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Abstract

It is shown that the h-adaptive mixed finite element method for the

discretization of eigenvalue clusters of the Laplace operator produces op-

timal convergence rates in terms of nonlinear approximation classes. The

results are valid for the typical mixed spaces of Raviart–Thomas or Brezzi–

Douglas–Marini type with arbitrary fixed polynomial degree in two and

three space dimensions.

1 Introduction

The study of optimal convergence rates for adaptive finite element schemes has
been carried on by several researchers during the last decades in the case of
source problems (see, e.g., [22, 41, 17, 4, 16, 34]) and more recently has been
applied to eigenvalue problems as well (see, e.g., [28, 32, 13] for convergence
and [20, 14, 19, 12] for optimal rates). Some survey papers are available; we
refer, in particular, for further reading and references, to [37, 38, 11]. In the
case of eigenvalue approximation, it has been recently observed that adaptive
schemes driven by the error indicator associated to an individual eigenvalue may
produce unsatisfactory results, and that eigenvalues belonging to clusters have
to be considered simultaneously (see, in particular, [25, 26, 27]).

In this paper, we study the adaptive approximation of the Laplace eigenvalue
problem by mixed finite elements. The analysis of the underlying formulation,
which fits the framework of (0, g)-type mixed problems, is not a mere gener-
alization of the case of standard conforming Galerkin approach (see [6], where
the convergence and the a priori estimates are recalled). This causes additional
technical difficulties which were in previous works [24] circumvented by showing

∗daniele.boffi@unipv.it
†gallistl@ins.uni-bonn.de
‡francesca.gardini@unipv.it
§lucia.gastaldi@unibs.it

1

http://arxiv.org/abs/1504.06418v1


equivalence with some nonconforming but elliptic finite element formulation.
Typically, residual-based a posteriori error estimates are derived by exploiting
the fact that the error of the eigenvalues as well as the error of the eigenfunctions
in some weaker norm (usually the L2 norm) is of higher-order compared with
the error in the energy-like norm. The higher-order L2 convergence, however, is
not valid in its original format in mixed FEMs, and one technical tool we make
use of is a fairly abstract superconvergence result for eigenvalue problems where
a certain error quantity is shown to be of higher order in the L2 norm. For the
low-order case a similar result was shown in [29] by using the representation in
terms of nonconforming finite elements from [24].

We follow the argument of [17] in order to show the optimality of an adap-
tive finite element scheme which is constructed taking into account clusters of
eigenvalues in the spirit of [25]. In order to obtain the result, we need to derive
estimates which are essentially different from the case of standard FEMs: this
is one of the main contributions of our paper.

Previous a posteriori estimates for mixed formulation (source or eigenvalues
problem) mostly showed efficiency and reliability with respect to the vector
variable only (see [1] and [18, 34]; other results in this context can be found
in [9, 44, 30, 36, 35]). Estimates involving the scalar variable were present in [24]
(where, as already mentioned, the equivalence with nonconforming schemes is
exploited) and in [10] (where the source problem is considered). Another main
contribution of our analysis is that we show optimality also with respect to
the scalar variable (see Definitions 6 and 7). This is performed by a suitable
definition of the error indicator (see Definitions 5 and 9); this allows to prove the
optimal convergence rate not only for the eigenfunction but for the eigenvalues
as well (see Section 5).

The outline of the paper is as follows: Section 2 introduces the problem
we are dealing with, Section 3 describes the error indicators and our adaptive
algorithm, Section 4 states the main theorem of our paper, concerning the con-
vergence of the adaptive scheme in terms of a theoretical error indicator which
is equivalent to the error indicator used for the design of the AFEM algorithm.
Section 5 shows that the convergence of the error indicator, which is related to
the convergence of the eigenfunctions, actually implies the convergence of the
eigenvalues as well. Finally, Section 6 contains all technical results which are
used in the proof of our main theorem and Section 7 discusses the extension to
three space dimensions.

Throughout this paper, we use standard notation for Lebesgue and Sobolev
spaces and their norms. The L2 norm of a function v over some domain ω is
denoted by ‖v‖ω and, if there is no risk of confusion, we write ‖v‖ = ‖v‖Ω for
the physical domain Ω. The scalar product of L2(Ω) is denoted by (·, ·). If A
is a disjoint union of subdomains of Ω, typically a (subset of a) triangulation,
then ‖v‖2A =

∑
ω∈A ‖v‖2ω. We denote the scalar curl of some two-dimensional

vector field ψ by curlψ = ∂2ψ1 − ∂1ψ2 and the vector curl of a scalar-valued
function v by curl v = (−∂2v, ∂1v)T . In three dimensions we define as usual
curlψ = ∇× ψ.

The notation A . B refers to an inequality A ≤ CB up to a constant C
that is independent of the mesh size. We do not trace the explicit dependence
of the constants on the eigenvalues, cf. Remark 1.

The mesh-size is typically denoted by h; when a triangulation Th is obtained
as a refinement of a given mesh, we denote by TH the coarser mesh. When
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dealing with the adaptive scheme, we denote by ℓ the level of refinement, so
that Tℓ+1 is the next triangulation in the algorithm obtained from Tℓ.

2 Setting of the problem

Our main result is valid both in two and three dimensions. From now on,
we discuss the two dimensional setting. Section 7 extends the result in three
dimensions.

Given a polygonal domain Ω, in this paper we are interested in the following
eigenvalue problem associated with the Laplace operator in mixed form: find
λ ∈ R and u ∈ L2(Ω) with ‖u‖ = 1 such that for some σ ∈ H(div; Ω) it holds





∫

Ω

σ · τ dx+

∫

Ω

u div τ dx = 0 ∀τ ∈ H(div; Ω)

∫

Ω

v divσ dx = −λ
∫

Ω

uv dx ∀v ∈ L2(Ω).

2.1 Abstract mixed eigenvalue problem

We cast this problem within the standard setting of abstract eigenvalue problems
in mixed form of the second type (see [8, 6]).

Let Σ, M , H be Hilbert spaces such that M ⊆ H ⊆ M⋆ and consider two
bilinear and continuous forms a : Σ × Σ → R symmetric, and b : Σ ×M → R

which satisfy the usual hypotheses for mixed problems [7]: a is elliptic in the
kernel of b and b fulfills the inf-sup condition. Moreover, the form a is supposed
to be positive definite so that the associated norm | · |a is well defined. In the
pivot space H we consider the scalar product (·, ·)H and corresponding norm
‖ · ‖H.

In this framework, the continuous eigenvalue problem reads: find λ ∈ R and
u ∈M with ‖u‖H = 1 such that for some σ ∈ Σ it holds

{
a(σ, τ) + b(τ, u) = 0 ∀τ ∈ Σ

b(σ, v) = −λ(u, v)H ∀v ∈M
(2.1)

and, given finite dimensional subspaces Σh ⊂ Σ and Mh ⊂M (typically associ-
ated to a finite element mesh Th), its discrete counterpart is: find λh ∈ R and
uh ∈Mh with ‖uh‖H = 1 such that for some σh ∈ Σh it holds

{
a(σh, τ) + b(τ, uh) = 0 ∀τ ∈ Σh

b(σh, v) = −λh(uh, v)H ∀v ∈Mh.
(2.2)

The following three assumptions ensure the good approximation of the eigen-
modes (see [8, 6]), where ρ(h) tends to zero as h goes to zero and Σ0 andM0 are
the subspaces of Σ and M , respectively, containing all solutions to the source
problem associated with (2.1) when the datum is in H; the discrete kernel as-
sociated to the bilinear form b is as usual defined as

Kh = {τ ∈ Σh : b(τ, v) = 0 ∀v ∈Mh}.
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Fortid condition. There exists a Fortin operator ΠF
h : Σ0 → Σh such that

b(σ −ΠF
h σ, v) = 0 ∀v ∈Mh

and
|σ −ΠF,hσ|a ≤ ρ(h)‖σ‖Σ0

∀σ ∈ Σ0.

