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Abstract
High order harmonic generation by extremely intense, interacting, electromagnetic waves in the
quantum vacuum is investigated within the framework of the Heisenberg–Euler formalism. Two
intersecting plane waves of finite duration are considered in the case of general polarizations.
Detailed finite expressions are obtained for the case where only the first Poincaré invariant does
not vanish. Yields of high harmonics in this case are most effective.

1. Introduction

Present and forthcoming high power laser developments [1–3] open a vast area in the study of nonlinear
physics phenomena related to the electromagnetic field interaction with matter and vacuum [4–12].
Vacuum polarization effects leading to high order harmonics generation in vacuum in the course of the
collision of the extreme intensity laser pulses is one of the more important directions in these investigations
[13–16]. This problem has attracted substantial attention [17–29] because it sheds light on the dynamical
properties of quantum electrodynamics (QED) vacuum in strong electromagnetic fields. The generation of
high order harmonics plays an important role in the steepening of a nonlinear electromagnetic wave, in the
intersecting of strong laser beams [30] and in the formation of the relativistic electromagnetic solitons in
the QED vacuum [31, 32].

In spite of a number of publications [19, 22–27] devoted to the detailed theoretical analysis of the
harmonic generation, the theory of this process is far from complete. There are several theoretical questions
that need to be more thoroughly clarified. They concern the role of the various small parameters governing
the problem that should be ordered and considered simultaneously, taking into account a specific form of
the Heisenberg–Euler Lagrangian [33–36] describing the QED vacuum polarization effects.

The present paper is devoted to the theoretical consideration and clarification of the high order
harmonics generation mechanism within the framework of the Heisenberg–Euler electrodynamics. We
consider here the case where the high order harmonics are generated by two crossing plane electromagnetic
waves in vacuum under the conditions where only one of the two Poincaré invariants of the electromagnetic
field do not vanish. We assume that the finite length electromagnetic pulses are infinite in the two transverse
directions. Applying a Lorentz transformation we can find a boosted frame of reference where the crossing
electromagnetic pulses appear in the form of two counter-propagating waves (e.g. see [38]). Thus the
problem becomes one-dimensional, non-stationary and is described by two independent variables. We
consider the case of electromagnetic waves with wavelengths much larger than the electron Compton
scattering length and with amplitudes substantially lower than the Schwinger field, which corresponds to
the conditions of validity of the Heisenberg–Euler approach [33–36]. In this context we recall that the
problem of extending the Heisenberg–Euler electrodynamics has attracted much interest from the quantum
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field theory community. One of the ways along which such a generalization can be performed is by taking
into account the two-loop correction to the ground state energy of the virtual electron-positron sea in an
almost constant external electromagnetic field, see for example [37] and references therein. Here we prefer
to consider only the lowest non-vanishing order in terms of powers of fine-structure constant α, assuming
the amplitudes of in-coming waves in terms of the Schwinger field as given. This approach allows us to
restrict our investigation to the original Heisenberg–Euler Lagrangian and to simplify considerably our
results in the framework of the Heisenberg–Euler electrodynamics approach.

The paper is organized as follows. In section 2 we present the nonlinear wave equations within the
framework of the Heisenberg–Euler electrodynamics which are used throughout the paper. Section 3
describes the electromagnetic configuration and the Dirac light-cone coordinates convenient for analysing
the problem under consideration. Section 4 is devoted to the derivation of a convenient form of nonlinear
wave equation. The formulation of the scattering problem and the introduction of a perturbation theory
which is used for obtaining final results are in section 5. In section 6 we write the expressions giving the
intensity of the high order harmonics. Section 7 is devoted to a general case corresponding to different
polarizations. The discussion and the summary of the results obtained are presented in section 8.

2. Nonlinear electrodynamics equations describing the quantum vacuum

The analysis of the electromagnetic wave interaction in the QED vacuum is based on the Heisenberg–Euler
Lagrangian density, LHE [33–36]. The sum of the Lagrangians,

L = L0 + LHE, (1)

describes the electromagnetic field in the long-wavelength limit. Here

L0 = − m4

16πα
FμνFμν (2)

is the Lagrangian of classical electrodynamics with the electromagnetic field tensor Fμν defined in terms of
the four-vector potential Aμ as [39]

Fμν = ∂μAν − ∂μAν. (3)

Here and in the following we use dimensionless variables with � = c = 1, me and e are the electron mass
and elementary electric charge, and α = e2/(4π) ≈ 1/137 is the fine structure constant. Thus the
electromagnetic fields are measured in units of m2

e/e, i.e. are normalized on the QED critical field
ES = m2

ec3/e� = 1.32 × 1018 V m−1.
In the Heisenberg–Euler theory, the radiative corrections are described by the LHE term on the

right-hand side of equation (1). It can be written as [36]

LHE =
m4

e

8π2
M(e, b) =

m4

8π2

∫ ∞

0

exp(−η)

η3

[
−(ηe cot ηe)(ηb coth ηb) + 1 − η2

3
(e2 − b

2)

]
dη. (4)

