
increase the dataset variability, data augmentation techniques consisting of 90 degrees rotations
and horizontal and vertical flips were applied on all images. Out of this large dataset, 30,000

Fig. 1 Lateral view (a) and top view (b) of one of the two blocks containing five inserts filled with
iodinated contrast media.
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images were selected with a tradeoff between having an adequate amount of training data for
CNNs and an acceptable amount of time being spent to collect confidence scores and insert
position coordinates (when detected) for each single image by visual inspection. On the basis
of the knowledge acquired in a previous work,30 the selected subensemble was chosen as
described in Table 1. It is worth pointing out that the dataset is not balanced in terms of diameters
and contrasts of the imaged objects: the abundance of imaged object types was selected accord-
ing to their detectability (as quantified by human LAUC analysis in Sec. 3): the larger the detect-
ability is, the smaller the subensemble is; moreover, images containing inserts of 6 and 7 mm in
diameter at the higher CNR were excluded because the visibility of such objects was too elevated
across the entire CTDIvol range. A reference subset was chosen to evaluate the observers per-
formances; it consists of images containing 4-mm diameter objects, contrast C ¼ 45 HU, and
the iterative reconstruction (IR) algorithm: the CNR computed on such a subset monotonically
increased with CTDIvol from 1.9 to 3.1.

For the human observers image visualization step and the subsequent steps of algorithm
optimization, the dataset, originally reconstructed with a 512 × 512 RFoV, was reduced to
256 × 256 pixels per image to optimize computational resources, after testing to ensure that
resizing the images did not affect the CNN performances.

Figure 2 shows an example set of reconstructed images of two inserts (4 and 7 mm diameter)
at the lower contrast (45 HU) for different CTDI values. It is noticeable that the visibility of the
insert decreases with CTDIvol due to the decrease of CNR.

2.2 Confidence Scores Collection

To collect the labels to train the MOs, the detection task was represented as a multiclass ranking
task: an ordinal score was assigned by the human observer, corresponding to the confidence
attributed to the presence (or absence) of the object, in a range from 0 to 3 (0 = object surely
not present; 1 = object unlikely to be present; 2 = object likely to be present; 3 = object surely
present). At the same time, the operator was asked to identify the location of the object
(if assigned score is not 0). A graphical Python-based interface was developed to automatically
save the score and the coordinates assigned to each identified object by the human observers.
A representation of the screen window generated by the software and presented to the operator
for image evaluation is reported in Fig. 3.

A total of 30 human observers contributed with the visual examination of 1000 images each;
following a strategy already proposed in previous works,12,16 both radiologists (20) and medical
physicists (10) were included as evaluators to get a larger variability of evaluation performances

Table 1 Selected subensembles from the original image dataset
characterized by insert (object) size and contrast.

No. images object diameter contrast

d (mm) C (HU)

10,000 Homogeneous images —

3000 3 45

3000 3 55

3000 4 45

3000 4 55

2800 5 45

2800 5 55

1200 6 45

1200 7 45
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and make the CNN-MOs more reliable and robust. In consideration of the easy task and the
simple content of the dataset, ingredients that risk inducing overfitting in CNN training, as well
as the very time-consuming reader study, we decided to promote dataset size over multiple rat-
ings of single images: there was no intersection between the subsets of 1000 images evaluated by
each observers. However, for the same contrast, size, reconstruction technique, and CTDIvol,
a multitude of images with similar properties (noise pattern and signal detectability) were gen-
erated from different slices of the same CT scan, among which the signal location was varied by
data augmentation (see also Sec. 2.1).

2.3 Convolutional Neural Networks

Two specific CNNs were developed and optimized to perform the MO task: a U-Net-based archi-
tecture and a MobileNetV2-based architecture.

Both CNNs were trained from scratch on the training dataset, which consisted of noisy
images that previously underwent visual inspection, labeled with the corresponding confidence
scores and coordinates assigned by the human observers. Despite a few recent applications,25 this

Fig. 3 Screenshot of the software interface developed to collect the human observer response to
CT images visual inspection.

