
Statistical Features of Systems driven by

non-Gaussian Processes: Theory & Practice

Dario Lucente1,2, Andrea Puglisi1,2, Massimiliano Viale1,2,

Angelo Vulpiani1

1 Dipartimento di Fisica - Università La Sapienza - 00185 Rome, Italy
2 Istituto dei Sistemi Complessi - Consiglio Nazionale delle Ricerche, 00185 Rome,

Italy

Abstract. Nowadays many tools, e.g. fluctuation relations, are available to

characterize the statistical properties of non-equilibrium systems. However, most

of these tools rely on the assumption that the driving noise is normally distributed.

Here we consider a class of Markov processes described by Langevin equations driven

by a mixture of Gaussian and Poissonian noises, focusing on their non-equilibrium

properties. In particular, we prove that detailed balance does not hold even when

correlation functions are symmetric under time reversal. In such cases, a breakdown of

the time reversal symmetry can be highlighted by considering higher order correlation

functions. Furthermore, the entropy production may be different from zero even

for vanishing currents. We provide analytical expressions for the average entropy

production rate in several cases. We also introduce a scale dependent estimate for

entropy production, suitable for inference from experimental signals. The empirical

entropy production allows us to discuss the role of spatial and temporal resolutions

in characterizing non-equilibrium features. Finally, we revisit the Brownian gyrator

introducing an additional Poissonian noise showing that it behaves as a two dimensional

linear ratchet. It has also the property that when Onsager relations are satisfied its

entropy production is positive although it is minimal. We conclude discussing estimates

of entropy production for partially accessible systems, comparing our results with the

lower bound provided by the thermodynamic uncertainty relations.

1. Introduction

A deep comprehension of non-equilibrium systems is one of the most relevant open

problems in statistical mechanics [1]. A crucial aspect of the non-equilibrium condition

is the presence of currents induced by some external constraints: physical currents - in

the framework of Markov processes - imply that the detailed balance does not hold and,

in general, that the time-reversal symmetry is statistically broken, or, equivalently, that

the entropy production is positive [2, 3, 4, 5]. From a mathematical point of view the

above statement can be assumed as satisfactory and it has been thoroughly considered in

the context of several Markov processes (e.g., Langevin equations and master equations),

in particular an explicit expression for the entropy production can be introduced as the

log-ratio between the probability of a long trajectory and that of its time reversal [6].
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Among the interesting issues which deserve investigation, one should include the design

of efficient methods to characterise the ”degree of irreversibility”, something also called

”distance from equilibrium” [7], which typically requires a proper modelling with a

suitable mathematical description of the system [8, 9, 10, 11, 12, 13]. In this paper we

discuss the role of Gaussian or non-Gaussian statistics for discriminating the degree of

irreversibility of a system.

Starting from the archetypal Brownian Motion, a plethora of phenomena have been

modelled and investigated in terms of stochastic differential equations with a Gaussian

random force (e.g. Gaussian white noise) [14]. It is a matter of fact that Gaussian

processes are ubiquitous in science, the reason is - basically - the central limit

theorem, which can be succinctly summarised saying that a linear combination of many

independent variables tends to behave as a Gaussian variable. This - already at a

qualitative level - is a strong argument for modelling the random forces appearing in

stochastic differential equations in the form of Gaussian white noises. For the same

reason, a large part of stochastic thermodynamics is devoted to models with such a kind

of noise, which has been successfully adopted even for systems which are inherently out

of equilibrium [3, 4, 5]. There are several cases, for instance coming from the physics

of driven granular gases or self-propelled particles, where the usual linear Langevin

equation is considered to be a satisfying approximation for the description of the

dynamics of a massive probe, particularly in its diffusive regimes [15, 16, 17, 18].

More accurate analyses have shown, however, that - in some cases - linear differential

equations with Gaussian white noises are not able to describe some important features of

the underlying dynamics, in particular they cannot catch the non-equilibrium statistical

properties of the system. In order to restore non-equilibrium in the model, a suitable

non-Gaussian noise is necessary [19].

At a first glance, the use of non-Gaussian noise can sound rather odd, on the contrary

there are both physical and mathematical justifications for it. For instance we can

consider a massive intruder kicked by instantaneous collisions with agitated granular

particles: if the number of collisions in a given ∆t is not very large, the use of a Gaussian

white noise is questionable. There are cases where it is more appropriate to take, as

random force, a compound Poisson noise ζ(t), see Section 2 for details. In addition, it is

possible to show that non-Gaussian white noises like ζ(t) can be derived from microscopic

theories through a systematic expansion of the Boltzmann-Lorentz equation governing

the evolution of the intruder in a granular gas [20, 21, 22, 23]. Finally, we mention

that, even from a mathematical point of view, by virtue of the Levy-Ito decomposition

theorem, the compound Poisson noise is one of the three contributions to Levy processes,

i.e. processes with independent and identically distributed increments [24, 25, 26].

The structure of the paper is the following. Section 2 is devoted to an analytical

and numerical investigation of systems with non-Gaussian forcing. We show that it

is possible to have a non-equilibrium system even with ⟨xi(t)xj(0)⟩ = ⟨xj(t)xi(0)⟩: the
breaking of the time reversal symmetry can appear only looking at other correlation

functions e.g. ⟨x3(t)x(0)⟩ ≠ ⟨x3(0)x(t)⟩. In a similar way the absence of a current is
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not sufficient for the time reversal symmetry to hold. In Section 3 we study the entropy

production S: it is possible to find an explicit expression for systems driven by a forcing

containing a Gaussian term, with ”temperature” T , and a compound Poisson noise. It

is interesting that in the absence of a Gaussian noise, the entropy production is infinite,

as a straightforward consequence of the discontinuous character of the Poisson noise

and of the dissipative dynamics between jumps. Detailed numerical studies of S(ϵ,∆t),

i.e. the entropy production computed at space resolution ϵ and sampling time ∆t, show

that the convergence to the asymptotic value is very slow and a gigantic amount of

data is necessary, an observation which has an immediate and practical relevance for

the treatment of experimental signals. As a case study, in Section 4 we treat a 2D

linear system driven by non-Gaussian forcing, that is a generalization of the Brownian

Gyrator, comparing S with the average current and the deviations from the symmetry

under time-reversal of higher order correlations. In Section 5 we draw conclusions and

suggest perspectives. In the Appendix we present some mathematical details for the

computation of S.

2. Time reversal symmetry and non-Gaussian noise

In this section we investigate the effect of non-Gaussian delta-correlated noise on the

equilibrium properties of stochastic processes, focusing our attention mainly on the time

reversal symmetry. We will show that this noise generally drives the system away from

equilibrium conditions even when fluctuation relations hold and we discuss a strategy

to infer and measure the ”degree of irreversibility” of the system.

Time reversal symmetry and thermodynamic equilibrium properties of a system are

two strictly related concepts. In the framework of Markov processes such a relation is

provided by the detailed balance condition [27]. Indeed, a system described by a Markov

process X is said to be at equilibrium if

π(X)Wt(Y |X) = π(Y )Wt(X|Y ) (1)

where Wt(Y |X) is the probability to have Y at time t given the initial condition X

and π(X) is the stationary probability. Condition 1 implies that forward (in time) and

backward paths have the same probability. Moreover, for any two functions f, g that

represent (under time-reversal) even observables, one has ⟨g(t)f(0)⟩ = ⟨f(t)g(0)⟩. When

the system evolves according to a stochastic differential equation driven by Gaussian

noise detailed balance also imposes vanishing currents. If one also restricts the class of

investigated systems to Gaussian Markovian systems (for instance, in the continuous

case, Langevin equations with linear forces and Gaussian noise) we have that the

following conditions are sufficient for equilibrium [3, 4]:

• zero entropy production;

• no currents;

• time-reversal symmetry of the correlation functions i.e. ⟨xi(t)xj(0)⟩ = ⟨xj(t)xi(0)⟩.
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Actually the above statements are equivalent; it is quite natural to wonder about the

effects of non-Gaussian forcing on the above scenario.

In the following we focus on the effect of a compound Poisson noise ζ(t) on currents and

time-reversal symmetry, postponing the study of entropy production to the next section.