The invariant fields e and b are expressed in terms of the Poincaré invariants

F =
1

4
FμνFμν and G =

1

4
Fμν F̃μν (5)

as

e =

√√
F2 +G2 − F and b =

√√
F2 +G2 + F, (6)

respectively. The dual tensor F̃μν is defined by

F̃μν =
1

2
εμνρσFρσ , (7)

where εμνρσ is the Levi-Civita symbol in four dimensions (ε0123 = −ε0123 = −1). In the 3D notation the
Poincaré invariants are

F =
1

2

(
B2 − E2

)
, G = B · E. (8)

As explained in reference [36], the Heisenberg–Euler Lagrangian in the form given by equation (4)
should be used for obtaining an asymptotic series over the field invariant e and b assuming that they are
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small. In this limit, the function M(e, b) in equation (4) can be expanded for small arguments as:

M(e, b) =
Γ(2)

45

[
(e4 + b4) + 5e2 b2

]
− Γ(4)

945

[
2(b6 − e6) + 7e2 b2(b2 − e2)

]
+

Γ(6)

7 × 452

[
3
(
e8 + b8

)
+ 10e2b2

(
e4 + b4

)
− 7e4b4

]
+ . . . . (9)

Here Γ(x) is the Euler gamma function [40]. The properties of the expansion of M(e, b) in series of powers
of the fields e and b are discussed in reference [41]. The expression (9) yields for the Lagrangian LHE in the
weak field approximation (see also reference [43])

LHE = κM =
κ

45

(
4F2 + 7G2

)
− 4κ

315
F
(
8F2 + 13G2

)
+

8κ

945

(
48F4 + 88F2G2 + 19G4

)
+ . . . (10)

with the constant κ = m4/8π2. In the Lagrangian given by equation (10) the first, second and third terms
on the right-hand side correspond to four-, six- and eight-photon interactions, respectively.

3. The electromagnetic field configuration in the Dirac light-cone coordinates

As explained in the introduction we consider two counter propagating waves along the x-axis. The vector
potential corresponding to the electromagnetic field can be presented in the form

A = Az(t, x)ez + Ay(t, x)ey. (11)

Below we use Dirac’s light cone coordinates x− and x+ defined as (see e.g. reference [45])

x+ =
x + t√

2
, x− =

t − x√
2
. (12)

The Lorentz transform of the light-cone variables under a boost along x with velocity β is given by

x′+ =
x′ + t′√

2
= e−η x + t√

2
= e−ηx+, (13)

x′− =
t′ − x′√

2
= e+η t − x√

2
= e+ηx−, (14)

with a prime denoting variables in the boosted frame of reference and η equal to

η = ln

√
1 + β

1 − β
. (15)

The following shorthand stands for the partial derivatives:

∂+f =

(
∂f

∂x+

)
x−

, ∂−f =

(
∂f

∂x−

)
x+
. (16)

Then the derivatives are transformed as:

(∂−)′ = e−η∂− and (∂+)′ = e+η∂+, (17)

respectively.
For simplicity we consider in this section interacting electromagnetic waves of the same polarization.

The general polarization case is considered in section 7. In the case of the same polarizations, the invariant
G vanishes identically. The coordinate system can be chosen so that Ay = 0. We will use a notation a(x, t)
for Az(x, t).

Calculating the derivatives of a(x, t) with respect to the coordinates x+ and x−,

u = ∂−a and w = ∂+a, (18)

we find the relationships between u and w and the electric, ez = −∂ta, and magnetic, by = −∂xa, field
components. They read

u = − ez − by√
2

and w = − ez + by√
2

. (19)

3
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The field variables u and w are not independent of each other. Due to commutation of partials,
∂−+a = ∂+−a, the field variables u and w obey the equation

∂−w = ∂+u. (20)

The Lorentz transformation of the fields u and w

w′ = −
e′z + b′y√

2
= −e+η ez + by√

2
= e+ηw, (21)

u′ = −
e′z − b′y√

2
= −e−η ez − by√

2
= e−ηu (22)

shows that the w and u are transformed as the − and + components of a contravariant four-vector,
respectively. The field product uw = (b2

y − e2
z )/2,

u′w′ = uw, (23)

is Lorentz invariant and is equal to the first Poincaré invariant F.

4. Description of the wave interaction in terms of canonical momentum conservation
equations

In the case of interacting electromagnetic pulses with the same polarization, the Lagrangian given by
equation (1) can be written in terms of the field variables u and w, defined by equation (18), as

L = − m4

4πα
[wu + αQ(wu)] = − m4

4πα
L̄(u,w). (24)

Here
L̄ = wu + αQ(wu) (25)

is the normalized Lagrangian, where it is assumed that uw � 1 and

Q(uw) = − 1

2π
M

(
0,
√

2uw
)
. (26)

The function Q(ζ) can be represented in the form of the series

Q(ζ) =
∞∑

m=2

bmζ
m (27)

with coefficients bm

bm =
23(m−1)B2m

πm(2m − 1)(m − 1)
(28)

proportional to the Bernoulli numbers [40], Bn. These coefficients can be obtained from the general
expansion of M(e, b) in series of powers of e, and b, (see reference [41]) setting e = 0 and b =