Fig. 2 Example of reconstructed images (iterative reconstruction technique) with (a) 4 mm and
(b) 7 mm inserts at the lower contrast (45 HU); it is noticeable that object visibility depends both on
size and CTDIvol.
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labeling choice represents an alternative training strategy with respect to most of the MO algo-
rithms reported in the literature,16,16,24,31 often based on an a posteriori correction of the output
statistics of CNNs, trained with impartial labels representing the actual presence and location of
the object within the images.

To ensure a robust statistical analysis of results, a fivefold cross validation procedure was
applied: five training experiments were carried out using randomly assigned train and test
subsets (80% and 20%, respectively, for each experiment).

In the following, the developed CNNs are described in detail.

2.3.1 UNet-based architecture

The first architecture was designed for the MO tasks by customizing a UNet-based CNN, pre-
viously developed by the authors30 for denoising and segmentation of phantom CT images. The
double-task strategy, successfully employed in the cited work, was implemented in this context
to achieve object localization and confidence score prediction at the same time.

The UNet is a CNN based on an autoencoder architecture already well documented in the
literature32–42 that, in particular, has been employed for segmentation and localization tasks in
the postprocessing of medical images and has already demonstrated elevated performances as
an MO.42

The original architecture, consisting of a combination of max pooling, convolution, and fully
connected layers, was reduced to a total of nine layers and four skip connections. A scheme of
the UNet used is reported in Fig. 4 (architecture details and layers sequence are reported in
Fig. S1 in Supplementary Material). At the end of the encoder stream, a dense layer is connected
to produce a scalar output representing the confidence score prediction (implemented as a multi-
class classification task). A mean square error loss LossMO is implemented to let the CNN learn
the scores given by the human observers (used as score labels for training).

The decoder stream is fully devoted to the localization task. The idea behind the implemen-
tation of the localization task originated from the CNN architecture proposed by Newell et al.,43

in which concatenated autoencoders were used to estimate the pose of a human body through the
generation of a series of heatmaps, one for each identified body joint. In our case, a single
autoencoder is implemented to generate the heatmap corresponding to the object identified
within the image. The heatmap is a 256 × 256 matrix with a maximum that is assumed to
be the prediction of the object center. Following Newell et al.,43 two additional losses are imple-
mented and devoted to the localization tasks. The first one is a Kullback–Leibler divergence loss
(LossKLD)

44–48 between the heatmap produced by the network and the ground truth, represented
by a 2D Gaussian (normalized to unity and with FWHM equal to the object diameter) centered in

Fig. 4 Schematic illustration of the developed UNet-based CNN architecture.
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the coordinates picked by the human observers. In the case of images classified as “object abso-
lutely not present” by the human observer (score = 0), the ground truth consists of a matrix filled
with zeros. The second loss consists of a mean square error loss (LossLOC) between the predicted
coordinates and those actually picked by the human observers (the latter being used as coor-
dinate labels for training). The contribution of this loss was set to zero for images classified as
“object absolutely not present” by the human observer.

Aweighted sum of the three losses was tuned during the optimization procedure for the final
training as

EQ-TARGET;temp:intralink-;e001;116;640LOSSUNet ¼ ðLossMO þ 100 · LossKLD þ 0.1 · LossLOCÞ: (1)

It is worth noting that a specific function based on the softmax operation was built to compute
the maximum of the heatmap by means of a differentiable function, an essential requirement for
backpropagation to occur properly during CNN training.49

The batch size is 48, the learning rate is 0.0001, and the Adam algorithm is employed as the
optimizer.

2.3.2 MobileNetV2-based architecture

The second strategy is based on the MobileNetV2 architecture,50 the complexity of which was
reduced. We used a MobileNetV2 architecture with fewer convolution layers than the original
architecture, i.e., we only used the first 11 layers up to the layer called block_3_depthwise_relu
during the optimization procedure to limit overfitting. The MobileNetV2 has already been
exploited in the medical imaging field, mostly for classification and detection of lesions,51–56

and recently it was successfully implemented for COVID-19 diagnosis.57–60

Two different MobileNetV2-based CNNs are implemented for prediction of the confidence
score (represented as a multiclass classification task) and of the object coordinates; their
architectures are reported in Figs. 5 and 6, respectively. Two distinct CNNs were built as their
architectures are not exactly identical but differ for the final two layers and the input data in
the training phase have different sizes in the two cases.

