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SCIENCE

Geology and structure of the Serre Massif upper crust: a look in to the
late-Variscan strike–slip kinematics of the Southern European Variscan chain
G. Ortolanoa, M. Paganoa, R. Visallia, G. Angìa, A. D’Agostinoa, F. Mutob, V. Tripodib, S. Critellib and
R. Cirrincionea

aDipartimento di Scienze Biologiche, Geologiche ed Ambientali – Sezione di Scienze della Terra, Università degli Studi di Catania, Corso
Italia, Italy; bDipartimento di Biologia, Ecologia e Scienze della Terra – Sezione di Scienze della Terra, Università della Calabria, Arcavacata
di Rende (CS), Italy

ABSTRACT
A new geological-structural map of the southern Serre Massif (SM), in the south-central part of
the Calabrian-Peloritani-Orogen (CPO), is provided. CPO is a ribbon-like microplates puzzle,
originally belonging to the southern European Variscan Belt and, later involved into the
Alpine geodynamics of the central Mediterranean Area. The SM represents one of the key
European Variscan basement relicts, because of its exhumation mechanisms as well as for
the absence of any Alpine metamorphic overprint. This map has the aim to better delineate
the sequence of the Variscan blasto-deformational relationships consisting in a prograde
multistage history, followed by an extensional/transpressional multistage retrograde
evolution, which triggered the intrusion of the former plutonic products. The mylonitic
fabric resulted finally replaced by the effects of the late- to post-kinematic plutonic
intrusions coeval with a former late-Variscan exhumation stage, followed, during Mesozoic,
by carbonate platform sedimentation, before to be completed exhumed during the
Oligocene-Miocene Alpine stages.
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1. Introduction

Structural, microstructural, and petrographic analysis
of basement rocks, allows the reconstruction of the
crosscutting relationships as well as of the rheological
behaviours of each deformational stage, permitting, in
turn, to define the correct sequence of the paragenetic
equilibria useful to obtain reliable thermobarometric
constraints (e.g. Corti et al., 2017, 2019; Fazio et al.,
2015a; Gosso et al., 2010, 2015, 2019; Johnson & Ver-
non, 1995; Lardeaux & Spalla, 1991; Ortolano et al.,
2015; Roda et al., 2021; Spalla, 1993; Spalla et al.,
2005; Zucali et al., 2002, 2015, 2020). In other words,
it represents the cornerstone for reconstruction of
the ancient deep Earth crust kinematics.

In the western Mediterranean region, most of the
basement rocks are nowadays exposed as the result
of the combined effects of exhumation processes
started during the latest stages of the Variscan orogeny
(~300 Ma; e.g. Angì et al., 2010; Festa et al., 2013, 2020;
Liotta et al., 2004, 2008; Martínez Catalán et al., 2009;
Molli et al., 2020; Ortolano et al., 2020a; Tursi et al.,
2020) (Figure 1(a)), completed during the Oligo-
cene-Miocene Alpine evolutionary stages (e.g. Brandt
& Schenk, 2020; Cirrincione et al., 2012a; Critelli,
2018; Fazio et al., 2018; Festa et al., 2020; Malusà

et al., 2015; Ortolano et al., 2005, 2020a, 2020b; Pez-
zino et al., 2008; Rosenbaum et al., 2002; Rossetti
et al., 2001, 2004) (Figure 1(b)). These Variscan base-
ment complexes were originally aligned along the
suture zone formed as a consequence of the northward
migration of Gondwana and peri-Gondwanan ter-
ranes (i.e. Avalonia, Armorica), started in lower Car-
boniferous (∼360 Ma), which caused the closure of
the Rheic Ocean, and the continental collision with
Laurussia plate with the final amalgamation of Pan-
gaea (∼300 Ma) (Stampfli & Borel, 2002; Stampfli &
Kozur, 2006; von Raumer et al., 2009).

The initial crustal thickening stage, averagely aged
from 360 to 340 Ma (e.g. Fornelli et al., 2020), was fol-
lowed by the activation of deep-seated strike-slip shear
zones, within an overall contraction regime, linked to
the mutual movement of Gondwana and Laurussia,
operating from 344 to 300 Ma (Figure 1(a)).