√
2ζ , where

ζ is the argument of the function Q(ζ) (see equations (26) and (27)). It represents actually the field
invariant F in equation (8). Several leading order coefficients bm in the expansion (27) are presented in
table 1. Using the asymptotic dependence of the Bernoulli numbers at m →∞ (see reference [40]
(section 24.11))

B2m 	 (−1)m+14
√
πm

( m

πe

)2m
, (29)

we obtain the asymptotic expression for the coefficients bm,

bm 	 (−1)m+1

4
√
πm5

(
23/2m

πe

)2m

. (30)

We see that the coefficients of the series for Q(ζ) in equation (27) grow faster than exponentially for large
m. Thus this series can be considered only as an asymptotic series and should be truncated by taking into
account only a finite number m0 of its terms. Nevertheless, this finite number m0 is rather large for the
relevant values of |uw| � 1. The truncation number m0 can be estimated as a maximum of m for which the
terms in equation (27) are still decreasing. This criterion gives

m0 ∼
πe√
8|uw|

. (31)

4
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Table 1. Several coefficients in the series of Q(ζ), equation (27).

m bm m bm

2 − 2
45π 6 − 5660 672

225 225π

3 16
315π 7 65 536

117π

4 − 64
315π 8 − 474 087 424

26 775π

5 512
297π 9 45 997 883 392

61 047π

Thus the condition m � m0 is very weak allowing the use of a substantially large number of the terms in
equation (27). This problem was considered from different points of view also in references [41, 42].

The Euler–Lagrange equation corresponding to the Lagrangian (24) and the equation (20) gives the
field equations. They can be written as a current conservation equation

∂+

(
∂L̄
∂w

)
+ ∂−

(
∂L̄
∂u

)
= 0. (32)

We can define the canonical momenta

Π̄+ =
∂L̄
∂w

= u[1 + αQ′(wu)], (33)

Π̄− =
∂L̄
∂u

= w[1 + αQ′(wu)], (34)

where Q′(ζ) denotes differentiation of Q(ζ) with respect to its single argument. Then equation (32) takes
the form

∂+Π̄
+ + ∂−Π̄

− = 0. (35)

Using the above obtained relationships we can find the explicit form of the field equation. They can be
written as

∂+[u + uαQ′(wu)] + ∂−[w + wαQ′(wu)] = 0, (36)

∂−w = ∂+u. (37)

We can use equation (37) to exclude either ∂−w or ∂+u from equation (36). As a result we obtain a set of
two equivalent symmetric field equations:

∂+

[
u +

α

2
uQ′(uw)

]
= −α

2
∂−

[
wQ′(uw)

]
, (38)

∂−

[
w +

α

2
wQ′(uw)

]
= −α

2
∂+

[
uQ′(uw)

]
. (39)

This form of the field equations is convenient for applying a perturbation approach because in the region
where w = 0 equation (38) takes the form

∂+u = 0, hence u = u(x−), (40)

whereas in the region where u = 0 equation (39) becomes

∂−w = 0, hence w = w(x+). (41)

The momenta introduced above can be represented in the same regions as

Π̄+ = u = u(x−), Π̄− = 0, (42)

Π̄− = w = w(x+), Π̄+ = 0, (43)

respectively.
It is also useful to introduce the energy momentum tensor

T̄μ
λ = aλ

∂L̄
∂aμ

− δμλ L̄ (λ ,μ = ±), (44)

where aλ = ∂λa and δμν is the Kronecker delta. The energy momentum tensor is useful to express the
conservation of energy and momentum of the field

∂μTμ
λ = 0. (45)

5
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In terms of the variables u and w the tensor T̄μ
λ components can be written as

T̄+
+ = w

∂L̄
∂w

− L̄ = α
[
uwQ′(uw) − Q(uw)

]
, (46)

T̄+
− = u

∂L̄
∂w

= u2
[
1 + αQ′(uw)

]
, (47)

T̄−
+ = w

∂L̄
∂u

= w2
[
1 + αQ′(uw)

]
, (48)

T̄−
− = u

∂L̄
∂u

− L̄ = α
[
uwQ′(uw) − Q(uw)

]
. (49)

We see that the diagonal components, T̄+
+ = T̄−

−, are equal to each other due the tensor symmetry
Ttx = Txt, see also reference [44].