A compound Poisson noise ζ(t) is a stochastic process obtained as ζ(t) =
∑

j Ujδ(t− tj)

where independent jumps, of random amplitudes Uj (Uj is a vector with the same

dimensions of X) distributed according to P(Uj), occur at random times tj. The

differences tj − tj−1 are distributed according to Qλ(t) = λe−λt. Such a noise arises

naturally in granular system [20, 21, 22, 23, 19] and can also be used to model active

forces [28, 29, 30]. Moreover, similar noises have already been employed successfully

both for modeling systems showing anomalous diffusion or stationary distribution with

exponential tails [31, 32] or for implementing efficient protocols for finding ”shortcuts

to adiabadicity” [33]. Note that the properties of ζ(t) are strictly related to those of

P(U). In particular, if P(U) has finite second moments, elements of Γ =
〈
UUT

〉
, then

the central limit theorem holds and thus the sum of a large collection of jumps {Uj}j≤N

tends to be normally distributed for large N , i.e.

PN(zN = z)→ GΓ(z) =
e−

1
2
zTΓ−1z√
|2πΓ|

as N →∞ (2)

zN =
1√
N

N∑
j=1

(Uj − ⟨Uj⟩). (3)

Let us note that (assuming ⟨U⟩ = 0) correlations of L(t) =
∫ t

0
ζ(t′)dt′ are equivalent to

those of a standard Wiener process [34, 35, 36, 37], i.e.

⟨L(t)L(t′)⟩ = λΓ inf{t, t′}. (4)

Such a result suggests that some properties of the system may not change when

compound Poisson noise is used instead of the Gaussian one as a driving force.

Consider a stochastic process X driven by a combination of a compound Poisson noise

ζ and a Gaussian noise ξ, i.e.

Ẋ = F (X) + ξ(t) + ζ(t) X = {xi}i=1,N (5)

with ⟨ξ⟩ = ⟨U⟩ = 0,
〈
ξ(t)ξT (t′)

〉
= 2Dδ(t − t′) and

〈
UUT

〉
= Γ. Since the process

X is discontinuous, the detailed balance condition has to be imposed separately on the

jumps and on the continuous part [27]. Regarding the discontinuous part, equilibrium

condition (1) takes the form

π(X)P(Y −X) = π(Y )P(X − Y ) . (6)

This means that if in the steady state the distribution of X is spatially non-uniform

(π(X) ̸= const.) and the jumps are symmetric (P(U) = P(−U)) Eq. 6 can not be

satisfied and the system is necessarily out of equilibrium. Nonetheless, if one restricts



Statistical Features of Systems driven by non-Gaussian Processes 5

Figure 1. Examples of direct (left) and time-reverse (right) trajectories for processes

driven by a Gaussian or Poisson noise. It is evident that in the Poisson case the time-

reversed trajectory is strongly incompatible with the direct one, i.e. it is not possible

to find any piece of the latter in the former.

one’s attention to linear systems (F (X) = −AX with A a positive definite matrix),

X’s correlations are equivalent to those of another system where the noises ξ and ζ are

replaced by a Gaussian white noise ξ̃ with
〈
ξ̃(t)ξ̃(t′)

〉
= (2D + λΓ) δ(t−t′). This means

that, in this context, even if the Onsager relations (⟨xi(t)xj(0)⟩ = ⟨xj(t)xi(0)⟩) hold,

they are no longer sufficient to determine whether that system is in thermodynamic

equilibrium or not. Although this may seem surprising, recent works show that

some thermodynamics relations (e.g. Einstein and Kubo) depend exclusively on the

existence of a stationary state and therefore hold also in non-equilibrium conditions [38].

Statistical moments of order higher than two are necessary to discriminate between

standard Gaussian noise and compound Poisson, and between equilibrium and non-

equilibrium behavior [39, 19]. Notwithstanding, sometimes the non-equilibrium nature

of systems driven by compound Poisson noise can be easily grasped by looking at forward

and backward time-series, as shown in Fig. 1. Indeed, in the forward time-series (left

panel) each jump is followed by a damping which instead appears as an acceleration in

the backward time-series (right panel), signaling the time-reversal symmetry breaking.

In the following we will analyze in closer detail two one-dimensional examples, in order

to emphasize further the differences with respect to the equivalent Gaussian systems.

2.1. 1-D linear dynamics

As a first example, let us consider a one-dimensional linear system

Ẋ = −γX + ξ(t) + ζ(t) (7)

with ⟨ξ⟩ = ⟨U⟩ = 0, ⟨ξ(t)ξ(t′)⟩ = 2Tδ(t − t′) and ⟨U2⟩ = Γ, with γ and Γ two positive

parameters. This equation has been proposed in [20, 21, 22] for describing the evolution

of a massive probe in a granular medium and it has recently been shown [19] that it can

be thought as a minimal effective model for such a systems. Concerning this equation,

we note that in the absence of ζ the system is necessarily at equilibrium (like all 1d
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systems without periodic boundary conditions) since it can not sustain any stationary

current. In this case, the system is Gaussian and the first two moments fully characterize

the statistics of X. The correlation function C(t) = ⟨X(t)X(0)⟩ is

C(t) = T

γ
e−γt . (8)

When the compound Poisson noise ζ is taken into account, the system is driven out of

equilibrium and X is no longer Gaussian. Nonetheless, given the confining nature of

the potential, the system still can not sustain any net physical current transporting the

position steadily in a given direction. Furthermore, the correlation function is symmetric

by construction and takes the form

C(t) = 2T + λΓ

2γ
e−γt (9)

which is exactly of the same form of the Gaussian case. On the other hand, non-

trivial moments can display a breaking of time-reversal symmetry e.g. the 4−th order

correlation function H(t) = ⟨X(t)X3(0)⟩. Indeed, for t > 0 we have

H(t) =
〈
X(t)X3(0)

〉
= e−γt

〈
X4
〉

(10)

H(−t) =
〈
X3(t)X(0)

〉
= e−3γt

〈
X4
〉
+ 3e−γt

(
1− e−2γt

) 〈
X2
〉2

(11)

which are clearly different. Note that ⟨X4⟩ (⟨X2⟩) denotes the average of X4 (X2)

over the steady-state distribution π(X). Defining a degree of irreversibility ∆H(t) =

H(t)−H(−t) leads to

∆H(t) =
(〈

X4
〉
− 3

〈
X2
〉2) (

e−γt − e−3γt
)
. (12)

Note that the last equation correctly predicts ∆H(t) = 0 when the system is Gaussian.

2.2. 1-D dynamics on a ring

One-dimensional systems on a ring, e.g. with periodic boundary conditions, can

sustain a non-equilibrium steady state and therefore constitute an excellent test-bed

for investigating the effect of non-Gaussian noises on the properties of a system. From

a physical perspective, diffusion in periodic potential is used as a minimal model which

displays transport phenomena and it might be relevant to discuss the role of external

noise on these phenomena. Let us consider a system

Ẋ = −∂XV (X) + ξ(t) + ζ(t) , (13)

V (X + L) = V (X) . (14)

This system has already been studied in [40, 41, 42, 43, 30, 44, 45] and several non

trivial behaviors arise. In particular, it has been shown that if the potential V (X)
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has an asymmetric shape, the noise ζ induces a physical current in the system [40].

Nonetheless, as a trivial consequence of the system laying in a one-dimensional space,

the correlation function C(t) is symmetric. Here we focus on the effects of ζ on the

degree of irreversibility

∆H(t) =
〈
X(t)X3(0)

〉
−
〈
X3(t)X(0)

〉
(15)

and its relation with the physical current. For this purpose, we consider two forms for

the potential V (X) (see Fig. 2), namely

V1(X) =
LV0

2π

(
1− cos

2π

L
X

)
, (16)

V2(X) =
LV0

2π

(
C + sin

2π

L
(X − d) +

1

4
sin

4π

L
(X − d)

)
, C = sin

2πd

L
+

1

4
sin

4πd

L
.

(17)

where the parameter d determines the minima positions. The first potential is

Figure 2. Potentials of Eqs. 17. Left: symmetric potential V1(X). Right: ratchet

potential V2(X).

symmetric and the noise ζ is not able to induce any current if the distribution of jumps

P(U) is an even function [40]. Notwithstanding this, ∆H(t) reveals the breaking of

time-reversal symmetry in contrast to the Gaussian case where it is equal to zero, see

the right panel of Fig. 3.

The potential V2(X) in Eq. 17 instead has an asymmetric shape. Thus, the noise ζ

induces a physical current as is clear in Fig. 4 that shows the variable X drifting towards

positive values. Clearly, the non-equilibrium nature of the system can also be revealed

by the degree of irreversibility ∆H(t) (see Fig. 3 right panel). These examples show

once again that the absence of current and the symmetry of the usual (second order)

correlation functions are necessary conditions for equilibrium, but are not sufficient if

the system is driven by non-Gaussian noise.
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Figure 3. Degree of irreversibility ∆H(t) normalized to the value H(0). The

degree of irreversibility for the processes driven by compound Poisson noise ζ are

shown in blue while orange curves represent the Gaussian cases. Left: symmetric

potential. Right: ratchet potential. The parameters used for numerical simulations

are L = 1, V0 = 1, d = −0.2, λ = 20, σ2 = 0.2, T = 0,Γ = σ2/λ. The initial conditions

are sampled from the stationary distribution.