Weak approximability of M0.

b(τh, v) ≤ ρ(h)|τh|a‖v‖M0
∀v ∈M0 ∀τh ∈ Kh.

Strong approximability of M0.

inf
vh∈Mh

‖v − vh‖H ≤ ρ(h)‖v‖M0
∀v ∈M0.

We consider a problem associated with a compact operator, so that the
eigenvalues are enumerated as

0 < λ1 ≤ λ2 ≤ λ3 ≤ . . .

(we repeat the eigenvalues according to their multiplicities); the corresponding
eigenfunctions are denoted by {(σ1, u1), (σ2, u2), . . . } and the {ui}’s form an
orthonormal system in H. In particular, we have |σi|2a = λi and ‖ui‖H = 1 for
i = 1, 2, . . . . We denote by E(λ) the span of the {ui}’s corresponding to λ.

Analogously, the discrete eigenvalues can be enumerated as follows

0 < λh,1 ≤ λh,2 ≤ · · · ≤ λh,N(h)

with corresponding eigenfunctions {(σh,1, uh,1), . . . , (σh,N(h), uh,N(h))}, where
N(h) = dim(Mh) and the {uh,i}’s form an orthonormal system in H. Here
we have |σh,i|2a = λh,i and ‖uh,i‖H = 1 for i = 1, 2, . . . , N(h).

For a cluster of eigenvalues λn+1, . . . , λn+N of length N ∈ N, we define the
index set J = {n+ 1, . . . , n+ N} and the spaces

W = span{uj | j ∈ J} and WTh
=Wh = span{uh,j | j ∈ J}.

2.2 Some useful operators

Definition 1. For any w ∈M we define G(w) ∈ Σ as the solution to

a(G(w), τ) + b(τ, w) = 0 for all τ ∈ Σ. (2.3)

For any wh ∈Mh we define its discrete counterpart Gh(wh) ∈ Σh via

a(Gh(wh), τh) + b(τh, wh) = 0 for all τh ∈ Σh. (2.4)

We explicitly notice that when two meshes Th and TH are present, it is important
to distinguish between Gh and GH .

In many applications and corresponding instances of a and b, the above
definition is related to an integration by parts formula where G(w) is some
derivative of w. For instance, in the case of mixed Laplacian, G(w) is the
gradient of w.
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Definition 2. The solution operators T : H → M and A : H → Σ are defined
by {

a(Ag, τ) + b(τ, T g) = 0 ∀τ ∈ Σ

b(Ag, v) = −(g, v)H ∀v ∈M
(2.5)

and Th : H →Mh and Ah : H → Σh are their discrete counterparts

{
a(Ahg, τh) + b(τh, Thg) = 0 ∀τh ∈ Σh

b(Ahg, vh) = −(g, vh)H ∀vh ∈Mh.
(2.6)

Definition 3. The operator T λ
h : H →Mh (λ ∈ R) is defined by

{
a(Gh(T

λ
h g), τh) + b(τh, T

λ
h g) = 0 ∀τh ∈ Σh

b(Gh(T
λ
h g), vh) = −(λg, vh)H ∀vh ∈Mh,

(2.7)

that is, T λ
h = λTh.

Let PW
h denote the H-orthogonal projection onto Wh. The following defini-

tion is crucial for the definition of our theoretical error indicator.

Definition 4. The operator Λh : E(λ) →Wh is defined as follows:

Λh = PW
h ◦ T λ

h .

For the sake of simplicity, we do not include the dependence from λ in the
notation for Λh: it will be clear from the context that when Λh is applied to an
element of E(λ), the corresponding value of λ should be used for its definition.

Lemma 2.1. The operators PW
h and T λ

h commute, that is Λh = PW
h ◦ T λ

h =
T λ
h ◦ PW

h . In other words, if (σ, u) is an eigenfunction associated with λ, then
Λhu solves

{
a(Gh(Λhu), τh) + b(τh,Λhu) = 0 ∀τh ∈ Σh

b(Gh(Λhu), vh) = −(λPW
h u, vh)H ∀vh ∈Mh.

Proof. We adapt the result of [27, Lemma 2.2]. The expansion of Λhu reads as
Λhu =

∑
j∈J (T

λ
h u, uh,j)Huh,j, thus Λhu solves the discrete linear system (2.6)

with right-hand side g =
∑

j∈J (T
λ
h u, uh,j)Hλh,juh,j. For any j ∈ J we have

λh,j(T
λ
h u, uh,j)H = −b(σh,j , T λ

h u) = a(Gh(T
λ
h u), σh,j) = −b(Gh(T

λ
h u), uh,j)

= λ(u, uh,j)H,

which gives the final result that Λhu solves the discrete linear system (2.6) with
right-hand side g =

∑
j∈J λ(u, uh,j)Huh,j = λPW

h u.

3 AFEM algorithm and error quantities

As already mentioned, we are interested in the Laplace eigenvalue problem in
mixed form with Dirichlet boundary conditions. Namely, with the notation
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introduced in Section 2, we are making the following choices:

Σ = H(div; Ω)

M = H = L2(Ω)

a(σ, τ) = (σ, τ)

b(τ, v) = (div τ, v)

for an open, bounded, simply-connected polygonal Lipschitz domain Ω.
It follows, in particular that the seminorm | · |a is the norm in (L2(Ω))2. Our

analysis applies to more general operators (for instance, Neumann boundary
conditions or non-constant coefficients), but we stick to this simpler example
for the sake of readability.

We discretize the problem with standard mixed finite elements (including
Raviart–Thomas, Brezzi–Douglas–Marini, etc.), see [7] for more detail. It is
well-known that this choice satisfies the assumptions discussed in Section 2
(see, for instance, [8]).

Moreover, we observe that the following relation (part of the commuting
diagram) holds true:

div(Σh) =Mh (3.1)

Let us first introduce our error indicator.

Definition 5. Let Th be a triangulation of Ω and let (σh,j , uh,j) ∈ Σh ×Mh

be a discrete eigensolution computed on the mesh Th. Then, for all T ∈ Th we
define

ηh,j(T )
2 = ‖hT (σh,j −∇uh,j)‖2T + ‖hT curlσh,j‖2T +

∑

E∈E(T )

hE‖[σh,j ]E · tE‖2E,

where hT is the diameter of T , E(T ) denotes the set of edges of T , hE is the
length of the edge E, and tE is its unit tangent vector. As usual, [σh]E · tE
denotes the jump of the trace of σh · tE for internal edges and the trace for
boundary edges.

Given a set M of elements of Th, we define

ηh,j(M)2 =
∑

T∈M

ηh,j(T )
2.

3.1 Adaptive algorithm

The adaptive algorithm consists of the standard four steps: solve, estimate,
mark, and refine. In the description of the fours steps, we describe how the
algorithms runs from level ℓ to ℓ + 1.

Solve. Given a mesh Tℓ the algorithm computes the eigensolutions of (2.2)
belonging to the cluster (λℓ,j , σℓ,j, uℓ,j) for j ∈ J . We assume that the
discrete solution is computed exactly.

Estimate. The algorithm computes the local contributions of the error estima-
tor for the eigenfunctions in the cluster

{
ηℓ,j(T )

}
T∈Tℓ

(j ∈ J).