1. The CNN devoted to the classification task (Fig. 5) takes as input a CT image and, after the
11th layer of the original MobileNetV2, ends with a global average pooling layer followed
by a densely-connected layer, consisting of four units and a softmax activation function to
predict the confidence score of human observers. The sparse categorical cross-entropy
function is used as the loss during the training phase.

2. The CNN devoted to the localization task (Fig. 6) is trained using 48 × 48 images,
obtained by cropping the original 256 × 256 images around the coordinates picked by
the human observers (or random coordinates when the assigned score is 0). The crop size
is chosen to be large enough to include the largest insert diameter (7 mm ¼ 36 pixels).
After the 11th layer of the original MobileNetV2, an average pooling layer (pool size 4,

Fig. 5 Schematic illustration of the MobileNetV2-based CNN architecture used for the classifica-
tion task.
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strides 1, no padding) followed by a convolutional layer (1 filter, 3 × 3 kernel size and
linear activation function) produces a real number as output, which is then approximated
to the closest integer number. In this training phase, a mean squared error loss is used to
predict the confidence score.

Once the training is completed, a convolutional implementation of the sliding window
approach61 is implemented in the test phase to predict the object coordinates: the trained
CNN takes as input the original 256 × 256 images and produces a 27 × 27 heatmap as
output. Each pixel of the heatmap corresponds to a delimited region of the input test
image and represents the probabilities that the object is located in the center of that
region: the position of the probability maximum provides the predicted coordinates.

The batch size is 32, the learning rate is 0.001, and the Adam algorithm is employed as the
optimizer.

2.4 CNNs Evaluation

Performance statistics were computed on each of the five experiments (fivefold cross validation)
mentioned above and then averaged to get the final statistics and associated standard errors.

The performances of the human observer and MO in detecting and localizing the object in
each image were evaluated by complementary approaches that emphasize different aspects of
the CNNs behaviors. The most adopted method in clinical practices is the receiver-operating
characteristic (ROC) analysis.62,63

The ROC curve shows the tradeoff between sensitivity (or TPR, true positive rate) and speci-
ficity (1 - FPR, false positive rate), thus measuring the performance of a classification model. In
the case of a double detection-classification task, each image is classified as true positive (TP),
true negative (TN), false positive (FP), or false negative (FN) by taking into consideration the
localization accuracy. The resulting curve is the localization-ROC (LROC).

The computation of LROC requires choosing an upper threshold distance between the actual
center of the contrast object and the location indicated by the observers (human and model) to
discriminate between correct and incorrect localization.12

An accurate analysis on the distribution of the human observers’ localization responses,
reported in Fig. S2 in the Supplementary Material, was carried out to establish the threshold
distance values for the different insert diameters (summarized in Table 2). The knee algorithm
was used to accurately determine these threshold values.64

Fig. 6 Schematic illustration of the MobileNetV2-based CNN architecture developed for the
localization task.

Table 2 Selected thresholds for the LROC curves computation for different insert diameters.

Insert diameter (mm) 3 4 5 6 7

Threshold (mm) 2.3 2.3 2.5 3.0 3.5
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The LROC curve was calculated for different images subsets, each characterized by one fixed
parameter to highlight the dependence of the observer capability related to that parameter
(i.e. object contrast, diameter, image reconstruction technique, and CTDIvol).

Therefore, the area under the LROC curve (LAUC), a measure of the overall detection
performance of the observers, was calculated for each object size and contrast, reconstruction
technique, and CTDIvol and was averaged over the five cross-validation experiments conducted
on the train dataset (see Sec. 2.3) with the associated standard deviation.