Figure 4. X Vs t for the process driven by the compound Poisson noise in the ratchet

potential. The average slope represent the stationary current js. The parameters used

for numerical simulations are L = 1, V0 = 1, d = −0.2, λ = 20, σ2 = 0.2, T = 0,Γ =

σ2/λ. The initial conditions are sampled from the stationary distribution.

3. Entropy production and its empirical estimate

In the previous section we have shown that stochastic differential equations driven by

non-Gaussian white noises are out of equilibrium and the breaking of time reversal

symmetry is revealed by looking at higher order correlation functions. This approach,

satisfactory for the goal of simply discriminating, e.g. in experiments, between

equilibrium and non-equilibrium, has some unavoidable disadvantages. In fact, although

it suffices to find two functions f, g for which one has

Cfg(t) = ⟨f(0)g(t)⟩ ≠ ⟨f(t)g(0)⟩ = Cfg(−t) (18)

in order to asses the non-equilibrium nature of the system, the degree of irreversibility

∆Cfg = Cfg(t) − Cfg(−t) depends on the functions f and g therefore it is not possible

to introduce a quantity which is intrinsic i.e. that does not depend on the choice of
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the observables. This difficulty is overcome (at least from a formal point of view)

by considering the entropy production S, which is an information-theoretic quantity.

Formally, the entropy production S of a Markov process X is defined as [6]

S = lim
T →∞

1

T

〈
log

(
P({Xt}0≤t≤T )

P({XT −t}0≤t≤T )

)〉
= lim

T →∞

⟨ST ⟩
T

(19)

where P({Xt}0≤t≤T ) represents the probability of the path {Xt}0≤t≤T in an analogous

way P({XT −t}0≤t≤T ) of the reversed path {XT −t}0≤t≤T and the average is done with

respect to the forward path probability (we are always assuming, for simplicity, that

all the relevant degrees of freedom are even under time-reversal). When the system

admits a clear thermodynamics description, S is related to the dissipated heat [3, 4].

For a discontinuous Markov process X, the probability of a given path {Xt}0≤t≤T is

completely determined by the joint distribution of the discontinuities and the continuous

paths between two subsequent discontinuities, that is (see Appendix A and Appendix

B)

P({Xt}0≤t≤T ) = P({Xt}0≤t≤t−1
) · · · P({Xt}tn≤t≤T )P(t1,∆Xt1 ; · · · , tn,∆Xtn) (20)

where P(t1,∆Xt1 ; · · · , tn,∆Xtn) represents the probability that discontinuous jumps

∆Xtk = Xtk −Xt−k
for k = 1, · · · , n occur at times t1, · · · , tn. Thus, the quantity ST

can be decomposed as

ST = Sc
T + Sj

T (21)

with

Sc
T =

n∑
i=0

log

(
P({Xt}ti≤t≤t−i+1

)

P({XT −t}T −t−i+1≤t≤T −ti
)

)
, t0 = 0 and t−n+1 = T , (22)

Sj
T = log

(
P(t1,∆Xt1 ; · · · , tn,∆Xtn)

P(T − t1,−∆Xt1 ; · · · , T − tn,−∆Xtn)

)
, (23)

where n is the number of discontinuities in the path. A similar decomposition has already

been applied for computing the entropy production rate in a driven one-dimensional

Lorentz gas [46]. We note that decomposition (21) does not imply that the two quantities

Sc
T and Sj

T are completely disjointed. In particular, the presence of discontinuities

changes the probabilities for continuous paths so the statistics of Sc
T also depends on

the properties of P(t1,∆Xt1 ; · · · , tn,∆Xtn). This result is valid for all Markov processes

but often it is not very practical. There are a few cases for which it is possible to

carry out analytical computations and obtain simpler formula for S. Some stochastic

process driven by a compound Poisson noise ζ belong to this class of Markov processes,

as discussed in Appendix D and Appendix E.

In our case, since the amplitude Uk = ∆Xtk is independent from the time tk at which it

occurs, the jumps’ probability P(t1,∆Xt1 ; · · · , tn,∆Xtn) takes the form

P(t1,∆Xt1 ; · · · , tn,∆Xtn) = P(t1, · · · , tn)P(U1) · · · P(Un) (24)
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where P(t1, · · · , tn) is the uniform distribution over the region t1 < t2 < · · · < tn < T
(see Appendix B for further details), which implies Sj

T = 0 if P(U) = P(−U). Thus,

for stochastic processes driven by symmetric Poisson noise, one has ST = Sc
T . In the

following we will give the explicit expressions for the entropy production for the examples

of the previous section. Before this, however, it is important, at least on a conceptual

level, to discuss how this entropy production can be measured in real experiments. In the

following we consider only symmetric P(U). We will see that Sc
T typically is determined

by two contributions: one given by the Gaussian noise and the other by the Poissonian

noise.

3.1. Empirical estimate of the entropy production

Estimating entropies from data is a difficult task, mainly due to the large number

of data needed for having a precise result. The purpose of this section is to discuss

both the technical and conceptual problems faced in entropy production measurements.

Borrowing concepts from dynamical systems, we introduce the concept of scale-

dependent entropy production S(ϵ,∆t) (somewhat analogous to ϵ-entropy [47, 48, 49])

as follows:

• introduce a partition {Ci(ϵ)}1≤i≤K of size ϵ of the phase space ΩX (for example

hypercube of side ϵ),

• define an empirical Markov chain on the space induced by the partition whose

stationary probability πi and transition matrix Mij(∆t) are

πi = P(Xt ∈ Ci(ϵ)) ,

Mij(∆t)= P(Xt+∆t ∈ Cj(ϵ)|Xt ∈ Ci(ϵ)) =
P(Xt ∈ Ci(ϵ), Xt+∆t ∈ Cj(ϵ))

P(Xt ∈ Ci(ϵ))
,

• compute the entropy production of this Markov chain

S(ϵ,∆t) =
1

∆t

∑
ij

πiMij log

(
Mij

Mji

)
.

Of course the Markov chain can be considered a good approximation only for ∆t and

ϵ small enough. The πi and the Mij(∆t) must be determined from a long trajectory.

Although the entropy production S(ϵ,∆t) is different from that of the real system S,
in the limit ϵ → 0 and ∆t → 0 one has S(ϵ,∆t) → S ‡. It is important to note

that the S(ϵ,∆t) is not a lower bound for the entropy production. Indeed, in order to

have a lower bound one should consider the entropy production of the non-Markovian

coarse-grained process. Here, instead, we consider an approximate Markovian process

‡ For ϵ → 0 and ∆t → 0 the empirical stationary distribution π and the transition matrix M

converge to their continuous counterparts, i.e. π → π(X), Mij → Wt(Y |X). Thus, S(ϵ,∆t) →
S = limt→0

1
t

∑
X,Y π(X)Wt(Y |X) log

(
Wt(Y |X)
Wt(X|Y )

)
which can be proven to be an equivalent definition

for the entropy production of a Markov process [3, 4, 50] (see also Appendix C).
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and, as it is shown in [13], its entropy production could also be larger than the entropy

production of the microscopic system. Let us now consider in more detail the expected

behavior of S(ϵ,∆t) in the context of stochastic process driven by compound Poisson

noise. The noise ζ has two relevant scales, one spatial and one temporal. The spatial

scale is related to the typical size of jumps U , i.e. ϵp ∼
√
⟨U2⟩, while the temporal one is

dictated by the jumps rate λ, namely τp ∼ 1
λ
. In situations where ∆t≫ τp, one expects

that S(ϵ,∆t) is in good agreement with the prediction of the Gaussian case, since there

is time for a large number of jumps to occur and ζ is somehow close to a Gaussian noise.

Similarly, for spatial resolutions greater than the size ϵp of typical fluctuations, Poisson

noise does not contribute to the transitions between different cells of the partition. For

small enough ϵ and ∆t instead, the quantity S(ϵ,∆t) is expected to be a good proxy

of the continuous entropy production S. All these observations are based exclusively

on theoretical arguments and are therefore valid in the limit of an infinite amount of

data. Problems can arise when the amount of data N is limited and so the results may

not be statistically significant. The most serious problem (and the only one we discuss

briefly) is how to deal with missing transitions, i.e. situations for which Mij > 0 but

Mji = 0. In these situations, the definition of S(ϵ,∆t) leads to divergences. In order to

avoid these divergences, a regularization can be applied, i.e. assuming a small but finite

probability δ ≪ 1
N

for the missing transitions. In this way, S(ϵ,∆t) takes only finite

values that are almost independent on the value of δ (as long as δ ≪ 1
N
).