6
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Figure 3.1: Possible refinements of a triangle T in one level in 2D. The thick
lines indicate the refinement edges of the sub-triangles as in [5, 42].

Mark. The algorithm uses the well known Dörfler marking strategy [22]. Given
a bulk parameter θ ∈ (0, 1], a minimal subset Mℓ ⊆ Tℓ is identified such
that

θ
∑

j∈J

ηℓ,j(Tℓ)2 ≤
∑

j∈J

ηℓ,j(Mℓ)
2.

The elements belonging to Mℓ are marked for refinement.

Refine. A new triangulation Tℓ+1 is generated, as the smallest admissible re-
finement of Tℓ satisfying Mℓ ∩ Tℓ+1 = ∅ by using the refinement rules
of [5, 42]. Figure 3.1 shows possible refinements of a triangle.

To summarize, the adaptive algorithm accepts as input the bulk parameter
θ and the initial mesh T0 (with proper initialization of refinement edges as
in [5, 42]), and returns as output a sequence of meshes {Tℓ} and of discrete
eigenpairs {(λℓ,j , σℓ,j , uℓ,j)}j∈J .

Finally, we shall make use of the following notation: given an initial mesh
T0, regular in the sense of Ciarlet, we denote by T the set of admissible meshes
in the sense that a mesh in T is a refinement of T0 obtained using the rules
of [5, 42].

3.2 Error quantities and theoretical error indicator

The following definition introduces a metric in M .

Definition 6. d :M ×M → R is defined as

d(v, w) =
√
‖v − w‖2 + |G(v)− G(w)|2a

When v (resp. w) belongs to Mh, then Gh(v) (resp. Gh(w)) should be used.

Remark 1. We note that it may be useful to balance the terms in the square
root of Definition 6 in terms of λ. In particular, if v and w are related to
eigenfunctions with frequency λ, the right scaling would involve multiplying by
λ the term ‖v − w‖. This is of particular interest it one aims to quantify the
conditions on the initial mesh-size. In this paper, we do not aim at such a
quantification and refer the interested reader to [27] for such a λ explicit analysis
in the context of conforming standard finite elements.

This distance allows us to evaluate the gap between discrete and continuous
eigenfunctions in the cluster.

Definition 7. The following quantity measures how combinations of eigenfunc-
tions in the cluster W are approximated by their discrete counterparts in Wh.

δ(W,Wh) = sup
u∈W
‖u‖=1

inf
vh∈Wh

d(u, vh).
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Given a refinement Tℓ ∈ T of the initial mesh T0, our theory is based on the
introduction of the following non-computable error indicator µℓ which will be
proved equivalent to the computable indicator ηℓ.

Definition 8. Let Th ∈ T be a triangulation and for all T ∈ Th and gh ∈ Mh

let us consider the following seminorm

|gh|2η,T = ‖hT (Gh(gh)−∇gh)‖2T + ‖hT curlGh(gh)‖2T
+

∑

E∈E(T )

hE‖[Gh(gh)]E · tE‖2E ,

so that
ηh,j(T ) = |uh,j|η,T .

Then, given an eigenfunction (σ, u) associated to the eigenvalue λ (in particular,
this is used in the definition of Λh), we define

µh(u;T ) = |Λhu|η,T .

Given a set M of elements of Th, we define

µh(u;M)2 =
∑

T∈M

µh(u;T )
2.

The next lemma is of technical nature and gives a criterion for linear inde-
pendence. It generalizes [13, Prop. 3.2].

Lemma 3.1. Recall the notation N = card(J) and suppose that

ε = max
j∈J

‖uj − Λhuj‖ ≤
√

1 + 1/(2N)− 1. (3.2)

Then, {Λhuj}j∈J forms a basis of Wh. For any wh ∈ Wh with ‖wh‖ = 1, the

coefficients of the representation wh =
∑

j∈J γjΛhuj are controlled as

∑

j∈J

|γj |2 ≤ 2 + 4N. (3.3)

Proof. The proof employs Gershgorin’s theorem. Since the proof follows verba-
tim the lines of [27, Lemma 5.1], it is omitted here.

The following lemma states the equivalence between the two introduced esti-
mators. It is clear that the adaptive algorithm will make use of the computable
indicator η, while the indicator µ will be used for the analysis.

Lemma 3.2 (Local comparison of the error estimators). Provided the initial
mesh-size is small enough such that (3.2) is satisfied, it holds for any T ∈ Th
that

N
−1

∑

j∈J

µh(uj ;T )
2 ≤

(
B

A

)2 ∑

j∈J

ηh,j(T )
2 ≤

(
B

A

)2

(2N+ 4N2)
∑

j∈J

µh(uj ;T )
2

where [A,B] denotes a real interval containing the (continuous and discrete)
eigenvalue cluster and N is the number of eigenvalues in the cluster.
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Proof. The proof follows from a perturbation analysis as in [27, Prop. 5.1].
We include the proof for self-contained reading. Let k ∈ J and consider the
expansion of Λhuk =

∑
j∈J γjuh,j with coefficients γj = (Λhuk, uh,j). The

definition of Λh and the symmetry yield

γj = (Λhuk, uh,j) = (T λ
h uk, uh,j) = −λ−1

h,jb(σh,j , T
λ
h uk)

= λ−1
h,ja(σh,j ,Gh(T

λ
h uk)) = −λ−1

h,jb(Gh(T
λ
h uk), uh,j) = λ−1

h,jλk(uk, uh,j).

Since {uh,j}j∈J is an orthonormal system, we arrive at
∑

j∈J γ
2
j ≤ (B/A)2,

which implies

|Λhuk|2η,T ≤
(∑

j∈J

γ2j

)∑

j∈J

|uh,j|2η,T ≤
(
B

A

)2 ∑

j∈J

|uh,j |2η,T .

This proves the first stated inequality.
Lemma 3.1 shows that there exist real coefficients {δj | j ∈ J} such that

uh,k =
∑

j∈J

δjΛhuj and
∑

j∈J

δ2j ≤ 2 + 4N.

The triangle and Cauchy inequalities lead to

|uh,k|2η,T ≤
(∑

j∈J

δ2j

)∑

j∈J

|Λhuj |2η,T ≤ (2 + 4N)
∑

j∈J

|Λhuj|2η,T .

This shows the second stated inequality and concludes the proof.

4 Optimal convergence of the adaptive scheme

In this section we state the main theorem showing the optimal convergence of
our adaptive scheme and sketch the principal lines of its proof. The structure
of the proof is closely related to [17] and relies on several intermediate results
which, for the sake of readability, will be postponed to Section 6.

As usual in this context, the convergence is measured by introducing a suit-
able nonlinear approximation class in the spirit of [5]. For anym ∈ N, we denote
by

T(m) = {T ∈ T | card(T )− card(T0) ≤ m}
the set of admissible triangulations in T whose cardinality differs from that of
T0 by m or less.

The best algebraic convergence rate s ∈ (0,+∞) obtained by any admissible
mesh in T is characterized in terms of the following seminorm

|W |As
= sup

m∈N

ms inf
T ∈T(m)

δ(W,WT ).

In particular, we have |W |As
< ∞ if the rate of convergence δ(W,WT ) =

O(m−s) holds true for the optimal triangulations T in T(m).
The main results of this section, stated in Theorem 4.1, shows that the

same optimal rate of convergence is reached by the error quantity δ(W,WTℓ
)

associated with the mesh sequence {Tℓ} obtained from the adaptive algorithm
presented in Section 3.
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Theorem 4.1. Provided the initial mesh-size and the bulk parameter θ are small
enough, if for the eigenvalue cluster W it holds |W |As

< ∞, then the sequence
of discrete clusters Wℓ computed on the mesh Tℓ satisfies the optimal estimate

δ(W,Wℓ)(card(Tℓ)− card(T0))s . |W |As
.