These shear zones experienced the development
of coeval transpressional and transtensional tectonics
(Corsini & Rolland, 2009; Faure et al., 2010; Pado-
vano et al., 2012; Pereira et al., 2010), driven by
non-linear fault systems also known in literature as
‘snake faults’ (Elter et al., 2010) (Figure 1(a)). One
of the most important of these shear zones was
the Eastern Variscan Shear Zone (EVSZ), which
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involved numerous Variscan massifs scattered in the
western Mediterranean region (Carosi et al., 2020;
Padovano et al., 2012; 2014). EVSZ activity led to
the development of regional mylonitic foliation
locally associated with syn- to late tectonic plutonic
intrusions of Permian age (e.g. Angì et al., 2010; Cir-
rincione et al., 2015; De Vivo et al., 1991; Elter et al.,

2010; Fazio et al., 2014; Fazio et al., 2020; Fiannacca
et al., 2008, 2015, 2017, 2019, 2021; Liotta et al.,
2008; Rottura et al., 1990, 1991).

The following Pangaea breakup, starting with the
development of the Central Atlantic Magmatic Pro-
vince (CAMP) (e.g. Cirrincione et al., 2013), signed
the switch from a contraction to an extensional

Figure 1. Past and present geodynamic scenario of the western Mediteranean realm (a) Frame of the western Mediterranean
strike-slip kinematic pattern in the Late Carboniferous–Early Permian time interval. Green area Laurussia geodynamic domain;
gray area: Gondwana derived microplates; orange area: Gondwana plate. EVSZ: East Variscan Shear Zone (Corsini & Rolland,
2009; Padovano et al., 2012); PySZ: Pyrenees Shear Zones; SASZ: South Armorican Shear Zone (Tartèse et al., 2012); NASZ:
North Armorican Shear Zone; ESZ: Elbe Shear Zone (Hofmann et al., 2009); CPO: Calabria-Peloritani-Orogen (Cirrincione et al.,
2012a); Sa: Sardinia; Co: Corsica; MTM: Maures–Tanneron Massif; Big white arrow (Palinspastic reconstruction of the main contrac-
tional regional stress axis); Big black arrow (Palinspastic reconstruction of the main extensional regional stress axis) (modified after
Franke, 2000; Matte, 2001; Padovano et al., 2014; von Raumer et al., 2003). (b) Present-day distribution of the Alpine and Pre-
Alpine Basement in western Europe with CPO location and main Alpine strike-slip tectonic alignment (after Cirrincione et al.,
2015).
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regime, controlling the formation of Eurasia and
African plates, as well (Faure et al., 2010; Matte,
2001; Melleton et al., 2010; Stampfli & Borel,
2002; Stampfli & Kozur, 2006; von Raumer et al.,
2009).

The subsequent counter-clockwise rotation of the
African plate triggered the former stages of the Alpine
orogenesis, causing the further fragmentation of the
original southern European Variscan chain. This
stage was favored by the activation of new crustal-
scale shear zones which controlled the Oligocene-
Miocene microplates movement of the western Medi-
terranean realm (Figure 1(b) and Figure 2) (Brandt &
Schenk, 2020; Cirrincione et al., 2015; Festa et al.,
2016, 2020; Ortolano et al., 2020a).

In this geodynamic scenario, is born the Calabria-
Peloritani-Orogen (CPO), mostly interpreted as a
southward shifted fragment of the original European
continent, drifted, in the present-day position, as a
consequence of the slab roll-back of the subducting
Ionian microplate (i.e. a relic of the neo-Thetyan ocea-
nic crust) (Haccard et al., 1972; Malinverno & Ryan,
1986), controlling also the opening of the Tyrrhenian
basin (Figure 1(b)).

The unitary geodynamic evolution of the CPO
basements units is still discussed by various authors
(e.g. Alvarez & Shimabukuro, 2009; Cirrincione
et al., 2015; Critelli, 2018; Critelli et al., 2017), that dis-
tinguished at least two main sectors: (a) the northern
sector, including the Catena Costiera and Sila Massif,
where oceanic units are located between the overlying
pre-Mesozoic continental crustal rocks and the under-
lying carbonate Apennine units (Appendix 1 – Geo-
logical framework); and (b) the southern sector,
including the Serre and Aspromonte Massifs in the
central-southern Calabria and the Peloritani Moun-
tains in the north-eastern Sicily, where only continen-
tal crust-derived units occur (Appendix 1 – Geological
framework).