5. Perturbation theory to obtain the solutions of the scattering problem

We formulate the scattering problem for the field equations (36) and (37) or (38) and (39).
In the case of non-interacting waves, the functions u and w do not change since they are equal to

u = u(x−) and w = w(x+). Let us consider the case where the functions u = u(x−) and w = w(x+)
describe the two pulses of finite length. The length is L+ for the pulse propagating in the x+ direction and it
equals L− in the case of the pulse propagating in the in the x− direction. We assume that the amplitude of
the u(x−) function is approximately equal to u0 at |x−| � L−, and it becomes exponentially small as
compared with u0 outside this region. We assume also that there are no spatial structures in the u(x−) pulse
with scale-length much less than L−. We set analogous assumptions for the w(x+) function with the
obvious substitution: −→+. As was noticed above, the pulse amplitudes are substantially small,
u0w0 � 1. We will consider the case where the nonlinear effects, leading to harmonics generation of
different orders, can be treated perturbatively. Thus, we should exclude too small and too large values of the
ratio L−/L+. This point will be considered below. Here we present only a simplified condition for the
applicability of the perturbation approach used below:

αw2
0 � L−

L+
� 1

αu2
0

. (50)

This strong inequality is Lorentz-invariant, that means that all its terms have the same dependence on the
boost parameter η given by equation (15). This criterion will be made more precise below when we will
further specify the parameters of the pulses.

Let us now take into account the interaction between the waves u and w. It takes place only in the
following ‘rectangular’ domain, Ω, on the (x+, x−)-plane, where both the following inequalities are valid:

|x−| � L−, and |x+| � L+. (51)

In this ‘rectangular’ region Ω, both amplitudes u and w depend on both the independent coordinates: x+

and x−. Outside this region, when |x−| � L− or |x+| � L+, the waves do not interact with each other, and
w depends only on the coordinate x+, whereas u depends only on the coordinate x−. We may distinguish
incoming and outgoing waves in the latter combined region:

w(|x+| � L+ , x− � L−) = win(x+), (52)

u(−x+ � L+ , |x−| � L−) = uin(x−), (53)

w(|x+| � L+ ,−x− � L−) = wout(x+), (54)

u(x+ � L+ , |x−| � L−) = uout(x−). (55)

Outside all these regions, including the Ω region, either the field u or the field w, or both are exponentially
small or vanish.

The scattering problem can be formulated now as follows: to find the outgoing waves wout(x+) and
uout(x−), knowing the incoming waves win(x+) and uin(x−).

6
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5.1. Perturbative solution of 1st order
Equations (38) and (39) can be rewritten in the following integral form that takes into account the initial
conditions (52) and (53):

u +
α

2
uQ′(uw) = uin − α

2

∫ x+

−∞
∂−[wQ′(uw)] dx+, (56)

w +
α

2
wQ′(uw) = win − α

2

∫ x−

+∞
∂+[uQ′(uw)] dx−. (57)

In view of equations (54) and (55) we can formally send x± to ±∞ in equations (56) and (57) and
obtain the following scattering relationships:

uout = uin − α

2

∫ +∞

−∞
∂−[wQ′(uw)] dx+, (58)

wout = win +
α

2

∫ ∞

−∞
∂+[uQ′(uw)] dx−. (59)

For sufficiently small uw we are able to treat equations (58) and (59) perturbatively, and to substitute
into the integrands uin and win instead of u and w, respectively. Then we obtain:

uout = uin − α

2

[∫ +∞

−∞
(win)2Q′′ (uinwin

)
dx+

]
∂−uin, (60)

wout = win +
α

2

[∫ ∞

−∞
(uin)2Q′′ (uinwin

)
dx−

]
∂+w

in. (61)

For this perturbation procedure to be relevant, the second terms in the right hand sides of these equations
must be much less than the first terms. If we take for this estimation only leading term in Q(ζ → 0) ∝ ζ2,
then we obtain the strong inequality (50).

The leading order of Q(ζ) ∝ ζ2, caused by four-photon interaction, leads to the following delays

α

2
Q′′ (0)

∫ +∞

−∞
(win)2 dx+, (62)

and
α

2
Q′′ (0)

∫ ∞

−∞
(uin)2 dx−. (63)

of the uout and wout pulses and with respect to uin and win, respectively.
This corresponds to the phase shift between the interacting waves discussed in references [44, 46]. The

strong inequality (50) ensures that the delays are much shorter than L− and L+, respectively. These delays
do not correspond to harmonic generation, although they determine the applicability of our approach. The
next, subleading orders of Q(ζ → 0) cause generation of the harmonics.

Our approach uses the following set of small parameters: α, u0w0, αw2
0L+/L−, and αu2

0L−/L+. Here we
address the question whether the next order corrections to equations (60) and (61), as they would appear
after the next iterations of equations (56) and (57), or the subleading terms in Q are more important for
harmonic generation. To answer this question we use the structure of L̄, given by equations (24), (26), (27),
(56) and (57) as the equations of our perturbation theory starting from zero order: u = uin and w = win.
The combined result of the iterations of equations (56) and (57) and of retaining the higher order terms in
the expansion of the function Q(u,w) can be written symbolically as

uout = uin +

∞∑
�=1

∞∑
m=0

Û�mw(αuw)�(uw)m

∣∣∣∣∣
in

, (64)

wout = win +

∞∑
�=1

∞∑
m=0

Ŵ �mu(αuw)�(uw)m

∣∣∣∣∣
in

, (65)

where Û�m and Ŵ �m are linear integro-differential operators that do not contain any small or large
parameters. They act implicitly on all arguments x± to the right of them separately. Here we use the
expansion (27) of Q(ζ).