The differences between the LAUC curve of the human observer and those of the MO are
evaluated by the mean of the absolute percentage error (MAPE),65 which is a measure of
prediction accuracy. The MAPE is calculated according to the following formula:

EQ-TARGET;temp:intralink-;e002;116;616MAPE ¼ 1

N

XN

i

jLAUCModel
i − LAUCHuman

i j
LAUCHuman

i
· 100; (2)

where i is an index for the CTDIvol level and N ¼ 8 is the total number of CTDIvol levels.
The LAUC analysis has been complemented by the evaluation of inter-rater indices66 that

quantify the level of agreement between two or more evaluators of the same observed situations.
The multiraters Krippendorff’s Alpha67 (an interval level of measurement), the intraclass cor-
relation coefficient (ICC,68 a random single rating), the widespread Cohen’s Kappa, and the
more robust S-statistics69,70 have been estimated to compare the agreement between models and
human observers. The first two indices are conventional statistical indices that, however, suffer
from a limitation related to unbalanced datasets. Kappa and S-statistics are normalized at the
baseline of random chance: they describe how much better a classifier performs than that of a
classifier that simply guesses at random according to the frequency of each class. A reference
table with interpretation guidelines for the considered indices is in Table S1 in the Supplementary
Material.71–73

Moreover, the accuracy metric was computed to address the performance of the trained CNN
for both confidential scores and localization prediction, separately. Accuracy, defined as the ratio
between the number of correct predictions and the total number of human evaluated images,74

was calculated as a function of the relevant image parameters (diameters, contrasts, CTDIvol, and
reconstruction techniques).

In the case of localization accuracy, only the images containing the low-contrast object and
having a score >0 were analyzed. The same thresholds distance values used to discriminate
the true positive localization in the ROC computation (see Table 2) were applied to evaluate
the localization accuracy.

3 Results

As a preliminary analysis, the performance of the human observers in the task of identifying
low-contrast objects within the images was evaluated in terms of the LAUCs reported in Fig. 7,
as a function of CTDIvol, in the case of the two reconstruction techniques (FBP top panel,
IR bottom panel), for the different contrast values C expressed in terms of the HU difference
from the PMMA background (C ¼ 45HU left panel, C ¼ 55 HU right panel). Within each
panel in Fig. 7, different curves refer to images with inserts of different diameters.

As expected, the human observer performance improves as CTDIvol increases, due to CNR
increasing at larger radiation dose values. The detectability of the smallest objects (3 mm diam-
eter) is poor for both contrasts C and remains below 90% even at high CTDIvol. The noise in
the CT images is correlated, which means that the noise in any point of the image is affected to
some extent by the noise values of the neighboring points. Small objects are affected the most by
noise correlations. The calculated correlation distance for the highest CTDIvol images in our
dataset, following Refs. 75 and 76, is ∼0.7 mm, which can significantly change the appearance
of the 3 mm inserts (1.5 mm radius) and thus make them difficult to be detected even at high
radiation doses.

The curve related to the 4 mm diameter objects shows a significant increase with CTDIvol,
and saturation of the human observer performances, corresponding to LAUC approaching 1,
is reached above 6 to 7 mGy of CTDIvol, though this slightly depends on the contrast and
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reconstruction technique: objects in IR reconstructed images are better recognized than in FBP
reconstructed images.

In the case of inserts with diameters >4 mm, saturation of the human observer performance
occurs even at low CTDIvol, with LAUC values always above 80%. This result justifies the
preliminary selection of the number of images for each contrast and size, as reported in Table 1,
in which the more populated subsets are those relative to the inserts of 3 and 4 mm diameters.

Additional statistical analysis was performed to evaluate the difference among the human
observers and between the two professional categories that took part in the visual inspection
of the CT dataset: radiologists and medical physicists. The LAUC computed for the two classes,
reported in Fig. S3 in the Supplementary Material, shows slightly higher performances of the
radiologists, especially in the case of the less visible inserts (corresponding to 3 mm diameter
inserts). This difference would be, of course, much more significant in the case of complex
images, but the scope of this work lies outside the usage of diagnostic images: we aim to exploit
the advantages given from using a simple phantom, which can be acquired under different
user-defined CT settings (such as protocols and CTDIvol) and in different CT scanners.