Within the southern CPO it is possible further sub-
divide the Serre Massif from the Aspromonte and
Peloritani Mountains, in view of the pervasive Oligo-
cene Alpine metamorphic overprint recognized only
in the central and eastern sector of the Aspromonte
Massif (Cirrincione et al., 2008, 2015; Fazio et al.,
2015b, 2018, 2020; Ortolano et al., 2005, 2015; Pezzino
et al., 2008) and along the boundary between the two
uppermost units of the Peloritani Mountains (Cirrin-
cione et al., 2012a). The Serre Massif is indeed devoid
of any Alpine metamorphic overprint and it is consti-
tuted by an almost complete continental crustal sec-
tion, totally surfacing after an asymmetric tilting,
due to the extensional (Festa et al., 2013) vs. transpres-
sional exhumation (Fiannacca et al., 2021) of the orig-
inal southern European Variscan basement
(Cirrincione et al., 2008, 2012a, 2015; Fazio et al.,
2018; Ortolano et al., 2015).

In particular, this new geological-structural map
delineates the boundary among the intermediate (i.e.
the late Variscan granitoids), to the upper portion
(i.e. the SPC and the MPC) of the Serre Massif meta-
morphic crustal section, and its Mesozoic sedimentary
sequence (Figure 2), with a special look into the exhu-
mation mechanisms of this original southern Euro-
pean Variscan basement crust.

2. The geological-structural map of the
Serre Massif upper crust

2.1. General outlines

The geological-structural map of the southern Serre
Massif covers an area of ∼290 km2 in the CPO cen-
tral-southern edge, and represents a revised merge of
two original geological surveys (1:10000 scale).

Base map consists of contour lines (drawn every
50 m, labeled every 100 m), derived from the Digital
Terrain Model (DTM) downloaded from the geodata
website of the Calabrian Region (5 meters per pixel),
also used to obtain the used hillshade effect (i.e. a vir-
tual shaded relief) as well as the others geomorpholo-
gical features (see supplementary material-SM1).

This new geological-structural map holds detailed
information related to the tectono-metamorphic,
-magmatic and -sedimentary evolution of the upper
continental crust of the Serre Massif crustal section
(Figure 2). The metamorphic and plutonic complexes
here outcropping are mainly characterized by the
superposition of an upper low-grade metamorphic
complex (Stilo-Pazzano Complex – SPC) on a rela-
tively high-grade metamorphic one (Mammola Para-
gneiss Complex – MPC), along a late-Variscan low-
angle tectonic detachment (Figure 2) (Appendix 1;
2). Both the complexes share the same static meta-
morphic overprint related to the contact metamorph-
ism due to the emplacement of the late-Variscan
plutonic suite of the Serre Batholith (Angì et al.,
2010; Bonardi et al., 1987; Cirrincione et al., 2012b;
Festa et al., 2013; Fiannacca et al., 2015, 2017, 2019;
Rottura et al., 1990), followed by the final intrusion
of late to post-Variscan felsic to mafic dykes (Romano
et al., 2011).

The map runs along the preserved primary bound-
ary between the Serre Batholith and the metamorphic
units, along which, a variably thick contact aureole
occurs (Appendix 2).

To the south, the map intercepts the geological
boundary between the Serre and the Aspromonte
Massifs, where an already active deep-seated strike-
slip fault system occurs. According to Ortolano et al.
(2013, 2020a), Cirrincione et al. (2015) and Tripodi
et al. (2018), this strike-slip system was recently inter-
preted as the natural continuation of the meso- to neo-
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Alpine strike-slip mylonitic Palmi Shear Zone
(Appendix 1 – Geological framework).

2.2. Mammola paragneiss complex (MPC)

The MPC rocks crop out in the central part of the
map with continuity from Mammola Village to Mt
S. Andrea, and subordinately in the westernmost
part. It is mainly composed of a paragneiss-

micaschist sequence with local leucocratic orthog-
neiss and subordinate meter intercalations of
amphibolite.

Field and microscopic investigations (see SM2) per-
mitted the identification of two different metamorphic
cycles: (a) an elder eo-Variscan polyphase syn-oro-
genic metamorphism (D1 →M1 and D2 →M2 phases)
ended with a retrograde mylonitic evolution (D3 →
M3) followed by (b) a late- to post-tectonic

Figure 2. Geological sketch map of the Serre Massif with location of the mapped area.
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metamorphic overprint (M4), caused by the intrusion
of the late-Variscan granitoids.