Proof. We follow the lines of the proof of Theorem 3.1 in [27]. The main argu-
ments are the same as in [17].

Given a positive β, we consider the quantity

ξ2ℓ =
∑

j∈J

µℓ(uj , Tℓ)2 + β
∑

j∈J

d(uj ,Λℓuj)
2

which will be used in the contraction argument of Proposition 6.11. We do not
consider the trivial case ξ0 = 0. Choose 0 < τ ≤ |W |2As

/ξ20 , and set ε(ℓ) =
√
τ ξℓ.

Let N(ℓ) ∈ N be minimal with the property

|W |2As
≤ ε(ℓ)2N(ℓ)2s.

It can be easily seen that N(ℓ) > 1, otherwise

|W |As
≤ ε(ℓ)

but this, together with the definition of ε(ℓ), would violate the contraction
property of Proposition 6.11.

From the minimality of N(ℓ) it turns out that

N(ℓ) ≤ 2|W |1/sAs
ε(ℓ)−1/s for all ℓ ∈ N0. (4.1)

Let T̃ℓ ∈ T denote the optimal triangulation of cardinality

card(T̃ℓ) ≤ card(T0) +N(ℓ)

in the sense that the operator Λ̃ = ΛT̃ℓ
of Definition 4 with respect to the mesh

T̃ℓ satisfies ∑

j∈J

d(uj , Λ̃uj)
2 ≤ N(ℓ)−2s|W |2As

≤ ε(ℓ)2. (4.2)

Let us consider the overlay T̂ℓ, that is the smallest common refinement of Tℓ
and T̃ℓ, which is known [17] to satisfy

card(Tℓ \ T̂ℓ) ≤ card(T̂ℓ)− card(Tℓ) ≤ card(T̃ℓ)− card(T0) ≤ N(ℓ). (4.3)

This relation and (4.1)–(4.3) lead to

card(Tℓ \ T̂ℓ) ≤ N(ℓ) ≤ 2|W |1/sAs
ε(ℓ)−1/s. (4.4)

Let Λ̂ denote the operator ΛT̂ℓ
with respect to the mesh T̂ℓ.

The following estimate

∑

j∈J

d(uj , Λ̂uj)
2 ≤ 3ε(ℓ)2 (4.5)

10



follows from the quasi-orthogonality (see Proposition 6.9) applied to Th = T̂ℓ
and TH = T̃ℓ. Indeed

(1 − Cqoρ(h0))
∑

j∈J

d(uj , Λ̂uj)
2 ≤ (1 + Cqoρ(h0))

∑

j∈J

d(uj , Λ̃uj)
2.

Estimate (4.5) follows from the mesh-size condition Cqoρ(h0) ≤ 1/2 and (4.2).
We now show the existence of a constant C1 such that

∑

j∈J

µℓ(uj , Tℓ)2 ≤ C1

∑

j∈J

µℓ(uj , Tℓ \ T̂ℓ)2. (4.6)

From the triangle inequality and the discrete reliability (see Proposition 6.7)
we obtain for any j ∈ J

d(uj ,Λℓuj)
2 ≤ 2d(uj, Λ̂ℓuj)

2 + 2d(Λ̂ℓuj,Λℓuj)
2

≤ 2d(uj, Λ̂ℓuj)
2 + 2C2

drelµℓ(Tℓ \ T̂ℓ)2

+ Cρ(h0)
2(d(uj ,Λℓuj) + d(uj , Λ̂ℓuj))

2.

Provided the initial mesh-size is sufficiently small, this leads to some constant
C2 such that with (4.5) it follows

∑

j∈J

d(uj ,Λℓuj)
2 ≤ C2ε(ℓ)

2 + C2C
2
drel

∑

j∈J

µℓ(uj , Tℓ \ T̂ℓ)2.

Let Ceq denote the constant of C2ξ
2
ℓ ≤ Ceq

∑
j∈J µℓ(uj , Tℓ)2 (which exists

by reliability). The efficiency (6.2), the definition of ε(ℓ), and the preceding
estimates prove

C−2
eff

∑

j∈J

µℓ(uj , Tℓ)2 ≤ C2ε(ℓ)
2 + C2C

2
drel

∑

j∈J

µℓ(uj , Tℓ \ T̂ℓ)2

≤ τCeq

∑

j∈J

µℓ(uj , Tℓ)2 + C2C
2
drel

∑

j∈J

µℓ(uj , Tℓ \ T̂ℓ)2.

Defining C1 = (C−2
eff − τCeq)

−1C2C
2
drel, which is positive for a sufficiently small

choice of τ , we obtain (4.6).
In order to conclude the proof, we now make the following choice for the

parameter θ:
0 < θ ≤ 1

/(
C1(B/A)

2(2N2 + 4N3)
)
.

The marking step in the adaptive algorithm selects Mℓ ⊆ Tℓ with minimal
cardinality such that

θ
∑

j∈J

ηℓ,j(Tℓ)2 ≤
∑

j∈J

ηℓ,j(Mℓ)
2.

Estimate (4.6) and the definition of θ imply together with Lemma 3.2 that also

Tℓ \ T̂ℓ satisfies the bulk criterion, that is

θ
∑

j∈J

ηℓ,j(Tℓ)2 ≤
∑

j∈J

ηℓ,j(Tℓ \ T̂ℓ)2.
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The minimality of Mℓ and (4.4) show that

card(Mℓ) ≤ card(Tℓ \ T̂ℓ) ≤ 2|W |1/sAs
τ−1/(2s)ξ

−1/s
ℓ . (4.7)

It is proved in [5, 42] that there exists a constant CBDV such that

card(Tℓ)− card(T0) ≤ CBDV

ℓ−1∑

k=0

card(Mk)

≤ 2CBDV|W |1/sAs
τ−1/(2s)

ℓ−1∑

k=0

ξ
−1/s
k .

The contraction property from Proposition 6.11 implies ξ2ℓ ≤ ρℓ−k
2 ξ2k for k =

0, . . . , ℓ. Since ρ2 < 1, a geometric series argument leads to

ℓ−1∑

k=0

ξ
−1/s
k ≤ ξ

−1/s
ℓ

ℓ−1∑

k=0

ρ
(ℓ−k)/(2s)
2 ≤ ξ

−1/s
ℓ ρ

1/(2s)
2

/(
1− ρ

1/(2s)
2

)
.

The combination of the above estimates results in

card(Tℓ)− card(T0)
≤ 2CBDV|W |1/sAs

τ−1/(2s)ξ
−1/s
ℓ ρ

1/(2s)
2

/(
1− ρ

1/(2s)
2

)
.

The equivalence of ξ2ℓ with the error
∑

j∈J d(uj ,Λℓuj)
2 (reliability and efficiency,

see Section 6) concludes the proof.

5 Convergence of eigenvalues

The previous analysis shows that the adaptive procedure leads to the conver-
gence of the quantity δ(W,Wℓ) which is related to the eigenfunctions belonging
to the cluster. In this section we show that this estimate actually implies the
optimal convergence of the eigenvalues.

The next discussion has been inspired by [21]. However, we do not make
use explicitly of the spectral projections and follow a somehow more natural
argument (at least for symmetric problems).