Given the above assertions, to achieve the optimization of CNNs, which are notoriously
affected by overfitting and biases due to limited data selection, the increased dataset and label
variability can be considered an added value, provided that the significant results of this research
originates from the analysis of the inserts >3 mm (and, in particular, of the reference dataset).

The performances of trained convolutional neural networks were quantified by computing
LAUC as well. The comparison of LAUCs extracted from the whole test dataset among the three
observers (two CNNs and the human observer) is shown in Fig. 8, with associated standard
errors, in the case of different reconstruction techniques (FBP left panel, IR right panel). A very
good agreement is noticeable between the two CNNs and the human observer, especially in the
case of IR reconstruction. It can be noticed that at the highest CTDIvol (10 m Gy) LAUC values
of MobileNet show a decrease of performance, an anomalous trend that is present also for some
LAUC curves of the human observer in the case of signal with 3 mm diameter (see Fig. 7).

Fig. 7 Human observer performances quantified by LAUC versus CTDIvol, for different object
sizes, contrasts (left: 45 HU, right: 55 HU), and reconstruction techniques (a) FBP and (b) IR.
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This trend is under investigation, and further analysis are under way which include CNR evalu-
ation of the images dataset. Our first hypothesis is that it can be related to the MobileNet noise
modeling.

According to the previous consideration on the human observer performances, a reference
LAUC was selected to evaluate the agreement between human observer and MO, as the one
extracted from images containing 4 mm inserts with a lower concentration (C ¼ 45 HU) was
more explicative of the human observer behavior as a function of CTDIvol. In addition, the
iterative reconstruction technique, being the most common algorithm used by clinicians in
CT protocols, was selected as the reference.

Figure 9 shows the LAUC values for the three observers as a function of CTDIvol in the case
of the reference images subset (4 mm insert, C ¼ 45 HU, IR reconstruction). The LAUC com-
parison in the case of the full dataset, i.e., at different diameters, contrasts, and reconstruction
techniques, is reported in Figs. S4 and S5 in the Supplementary Materials. A very good agree-
ment between the observers is qualitatively noticeable.

In order to address the utility of the full training dataset, we performed two additional CNN
experiments by using reduced dataset, excluding the 6–7 mm inserts and the 3 mm inserts,
respectively. The results of these new experiments are reported in the Supplementary Materials
(Figs. S8–S10) and they support the evidence that the dataset variability and numerousness is
essential, and it contributes to the success of the training in its totality.

In the following, the level of agreement among the observers is quantitatively addressed by
means of appropriate metrics and statistical indices. The MAPE evaluated between the LAUC of

Fig. 8 Overall MO and human observer performances quantified by LAUC versus CTDIvol, for
the two reconstruction techniques (a) FBP and (b) IR, with associated standard errors.

Fig. 9 Comparison of human observer and MO LAUCs versus CTDIvol for the images with
an object size of 4 mm, C ¼ 45 HU, and IR reconstruction, with associated standard errors.
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the human observer and the LAUC of the two MOs is summarized in Table 3 in the case of the
full IR dataset, the full FBP dataset, and the reference subset. Excellent agreement is found
between the trained CNNs and the human observer, with an MAPE below 2% in the case of
IR reconstruction, slightly above 2% in the case of FBP reconstruction, and in general below
5% when considering all of the image subsets, each related to a different relevant parameter
(diameter, contrast, and reconstruction technique), as reported in Tables S2 and S3 in the
Supplementary Material. An exception is represented by the 3 mm inserts that are barely
recognizable by either the human observer or the MO.

The accuracy metric, as defined in Sec. 2.4, was evaluated separately for the localization
and score prediction tasks: the analysis results as a function of the different variables (inserts
diameters, contrast C, CTDIvol, and reconstruction technique) are reported in Figs. 10 and 11,
respectively.