The structural features are mainly linked to the retro-
grade shearing evolution of the first cycle (D3→ M3),
often characterized by transpressional-type structural
features along the widely preserved pervasive subvertical
foliations (Figure 3(a)). Kinematic indicators, lying on
the XZ plane of the finite strain ellipsoid, are consistent
with a dextral shear sense and an ENE tectonic transport
in the present-day geographic coordinates (Figure 3(a–
d)). Two different types of isoclinal fold sections lying
on YZ plane of the finite strain ellipsoid are observed:
(a) thefirst one is clearly in continuity with themylonitic
foliation with axes parallel to the stretching lineation,
here interpreted as a syn-shearing oblique folding for-
mation (Figure 3(e)) rather than a post-mylonitic iso-
clinal folding (Festa et al., 2018); (b) the second one,
preserves an axial plane foliationS1 in low straindomains
lined up along themylonitic foliation (Figure 3(f)). In the
michaschist levels a centimeter wavelengthmicrofolding
forms a less developed S2 foliation (Figure 3(g)).

Attitudes orientation pattern of the field foliation
(S3) maintains a similar distribution from the eastern-
up to the western-sector of the central mapped area,
showing a well-developed single girdle distribution of
poles to planes, consistent with a folding system
characterized by a sub-horizontal or less inclined
axis, oriented from NE-SW to ENE-WSW (Figure 4
(a,b)) (Appendix 2). Obtained π axis is very well con-
sistent with the b4 measured axes (Figure 4(a,b)),
which can be ascribed to a late-Variscan deformational
stage D4, due to the syn-compressional emplacement
mechanism of the pluton, as testified also by the paral-
lel orientation between the primary contact with gran-
odiorite body and the average axis of the folding system
(Figure 2) (Appendices 1, 2). Stretching-lineation L3
shows a main ENE-WSW trend with a subordinate
NE-SW one. The first one is parallel with the obli-
que-fold axes b3 highlighting the syncinematism of
both structures (Figure 3(e); Figure 4(a)), differently,
the less preserved NE-SW L3 trend can be interpreted
as linked to an early-D3 extensional deformative
stage, alternatively plunging to NE or SW as response
to the D4 dispersion (Figure 2; Figure 4(a)).

2.3. Stilo-Pazzano complex (SPC)

The SPC includes lower greenschist facies metapelites
interbedded with minor metalimestone and metaba-
site. It extends continuously along the north-eastern
portion of the map, from Stilo, Pazzano and Bivongi
to Popelli villages. Minor outcrops are in Caturello riv-
erbed and near Martone village. Another important
bodies of the SPC phyllites extensively crop outs at
the base of the Mesozoic Monte Mutolo sedimentary
sequence (Figure 5), as well as located between the
two tributaries of the Antonimina River (i.e. The

Portigliola and Cortaglia rivers), where spotted phyl-
lites crop outs directly in contact with the migmatitic
paragneisses of the Aspromonte Unit. Similarly to the
MPC, two metamorphic cycles have been recognized
after field and microscopical investigations (see
SM2): (a) an elder Variscan polyphasic regional meta-
morphism (D1 → M1 and D2 → M2 phases) followed
by a less evident retrograde mylonitic stage (D3 → M3

phase) and (b) a thermal overprint due to the intru-
sion of late-Variscan plutonic suite (M4). The first
deformational phase (D1) determined an isoclinal
folding (b1 fold axes, spanning from a main NW-SE
orientation to a subordinate E-W direction) (Figure
4(b)) of the S0 surface, associated with the develop-
ment of an axial plane foliation (S1) (Figure 6(a)).
The subsequent deformational stage (D2) produced
the crenulation of the S1 with consequent micro-fold-
ing formation from centimetric- up to submillimetre-
wavelength (Figure 6(b)). The D2 stage is linked with
the development of a new incipient to pervasive sur-
face (S2) and an axial culmination lineation (L2) with
very variable orientation spanning from the main
NE-SW to NNE-SSW and a minor cluster oriented
to SE (Figure 4(b)). The D3 deformational stage
experienced in MPC lithotypes is not well observable
in the SPC rocks, even though, widespread unrooted
lenses of isoclinal folds (Figure 6(c)) can be inter-
preted as linked with the same early-D3 mylonitic
phase already observed in the MPC. Moreover, the
local preservation of sub-vertical foliation (Figure 6
(d)), can be linked to the late-D3 transpressional
phase well recognized in the MPC (Figure 6(d′)).
The late-to post-kinematic intrusion of the plutonic
body emplacement extensively produced spotted phyl-
lites. This last metamorphic phase produced: (a) in
peripheral contact aureole zone, 0.5–2 mm sized ellip-
soidal cordierite spots, overgrowing locally on pre-
existent fabrics; (b) approaching the contact, an abrupt
texture variation with the transition to foliation-lack-
ing hornfels, where cordierite gradually leaves the
place to biotite and andalusite porphyroblasts (Figure 6
(e)) (Appendix 2).