3.2. Entropy production for 1-D linear dynamics

Let us discuss the effect of non-Gaussian noise on entropy production in one-

dimensional linear systems. Given the simplicity of linear models, this example allows

us to understand the main difficulties encountered in estimating entropy production.

Moreover, analytical computations for entropy production can be easily performed. The

details can be found in Appendix E while the result is:

Sc
T = T−1 [V (Xt0)− V (XT )] + T−1

n∑
i=1

[V (Xti + Ui)− V (Xti)]

= T−1 [V (Xt0)− V (XT )] +
γ

2T

n∑
i=1

[
U2
i + 2XtiUi

]
(25)

In the limit T → ∞ we have that, for Sc
T /T the first term contains only boundary

contributions and therefore it is zero, on the contrary, the second term of (25) increases

proportionally to n which on average is equal to λT . Thus, the entropy production rate

S (Eq. 19) is

S =
γλΓ

2T
. (26)

At this point we can discuss the empirical estimate S(ϵ,∆t) and test whether it is able

to give a reasonable proxy to the entropy production S. Figs. 5 show the empirical
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entropy production S(ϵ,∆t) as a function of the temporal scale ∆t as the duration of

the trajectories T increases. As one can see, when the true value of entropy production is

not too ”small” (order ∼ 10−1−1, see the red curve on right panel of Fig.6), we are able

to get a good numerical agreement, a relative error of the order 10%, even by computing

S(ϵ,∆t) with short trajectories. Conversely, although the absolute error is about the

same, if the true entropy production is too small (order ∼ 10−2, see the light blue

curve on right panel of Fig.6)), a gigantic amount of data is needed to have the same

accuracy. This can impose severe limitations in experiments with more complicated

systems having multiple time scales. Note, however, that this is just an empirical

observation and different systems could behave differently one from each other.

Figure 5. Ratio between the empirical entropy production rate S(ϵ,∆t) and its

theoretical value S as a function of ∆t/τ for ϵ = 5.86 ·10−3. Different curves represent

simulation of increasing duration. Horizontal black lines indicate the asymptotic value.

Left and right panels show two cases with different proportion between Gaussian and

Poisson noise amplitude. The parameters used for numerical simulations are γ = 1/180,

λ = 1/64, (2T +λΓ) = 2γ, T = (1− p)γ, Γ = p(2γ/λ), p = 0.99 (left) p = 0.75 (right).

The initial conditions are sampled from the stationary distribution.

Left panel of Fig. 6 shows again S(ϵ,∆t) as a function of ∆t but for different value of ϵ.

As expected, differences between different ϵ only appear when ∆t≪ τ and the estimates

become more and more accurate as ϵ → 0. Finally, right panel of Fig. 6 confirms once

again that S(ϵ,∆t) is a good proxy in different situations and in particular when the

system is ”close to equilibrium” (S ∼ 10−2).

3.3. Entropy production for 1-D dynamics on a ring

Consider now more complicated examples: the case where a particle is moving on a ring

under the effect of a periodic potential and driven by both Gaussian and Poissonian

noises. Here we employ the same potentials already used in Sec. 2 (Eqs. 17), with the

difference that in the symmetric case we also add a constant pulling force f . Such a

force breaks the time reversal symmetry even in the Gaussian case, inducing a stationary

current js. It is well known that, in the Gaussian case, the entropy production S is
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Figure 6. Left panel: Ratio between the empirical entropy production rate S(ϵ,∆t)

and its theoretical value S as a function of ∆t/τ for several ϵ. Horizontal black

line indicate the asymptotic value. Right panel: convergence of S(ϵ,∆t) towards

the theoretical value (horizontal lines) for different level of Poisson noise, p =

0.75, 0.90, 0.95. The vertical dashed black line represents the Poisson jump rate τ .

strictly related to the stationary current js according to [3, 4, 50]

S ∝ j2s
T
. (27)

Therefore, it seems natural to wonder how Poissonian noise changes this scenario.

As already explained in the previous section, for gradient systems the change in

entropy equals the change of internal energy. Since all one-dimensional system can

be thought as gradient systems, the pulling force f just modifies the internal energy

as V (X) → Vf (X) = V (X) − fX. The reader can find the details of the analytical

computation in Appendix E. The main result is the following

S =
js
T
f +∆Sp . (28)

In the case of symmetric potential we have

∆Sp =
λV0L

2πT

〈
cos

2π

L
x

〉(
1− e−2(πΓ/L)2

)
(29)

while in the case of the ratchet-like asymmetric potential, we have

∆Sp = −
λV0L

2πT

[〈
sin

2π

L
(x− d)

〉(
1− e−2(πΓ/L)2

)
+

1

4

〈
sin

4π

L
(x− d)

〉(
1− e−8(πΓ/L)2

)]
,

(30)

where ⟨·⟩ indicates the average over the stationary distribution π(x). It is interesting to

note that, independently of whether there is a physical current or not, the first term of

the right hand side of Eq. 28 vanishes when f = 0.

Let us now consider the empirical entropy production S(ϵ,∆t), starting with the

symmetric potential with a constant pulling force f = 0.5. S(ϵ,∆t) displays several

regimes depending on the timescales of relaxation and jump events. In particular, if the
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relaxation time τr ∼ V −1
0 is much bigger than the jump rate τp = λ−1, we expect that

S(ϵ,∆t) ∼ j2s/Teff for τp ≪ ∆t ≪ τr where Teff = T + λΓ. For τp ≲ τr the dynamics

is dominated by the jumps and the empirical entropy production strongly differs from

its Gaussian counterpart. This expectation is confirmed by numerical simulation as can

Figure 7. Empirical entropy production rate S(ϵ,∆t) as a function of ∆t for a particle

in a symmetric periodic potential V1(X) and pulled by a constant force f . Top left

panel: S(ϵ,∆t) for several ϵ ∈ [1.2 · 10−3, 1.9 · 10−2]. Horizontal lines indicate the

theoretical value (black) and the Gaussian prediction (red). Top right panel: S(ϵ,∆t)

for two different Poisson jump rates τp (τp = 0.05 red, τp = 0.005 blue) for ϵ = 3.9·10−3.

Bottom panels show the convergence of S(ϵ,∆t) for ϵ = 3.9 · 10−3 towards the

theoretical values (horizontal lines) for different level of Poisson noise (75% , 95%) for

τp = 0.005 (left) and τp = 0.05 (right). The parameters used for numerical simulations

are L = 1, V0 = 1, d = −0.2, τp = 1/λ, σ2 = 0.2, T = (1 − p)σ2/2,Γ = pσ2/λ, f = 0.5

with p = 0.75 or p = 0.95. The initial conditions are sampled from the stationary

distribution.

be seen in the top panels of Fig. 7. The left panel shows S(ϵ,∆t) as a function of ∆t

for various ϵ. It can be noted that almost every ϵ displays a pronounced plateau in the

correspondence of the Gaussian prediction. The differences between the Gaussian and

non-Gaussian cases only arise for ∆t < τp. Note also that, as explained in the previous

section, the convergence towards the true entropy production S may not be very precise

due to the large number of samples required. The different regimes of S(ϵ,∆t) are

shown on the right panel showing S(ϵ,∆t) for τp = {0.005, 0.05}. Bottom panels of
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Fig. 7 show S(ϵ,∆t) with two different percentages of Poisson noise §. These figures

confirmed once again that for large enough ∆t the coarse-grained entropy production is

not sensitive to different noises and differences only arise when ∆t ∼ τp.

Figure 8. Empirical entropy production rate S(ϵ,∆t) as a function of ∆t for a particle

in an asymmetric periodic potential V2(X) for ϵ = 3.9 · 10−3. Blue (green) and

red (yellow) curves show S(ϵ,∆t) for τp = 0.005 , 0.05 respectively at two different

Poisson level 75% (green and yellow) and 95% (blue and red). The parameters used

for numerical simulations are L = 1, V0 = 1, d = −0.2, τp = 1/λ, σ2 = 0.2, T =

(1 − p)σ2/2,Γ = pσ2/λ, f = 0 with p = 0.75 or p = 0.95. The initial conditions are

sampled from the stationary distribution.