As usual, we consider the eigenvalues µi = 1/λi (i = 1, . . . ) of T and µℓ,i =
1/λℓ,i (i = 1, . . . , dim(Mℓ)) of Tℓ and discuss the convergence of µℓ,j to µj for
j ∈ J . This standard notation conflicts with our theoretical error indicator;
nevertheless, we believe that this overlap is not a source of confusion, since it is
limited to this section where the error indicator is not mentioned.

Let E : H → H denote the H projection onto W and Eℓ : H → H the H
projection onto Wℓ. We denote by Fℓ the restriction of Eℓ to W

Fℓ = Eℓ|W .

The following proposition shows that for ℓ large enough the operator Fℓ is a
bijection from W to Wℓ (which have the same dimension N).
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Proposition 5.1. For ℓ large enough the operator Fℓ is injective. Moreover,
F−1
ℓ is uniformly bounded in L(Wℓ,W ) and

sup
x∈Wℓ

‖x‖H=1

‖F−1
ℓ x− x‖H ≤ Cδ(W,Wℓ).

Proof. It is enough to show that for ℓ sufficiently large ‖Fℓy−y‖H ≤ (1/2)‖y‖H
for all y ∈ W (see also [21, Lemma 2]). Indeed, from the definition of Fℓ it is
immediate to get

‖Fℓy − y‖H ≤ ‖y − yℓ‖H ∀yℓ ∈Wℓ

which implies
‖Fℓy − y‖H ≤ δ(W,Wℓ)‖y‖H.

We can then conclude our proof from Theorem 4.1 observing that δ(W,Wℓ)
tends to zero.

Let us define the following operators from W into itself:

T̂ = T |W , T̂ℓ = F−1
ℓ TℓFℓ.

It is clear that the eigenvalues of T̂ (T̂ℓ, resp.) are equal to µj (µℓ,j resp.), j ∈ J .

Lemma 5.2. The following estimates hold true for all x ∈W

‖(T − Tℓ)x‖H ≤ Cδ(W,Wℓ),

|(A−Aℓ)x|a ≤ Cδ(W,Wℓ),

‖(A−Aℓ)x‖Σ ≤ Cδ(W,Wℓ).

(5.1)

Proof. Let us denote u = Tx, uℓ = Tℓx, σ = G(u) = Ax, and σℓ = Gℓ(uℓ) =
Aℓx.

In order to prove the first estimate, we use a standard duality argument and
introduce the following auxiliary problem: find ζ ∈ Σ and w ∈M such that

{
a(ζ, τ) + b(τ, w) = 0 ∀τ ∈ Σ

b(ζ, v) = −(u− uℓ, v)H ∀v ∈M.

We clearly have ‖ζ‖Σ + ‖w‖M ≤ C‖u− uℓ‖H. By standard arguments we get

‖u− uℓ‖2H = (u − uℓ, u− uℓ)H = −b(ζ, u− uℓ)

= −b(ζ −ΠF,ℓζ, u)− b(ΠF,ℓζ, u− uℓ)

= a(σ, ζ −ΠF,ℓζ) + a(G(u)− Gℓ(uℓ),ΠF,ℓζ).

(5.2)

For all vℓ ∈Mℓ, the first term can be estimated as follows:

|a(σ, ζ −ΠF,ℓζ)| = |a(σ − Gℓ(vℓ), ζ −ΠF,ℓζ) + a(Gℓ(vℓ), ζ −ΠF,ℓζ)|
= |a(σ − Gℓ(vℓ), ζ −ΠF,ℓζ)− b(ζ −ΠF,ℓζ, vℓ)|
= |a(σ − Gℓ(vℓ), ζ −ΠF,ℓζ)|
≤ C|σ − Gℓ(vℓ)|a‖ζ‖Σ ≤ C|σ − Gℓ(vℓ)|a‖u− uℓ‖H.
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The second term in the last line of (5.2) can be estimated as follows:

|a(G(u)−Gℓ(uℓ),ΠF,ℓζ)| ≤ C|G(u)−Gℓ(uℓ)|a‖ζ‖Σ ≤ C|(A−Aℓ)x|a‖u− uℓ‖H.

Hence

‖Tx− Tℓx‖H ≤ C (|σ − Gℓ(vℓ)|a + |(A−Aℓ)x|a) ∀vℓ ∈Mℓ.

Since the first term is bounded by δ(W,Wℓ), the final estimate will follow from
the second estimate in (5.1).

Let us prove the second estimate in (5.1).
From the definition of W we have

x =
∑

j∈J

αjuj ,

where we recall that (λj , σj , uj) is the generic eigensolution belonging to the
cluster W and the coefficients are given by αj = (x, uj).

Hence, Ax = G(u) with u = Tx and

Ax =
∑

j∈J

1

λj
αjσj .

Analogously, from (2.7),

Aℓx =
∑

j∈J

1

λj
αjGℓ(T

λj

ℓ uj).

We then obtain

|Ax−Aℓx|a =

∣∣∣∣∣∣

∑

j∈J

1

λj
αj(σj − Gℓ(T

λj

ℓ uj))

∣∣∣∣∣∣
a

.

We now show that |σj − Gℓ(T
λj

ℓ uj)|a can be bounded by δ(W,Wℓ). For all
vℓ ∈Mℓ we have

|σj − Gℓ(T
λj

ℓ uj)|2a = a(σj − Gℓ(T
λj

ℓ uj), σj − Gℓ(T
λj

ℓ uj))

= a(σj − Gℓ(T
λj

ℓ uj), σj − Gℓ(vℓ))

+ a(σj − Gℓ(T
λj

ℓ uj),Gℓ(vℓ)− Gℓ(T
λj

ℓ uj)).

Since the last term is vanishing for the properties of σj and the definitions of

T
λj

ℓ and Gℓ, we obtain

|σj − Gℓ(T
λj

ℓ uj)|a ≤ inf
vℓ∈Mℓ

|σj − Gℓ(vℓ)|a ≤ Cδ(W,Wℓ).

From [7, Prop. 4.3.4] and the definitions of A and Aℓ it follows that

‖(A−Aℓ)x‖Σ ≤ C|(A−Aℓ)x|a + C‖x− xℓ‖H,

where xℓ ∈ Mℓ is the H projection of x. The first term is readily bounded
by δ(W,Wℓ), while the second one is smaller than ‖x− Fℓx‖H which has been
already estimated in the proof of Proposition 5.1.
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The following proposition is a crucial step for the bound of the eigenvalues.

Proposition 5.3. The following estimate holds true

‖T̂ − T̂ℓ‖L(W ) ≤ Cδ(W,Wℓ)
2 (5.3)

Proof. Let us define Sℓ = F−1
ℓ Eℓ − I : H → H. From the boundedness of the

involved operators, it is immediate to observe that Sℓ is uniformly bounded.
For all x ∈ W we have

(T̂ − T̂ℓ)x = (T − Tℓ)x+ Sℓ(T − Tℓ)x (5.4)

since EℓSℓ = 0. Let us estimate the first term. For all x, y ∈ W with ‖x‖H =
‖y‖H = 1

((T − Tℓ)x, y)H = −b(Ay, (T − Tℓ)x) + a((A−Aℓ)x,Aℓy) + b(Aℓy, (T − Tℓ)x)

= −b((A−Aℓ)y, (T − Tℓ)x) + a((A −Aℓ)x,Aℓy).

