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Preface

TheWIVACEconference series has now reached its 17th edition, and it continues to show
a vitality which may look surprising, given that it is not supported by any formal society
or association.WIVACEwas born out of the coalescence of two different initiatives: two
workshops on Artificial Life were held in 2003 in Cosenza and in 2005 in Rome, and
a workshop on Evolutionary Computation took place in Milan in 2005 (as a part of the
Conference of the Italian Association for Artificial Intelligence). The organizers of the
two initiatives decided to co-locate their 2006 editions in Siena, organizing a common
session where it became clear that the two scientific communities had strong mutual
interests, leading to the decision to merge the two workshops.

The first workshop bearing the name WIVACE took place in Samperi (Sicily) in
2007, followed by editions in Venice (2008) and in Naples (2009). At that time, some
doubts were raised about the opportunity to continue this series of meetings which
were so bravely cutting across disciplines. The wise decision was taken to go on, so
later workshops took place in Parma (2012), Milan (2013), Vietri sul Mare (2014), Bari
(2015), Salerno (2016), Venice (2017), Parma (2018) and Rende (2019).

The 2020 edition was planned to take place for the first time outside Italy, but the
Covid pandemic spread all over the world and it was decided to postpone it, since
WIVACE is not well-suited for remote attendance. Indeed, a large part of the interest
and value of the conference lies in the many discussions that take place in the lecture
room as well as in informal gatherings, often with scientists with a different background.
Therefore, the WIVACE workshop in Winterthur (Switzerland) had to wait until 2021,
followed by the 2022 edition in Gaeta. And in 2023 we came for the third time back to
Venice, home of the European Centre for Living Technology (ECLT), which we thank
for its long-lasting support, under the guidance of three different directors who followed
one another in the last 15 years (Irene Poli, Marcello Pelillo and Achille Giacometti).
Future editions are already planned to take place in Namur (Belgium) and Siena.

The organizers ofWIVACE editions are chosen in informal meetings held during the
workshops, a method that provides a continuous testing of the value of the workshop for
its participants. While they all share an interest in interdisciplinary approaches to com-
plex systems, they may come from different backgrounds (physics, computer science,
mathematics, chemistry, biology etc.) and that is why the flavors of various editions may
differ. However, the interest of the communities in the others’ work is always high, and
no parallel session has ever taken place.

This year, we have been lucky to host some invited speakers who combined their out-
standing scientific merits with the capability to effectively communicate their thoughts,
and thus we are deeply indebted to Wolfgang Banzhaf, Michele Vendruscolo and Joana
C. Xavier for their contributions. We also thank all the contributors and all the partici-
pants for their role in makingWIVACE 2023 a successful event, with several interesting
and vibrant discussions.



vi Preface

The reviewprocess involved two phases and at least three reviewers per paper (single-
blind review): a total of 55 papers were processed. The contributors were free to send
an extended abstract or a full paper, and the acceptance for oral presentation was based
on the quality of the submitted document. After the conference, the authors of accepted
contributions were asked to send a full paper for further review for publication in the
Proceedings. The 30 papers in this volume are the outcome of this selection procedure.

Special thanks are due to themembers of the ProgramCommittee and to the reviewers
for their precious work. Two young researchers, Gianfranco Lombardo at the Università
di Parma and Gianluca D’Addese at the Università di Modena e Reggio Emilia, not only
provided their reviews, but they also were of great help in managing the review process,
and in setting up the Easychair site, while Jacopo Moi and Tatiana Skrbic, both from the
Università Cà Foscari, supported the local organization.

This year’s organization profited from the strong and highly qualified support of
ECLT, an international research center run by the Università Cà Foscari, which is asso-
ciated with several universities and research institutions in Europe and in the USA. We
wish to thank in particular the current director, Achille Giacometti, and the members of
its staff, who managed the complicated organizational and financial aspects of the con-
ference, and who also found a wonderful location for our lecture room. We particularly
thank Roberta D’Argenio, Beatriz Barbado, Alessandra Bonesso and Giulia Brolese,
who also managed the workshop website.

Thanks are also due to the host institutions of the organizers, namely, the Università
diModena e Reggio Emilia and the Università di Parma, and to the Università Cà Foscari
di Venezia.

Let us finally acknowledge the precious advice of the staff at Springer, who provided
their professional support through all the phases that led to this volume.

February 2024 Marco Villani
Stefano Cagnoni

Roberto Serra
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Energy Consumption of Evolutionary
Algorithms in JavaScript

Juan J. Merelo-Guervós1(B) , Mario Garćıa-Valdez2 ,
and Pedro A. Castillo1

1 Department of Computer Engineering, Automatics and Robotics,
University of Granada, Granada, Spain

{jmerelo,pacv}@ugr.es
2 Department of Graduate Studies, National Technological Institute of Mexico,

Tijuana, Mexico
mario@tectijuana.edu.mx

Abstract. Green computing is a methodology for saving energy when
implementing algorithms. In environments where the runtime is an inte-
gral part of the application, it is essential to measure their energy effi-
ciency so that researchers and practitioners have enough choice. In this
paper, we will focus on JavaScript runtime environments for evolution-
ary algorithms; although not the most popular language for scientific
computing, it is the most popular language for developers, and it has
been used repeatedly to implement all kinds of evolutionary algorithms
almost since its inception. In this paper, we will focus on the importance
of measuring different versions of the same runtimes, as well as extend-
ing the EA operators that will be measured. We also like to remark
on the importance of testing the operators in different architectures to
have a more precise picture that tips the balance towards one runtime
or another.