Most of the considerations made for the symmetric potential also hold for the ratchet

potential. Thus, we focus on the case f = 0 where a physical current induced by

the compound Poisson noise ζ is present. Here we just want to underline that since

the corresponding Gaussian case is an equilibrium system, for large ∆t the empirical

entropy production S(ϵ, τ) drops to 0 (see Fig. 8) although the system sustains a steady

current, as can be seen from Fig. 4.

4. The ”Poissonian” Gyrator

In the previous sections we have discussed how the Poissonian noise ζ affects the

equilibrium properties of one dimensional systems. In particular, we have stressed that

some equilibrium conditions (such as the absence of physical currents or symmetric

correlations) are no longer sufficient to infer thermodynamic properties of the system

if the Gaussian fluctuations assumption ceases to hold. However, one-dimensional

examples have the drawback that their Gaussian counterpart is necessarily a trivial

equilibrium or non-equilibrium system (a forcing is required to sustain non-equilibrium

steady states). On the other hand, multidimensional systems can be thrown out of

equilibrium without forcing even in the Gaussian case, whenever the system is in contact

§ The percentage of Poisson noise p is defined as the ratio between the variance of the Poisson noise

λΓ and the total variance of the noise σ2 = (2T + λΓ), that is p = λΓ
σ2 .
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with multiple thermal baths at different temperatures. Thus, the aim of this section

is to present an example of such a system, namely the case of the so-called Brownian

gyrator [51, 52, 53, 54]. It consists in a two dimensional linear system

Ẋ = −AX + ξ , (31)

A =

(
α −η
−µ γ

)
,

X =

(
x

y

)
(32)

with ⟨ξ(t)⟩ = 0, ⟨ξ(t)ξ(t′)⟩ = Σδ(t− t′) and being Σ =

(
2T1 0

0 2T2

)
. In the stationary

states, the correlation function takes the form

C(t) = e−AtC (33)

where C = C(0) represents the covariance ofX. The equilibrium conditions are expressed

through the Onsager relations (see [27, 55, 11] or Appendix D)

AC = CAT (34)

or equivalently from the conditions C(t) = CT (t). When Eq. (34) is not satisfied, a

systematic torque induces a rotational current (⟨θ̇⟩ ̸= 0 with θ = arctan
(
y
x

)
) in the

system [55, 56]. In these cases, the entropy production rate S is

S = Tr
[
2CATΣ−1A− A

]
=

(T2η − T1µ)
2

T1T2(α + γ)
(35)

which vanishes when T2η = T1µ. Furthermore, the rotational current ⟨θ̇⟩ is proportional
to (T2η − T1µ) and is equal to zero in equilibrium conditions. It should also be noted

that when the system is coupled to two different heat baths (T1 ̸= T2) the interaction

terms µ, η must be non-reciprocal (µ ̸= η) in order to maintain equilibrium [57]. As

already anticipated in Sec. 2 and analogously to the one-dimensional examples, the

presence of an additional Poissonian noise ζ changes the above picture. Thus, consider

the equation

Ẋ = −AX + ξ + ζ (36)

where, as usual, we denote the covariance of jumps U as Γ. The correlations of the

process in the stationary state read

Ĉ(t) = e−AtĈ (37)

with Ĉ = Ĉ(0). Note that Eqs. (37) are equivalent to Eqs. (33) and so Ĉ has

the same structure of C of a Gaussian process with noise matrix D = Σ + λΓ (see

Appendix D for further details). Since the system is driven by Poisson noise ζ and it
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is necessarily out of equilibrium, the previous observation means that Onsager relations

[58] fail to discriminate equilibrium and non-equilibrium systems. For the same reason,

also the Harada-Sasa equality that relates the energy dissipation to the violation of

Fluctuation-Response relation [59] it is not able to distinguish between equilibrium

and non-equilibrium dynamics ∥. Interestingly, in ”equilibrium-like” conditions, namely

AĈ = ĈAT , the system displays a non-vanishing rotational current ⟨θ̇⟩ ≠ 0, as one can

verify in the left panel of Fig. 9 which shows the cumulated θ angle, i.e.
∫ t

0
dsθ̇(s), as

a function of time. Thus, the Poisson-Brownian gyrator behaves as a linear Brownian

ratchet embedded in two dimensions. It should be noted that it is possible to find a stall

condition (⟨θ̇⟩ = 0) imposing different temperatures of the Gaussian baths (T1 ̸= T2)

so that a vanishing current does not imply anymore equilibrium. The non-equilibrium

nature of the system can always be inferred from higher-order correlation functions as

for instance from Hx(t) = ⟨x(t)x3(0)⟩, as can be seen from right panel of Fig. 9 which

shows ∆Hx for both the Gaussian and Poissonian cases.

Figure 9. Temporal asymmetries of the Poisson-Brownian Gyrator. Left panel:

angle θ Vs t for the process driven by the compound Poisson noise (blue) and the

Gaussian noise orange. The average slope represents the stationary current js. Right

panel: Degree of irreversibility ∆H(t) normalized to the value H(0). The degree

of irreversibility for the process driven by compound Poisson noise ζ is shown in

blue while orange curve represents the Gaussian case. The parameters used for

numerical simulations are τp = 64, λ = 1/τp, A =

(
0.00359681 −0.000899202

−0.000899202 0.00226257

)
,

Γ =

(
0.653682 0

0 0

)
and Σ =

(
0 0

0 0.01021378

)
. The initial conditions are

sampled from the stationary distribution.

Although in this case it is not possible to use energetic arguments for estimating the

entropy produced between two subsequent jumps, thanks to the linearity of the system

∥ The Harada-Sasa equality is [59]

J = γ

∫
dω
[
C̃(ω)− 2TR̃′(ω)

]
where J is the rate of energy dissipation, C̃(ω) and R̃(ω) are the Fourier transforms of the correlation

function C(t) and the response R(t), and the prime denotes the real part.
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it is still possible to perform analytical computations, as detailed in Appendix D. It

turns out that the entropy production rate S is given by

S = Tr
[
2ĈATΣ−1A− A

]
(38)

which is exactly Eq. (35) with C replaced by Ĉ. It is important to stress that the

”temperatures” appearing in the denominators are those of the Gaussian baths only.

If one splits the correlation matrix in two parts Ĉ = C + C ′ related to the Gaussian

and Poissonian covariance matrices respectively, the entropy production rate S can be

written as

S = Tr
[
2CATΣ−1A− A

]
+ 2λTr

[
C ′ATΣ−1A

]
(39)

where the first term is the usual entropy production of the Gaussian system while the

second term (always positive) is the contribution of the Poisson jump noise. When

Onsager relations (AĈ = ĈAT ) are satisfied, the entropy production rate attains its

minimum, that is

S = λTr
[
ΓΣ−1A

]
. (40)

Interestingly, the minimum is not unique and S = λTr [ΓΣ−1A] whenever AΣ = ΣAT ,

as detailed in Appendix D. Having an analytical formula for the entropy production

rate, it is natural to wonder how its empirical estimates behave in this case. Obviously,

in the analysis of the results it is necessary to keep in mind the limitations that have

arisen in the one-dimensional cases. In particular, in Sec. 3.2, we have shown that

it often takes a gigantic amount of data to obtain reasonable estimates of S. In

multidimensional systems this problem is accentuated and therefore we expect it to

impose severe limitations on the achievable resolutions. In the following we consider

situations where the Poissonian noise acts only on one component (x). The panels of

Fig. 10 show the empirical entropy production S(ϵ,∆t) as a function of both ϵ and ∆t

for two different trajectories duration (T = 225 left, T = 228 right). From both figures

it can be seen that for time scales small enough (∆t ∼ 100) and spatial scales small

but large enough to have suitably large statistics (ϵ ∼ 0.1), the estimates of entropy

production rate are in good agreement with the theoretical predictions. Furthermore,

comparing left and right panels it should be noted that as the samples size increases the

convergence of the estimates S(ϵ,∆t) towards the analytical prediction also improve.