The following D4 deformational stage is correlated,
also in this case, to the syn- to late-kinematic intrusion
of the main granodiorite body, as testified by the same
main rotation axis b4 observed in the MPC, always
sub-parallel with the primary contact with the grano-
diorite batholith. This suggests that the syn-compres-
sional emplacement of the main plutonic body, caused
the folding of the main foliation that, in the case of the
SPC phyllites, correspond to a S1≡S3 parallel foliation.
Aplite-pegmatite dyke intrusions closed the second
stage of the static cycle.

During the Mesozoic period, thin sea carbonate
sediments were deposited on the SPC phyllites, inter-
rupted by more or less wide gaps probably due to
repeated emersion testified by paleosols or moderate
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Figure 3. Field examples of lithotypes and structures from Mammola Paragneiss Complex. (a) Example of subvertical mylonitic
foliation reporting finite strain ellipsoid sections with indication of the dextral shear sense (White circle on the upper left side
indicates an inward movement relative to the observer. White circle on the upper right side indicates an outward movement rela-
tive to the observer). (b) Example of late-S3 mylonitic foliation. (c) Sin-kinematic asymmetric intrafoliar fold showing dextral shear
sense consistent with an ENE tectonic transport. Cutting according to the XZ ellipsoid section. (d) Mylonitic amphibolite levels
(Monte Bruverello area). (e) Longitudinal oblique folds sections. Cutting according to the YZ ellipsoid section (B3 is the axis of
the oblique folding generated during the strike-slip movement. S3 is the mylonitic field-foliation). (f) Axial plane foliation pre-
served within a relic of isoclinal folding (S1 is the relic axial plane foliation preserved as low-strain domain within the S3 mylonitic
field-foliation. B1 is the axis of the isoclinal folding event produced during the first recognized deformational phase D1). (g) Sub-
perpendicular foliation produced by a centimeter wavelength crenulation in micaschist levels (B2 stay for wavelength centimeter
axis produced during the D2 event. See text for more explanation). (h) Post-tectonic paraconcordant dyke and late-tectonic dyke
characterized by supra-solidus deformative structures (h′’). (i) Discordant post-tectonic aplitic dyke.
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thicknesses of ‘Verrucano’ type clastic deposits
(Bonardi et al., 1984). This initial sedimentation was
replaced by dolomite covered in turn by whitish and
pearl-gray calcarenites and calcirudites, sometimes
with a pinkish micritic matrix, breccias and reef lime-
stones with ellipsactinias, corals and gastropods, and
light gray calcarenites and calcirudites with Clypeina
jurassica.

2.4. Aspromonte unit

The Aspromonte Unit (AU) lithotypes crop out only in
the southwestern part of the map along the right bank
of the Cortaglia river, along which an already active
deep-seated strike-slip fault system, occurs (Apollaro
et al., 2019) (Appendix 1). The lithotypes consist of
migmatitic paragneisses (Figure 7(a,b)) intruded by

Figure 4. Structural data orientation patterns collected along the mapped area. Contouring and statistical analyses are computed
on main foliation data by means of the tool ArcStereoNet (Ortolano et al., 2021). The π axes are statistically computed as the poles
to Bingham best-fit planes. (a) MPC structural data collected on central western and central eastern sector, respectively. (b) SPC
structural data collected on north-eastern and central-eastern sector, respectively.

Figure 5. Panoramic landscape of the preserved original tectono-stratigraphic setting between SPC phyllites and Monte Mutolo
limestones near Canolo town. MPC lithotypes are in contact along a tectonic detachement.
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Late-Variscan small-sized plutonites (Figure 7(c,d)),
represented by syn- to post-tectonic magmatic bodies
compositionally varying from monzogranites to fine-
grained leucogranodiorites. These lasts are interpreted
as different from the adjacent southern termination of
the Serre Massif main plutonic body, principally, in

view of the different host rocks, namely migmatitic
paragneiss to the south of the Cortaglia alignment
and phyllites just crossing the strike-slip system to the
north) (Figure 6(d)).

The Cortaglia River tectonic alignment has an
ENE–WSW orientation, and is evidenced by the

Figure 6. Field examples of lithotypes and structures belonging to the Stilo-Pazzano Complex. (a) Isoclinal folding of the original
S0 surface highlighted by the development of an axial plane foliation. (b–b′) Centimeter- to submillimetre-wavelength crenulation
on S1 surface. (c) Unrooted lenses of isoclinal folds indicating an extensional shearing. (d–d′) Sub-vertical foliation facilitating gran-
ite intrusion. (e) Centimetric static andalusite porphyroblast occurring near the plutonic contact. (f–f′) Asymmetric folding with
axis parallel to the preserved primary contact with main batholite intrusion.
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presence of strongly tectonized areas, characterized by
unconsolidated ultracataclasites from granitoid parent
rock (Figure 7(e,e′)).