The first term is bounded by a constant times δ(W,Wℓ)
2, while the second

term can be estimated as follows.

a((A−Aℓ)x,Aℓy) = a((A−Aℓ)x, (Aℓ −A)y) + a((A−Aℓ)x,Ay)

= a((A−Aℓ)x, (Aℓ −A)y)− b((A−Aℓ)x, T y)

= a((A−Aℓ)x, (Aℓ −A)y)− b((A−Aℓ)x, (T − Tℓ)y)

≤ Cδ(W,Wℓ)
2.

The second term in (5.4) can be estimated using the following identity

(Sℓ(T − Tℓ)x, y)H = (Sℓ(T − Tℓ)x, y − Fℓy)H

which finally leads to

|(Sℓ(T − Tℓ)x, y − Eℓy)H| ≤ ‖Sℓ‖L(H)‖T − Tℓ‖L(H)‖I − Fℓ‖L(H).

The operators T̂ and T̂ℓ can be represented by symmetric positive definite
matrices of dimension N × N (N being the dimension of W ). The following
theorem is then a standard consequence of matrix perturbation theory (see, for
instance, [21, Theorem 3, items c) and d)]) and to the equivalences λi = 1/µi

and λℓ,i = 1/µℓ,i.

Theorem 5.4. Let J denote the set of indices corresponding to the eigenvalues
in the cluster W . Then

sup
i∈J

inf
j∈J

|λi − λℓ,j| ≤ Cδ(W,Wℓ)
2.

6 Auxiliary results

This section contains all technical results which have been used for the proof
of Theorem 4.1. We arrange the presentation in three subsections: in the first
one a superconvergence result is proved; in the second one we collect the results
which hold for all refinements Th of a given mesh TH ; finally, in the third one
we include the results which have been proved for the sequence of meshes {Tℓ}
generated by our adaptive procedure.
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6.1 A superconvergence result and other useful estimates

Let Πh denote the orthogonal projection onto Mh.

Lemma 6.1 (Superconvergence for the source problem). There exist ρ(h) tend-
ing to zero as h goes to zero such that

‖Πhu− T λ
h u‖ . ρ(h)‖σ − Gh(T

λ
h u)‖Σ.

Proof. This result has been proved in [23] and can be found in [29] or [7, §7.4]
as well.

Let JC = {1, . . . , N(h)}\J denote the indices of the discrete eigenvalues not
belonging to the cluster and assume the initial mesh-size is small enough such
that

K = sup
Th

sup
k∈JC

sup
j∈J

λj
|λj − λh,k|

<∞.

Lemma 6.2. For all j ∈ JC we have

(uh,j, T
λ
h u) =

λ

λ− λh,j
(T λ

h u−Πhu, uh,j).

Proof. We have

−λh,j(uh,j, T λ
h u) = b(σh,j , T

λ
h u) = −a(σh,j ,Gh(T

λ
h u)) = b(Gh(T

λ
h u), uh,j)

= −λ(u, uh,j) = −λ(Πhu, uh,j).

Adding λ(uh,j , T
λ
h u) on both sides of this identity leads to

(λ− λh,j)(uh,j , T
λ
h u) = λ(T λ

h u−Πhu, uh,j).

Lemma 6.3 (cf. [43]). Any eigensolution (λ, σ, u) ∈ R× Σ×W in the cluster
satisfies

‖T λ
h u− Λhu‖ ≤ K‖Πhu− T λ

h u‖.

Proof. Let us define eh = T λ
h u−Λhu. The expansion in terms of the orthonormal

basis {uh,j | j = 1, . . . , N(h)} reads

eh =
∑

j∈JC

αjuh,j with
∑

j∈JC

α2
j = ‖eh‖2.

This relation, Lemma 6.2, and Parceval’s identity lead to

‖eh‖2 =
∑

j∈JC

αj(T
λ
h u, uh,j) =

∑

j∈JC

αj
λ

λ− λh,j
(T λ

h u−Πhu, uh,j)

≤ K

( ∑

j∈JC

α2
j

)1/2

‖T λ
h u−Πhu‖.
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We are now ready to prove the superconvergence result for the eigenvalue
problem.

Proposition 6.4 (Superconvergence for the eigenvalue problem). Any eigen-
solution (λ, σ, u) ∈ R× Σ×W in the cluster satisfies

‖Πhu− Λhu‖ . ρ(h)‖σ − Gh(T
λ
h u)‖Σ.

Proof. The triangle inequality and Lemma 6.3 give

‖Πhu− Λhu‖ ≤ ‖Πhu− T λ
h u‖+ ‖T λ

h u− Λhu‖ ≤ (1 +K)‖Πhu− T λ
h u‖.

The right-hand side has been estimated in Lemma 6.1.

The following result contains a useful bound of the norm of the error in Σ
in terms of our error quantity.

Lemma 6.5 (Bound for the Σ norm). Any eigensolution (λ, σ, u) ∈ R×Σ×M
satisfies

‖σ − Gh(Λhu)‖Σ . |σ − Gh(Λhu)|a + (1 + λ)‖u− Λhu‖. (6.1)

Proof. The stability of the continuous problem implies

‖σ − Gh(Λhu)‖Σ
. sup

(τ,v)∈Σ×M
‖τ‖Σ+‖v‖=1

(
a(σ − Gh(Λhu), τ) + b(σ − Gh(Λhu), v) + b(τ, u− Λhu)

)
.

The identity (3.1) together with the continuous and discrete eigenvalue problems
imply

b(σ − Gh(Λhu), v) = b(σ, v)− b(Gh(Λhu),Πhv) = λ
(
(PW

h u,Πhv)− (u, v)
)

= λ(PW
h u− u, v).

Estimate (6.1) then follows from the continuity of a and b together with the
elementary estimate ‖u− PW

h u‖ ≤ ‖u− Λhu‖.

6.2 Properties valid for all refinements Th of TH

We start this section by proving the efficiency of our theoretical error estimator
on the generic mesh Th.
Proposition 6.6 (Efficiency). Let (σ, u) be an eigenpair associated to the eigen-
value λ, then there exists a positive constant Ceff , independent of h, such that

µh(u; Th) ≤ Ceffd(u,Λhu). (6.2)

Proof. For the reader’s convenience, we recall the definition of the error indicator
µh(u;T ) for a given element T ∈ Th:

µh(u;T )
2 = ‖hT (Gh(Λhu)−∇Λhu)‖2T + ‖hT curlGh(Λhu)‖2T

+
∑

E∈E(T )

hE‖[Gh(Λhu)]E · tE‖2E . (6.3)
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Following the same arguments as in [10, Lemma 6.3], we can prove that

h2T ‖Gh(Λhu)−∇Λhu‖2T . d(u,Λhu)
2. (6.4)

Finally, arguing as in the proof of Theorem 3.1 in [1], we can bound the remain-
ing terms of the error indicator as follows:

‖hT curlGh(Λhu)‖2T +
∑

E∈E(T )

hE‖[Gh(Λhu)]E · tE‖2E . ‖σ −Gh(Λhu)‖2T̃ , (6.5)

where T̃ denotes the union of T and its neighboring elements.
We then obtain the desired result by summing equations (6.4) and (6.5) over
each elements T ∈ Th.

The next result shows a uniform discrete reliability of the theoretical error
estimator when evaluated on the mesh Th, refinement of TH .