To conclude, we discuss the behavior of empirical estimates S(ϵ,∆t) when only partial

information about the system is available. For example, consider the case in which

the time series of a single scalar variable has been observed. There is growing interest

around this topic, mainly due to the large number of thermodynamic bounds on entropy

production recently proposed relying both on thermodynamic uncertainty relations

(TURs) (see [60, 61, 62, 63] and reference therein) or on other quantities such as

dynamical activity (also known as ”frenesy”) [64, 65]. Generally, TURs provide a lower

bound of entropy production as a ratio between average and fluctuations of a steady

current. Thus, TURs strongly differ from coarse-grained entropy production S(ϵ,∆t)

since the latter can provide non-trivial estimates, even if the system does not sustain any
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Figure 10. Heat map of empirical entropy production rate S(ϵ,∆t) as a function of ∆t

and ϵ. Left and right panels show two estimates S(ϵ,∆t) obtained from trajectories of

different duration T (T = 225 left, T = 228 right). The parameters used for numerical

simulations are τp = 64, λ = 1/τp, A =

(
0.005058 0.0012955

−0.00276034 0.000801378

)
, Γ =(

0.825827 0

0 0

)
and Σ =

(
0.000107637 0

0 0.000222583

)
. The initial conditions

are sampled from the stationary distribution.

steady physical current, as shown in Sec. 3. In the Poisson-Brownian gyrator, there are

some natural one-dimensional variables among all possible one dimensional signals: the

radius ρ, the angle θ and the two components x and y. Note that only the angle θ can

be used in a TUR to provide a lower bound on entropy production since it is the only

variable which can display a current. For the other variables, the best we can do is to

study the empirical estimate S(ϵ,∆t). Fig. 11 shows these estimates as a function of ∆t

for a given value of the spatial resolution ϵ. The first thing to note is that the estimates

obtained from the y signal are practically zero. This is due to the fact that Poisson

noise ζ acts indirectly on y through the coupling with x. The best estimate S(ϵ,∆t) is

obtained considering the signal x since it feels directly the jump noise ζ. The estimates

provided by the signals ρ and θ are in between those provided by x and y separately

as ρ and θ are non-linear combination of these two signals. This analysis shows that in

general the bounds of entropy productions on partially observed systems strongly depend

on the variables considered and therefore usually can not be considered good proxies of

the true value. This claim is supported by Tab. 4 showing the ratio between empirical

estimates and theoretical value. As can be noted, from x and ρ one gets estimates of the

same order of magnitude of the theoretical value (60% and 20% respectively). On the

other hand, the estimate provided by the signal y is 104 times smaller than the correct

value. Interestingly, the signal θ provides an estimate which is one order of magnitude

smaller than the theoretical value if one takes as empirical estimate the coarse-grained

entropy production S(ϵ,∆t). However, if one employs the TUR¶ to provide a lower

bound he gets a value which is two order of magnitude smaller than the theoretical

¶ Formally the TUR is defined as TUR = limt→∞
m2(t)
tσ2(t) where m(t) = ⟨θt − θ0⟩ and σ2(t) =〈

(θt − θ0)2
〉
−m2(t) [60, 61].
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Figure 11. Empirical entropy production rate S(ϵ,∆t) for ϵ = 1.2 ·10−2 as a function

of ∆t computed from one dimensional signals (θ purple, ρ green, x light blue, y yellow).

The horizontal black line represents the theoretical value. The parameters used for

numerical simulations are τp = 64, λ = 1/τp, A =

(
0.005058 0.0012955

−0.00276034 0.000801378

)
,

Γ =

(
0.825827 0

0 0

)
and Σ =

(
0.000107637 0

0 0.000222583

)
. The initial

conditions are sampled from the stationary distribution.

one. Therefore, in the case of discontinuous processes, we argue that TURs, although

technically valid, usually severely underestimate the entropy production. This means

that estimates of entropy production make sense when one has a clear understanding of

the model suitable for describing a phenomenon, otherwise the results strongly depend

on the chosen model.

Signal S(ϵmin,∆tmin)/S
x 0.58

y 0.64 · 10−4

ρ 0.23

θ 0.12

TUR 9.72 · 10−3

Table 1. Table with the ratio of the empirical estimate of entropy production S(ϵ,∆t)

and the theoretical value for different one dimensional signals. The last row represents

the estimate obtained with TUR.

5. Conclusions

In this work we have thoroughly discussed the role of non-Gaussian white noise, as

a driving force, on the non-equilibrium properties of a system. In particular, it has

been shown that Langevin equations driven by symmetric Poissonian noises do not

satisfy detailed balance and are therefore inherently out-of-equilibrium. However, non-

equilibrium manifests itself quite differently than in systems driven by Gaussian noise
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and a plethora of unusual behaviors can be observed. For example, the absence of

currents or the symmetries of correlation functions do not guarantee anymore that the

system is in thermodynamic equilibrium. We have shown that, from an experimental

point of view, it is rather easy to evidence the breaking of time reversal symmetry

by considering higher-order correlation functions. Nonetheless, these methods cannot

provide an intrinsic measure of the degree of irreversibility of a given system. Formally,

the difficulties are overcome by considering an information-theoretic quantity, namely

the entropy production rate S. We show that it is possible to provide explicit formulas

for the path probabilities of stochastic processes driven by both Gaussian and Poissonian

noise but unfortunately analytical expressions for S can be obtained in special cases only.

These cases play an important role because they underline that the ”temperatures” of

the thermal baths in which the system dissipates are exclusively the Gaussian ones.

Thus, the entropy production diverges when the system is not coupled to Gaussian

thermal baths justifying the expression ”athermal” baths already used for Poissonian

noise [21, 23].

In addition to the analytical results, an empirical estimate of the entropy production

has been introduced, i.e. the ϵ − ∆t entropy production S(ϵ,∆t) depending on the

spatial and temporal resolution scales. Numerical simulations provide clear evidence of

the goodness of this approach, although it often requires an immense amount of data

to converge to the analytical prediction. It therefore can not always be applied to the

analysis of experimental signals, especially in high-dimensional systems, since the finite

number of samples could lead to very inaccurate results. It is also worth noting that

for low temporal resolution a system may appear indistinguishable from one driven by

Gaussian noise. The ”Poissonian” gyrator is an explanatory example of the behavior of

this type of systems, revealing itself as an excellent test bed for discussing the estimates

of entropy production from incomplete information. We have shown that the estimates

strongly depend on the chosen observables, varying even by four orders of magnitude

with respect to the theoretical value. It can therefore be concluded that without a deep

comprehension of the system under consideration, it is very difficult to provide accurate

estimates of its thermodynamics properties.
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Appendix A. The Setting

In this section we are interested in discussing more in detail the non-equilibrium

properties of stochastic processes introduced in Sec. 2, i.e. stochastic processes in which

random jumps are added to a typical Wiener process. The dynamic of such processes

can be formally described by the following stochastic differential equation

Ẋ = F (X) + ξ(t) + ζ(t) X = {xi}i=1,N (A.1)

where ξ(t) is a standard Gaussian noise with ⟨ξi(t)⟩ = 0 and ⟨ξi(t)ξj(t′)⟩ = Σijδ(t− t′)

while ζ(t) =
∑

j Ujδ(t − tj) where both the intervals between to subsequent jumps

t = tj − tj−1 and the amplitude of jumps U are i.i.d. drawn from the probability

distributions Qλ(t) and P(U) = GΓ(U) defined as

Qλ(t) = λe−λt (A.2)

GΓ(U) =
e−

1
2
UTΓ−1U√
|2πΓ|

. (A.3)

Once the jumps in the time interval [0, t) have been extracted (we assume that there

have been n jumps at times 0 < t1 < t2 < · · · < tn < t of intensity U1, U2, . . . , Un

and we denote this set of values with Kn ≡ {tk, Uk}k=1,n), since between two jumps

we have a Wiener process, we can write down the transition probability W(n)
t (X|Y,Kn)

from X(0) = Y to X(t) = X of the whole process simply by suitably concatenating

the ”free” propagators W(0)
t (X|Y ) of the Wiener process , those we have in absence of

jumps (K0 = ∅), i.e.

W(n)
t (X|Y,Kn) =

∫ n∏
k=1

[
dXkW(0)

tk−tk−1
(Xk − Uk|Xk−1)

]
W(0)

t−tn(X|Xn) (A.4)

where X0 = Y and t0 = 0. The expression above is the starting point from which we

can deduce the non-equilibrium properties of such processes once we figure out how to

average over the jump distribution P(Kn).

Appendix B. Averaging Over the Jump Distribution

The aim of this section is to explain how to average generic functions over the jump

distribution. On one hand these calculations serve to clarify how to correctly define the

path probability that appeared in Sec. 3, while on the other they are a necessary step

for the computation of the entropy production carried out in the following appendices.

First of all, since the distribution of the time intervals tk − tk−1 between two jumps

is exponential, the probability of having n jumps in a time t is Poissonian, i.e.