The differences between the rocks to the north and
to the south of this tectonic alignment are highlighted

by the occurrence, to the south, of mylonitic leuco-
cratic orthogneisses characterized by a total absence
of recovery processes (Figure 7(f,f′)), very different
from the mylonitic rocks of the MPC rocks, strongly
recovered by the temperature increase due to the

Figure 7. Field examples of lithotypes and structures belonging to the Aspromonte Unit. (a–b) Migmatitic paragneisses. (c–d)
Late-Variscan small-sized granites intruding migmatitic paragneisses. (e–e′) Unconsolidated ultracataclasites from granitoid
parent rock near the Cortaglia tectonic alignment. (f–f′) Mylonitic leucocratic orthogneisses characterized by the absence of recov-
ery processes.

322 G. ORTOLANO ET AL.



late-Variscan plutonic body emplacement. This last
evidence highlights as the development of the myloni-
tic fabric in the AU rock types is due to the late-Alpine
overprint mainly preserved in the central-eastern part
of the AspromonteMassif (Bonardi et al., 1984; Cirrin-
cione et al., 2008, 2015, 2017; Fazio et al., 2015b; 2018;
Heymes et al., 2010; Ortolano et al., 2005; 2015; Pez-
zino et al., 1990; 2008; Platt & Compagnoni, 1990).

2.5. Post-Mesozoic sedimentary succession

2.5.1. Stilo-Capo d’Orlando formation
During the Apennine phase of the Alpine orogen-
esis, the Mesozoic sedimentary succession of the
SPC was partly covered by the late Oligocene –
early Miocene syn-orogenic deposition of the Stilo-
Capo d’Orlando Formation. This formation consists
of conglomerates produced by the action of flow of
debris or masses (debris flow or mass flow) along
submarine paleocanyons, of clays with silty intercala-
tions, frequently engraved by channeled conglomer-
ates, corresponding to slope deposits and from thick
turbidite arenaceous layers (Bonardi et al., 2003).
This rests directly on the crystalline basement and
on the Mesozoic carbonate sedimentary succession,
cropping out extensively along the eastern margin
of the map.

2.5.2. Antisicilide Unit
The Antisicilide Unit lies, in tectonic contact, on the
Stilo Capo d’Orlando formation (Gioiosa Ionica and
Antonimina areas) and, locally, on the crystalline
basement. The provenance and type of emplacement
of the Antisicilide Unit are widely debated
by numerous authors, results interposed between the
Capo d’Orlando flysch and the Middle - Upper Mio-
cene terrigenous succession. The Unit is dated
Upper Cretaceous – Lower Miocene and is made up
of variable lithologies grouped into: greenish-reddish
pelites with a scaly texture, often in a chaotic position,
intensely affected by shear phenomena.

2.5.3. San Pier Niceto Formation
It is a succession of Serravallian-Tortonian age, com-
posed of different lithofacies characterized by frequent
lateral-vertical variations. It is mainly constituted by a
siliciclastic lithofacies consisting of homogeneous
banks of coarse fossiliferous sands with Clypeaster
sp. The sandstones locally contain conglomerates
and have sedimentary structures of the turbidite type.

2.5.4. Basal limestones
The unit is made up of white-yellow vacuolar lime-
stones and strata of stratified marly limestone, of
metric thickness, with pelitic intercalations of centi-
meter thickness (Critelli et al., 2016). Sometimes
there are intercalations of gypsumarenites and

gypsumsylthites with centimetric lamination. The
limestones, of Messinian age, are organized in massive
banks, slightly slow, of plurimetric thickness intercala-
tions of clayey marl, sometimes laminated of
centimeter.

2.5.5. Mount Canolo Formation
The Messinian age Monte Canolo Formation is com-
posed, starting from the base, by sandy levels, subordi-
nately gravelly, from moderately thickened to very
thickened, of brown color; the layers have medium
thickness, sometimes with lenticular geometries, gen-
erally supporting a sandy matrix, and conglomerates.
They are polygenic and heterometric, from sub-angu-
lar to angular, subordinately sub-rounded, slightly to
moderately cemented; the rounded clasts are made
up of granite and gneiss, differently the more angular
clasts derive from micaschists and phyllites (Critelli
et al., 2016a, 2016b).