By looking at Figs. 10 and 11, it is noticeable that the UNet is able to localize slightly better
than the MobileNetV2, whereas the latter classifies with a slightly higher overall accuracy than
the UNet. This behavior appears consistent with the intrinsic character of the two CNNs,
which were initially designed, as reported in the literature, for localization/segmentation and
classification tasks, respectively.

Naively expected trends can be observed: the accuracy, in both tasks, increases with object
size (insert diameter), contrast (C), CTDIvol (radiation intensity), and IR reconstruction.

In general, the localization accuracy is above 80%, and score prediction accuracy is well
above 50%; once again an exception occurs for those images containing the 3 mm inserts.

Furthermore, other common multiclass statistical indices were computed to address the
inter-rater agreement in the score prediction task. The values of Cohen kappa, S-statistics,
Krippendorff’s Alpha, and ICC, evaluated for the whole images dataset, are summarized in
Table 4. The Cohen and S-statistics77 indices show a fair to good agreement between the
MOs and human observer score predictions, whereas Alpha and ICC indices show a good to
excellent agreement (see also Table S1 in the Supplementary Material).

Moreover, consistent with the previous LROC analysis, a strong correlation between
the S-statistics and CTDIvol is found for both CNNs, as shown in Figs. S6 and S7 in the

Table 3 MAPE between human observer and MO LAUCs for full IR and
FBP datasets and a representative case (Fig. 9).

CNN FBP IR 4 mm, IR, C ¼ 45 HU

UNet 2.36 1.43 1.19

MobileNetV2 2.49 1.52 2.48

Fig. 10 MOs localization accuracy metric versus each of the independent parameters, from left to
right: insert diameter, insert contrast, CTDIvol, and reconstruction techniques.
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Supplementary Material. These plots indicate that, when increasing CTDIvol and the insert diam-
eter, the ability of the CNNs to predict the scores in agreement with the human observer increases
as well. A very low value of the S-statistics and no correlation with CTDIvol are found in the case
of the 3 mm insert: the very poor CNR in those images is such that the CNNs are mistaken
because they cannot learn from the human observers answers, which are rather imprecise (see
also Fig. 7). If the images containing 3 mm inserts are ruled out from the dataset to compute
the S-statistics, index values are found to be 0.64 for the UNet and 0.66 for the MobileNnet,
indicating a substantial agreement.

4 Discussion

In this work, we developed and characterized MOs based on artificial intelligence for automatic
quality evaluation of phantom CT images. Two CNNs were trained to mimic human observer
images assessment in terms of object detection and localization in CT images acquired on a
specifically designed and manufactured phantom.

First, we collected a big dataset of phantom CT images containing objects of different sizes
and contrasts, acquired at different CTDIvol settings and reconstructed by means of different
techniques (FBP and IR). The dataset was initially submitted to the visual evaluation by human
observers to collect the labels necessary for the algorithm training and testing. In this way,
the labels fully reflect the human observers’ interpretation of the CT images, regardless of the
correctness of human images interpretation, and no internal noise component is necessary to
calibrate the CNN-MO on the average human performance.

To verify the viability of our ultimate goal, which is the possibility of CT protocol optimi-
zation by means of CNN-MOs, in an almost independent way from the chosen CNN, we imple-
mented two different architectures. UNet and MobileNetV2 were originally built and optimized
for the tasks of segmentation and classification, respectively. To the above mentioned purpose,
the relation between the CNN architecture and performance was also investigated. We found that
both models performed quite similarly, suggesting that there are no critical aspects preventing
MO application of them.

Table 4 Human-model inter-raters statistical indices over the entire dataset.

CNN Cohen kappa S-statistics Krippendorff’s Alpha ICC

UNet 0.5 0.56 0.77 0.77

MobileNetV2 0.53 0.57 0.83 0.83

Fig. 11 MOs score prediction accuracy metric versus each of the independent parameters,
as in Fig. 10.

Valeri et al.: UNet and MobileNet CNN-based model observers for CT protocol optimization. . .