Pλ(n|t) = e−λt(λt)n/n!, while, given n and t, the distribution P(t1, . . . , tn|n, t) of the

times {tk}k=1,n in the interval [0, t) is

P(t1, . . . , tn|n, t) =

{
n!/tn 0 ≤ t1 < t2 < · · · < tn < t

0 otherwise
(B.1)
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Putting it all together we get

P(Kn|t) = Pλ(n|t)P(t1, . . . , tn|n, t)
n∏

k=1

GΓ(Uk) (B.2)

with

∞∑
n=0

∫
dKnP(Kn|t) = 1

(
dKn =

∏
k=1,n

dtkdUk ∀n > 0, P(K0|t) = e−λt

)
(B.3)

Now, we are able to compute the average Ft =
∑∞

n=0

∫
dKnP(Kn|t)Ft(Kn) of a generic

function of the type

Ft(Kn) =
n∑

k=1

F(t− tk, Uk) ∀n > 0 (B.4)

In fact, given t, if we assume that in the absence of jumps such function is Ft(K0) = F (0)
t ,

we have

Ft−e−λtF (0)
t = e−λt

∞∑
n=1

λn

n∑
k=1

∫ t

0

dt1

∫ t

t1

dt2· · ·
∫ t

tk−1

dtk f(t− tk)
(t− tk)

n−k

(n− k)!
= e−λtIf (t)

(B.5)

where f(t) =
∫
dUGΓ(U)F(t, U), If (t) =

∑∞
n=1 Ifn(t), Ifn(t) = λn

∑n
k=1 I

f
n,k(t) and

+

Ifn,k(t) =
∫ t

0

dt1

∫ t

t1

dt2 . . .

∫ t

tk−1

dtk f(t− tk)
(t− tk)

n−k

(n− k)!

=

∫ t

0

dz1

∫ z1

0

dz2 . . .

∫ zk−1

0

dzk f(zk)
zn−k
k

(n− k)!
(B.6)

If we differentiate Ifn,k(t) with respect to t we get

İfn,k(t) = In−1,k−1(t) ∀, n, k > 1 (B.7)

and then

İf (t) =
∞∑
n=1

İfn(t) = İ
f
1 (t) +

∞∑
n=2

λn

(
İfn,1(t) +

n∑
k=2

Ifn−1,k−1(t)

)
=

= İf1 (t) +
∞∑
n=2

λnİfn,1(t) + λIf (t) (B.8)

So, since İfn,1(t) = f(t)tn−1/(n − 1)!, we have to solve the following linear differential

equation

İf (t)− λIf (t) = λeλtf(t) with If (0) = 0 (B.9)

+ Note that the factor tn/n! is canceled by its inverse present in the probability of having n jumps

while factor (t− tk)n/(n− k)! is obtained by integrating over the values dtk+1 · · · dtn.
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in order to get

Ft = e−λtF (0)
t + λ

∫ t

0

dt′ f(t′) (B.10)

We can follow a similar approach in order to compute the average over the jumps for a

function like

Ft(Kn) =
n∏

k=1

F(t− tk, Uk) ∀n > 0 (B.11)

In this case we have

Ft−e−λtF (0)
t = e−λt

∞∑
n=1

λn

∫ t

0

dt1f(t−tk)
∫ t

t1

dt2f(t−t2)· · ·
∫ t

tk−1

dtn f(t−tn) = e−λtIf (t)

(B.12)

where, again, f(t) =
∫
dUGΓ(U)F(t, U), If (t) =

∑∞
n=1 Ifn(t),

Ifn(t) = λn

∫ t

0

dx1f(x1)

∫ x1

0

dx2f(x2)· · ·
∫ xn−1

0

dxnf(xn) (B.13)

and their derivatives respect to t read

İfn(t) = λf(t)Ifn−1(t) ∀n > 1
(
İf1 (t) = λf(t)

)
(B.14)

İf (t) = λf(t) + λf(t)If (t) (B.15)

Once we solve the differential equation above (If (0) = 0) we get

Ft = e−λt

(
F (0)

t + exp

{
λ

∫ t

0

dt′f(t′)

}
− 1

)
(B.16)

Appendix B.1. Averaging Over the Stationary Measure

Given the starting point X(0) = Y and the set of jumps in the time interval [0, t)

we define the average ⟨f(X)|Y,Kn⟩(n)t of a generic function f(X) over the transition

probability W(n)
t (X|Y,Kn) as

⟨f(X)|Y,Kn⟩(n)t =

∫
dXW(n)

t (X|Y,Kn)f(X) (B.17)

Once we average over the jump distribution also, i.e.

⟨f(X)|Y ⟩t =
∞∑
n=0

∫
dKnP(Kn|t) ⟨f(X)|Y,Kn⟩(n)t (B.18)

we can look at the t → ∞ limit to get the average over the stationary measure of the

process, i.e.

⟨f(X)⟩ =
∫

dXπ(X)f(X) = lim
t→∞
⟨f(X)|Y ⟩t (B.19)

where

π(X) = lim
t→∞

∞∑
n=0

∫
dKnP(Kn|t)W(n)

t (X|Y,Kn) (B.20)
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Appendix C. Entropy Production Rate

In Sec. 3 the entropy production S of a Markov process X has been defined as

S = lim
T →∞

1

T

〈
log

(
P({Xt}0≤t≤T )

P({XT −t}0≤t≤T )

)〉
= lim

T →∞

⟨ST ⟩
T

(C.1)

but it has also been mentioned that it can be equivalently defined as

S = lim
t→0

1

t

∑
X,Y

π(X)Wt(Y |X) log

(
Wt(Y |X)

Wt(X|Y )

)
(C.2)

where Wt(Y |X) denotes the propagator of the Markovian dynamics. Indeed, let h be a

fixed time step, t the duration of a trajectory and consider the quantities

S(h)
t =

∫
dx0 π(x0)

N∏
i=1

[dxiWh(xi−1 → xi)]

{
log

π(x0)
←−π (xn)

+
N∑
j=0

log
Wh(xj−1 → xj)
←−
Wh(xj → xj−1)

}

=

∫
dx π(x) log

π(x)
←−π (x)

+
t

h

∫
dxdy π(x)Wh(x→ y) log

Wh(x→ y)
←−
Wh(y → x)

= S0 + tS1(h) (C.3)

and

S2(t) =
∫

dxdyPt(x, y) log
Pt(x, y)
←−
Pt(x, y)

= S0 + tS1(t) (C.4)

where

t = Nh (C.5)

S0 =
∫

dx π(x) log
π(x)
←−π (x)

(C.6)

S1(h) =
1

h

∫
dx π(x)

∫
dyWh(x→ y) log

Wh(x→ y)
←−
Wh(y → x)

(C.7)

with ←−· representing the backward dynamics.

Defining S1 = limh→0 S1(h) one has

St = S0 + tS1 (C.8)

lim
t→∞

St
t

= S1 = ∂tSt (C.9)

proving that the two definitions of entropy production coincide. However, when the

process is discontinuous, the propagator also depends on the exact realizations of the

jumps, as can be seen from Eq. 20. Thus, at each time step h, the system evolves

according the propagator Ph(x → y) = W(n)(x → y) depending on the number of

jumps n occurred in a time h. Therefore, in order to compute the entropy production S
employing Eq. C.2 we should consider the contribution to S coming from all trajectories

having n jumps and then average over the jump distribution.

To summarize the previous discussion, for computing the entropy production rate of

such processes we have to:
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(i) consider the propagator of the reverse path for which we back-jump the system

using exactly the same times and intensities, i.e.

←−
W(n)

t (Y |X,Kn) =

∫ n∏
k=1

[
dXkW(0)

tk−tk−1
(Xk−1|Xk − Uk)

]
W(0)

t−tn(Xn|X) (C.10)

(ii) compute the entropy production rate once t and the jumps Kn are given

S(n)
t (Y,Kn) =

1

t

∫
dXW(n)

t (X|Y,Kn) log
W(n)

t (X|Y,Kn)
←−
W(n)

t (Y |X,Kn)
, (C.11)

(iii) average over the jump distribution

St(Y ) =
∞∑
n=0

∫
dKnP(Kn)S(n)

t (Y,Kn), (C.12)

(iv) remove the dependence on the starting point Y by averaging over the stationary

measure π(Y )

St =
∫

dY π(Y )St(Y ) (C.13)

(v) take the t→ 0 limit

S = lim
t→0
St (C.14)

Appendix D. Linear Systems

As anticipated in Sec.4, in the case of the linear systems we are able to get an

explicit expression for entropy production rate because an explicit expression of the

free propagator W(0)
t (X|Y ) is available, i.e.