Due to the conservation of the kinematic momentum, the harmonic with the number n of the wave u
will be generated by the terms proportional to un, un+2, etc. The largest term of this type corresponds to the
term in equation (64) with (�, m) = (1, n − 1). All other terms contributing to the same n-harmonic will

7
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have higher orders of α or/and higher orders of uw. Thus the leading order contribution to the amplitude of
the n-harmonic comes from the term of the form w(αuw)un−1wn−1 in agreement with equation (60). The
same conclusion can be drawn for the w-wave.

We may conclude that the higher order terms in the expansion of the function Q(uw) determine the
leading order contribution to harmonic generation, and hence the expressions (60) and (61) are sufficient
to calculate the intensities of the harmonics in the leading order relatively to the small parameters.

6. High order harmonics

6.1. General considerations
We consider here two plane waves of the same polarization, when the incident spectrum corresponding to
the wave uin is narrow enough. In this case we may choose uin in the form:

uin(x−) = Re
{

U0(x−)eiω−x−
}

, (66)

where U0 is a smooth function of its argument with maximum value Ū0, and decaying at least exponentially
outside the region |x−| � L−. The carrier frequency of the wave is ω−. We assume that ω−L− is significantly
larger than one. We assume that U0 is almost constant at the spatial-time scales of the order of 1/ω−. The
spectral relative half width of the wave is about

Δω−
ω−

∼ 1

ω−L−
. (67)

Instantaneous intensity of this wave (averaged over its carrier period) is equal to

I1 =
m4

8πα
U0U∗

0 . (68)

Here the asterisk ‘∗’ denotes the complex conjugation. This expression is in accordance to the expressions
for the energy momentum tensor (46)–(49) in terms of u and w. We will skip analogous comments below.

It is obvious that the spectral width of the n-harmonic, Δω(n)
− grows with n. We calculate Δω(n)

− below in
this section. We are able to separate the harmonics with adjacent numbers, when Δω(n)

− is less than, for
example, half spectral distance between the harmonics, ω−:

2Δω(n)
− < ω−. (69)

We will not be interested here in the detailed form of the harmonic spectral line for separated
harmonics, but only in the total intensity in the harmonic of order n, integrated over its spectral line.

As we explain above, the leading term of the n-harmonic wave field, uout
(n) (x−), is determined by the

following expression, obtained from equation (58):

− α(n + 1)bn+1L+∂−(uin)n
〈

(win)n+1
〉

, (70)

where 〈
(win)n+1

〉
=

1

2L+

∫ ∞

−∞

[
win

(
x+

)]n+1
dx+, (71)

and

∂−(uin)n = ∂−

[
1

2

(
U0eiω−x− + U∗

0 e−iω−x−
)]n

=
1

2n−1
∂− Re

(
Un

0 einω−x−
)
+ . . . . (72)

Only the first term in equation (72) contributes to uout
(n) (x−), the other terms contribute to the n − 2-,

n − 4- and lower harmonics. Hence we obtain:

uout
(n) (x−) = α

n(n + 1)bn+1

2n−1
ω−L+

〈
(win)n+1

〉
Im

(
Un

0 einω−x−
)
. (73)

Then the leading term of the ‘instantaneous’ intensity Iout
n (x−) of the n-harmonic averaged over its carrier

period can be expressed as:

Iout
n (x−) =

m4α

8π

n2(n + 1)2b2
n+1

22(n−1)
(ω−L+)2

〈
(win)n+1

〉2|U0(x−)|2n. (74)

8
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We recall that this intensity is integrated over the spectral line of the n-harmonic. The normalized intensity
becomes

Iout
n

Iin
1

= α2 n2(n + 1)2b2
n+1

22(n−1)
(ω−L+)2

〈
(win)n+1

〉2|U0(x−)|2n−2. (75)

This expression is invariant relative to boosting. We may rewrite the latter expression by order of
magnitude:

Iout
n

Iin
1

∝ (ω−L−)2

[
αw2

0

L+

L−

]2

(w0u0)2n−2, (76)

where a coefficient depending only on n has been dropped. The last two terms in equation (76) are small
parameters ensuring the validity of our approach. It breaks completely even on a qualitative level, when
αw3

0u0L+ω− becomes approximately equal to unity. In this case, secular effects in evolution of the wave
shape become very important. The theory presented in references [30, 31] treated the case when the latter
parameter is approximately equal to or much higher than unity.

Equation (74) is written for a general profile of win(x+) that does not contain any additional spatial
parameter besides L+. However, when this profile has the form similar to equation (66) we find that

win(x+) = Re
{

W0(x+)eiω+x+
}

, (77)

with ω+L+ � 1, then
〈

(win)n+1
〉

becomes considerably less than Wn+1
0 for even values of n. It means that

in this case harmonics with even numbers will be significantly suppressed with respect to the estimation
(76).