Journal of Medical Imaging S11904-13 Vol. 10(S1)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Medical-Imaging on 28 Sep 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

https://doi.org/10.1117/1.JMI.10.S1.S11904.s01


In the case of human observers, the confidence score (classification task) and the localization
task are intrinsically interconnected and cannot be disentangled in the image evaluation process,
whereas CNNs need to be specifically trained to carry out the two tasks, which are partially
independent, using different loss functions. The accuracy metrics (Figs. 10 and 11) and the
inter-rater agreement statistics (Table 4) show a trend in accordance with the above observation:
the two CNNs have different performances in the two tasks of classification (MobileNet is
slightly superior) and localization (UNet is slightly superior), as expected. However, the pre-
dictions of the two tasks, when combined together, for both CNN-MOs achieve very good over-
all performances, measured in terms of the LAUC metric. This result supports the robustness of
the proposed approach and its being fairly independent from the CNN used. The quality of the
trained CNNs was quantified by several statistical indices describing the inter-rater agreement
between the MO and human observer in the confidence score task. The statistics computed on
the full dataset, ruling out the 3 mm inserts with human detectability that is affected by strong
noise correlation, give values of the robust S-statistics above 0.64 for both CNNs, indicating
good general CNN performances.

The evaluation of the overall performance of the proposed algorithms in reproducing the
human observer response was carried out by computing LAUC, a more accurate metric than
AUC because it takes into consideration both localization and classification capability.29 The
MAPE calculated between LAUCs extracted from human observer and MO responses was found
to be below 2.5%, with slightly higher performances in the case of IR reconstructed images.
In addition to the LAUC averaged on the full dataset, we chose a reference subset of images
(with a 4 mm insert, C ¼ 45 HU, and IR reconstruction) reflecting a significant trend as a func-
tion of CTDIvol: the LAUC extracted from human observer data of the reference subset (Fig. 9)
covers a wide range of values, showing poor detectability performances at low CTDIvol and
then rising until saturation. This curve is a suitable starting point for developing an optimization
strategy for the current CT protocol: the value of 6 mGy can be considered the optimum CTDIvol,
above which there is no increase in detectability performances, and thus it is reasonable to
expect a plateau of the diagnostic accuracy also.

In this work, we demonstrated the viability of an image quality assessment approach based on
phantom acquisitions and CNN-MOs, which has a remarkable potential for improvements
toward the final goal of dose optimization.

There are several pitfalls and perspectives to consider. We acknowledge several limitations in
this study that we plan to address in future works. To finally achieve and implement a CT opti-
mization program, a much more variable CT image dataset, acquired by different CT scanners
with well defined setting parameters of a chosen CT protocol is needed. From this perspective,
the proposed algorithms need to be retrained on the new dataset, after collection of new human-
labeled data. However, we believe that, given the potential of the deep learning methods, the
above mentioned effort, representing the next step of the ongoing research, enriched with
elevated generalization capability of the algorithms, will be able to avoid the need to repeat the
time-consuming reader studies for each protocol. Other limitations that we plan to address in
future studies are the decrease of MobileNet performances at the highest CTDIvol, which can be
correlated to the CNR and/or noise modeling by the CNN, and the optimization of the phantom
design in terms of CNR, which in turn affects the objects detectability.

5 Conclusion

In this work, we have developed and investigated the applicability of two MO algorithms based
on CNN-MOs trained to mimic human observer performances in the phantom CT image detec-
tion task. We have demonstrated that two very different AI algorithms are both able to achieve
very good results, thus indicating that the proposed approach is robust and fairly independent
from the CNN used.

The positive results encourage continuing the exploitation of the proposed methodology
toward an automatic image quality assessment based on the evaluation of CT images acquired
on a specifically designed phantom; this should foster a systematic optimization, and possible
standardization, of the large number of CT protocols currently used in radiological facilities,
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with the final goal of reaching the best tradeoff between radiation dose and image quality,
which is an issue of utmost relevance in diagnostic radiology as emphasized by international
organizations (ICRP, IAEA, EURATOM) focused on ionizing radiation risk and radiological
protection.
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