2.5.6. Calcarenites and Trubi
At the base of the formation there are generally calcar-
eous-marly rhythms; this rhythmicity is referable to
the Milankovitch cycles which give to the formation,
a characteristic stratification with alternating gray
and whitish levels of marls and very rich in calcareous
plankton marly limestones (Zanclean-Piacenzian).
This formation is well exposed to the south of the Fiu-
mara Torbido. The position of this formation is gener-
ally paraconcordant on the Trubi Formation; however,
the contact between the two stratigraphic units is
locally erosive (Critelli et al., 2016a).

3. Discussion

This work synthetized two field surveys made during
the PhD thesis of Angì (2008) and the field activities
within the Geological and Geothematic Italian Carto-
hography Project (CARG) with the realization of the
Sheet N°590 (Polino et al., 2015).

Results confirm that the Serre Massif differs con-
siderably from the adjacent Aspromonte-Peloritani
orogenic system, in view of the different tectonic
structure (Appendix 1 – Geological framework)
and the absence of any Alpine metamorphic over-
print. This is testified, for instance, by the different
recognized mylonitic fabric where: (a) Aspromonte
Unit mylonites, linked to the compressive late-
Alpine mylonitic event built-up the Aspromonte
Massif nappe-like edifice, are characterized by
scanty recrystallized ribbon-like quartz levels
(Figures SM3b′; b′′) (Pezzino et al., 2008); (b) Serre
Massif mylonites, linked with the late-Variscan
strike-slip deformation subsequently interested by
late- to post-kinematic granitoid emplacement, are
instead characterized by strongly recovered ribbon-
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like quartz levels (Figure SM3a′; a′′) (Cirrincione
et al., 2015).

This late-Variscan retrograde mylonitic phase, bet-
ter recognized in the MPC rather than in the SPC was
here subdivided into an early extensional retrograde
stage, mostly visible at the thin section scale (SM2),
followed by a transpressional stage, which probably
triggered the initial plutonic body intrusion.

This hypothesis is also supported by recent
studies on the Serre Massif batholite construction
characterized by an overaccretion mechanism
(Fiannacca et al., 2017), rather than a dominant
extensional uplift controlled by a core complexing
model exhumation (Festa et al., 2013), as testified
by the clear granitoid deformation microstructures
from submagmatic to low-temperature sub-solidus
conditions, characterized by an internal granitoid
fabric consistent with a shortening axis roughly
oriented NW–SE, constrained by Anisotropy of
magnetic susceptibility (AMS) study (Fiannacca
et al., 2021). The NW-SE shortening axis observed
in the granitoid bodies can be strictly correlated
with the attitudes orientation pattern of the myloni-
tic field foliation (S3) which maintains a distribution
of poles to planes consistent with a folding system
characterized by a sub-horizontal or less inclined
axis, oriented from NE-SW to ENE-WSW and by
stretching-lineation L3 characterized by a main

ENE-WSW trend (Figure 4(a,b)) (Appendix 2);
structures constantly consistent with the activity of
a dextral type strike-slip tectonics, which can be
ascribed to the late-D3 transpressional stage and in
line with the palinspastic reconstruction of the
EVSZ activity (Figure 1(a)).

In this new tectonic framework the Serre Massif can
be considered as belonged to the same geodynamic
realm scattered throughout the Alps, the Corsica-Sar-
dinia-Maures-Tanneron Massif, and the Northern
Apennines, until late-Carboniferous time (Figure 1
(a)), where, during the interval from 330 to 300 Ma,
the activity of the EVSZ affected all these massifs,
locally triggering the emplacement of the late-Varis-
can granitoids, playing a key role in the evolution of
the subsequent Alpine-Apennine cycle, acting as a
pre-existing tectonic barrier (Carosi et al., 2020).