W(0)
t (X|Y ) = GCt(X − e−tAY ) (D.1)

Ct =
∫ t

0

dt′ e−t′AΣe−t′AT t→∞−→ C =
∫ ∞

0

dt e−tAΣe−tAT

(D.2)

from which it is easy to get the propagator and its reverse in presence of the jumps

W(n)
t (X|Y,Kn) =

∫ n∏
k=1

[
dXkGCtk−tk−1

(Xk − Uk − e−(tk−tk−1)AXk−1)
]
GCt−tn

(X − e−(t−tn)AXn) =

= GCt(X − e−tAY −
n∑

k=1

e−(t−tk)AUk) (D.3)

←−
W(n)

t (Y |X,Kn) =

∫ n∏
k=1

[
dXkGCtk−tk−1

(Xk−1 − e−(tk−tk−1)A(Xk − Uk)
]
GCt−tn

(Xn − e−(t−tn)AX) =

= GCt(Y − e−tAX +
n∑

k=1

e−tkAUk) (D.4)
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This implies that, given the jumps and the starting point Y , the entropy production

rate is

S(n)
t (Y,Kn) =

1

2t

∫
dZ GCt(Z)W (Z)TC−1

t W (Z)− N

2t
(D.5)

where

W (Z) = Y − e−tAX +
n∑

k=1

e−tkAUk =

= −e−tA

(
Z − (etA + e−tA)Y −

n∑
k=1

(
e(t−tk)A − e−(t−tk)A

)
Uk

)
(D.6)

Now, we average over the jumps by using UjUT
k = Γδj,k and by observing that, from

equation (B.10) we have

n∑
k=1

(M(t− tk)L(t)N (t− tk))ij =

∫
dKnP(Kn)

n∑
k=1

(M(t− tk)L(t)N (t− tk))ij =

=
∑
lm

Llm(t)
n∑

k=1

Mil(t− tk)Llm(t)Nmj(t− tk)

= λ
∑
lm

Llm(t)

∫ t

0

dt′Mil(t
′)Nmj(t

′)

= λ

(∫ t

0

dt′M(t′)L(t)N (t′)

)
ij

(D.7)

then, to eliminate the dependence on the initial state Y we can compute the covariance

matrix Ĉ = ⟨XXT ⟩ over the stationary measure, i.e.

⟨X|Y ⟩t = e−tAY
t→∞−→ ⟨X⟩ = 0 (D.8)

Ĉt = ⟨XXT |Y ⟩t − ⟨X|Y ⟩t ⟨X|Y ⟩
T
t =

∫ t

0

dt′ e−t′A (Σ + λΓ) e−t′AT

(D.9)

Ĉt
t→∞−→ Ĉ = ⟨XXT ⟩ =

∫ ∞

0

dt e−tA (Σ + λΓ) e−tAT

= C + λC ′ (D.10)

C ′ =
∫ ∞

0

dt e−tAΓe−tAT

(D.11)

So, by putting it all together we get

St = Tr
[
Cte−tAT C−1

t e−tA + Ĉ(1− e−2tAT

)C−1
t (1− e−2tA)− I

]
/2t+

+ Tr

[
Γ

∫ t

0

dt′
(
et

′AT − e−t′AT
)
e−tAT C−1

t e−tA
(
et

′A − e−t′A
)]

/2t .(D.12)

Finally, the limit t→ 0 is made by considering Ct ≃ Σt and e−tA ≃ 1− tA which leads

to

S = Tr
[
2ĈATΣ−1A− A

]
= Tr

[
2CATΣ−1A− A

]
+ 2λTr

[
C ′ATΣ−1A

]
. (D.13)
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It is easy to prove that, the Onsager’s equilibrium condition AĈ = ĈAT still leads to a

positive entropy production rate. In fact, since AĈ + ĈAT = 2ĈAT = Σ+ λΓ we have

S = λTr
[
ΓΣ−1A

]
. (D.14)

We note that this value correspond to the minimum of the entropy production. Indeed,

2ĈAT = Σ+ λΓ +∆ (D.15)

∆ = ĈAT − AĈ (D.16)

lead to

S = S(∆) = λTr
[
ΓΣ−1A

]
+ Tr

[
∆Σ−1A

]
(D.17)

The variation of S due to a change in ∆ can be written as

δS = Tr
[
(δ∆)Σ−1A

]
=
∑
ijk

(δ∆)ijΣ
−1
jk Aki =

∑
i<j

(δ∆)ij

[(
Σ−1A

)
ji
−
(
Σ−1A

)
ij

]
(D.18)

In cases where AΣ ̸= ΣAT , δS can not be equal to 0 and the minimum is obtained for

∆ = 0, that is ĈAT = AĈ. Interestingly we have δS = 0 whenever AΣ = ΣAT . Note

that the last condition does not imply Onsager relation. In fact,

AĈ =
∫ ∞

0

dt e−tAA (Σ + λΓ) e−tAT

, (D.19)

ĈAT =

∫ ∞

0

dt e−tA (Σ + λΓ)AT e−tAT

= λΓ−
∫ ∞

0

dt e−tAAλΓe−tAT

+

∫ ∞

0

dt e−tAAΣe−tAT

(D.20)

where the last equation has been obtained using integration by parts and imposing

AΣ = ATΣ. Thus, ∆ takes the form

∆ = λΓ− 2

∫ ∞

0

dt e−tAAλΓe−tAT

= 2

∫ ∞

0

dt e−tAλΓAT e−tAT − λΓ =

= λ

∫ ∞

0

dt e−tA
(
ΓAT − AΓ

)
e−tAT

(D.21)

which is not necessarily identical to the null operator.

Appendix E. Gradient Systems

The procedure described in Appendix C is rigorous but analytical computations can

rarely be carried out. Nevertheless, it is possible to obtain expressions suitable for

numerical computations for gradient systems in contact with a single thermal bath.

These expressions are those provided in Sec.3 for the one-dimensional linear case as well

as for the particle moving on periodic potentials. Consider a process X whose dynamic

is

Ẋ = −∂XV (X) +
√
2Tξ(t) +

∑
j

Ujδ(t− tj) (E.1)



Statistical Features of Systems driven by non-Gaussian Processes 29

with
〈
ξ(t)ξ(t′)T

〉
= Iδ(t− t′). Between two jumps, the entropy production is

St(X, Y ) =
V (Y )− V (X)

T
. (E.2)

The entropy production rate once t and Kn are given is

S(n)
t (X0, Xt,Kn) =

1

tT

n∑
k=1

(V (Xk + Uk)− V (Xk)) +
V (X0)− V (Xt)

tT
(E.3)

where the last term vanishes when t→ +∞. The average entropy production rate is

S =
1

tT

〈
n∑

k=1

(V (Xk + Uk)− V (Xk))

〉
=

1

tT

∞∑
n=0

Pλ(n|t)
n∑

k=1

∞∑
l=1

〈
V (l)(Xk)

〉
l!

U l
k (E.4)

with
∞∑
l=1

V (l)(X)

l!
U l =

∞∑
l=1

∑
{lk}:

∑
lk=l

∂(l)V (X)

∂
(l1)
x1 · · · ∂

(ln)
xn

U l1
x1
· · ·U ln

xn

l1! · · · ln!
(E.5)

As mentioned in Sec. 3, it is also possible to include a constant pulling force f in the

potential, i.e. Vf (X) = V (X)−f ·X. This modification only affects the boundary term

on the right hand side of Eq. E.3 where it appears a term proportional to f · (X0−Xt).

On average, this term converges to (f ·js)t giving rise to the first term on the right hand

side of Eq. 28.

Appendix E.1. One dimensional Systems

For one dimensional systems it is possible to further simplify the expression for S. By

using the explicit formula for Gaussian moments

U2m =
(2m)!

m!

(
σ2

2

)m

U2m+1 = 0 (E.6)

one gets

S =
1

tT

〈
n∑

k=1

(V (Xk + Uk)− V (Xk))

〉
=

1

tT

∞∑
n=0

Pλ(n|t)n
∞∑
l=1

〈
V (l)(X)

〉
l!

U l =

=
λ

T

∞∑
m=1

〈
V (2m)(X)

〉
m!

(
σ2

2

)m

(E.7)

This formula can not be simplified anymore without specifying the potential V (X). For

quadratic, periodic or quartic potentials one has

V (x) =
1

2
ηx2 → η

λσ2

2T
(E.8)

V (x) = 1− cos
2π

L
x→ S =

λ

T

〈
cos

2π

L
x

〉(
1− e−2(πσ/L)2

)
(E.9)

V (x) =
α

4
x4 − β

2
x2 → S = 3α

λσ2

2T

(
⟨x2⟩+ σ2

2
− β

3α

)
. (E.10)
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