First of all, we recall the well-known discrete Helmholtz decomposition which
is valid for the finite element spaces we are considering. Suitable references for
this result are [2] in the framework of discrete exterior calculus or [33]. In our
setting the discrete Helmholtz decomposition reads (see [34, Lemma 2.5]): for
any ζh ∈ Σh there exist αh ∈ Mh and βh ∈ Pk+1(Th) (the space of continuous
piecewise polynomial of degree k + 1) such that

ζh = Gh(αh) + curl βh. (6.6)

In particular, αh ∈Mh is such that

a(Gh(αh), τh) + b(τh, αh) = 0 ∀τh ∈ Σh

b(Gh(αh), vh) = b(ζh, vh) ∀vh ∈Mh.
(6.7)

By definition of the bilinear form and the fact that div Σh =Mh, we have that
div(Gh(αh) − ζh) = 0, hence Gh(αh) − ζh = curl βh. Using again (3.1) there
exists τ̂h ∈ Σh such that div τ̂h = αh. From the discrete inf-sup condition we
have ‖τ̂h‖ ≤ C‖αh‖. Hence

‖αh‖2 = b(τ̂h, αh) = a(Gh(αh), τ̂h) ≤ |Gh(αh)|a‖τ̂h‖ ≤ C|Gh(αh)|a‖αh‖,

from which we obtain
‖αh‖ ≤ C|Gh(αh)|a. (6.8)

Proposition 6.7 (Discrete reliability). Provided the mesh-size of TH is suffi-
ciently small, we have

|Gh(Λhu)− GH(ΛHu)|a + ‖Λhu− ΛHu‖
≤ CdrelµH(u; TH \ Th) + Cρ(H)(d(u,Λhu) + d(u,ΛHu)).

Proof. From the discrete Helmholtz decomposition (6.6) there exist αh ∈ Mh

and βh ∈ Pk+1(Th) such that

Gh(Λhu)− GH(ΛHu) = Gh(αh) + curl βh.
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The term ‖ curlβh‖ can be bounded by using standard arguments as in [24, 3,
34]. Actually, taking βH as the Scott-Zhang interpolant [40] of βh on the mesh
TH ,

| curl βh|2a = a(Gh(Λhu)− GH(ΛHu), curl βh)

= −a(GH(ΛHu), curl(βh − βH))

=
∑

T∈TH\Th

( ∫

T

(βh − βH) curlGH(ΛHu) dx

−
∫

∂T

(βh − βH)GH(ΛHu) · t ds
)
.

Standard estimates for the Scott-Zhang interpolant give

| curl βh|a . µH(u; TH \ Th).

The integration by parts and some straightforward algebraic manipulations lead
to

|Gh(αh)|2a = a(Gh(Λhu)− GH(ΛHu),Gh(αh))

= λ(PW
h u− PW

H u, αh)

= λ
(
(PW

h u−Πhu, αh) + (Πhu−ΠHu, αh −ΠHαh)

+ (ΠHu− PW
H u, αh)

)
.

We observe that ‖PW
h u − Πhu‖ ≤ ‖Λhu − Πhu‖; indeed, PW

h u is the best H-
approximation of u into Wh and is characterized by (PW

h u − u, vh) = (PW
h u −

Πhu, vh) = 0 for all vh ∈ Wh. Hence, the estimate (6.8), Proposition 6.4, and
Lemma 6.5 prove for the first and the last term that

(PW
h u−Πhu, αh) + (ΠHu− PW

H u, αh)

.
(
‖PW

h u−Πhu‖+ ‖ΠHu− PW
H u‖

)
|Gh(αh)|a

. ρ(H)(d(u,Λhu) + d(u,ΛHu))|Gh(αh)|a.

For the analysis of the remaining term, set ξ = αh −ΠHαh. It is shown in [34,
Lemma 2.8 and Equation (3.9)] that ξ satisfies ‖ξ‖ . H |Gh(αh)|a. Thus, we
have with Proposition 6.4 that

(Πhu−ΠHu, ξ) = (Πhu− ΛHu, ξ)

= (Πhu− Λhu, ξ) + (Λhu− ΛHu, ξ)

. (ρ(H)d(u,Λhu) +H‖Λhu− ΛHu‖)|Gh(αh)|a.

Altogether we obtain for the error in the vector variable that

|Gh(Λhu)− GH(ΛHu)|a
. µH(u; TH \ Th) + ρ(H)(d(u,Λhu) + d(u,ΛHu)) +H‖Λhu− ΛHu‖.

It remains to estimate the error in the scalar variable.
Let ẑ be the gradient of the solution φ̂ of the problem

∆φ̂ = Λhu− ΛHu in Ω

φ̂ = 0 on ∂Ω.
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Using a (non-orthogonal) stable decomposition like the ones adopted in [31,
Lemma 3.3] or [39, Lemma 2.1], it is possible to find z ∈ H1(Ω) such that

ẑ = z + curlψ.

In particular we have

div z = Λhu− ΛHu

‖z‖+ ‖∇z‖ . ‖Λhu− ΛHu‖.

It follows

‖Λhu− ΛHu‖2 = b(z,Λhu− ΛHu)

= b(ΠF
h z,Λhu)− b(ΠF

Hz,ΛHu)

= −a(Gh(Λhu),Π
F
h z) + a(GH(ΛHu),Π

F
Hz)

= a(GH(ΛHu)− Gh(Λhu),Π
F
h z) + a(GH(ΛHu), (Π

F
H −ΠF

h )z)

≤ |GH(ΛHu)− Gh(Λhu)|a‖ΠF
h z‖

+ a(GH(ΛHu)−∇H(ΛHu), (Π
F
H −ΠF

h )z),
(6.9)

where we have used the definition of the Fortin operators ΠF
h , Π

F
H , of Gh and

GH , and, in the last term, the fact that the quantity a(∇H(ΛHu), (Π
F
H −ΠF

h )z)
vanishes.

We observe furthermore that ΠF
h z−ΠF

Hz = 0 on the unrefined elements TH∩
Th. Since z is smooth enough to allow for stability and first-order approximation
of ΠF

h and ΠF
H , we conclude

‖Λhu− ΛHu‖2 ≤ |GH(ΛHu)− Gh(Λhu)|a‖ΠF
h z‖

+ ‖H(GH(ΛHu)−∇H(ΛHu))‖TH\Th
‖H−1(ΠF

h z −ΠF
Hz)‖

. ‖Λhu− ΛHu‖
(|GH(ΛHu)− Gh(Λhu)|a + µH(ΛHu; TH \ Th)).

By passing to the limit in the statement of Proposition 6.7, and observing
that forH small enough the second term on the right-hand side can be absorbed,
we obtain the standard reliability estimate.

Corollary 6.8 (Reliability). Provided the initial mesh-size is sufficiently fine,
we have ∑

j∈J

d(uj ,Λhuj)
2 ≤ C2

rel

∑

j∈J

µh(uj , Th)2.

We conclude this section with a quasi-orthogonality property.

Proposition 6.9 (Quasi-orthogonality). There exists a constant Cqo such that

d(Λhu,ΛHu)
2 ≤ d(u,ΛHu)

2 − d(u,Λhu)
2 + Cqo ρ(h)(d(u,Λhu)

2 + d(u,ΛHu)
2).

Proof. The proof departs with the following obvious algebraic identities

|Gh(Λhu)− GH(ΛHu)|2a = |σ − GH(ΛHu)|2a − |σ − Gh(Λhu)|2a
− 2a(σ − Gh(Λhu),Gh(Λhu)− GH(ΛHu))
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‖Λhu− ΛHu‖2 = ‖u− ΛHu‖2 − ‖u− Λhu‖2 − 2(Πhu− Λhu,Λhu− ΛHu).

The exact and discrete eigenvalue problems together with the inclusion div ΣH ⊆
MH imply

a(σ − Gh(Λhu),Gh(Λhu)− GH(ΛHu)) = −b(Gh(Λhu)− GH(ΛHu), u− Λhu)

= λ(PW
h u− PW

H u,Πhu− Λhu).