More in particular, the upper crustal levels of the
Serre Massif geological evolution can be subdivided
into an orogenic metamorphic cycle where the first
deformational stage (D1) is associated with the devel-
opment of a penetrative and pervasive surface (S1),
more evident in the SPC rather than in the MPC
rocks where it is preserved as relict isoclinal fold
hinges within mylonitic foliation (Figure 3(f);
Figure 6(a); Figure 8). D1 is followed by a D2 crenu-
lation stage, better observable in the SPC rocks
(Figure 6(b); Figure 8). These two prograde stages,

Figure 8. Synoptic reconstruction of the field- and petrographic-related evidence of the tectono-metamorphic evolution of the
Mammola Paragneiss- and Stilo-Pazzano - metamorphic complexes.
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consistent with the eo-Variscan crustal thickening
phase, were followed by an early-retrograde exten-
sional mylonitic stage (early-D3), linked with the col-
lapse of the orogen and a consequent crustal
thinning stage, which brought also to the detachment
of the more surficial levels of the original crustal sec-
tion sequence (i.e. SPC) from the more high-grade
MPC. This former extensional tectonic detachment
was followed, in turn, by the mostly preserved trans-
pressional stage, with the formation of an extensively
pervasive mylonitic foliation (Figure 3(a–e); Figure
8). This last event triggers pluton intrusion which,
in its former emplacement stage, was involved in
the same stress field of the late-D3 mylonitic stage,
as suggested by the occurrence of late-tectonic
dykes characterized by clear evidence of supra-soli-
dus deformative structures (Figure 3(h,h′)) and
confirmed by the same regional shortening axis con-
sistent with the dextral shear-sense tectonics both in
the basement rocks and in the granitoids. Finally, the
late-Variscan plutonic emplacement continued with
post-tectonic intrusion of paraconcordant (Figure 3
(h)) to discordant dykes (Figure 3(i)), characterized
by sharp contacts and devoid of any evidence of
supra- or sub-solidus deformations.

4. Conclusion

The new geological map of the southern Serre Massif
is a useful contribution to the geodynamic recon-
struction of the late-Paleozoic scenario of the
southern European Variscan belt: it permits to delin-
eate the sequence of the Variscan metamorphic evol-
ution, where, after a prograde multistage
metamorphism, follow a pervasive retrograde evol-
ution, controlled by an initial extensional mylonitic
stage, linked with the initial collapsing of the orogen,
replaced by a transpressional mylonitic stage, which
triggered the intrusion of the former plutonic pro-
ducts under the same stress field of the mylonitic
event. Mylonites were finally sutured by the late- to
post-kinematic granitoid intrusion, producing quasi-
static overprints with the recovery of the mylonitic
fabric, before being exhumed, for the first time, at
the end of the Palaezoic with the ‘Verrucano’ sedi-
mentation, before to be covered by the Mesozoic car-
bonate platform sedimentation, and definitively
exhumed at the end of the Oligocene with the unroot-
ing from its original Variscan basement crust contem-
poraneously to the deposition of the syn-orogenic
Stilo Capo d’Orlando formation and the backthrust-
ing of the Antisicilide unit.

Software

The geological-structural map of the Serre Massif
upper crust was mainly designed by means of the

ArcGIS® software. In fact, thanks to its functionalities
of data managing and storing, ArcGIS® allowed the
map digitization and the database structuring to be
properly accomplished.

Taking advantage of specific ArcGIS® toolboxes,
such as ‘Hillshade’ and ‘Contour’, the extrapolation
of useful topographical features from DTM was per-
formed. Moreover, thanks to a new ArcGIS-based
Python-toolbox (i.e. ArcStereoNet – Ortolano et al.,
2021), the collected structural data have been studied
with statistical analysis techniques and then plotted
within lower-hemisphere equal-area stereonets. The
statistical algorithms applied to data include density
contour functions, clustering, and mean vectors
extraction, together with the classic cluster and girdle
analysis techniques (e.g. M.E.A.D. + Fisher and Bing-
ham algorithms – see Ortolano et al., 2021 for details).

Since it operates within the ArcGIS® environment,
ArcStereoNet merges its data analysis and plotting
functionalities with the classic GIS features, includ-
ing various data selection tools. In this view, the
Graph To Hyperlink tool (included within the Arc-
StereoNet toolbox), which allows connecting via
hyperlink the results of statistical analysis with the
geographic location of the selected structural data,
was used to extract and display the mean field foli-
ations and the stretching lineations along the entire
map (Appendix 2). Firstly, the structural data were
manually grouped based on their geographic
location. Consequently, the mean azimuth/dip
values were extracted for each group and displayed
at the corresponding centroid coordinates of the
group. Finally, only the statistically consistent main
foliation average values were maintained (i.e. those
extracted from a number of data greater than 20
units).

The final editing and assemblage of map, geological
sections, stereoplots, legends, and any other graphical
element were accomplished by means of the GIMP
software.

Data

The supplementary materials include a detailed
description of the petrographical and geomorphologi-
cal features of the over 120 samples from the mapped
area and three explanatory figures.
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