The spectrum of the n-harmonic is determined by the multiplier U0(x−)n exp(inω−x−) in the
expression (73). If we approximate U0(x−) in the region close to its maximum as

U0(x−) ≈ Ū0

[
1 − 1

2

(
x−

L−

)2
]

, (78)

where Ū0 is a constant equal to an amplitude of the uin-wave, then for sufficiently high n the spectrum of
the n-harmonic will be determined by the following x− dependent factor:

exp

[
−n

2

(
x−

L−

)2

+ inω−x−
]
. (79)

Its Fourier transform is proportional to

exp

[
− (ω − nω−)2L− 2

2n

]
. (80)

Hence the spectral width is

Δω(n)
− 	

√
n

L−
. (81)

In this case, the condition (69) for harmonic spectral separation is fulfilled, when

n < nmax ∼
(ω−L−)2

4
. (82)

The latter inequality is non-restrictive. It allows us to skip consideration of the opposite case, when n is
considerably is above nmax.

6.2. Formulas for the n-harmonic generation in physical units
We use in this section the presentations (66) and (77) for the in-waves, with the profiles given by

U0(x−) = Ū0 exp

[
− (x−)2

2(L−)2

]
, (83)

W0(x+) = W̄0 exp

[
− (x+)2

2(L+)2

]
. (84)

9
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Figure 1. We show gn versus ω+L+ for odd values of n = 3, 5, . . . , 15.

Figure 2. We show gn versus ω+L+ for even values of n = 2, 4, . . . , 10.

We introduce a relationship between the intensities of two incoming waves, averaged over carrier periods,
and the parameters |U0| and |W0| as follows:

|Ū0|2 =
Iu

5.8095 × 1028W cm−2
, (85)

|W̄0|2 =
Iw

5.8095 × 1028Wcm−2 , (86)

where Iu and Iw are maximal intensities of the u and win-waves, respectively.
The results described by equations (74) and (75) contain the dimensionless parameter

〈
(win)n+1

〉
that

depends on the w-pulse profile. We present the parameters below in the particular case where W0 is a real
number: 〈

(win)n+1
〉
= Wn+1

0 gn(ω+L+). (87)

We do not consider here phase envelope effects that are important for a short enough w-pulse. We set
actually a certain phase to have maximal yields for the even harmonics of the u-wave. The coefficient
gn(ω+L+) in equation (87) depends only on the harmonic number and on the parameter ω+L+ describing
the in-pulse of the w-wave. The plots of gn versus ω+L+ are shown in figures 1 and 2 separately for odd and
even n. For even n the coefficient gn becomes equal to zero at ω+L+ →∞, whereas for odd n they tend in
this limit to constant values:

g2�−1(∞) =

√
π (2�)!

22�+1
√
�(�!)2

. (88)

The ratio of the energy of the n-harmonic, Eout
n , in the outgoing u-wave to the initial incoming energy of

this wave is equal to
Eout

n

E in
1

= fng2
n

[
αω−L+|W̄0|2

]2|Ū0W̄0|2(n−1)
. (89)

where

fn =
n2(n + 1)2b2

n+1

22n−2
√

n
. (90)

10
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Table 2. Coefficients fn and gn(∞) in equation (89).

n fn gn(∞) n fn gn(∞)

2 0.06568 0 9 2.842 × 1014 0.08162
3 0.8580 0.1599 10 4.837 × 1017 0
4 37.15 0 11 1.203 × 1021 0.07017
5 3.973 × 103 0.1212 12 4.227 × 1024 0
6 8.826 × 105 0 13 2.043 × 1028 0.06153
7 3.629 × 108 0.09753 14 1.326 × 1032 0
8 2.540 × 1011 0 15 1.133 × 1036 0.05479

Table 2 presents the values of fn and gn(∞) for several n.
The dimensionless and Lorentz invariant factor in the brackets in equation (89) is one of the small

parameters of the theory. It is used instead of the simplified form αw2
0L+/L− introduced above to provide a

more accurate description in the limit ω−L− � 1.
The limit ω+L+ → 0 in equation (89) corresponds to the case when the w-wave becomes actually a

constant amplitude cross electromagnetic field. This fact is in accordance with the results of references
[30, 31], where the generation of the second harmonic due to six-photon interaction plays a main role in
the steepening of nonlinear waves on the constant background of a counter-propagating cross
electromagnetic field.

7. Interaction of two electromagnetic plane waves of general polarization

7.1. Definitions and governing equations
We use here the same frame of reference that was introduced in section 3. Taking into account the general
expression (11) we may define the fields

ui = ∂−Ai; wi = ∂+Ai, (91)

where, and below in this section, i, j, . . . span the set {y, z}. The electric and magnetic field components can
be expressed as

Ei =
ui − wi√

2
; Bi = −eij

uj + wj√
2

. (92)

Here eij is the skew-symmetric two-matrix with ezy = 1. The field invariants f and g can be written as

f = uiwi = (B2 − E2)/2; (93)

g = eijuiwj = (B · E) /2. (94)

The Lagrangian for this problem can be written in a way similar to the case given by equation (24). It reads

L = − m4

4πα

[
f + αQ(f , g)

]
= − m4

e

4πα
L̄, (95)

where
L̄ = f + αQ(f , g), (96)

and

Q(f , g) = − 1

2π
M

(√√
f 2 + g2 − f ,

√√
f 2 + g2 + f

)

=
∑

m+n�2

bm, n f mgn. (97)

Although L̄ and Q are now functions of four field components they can be presented in the form of
functions of two arguments which are two field invariants, f and g. We note that the Lagrangian L̄ and Q,
introduced in section 4, that describe the interaction of two electromagnetic waves of the same polarization
are functions of the two field components u and w, which were combined in one field invariant uw.