Therefore it follows from Proposition 6.4, Lemma 6.5, and the Young in-
equality that

|a(σ − Gh(Λhu),Gh(Λhu)− GH(ΛHu))|+ |(Πhu− Λhu,Λhu− ΛHu)|
≤ ‖Πhu− Λhu‖ (‖Λhu− ΛHu‖+ λ‖PW

h u− PW
H u‖)

. ρ(h)(d(u,Λhu)
2 + d(u,ΛHu)

2).

6.3 Contraction property

While the properties of the previous subsection are valid for any refinement Th
of a mesh TH , in this section we deal with the mesh sequence Tℓ which is the
output of the adaptive strategy described in Section 3.

The following property is quite standard and can be proved with the tech-
niques of [17].

Lemma 6.10 (Error estimator reduction property). Provided the initial mesh-
size is sufficiently small such that the bulk criteria for µℓ and ηℓ are equivalent
(see Lemma 3.2), there exist constants ρ1 ∈ (0, 1) and K ∈ (0,+∞) such that
Tℓ and its one-level refinement Tℓ+1 generated by AFEM satisfy

∑

j∈J

µℓ+1(uj , Tℓ+1)
2 ≤ ρ1

∑

j∈J

µℓ(uj , Tℓ)2 +K1

∑

j∈J

d(Λℓ+1uj,Λℓuj)
2.

The following proposition presents the main contraction property which is
essential for the convergence proof of the adaptive strategy.

Proposition 6.11 (Contraction property). Provided the initial mesh-size is
sufficiently small, there exist ρ2 ∈ (0, 1) and β ∈ (0,+∞) such that the term

ξ2ℓ =
∑

j∈J

µℓ(uj , Tℓ)2 + β
∑

j∈J

d(uj ,Λℓuj)
2 (6.10)

satisfies
ξ2ℓ+1 ≤ ρ2ξ

2
ℓ for all ℓ ∈ N.

Proof. Throughout the proof, we use the following notation

e2ℓ =
∑

j∈J

d(uj ,Λℓuj)
2 µ2

ℓ =
∑

j∈J

µℓ(uj , Tℓ)2.

The error estimator reduction from Lemma 6.10 and the quasi-orthogonality
from Lemma 6.9 imply the following bound

µ2
ℓ+1 +K1(1− Cqoρ(h0))e

2
ℓ+1 ≤ ρ1µ

2
ℓ +K1(1 + Cqoρ(h0))e

2
ℓ .
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For any ε ∈ (0, 1), the last bound and the reliability (Corollary 6.8) give

µ2
ℓ+1 +K1(1− Cqoρ(h0))e

2
ℓ+1

≤ (ρ1 + εC2
relK1)µ

2
ℓ +K1(1− ε+ Cqoρ(h0))e

2
ℓ .

We take β = K1(1− Cqoρ(h0)) and

ρ2 = max

{
ρ1 + εC2

relK1,
1− ε+ Cqoρ(h0)

1− Cqoρ(h0)

}
,

so that
µ2
ℓ+1 + βe2ℓ+1 ≤ ρ2(µ

2
ℓ + βe2ℓ).

The choice of a sufficiently small ε and of a sufficiently small initial mesh-size
h0 leads to ρ2 < 1.

7 Extension to three space dimensions

The results presented in the previous sections hold true also in three dimensions,
provided the definitions of the computable and theoretical error indicators are
modified as follows.

Definition 9. Let Th be a simplicial decomposition of Ω and let (σh,j , uh,j) ∈
Σh ×Mh be a discrete eigensolution computed on the mesh Th. Then, for all
T ∈ Th we define

ηh,j(T )
2 = ‖hT (σh,j −∇uh,j)‖2T + ‖hT curl σh,j‖2T +

∑

F∈F(T )

hF ‖[σh,j ]F ×nF ‖2F ,

where hT is the diameter of T , F(T ) denotes the set of faces of T , hF is the area
of the face F , and nF is its unit normal vector. As usual, [σh]F × nF denotes
the jump of the trace of σh × nF for internal faces and the trace for boundary
faces.

Definition 10. Let Th ∈ T be a triangulation and let (σ, u) be an eigensolution
associated to the eigenvalue λ (in particular, this is used in the definition of
Λh). For all T ∈ Th we define

µ2
h(u;T ) = ‖hT (G(Λhu)−∇Λhu)‖2T + ‖hT curlG(Λhu)‖2T

+
∑

F∈F(T )

hF ‖[G(Λhu)]F × nF ‖2F .

In the three-dimensional case, the only proof which needs to be modified is
the one of the discrete reliability of Proposition 6.7 since it relies on the discrete
Helmholtz decomposition which is different in two or three dimensions.

Let Vh denote the H(curl)-conforming edge elements of Nédélec (see [7]).
Then, in the three dimensional case, the discrete Helmholtz decomposition

reads (see [34], Lemma 2.6): for any ξh ∈ Σh there exist αh ∈Mh and βh ∈ Vh
such that

ξh = Gh(αh) + curl βh.
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Proposition 7.1 (Discrete reliability). Provided the mesh-size of TH is suffi-
ciently small, we have

|Gh(Λhu)− GH(ΛHu)|a + ‖Λh(u)− ΛH(u)‖
≤ CdrelµH(u; R̃) + Cρ(H)(d(u,Λhu) + d(u,ΛHu)),

where R̃ = {T ∈ TH : T̄ ∩ T̄ ′ 6= ∅ ∀T ′ ∈ (TH \ Th)}.

Proof. Using the discrete Helmholtz decomposition, we write the error in the
vectorial variable as

Gh(Λhu)− GH(ΛHu) = Gh(αh) + curl βh,

with αh ∈Mh and βh ∈ Vh.
The term |Gh(αh)|a can be treated without any modification as in the two

dimensional case. Moreover, following the same argument as in [34, Lemma 3.1.],
it can be proved that

| curl βh|a . µH(u; R̃).

As in the proof of Proposition 6.7, the error in the scalar variable can be
bounded by using the duality argument of [31, 15] and we can repeat the same
arguments of the 2D case from Equation (6.9) onwards, concluding the proof.

Remark 2. Compared with the two-dimensional case, in the three-dimensional
version of the discrete reliability, the set TH \ Th is replaced with the slighliy
larger set R̃ which essentially is TH \ Th plus one additional layer of simplices.
The shape-regularity implies that there is a constant C such that

card(R̃) ≤ C card(TH \ Th).

and therefore the estimate (4.7) remains valid at the expense of the multiplicative
constant C, and with this modification the proof of Theorem 4.1 applies also to
the three-dimensional case.
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[31] G. N. Gatica, R. Oyarzúa, and F.-J. Sayas. A residual-based a posteri-
ori error estimator for a fully-mixed formulation of the Stokes-Darcy cou-
pled problem. Comput. Methods Appl. Mech. Engrg., 200(21-22):1877–1891,
2011.

[32] S. Giani and I. G. Graham. A convergent adaptive method for elliptic
eigenvalue problems. SIAM J. Numer. Anal., 47(2):1067–1091, 2009.

[33] V. Girault and P.-A. Raviart. Finite element methods for Navier-Stokes
equations, volume 5 of Springer Series in Computational Mathematics.
Springer-Verlag, Berlin, 1986. Theory and algorithms.

[34] J. Huang and Y. Xu. Convergence and complexity of arbitrary order adap-
tive mixed element methods for the Poisson equation. Sci. China Math.,
55(5):1083–1098, 2012.

25
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