The field invariant g is a pseudo-scalar, hence L should be an even function of it. As a result all
coefficients bm,n in the sum given by equation (97) with odd n vanish. It is possible to obtain explicit
analytic expressions for the coefficients bm,n. However the final expressions are too cumbersome for their
presentation in this paper. We will present below their particular values, appearing in the problem for
perpendicular polarizations.

11
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In a way similar to that used in section 4, the normalized Lagrangian (96) and (97) gives the equations
of the Heisenberg–Euler electrodynamics

∂+

(
∂L̄
∂wi

)
+ ∂−

(
∂L̄
∂ui

)
= 0. (98)

They can be written as
∂+

[
uiL̄f − eijujL̄g

]
+ ∂−

[
wiL̄f + eijwjL̄g

]
= 0. (99)

As a result, using equation (96), we obtain

∂+
[
ui + α

(
δijQf − eijQg

)
uj

]
+ ∂−

[
wi + α

(
δijQf + eijQg

)
wj

]
= 0. (100)

To get a closed system of the field equations in terms of ui and wi (instead of Ai) we may use the following
direct consequence of equation (91)

∂−wi = ∂+ui. (101)

The following system of the field equations, that is equivalent to equations (100) and (101), is more
suitable for the perturbation theory in terms of α:

∂+ui +
1

2
α
{
∂+

[(
δijQf − eijQg

)
uj

]
+ ∂−

[(
δijQf + eijQg

)
wj

]}
= 0, (102)

and

∂−wi +
1

2
α
{
∂−

[(
δijQf + eijQg

)
wj

]
+ ∂+

[(
δijQf − eijQg

)
uj

]}
= 0. (103)

Integrating equations (102) and (103) along the lines x∓ = const. respectively, we obtain the following
exact relationships between in and out states:

uout
i (x−) = uin

i (x−) − α

2

∫ ∞

−∞
∂−

[(
δijQf + eijQg

)
wj

]
dx+, (104)

and

wout
i (x+) = win

i (x+) +
α

2

∫ ∞

−∞
∂+

[(
δijQf − eijQg

)
uj

]
dx−. (105)

7.2. Perturbative approach
Here we consider the case of small |f| and |g|. We substitute in the expressions on the right hand sides of
equations (104) and (105) the unperturbed u and w i.e. uin(x−) and win(x+). Assuming strong inequalities
similar to those given by equation (50), we obtain for the out-wave

uout
i (x−) = uin

i (x−) − α

2

(
∂−uin

k

) ∫ ∞

−∞
win

j w
in
�

[
δijδk�Qff +

(
δijek� + eijδk�

)
Qfg + eijek�Qgg

]in
dx+. (106)

The subscript in at the bracket means that f and g entering it are calculated with uin
i and win

i . Here the uin
i

waves do not depend on the x+ coordinate. Similar expressions can be written for wout
i − win

i waves.

7.3. Harmonic generation by two counter-propagating waves with perpendicular polarizations
To demonstrate how polarization can affect harmonic generation we consider here the case where the
incoming waves have only uz and wy components, i.e. where uin

y = win
z = 0. In this case equation (106)

becomes:

uout
z (x−) = uin

z (x−) − α

2

(
∂−uin

z

) ∫ ∞

−∞
Qgg (0, uin

z w
in
y )

(
win

y

)2
dx+. (107)

Note that f = 0 and g = uzwy exactly in this case. Hence we need to know only the coefficients b0,n in the
expansion (97). They are equal to:

b0,2� = −24�−1Γ(4�− 2)

π

2�∑
σ=0

(−1)σ+1 B4�−2σB2σ

(4�− 2σ)! (2σ)!
(108)

for � = 1, 2, . . . . These coefficients can be obtained from the general expansion [41] of M(e, b) in series of
powers of e, and b, setting e = b = g. Several leading coefficients b0,n are presented in table 3. We have at
�→∞:

b0,2��1 	 − 8

(4�)5/2
√
π

(
4�

eπ

)4�

. (109)
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Table 3. Coefficients b0,n.

n

2 4 6 8

b0,n − 7
90π − 76

945π − 185 984
75 075π − 7007 744

16 065π

Table 4. Coefficients f̄ n in equation (111).

n f̄ n n f̄ n

3 0.005 321 11 8.476 × 1013

5 1.331 13 8.802 × 1019

7 7.061 × 103 15 2.999 × 1026

9 3.305 × 108 17 2.871 × 1033

We see that expression (107) is quite similar to what we have in section 5.1, see for comparison
equation (60). The differences are only in the subscripts y and z and in the appearance of this different
coefficients in the present expansion of Qgg in comparison with the coefficients in the expansion of Qff (in
our present terminology). These correspondences allow us to use our previous expressions (75) and (89) to
obtain new expressions for the intensities of the high order harmonics for the present combinations of
polarizations.

In this way we obtain the following results. The normalized intensity of the n-harmonic (integrated over
the separate spectral line of the harmonic) becomes (n � 3):

Iout
z,n

Iin
z,1

= α2 n2(n + 1)2b2
0,n+1

22(n−1)
(ω−L+)2

〈
(win

y )n+1
〉2|Uz,0(x−)|2n−2. (110)

Here the subscripts y and z indicate the direction of the electric fields of the u- and w-waves respectively.
The subscripts 1 and n indicate the number of the harmonic in incoming and outgoing uz-waves. The
parameters ω− and Uz,0(x−) describe the incoming uz-wave in accordance with definition (66). We imply
the obvious insertion of the subscript z into that expression. The parameters L+ and

〈
(win

y )n+1
〉

, describing
the incoming wy-wave are defined by equation (71) with the obvious insertion of the y subscript. Here, L+

is the finite length of the wy-wave in the x+ direction.
For the total relative energy of the n-harmonic in the outgoing uz-wave we now have

Eout
z,n

E in
z,1

= f̄ n g2
z, n

[
αω−L+|W̄y, 0|2

]2∣∣Ūz, 0W̄y, 0

∣∣2(n−1)
. (111)

where

f̄ n =
n2(n + 1)2b2

0, n+1

22n−2
√

n
, (112)

and Ūz, 0, W̄y, 0, and gz, n(ω+L+) are defined analogously to equations (83), (84) and (87). Plots for the
functions gz,n(ω+L+) are presented in figure 1, whereas table 4 presents the values of f̄ n for several n. The
limits gz,n(∞) are presented in table 2. We may recall here that only the odd harmonics is generated for such
a combination of polarizations at least in this approximation, whereas the suppression of the even
harmonics for parallel polarization was only approximate even in our present order. We see also that the
numerical coefficients fn are considerably larger than the numerical coefficient f̄ n with the same n: compare
tables 2 and 4. It means that when the polarizations of the two waves are parallel the high harmonic
generation, is much more effective than in the case of perpendicular polarizations.

8. Discussion and conclusions

We analyse the high order harmonics generation during the interaction in vacuum of two strong plane
electromagnetic waves. The harmonics generation occurs inside the region of the waves intersection. The
results obtained are presented in the frame of reference where the waves are counter-propagating.

The theory presented in our paper takes into account the nonlinear polarization of the QED vacuum
caused by the existence of a sea of virtual electron–positron pairs. The theory is developed within the
framework of the Heisenberg–Euler electrodynamics implying relatively low amplitude and
long-wavelength interacting waves.
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The regime of high order harmonics generation is described by using the perturbation theory giving the
expressions for the high order harmonics to leading order in terms of the small parameters. We show that
the leading contributions to the number n harmonic are obtained by expanding the Heisenberg–Euler
Lagrangian in power series of the electromagnetic field amplitudes and not by iterations of the nonlinear
contribution to the Heisenberg–Euler Lagrangian. In terms of the QED theory we can say that the
amplitude of the nth harmonic is determined by the 2(n + 1)-photon Feynman diagram with one electron
loop, but not by the combination of several diagrams with fewer photon lines attached to the electron loops.
Although this statement is based on the consideration of two interacting plane waves we may expect that it
is valid in a general case. To see this, one can evaluate the impact of nonlinear currents entering the
electromagnetic field equations of the Heisenberg–Euler electrodynamics, using only unperturbed electric
Ein(x, t) and magnetic Bin(x, t) fields. As a result, the harmonic intensities can be calculated as the
electromagnetic radiation emitted by these nonlinear currents. The unperturbed Ein(x, t) and Bin(x, t) fields
can be obtained by solving the linear Maxwell equations. The emitted electromagnetic fields, Eout(x, t) and
Bout(x, t), can also be found by solving the linear Maxwell equation with an external source produced by the
nonlinear currents. This approach gives the leading order intensity of all harmonics for any polarization of
the in-waves (see also references [22, 24, 26, 47]).

From the expressions obtained above it follows that to generate one quantum of the 5th number
harmonic in the collision of two counter-propagating laser beams focused in the 1 μm focus spot a laser
intensity approximately equal to 5 × 1026 W cm−2 is needed. Here we assume a 1 μm wavelength laser
beam with 30 fs duration. To have the same photon amount for the 3rd harmonic an intensity
approximately equal to 3.3 × 1025 W cm−2 is required. This estimate corresponds to interacting waves with
parallel polarizations. The interaction of perpendicular polarized pulses is significantly less efficient in
generating high order harmonics.
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