Keywords: Green computing · metaheuristics · JavaScript ·
energy-aware computing · evolutionary algorithms

1 Introduction

From the first papers using it for implementing metaheuristics [8], JavaScript
is nowadays a great alternative for evolutionary algorithms and machine learn-
ing, making it a target for energy efficiency studies in those areas. However,
unlike other languages, there are different interpreters with different applica-
tions: besides the well-known and established node designed for browser and
server-side execution and already in its version 20, a pair of powerful runtime
environments have been produced recently. There is deno [6] (written in Rust)
focused on security and ease of use, and bun [16] (programmed in the rela-
tively unknown language Zig) designed for speed and server-side applications.
We already compared them in a previous paper [14]. In that paper we established
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Villani et al. (Eds.): WIVACE 2023, CCIS 1977, pp. 3–15, 2024.
https://doi.org/10.1007/978-3-031-57430-6_1
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a general methodology for measuring energy consumption: using the energy pro-
filer pinpoint [11], that reads from the RAPL registers [9,10], and using experi-
ments run from the command line, without any additional instrumentation, to
measure power extracted by evolutionary algorithm operators from the source.

We validated this approach, and applied it to a single fitness function (One-
Max) and a common operator (crossover). However, this study left a few issues
open. In this paper, we will widen the results, looking at different factors

– Test new versions of the virtual machines considering energy consumption,
since in general these evolve towards more efficient operation; at any rate, the
balance of results might change in these new versions in unexpected ways.

– Test also in different power consumption environments, including a native
Intel machine, so that the interplay between the interpreter and the power
management can be observed with more precision, with a full implementation
of the API used for reading the energy consumption sensors.

– A more complete evolutionary algorithm will be tested: adding the ubiquitous
mutation operator to the testbed, to see what kind of power consumption
profile it adds.

The rest of the paper follows this plan: next we will present the state of the
art; next the results together with the experimental setup will be presented in
Sect. 3, and we will end with a discussion of results, conclusions and future lines
of work in Sect. 4.

2 State of the Art

In the last few years, evaluating the energy efficiency of algorithms as well
as modifying these algorithms or their implementations so they consume less
energy has increasingly become a research topic [3]; in many cases algorithms
are compared with respect to their power efficiency. Since 2020, Machine learn-
ing/AI applications [19] have been extensively studied from the green perspec-
tive, primarily through experimental studies. Green computing principles have
been established as a best practice, which we will also follow in this paper.

In the area of evolutionary algorithms, initial energy efficiency estimations
included their behavior in different platforms [17], its interaction with cloud ser-
vices [12] and how it affected genetic programming (GP) [5]; but since then, and
due to the fact that metaheuristics are so extensively used in machine learning
applications, studies in this area have grown. Many papers focus on analyzing
how certain metaheuristics parameters have an impact on energy consumption.
Dı́az-Álvarez et al. [4] studies how the population size of EAs influences power
consumption. In an earlier work, centered on genetic algorithms (GAs) [18],
power-consumption of battery-powered devices was measured for various param-
eter configurations including chromosome and population sizes. The experiments
used the OneMax and Trap function benchmark problems, and they concluded
that execution time and energy consumption do not linearly correlate and there
is a connection between the GA parameters and power consumption. In GAs,
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the mutation operator appears to be a power-hungry component according to
Abdelhafez et al. [1], in their paper they also report that in a distributed eval-
uation setting, the communication scheme has a grater impact. Fernández de
Vega et al. [17] experimented with different parameters for a GP algorithm and
concluded that hand-held devices and single-board computers (SBCs) required
an order of magnitude less energy to run the same algorithm.

These results point to several best practices in the area: first, evaluate sepa-
rately different operators and fitness functions, and second, perform experiments
on different devices. After the initial exploration and establishment of technol-
ogy in [14], this paper will also test the mutation operator, as well as carry out
tests in computers with different architectures.

3 Experimental Results

From the different ways to measure energy consumption [2], in [14] we chose
pinpoint [11], a tool that uses the RAPL (Running Average Power Limit [7])
interface, to report the power consumed. This tool was on one side accurate
enough to take the measurements we needed and on the other it was measuring
what we needed, so it will be the one used in this paper. This tool sometimes
returned 0 in energy measures; when this happened, the run was discarded and
repeated until the desired number was reached. Depending on the actual proces-
sor and chipset architecture, the tool will report different quantities; however, it
always reports the package (PKG) energy consumption, which includes the CPU
cores and the RAM. In architectures like Intel native where the RAM consump-
tion is available, it will report PKG as two separate quantities, cores and ram.

We are going to focus on command line JavaScript interpreters in these ver-
sions:

– bun version 0.6.4
– deno version 1.34, which includes the v8 library version 11.5.150.0 and type-

script 5.0.4
– node.js version 18.16.0

These were running in an Ubuntu version 20.04.1 with kernel version 5.15.0-
69. The processor is an AMD Ryzen 9 3950X 16-Core; only some registers are
available in this case, as it is a processor with a different architecture than Intel’s.

A Perl script was created to run the experiments; it executed the scripts and
collected the results by parsing the standard output and putting it into a file
with CSV format that would allow examination of the experiments. According
to [14], consumption for a no-op task running in the same environment was taken
out of the reading before computing the average.

As was done in [13], which was focused on wallclock performance, the exper-
iments will be focused on the key operations performed by an EA: evaluation
of fitness and “genetic” operators like mutation and crossover. What we will do
in this paper is: repeat the setup in the initial exploration, check the energy
consumption for the processing of 40000 chromosomes, a number chosen to take
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a sizable amount of memory, but also on the ballpark of the usual number of
operations in an EA benchmark; it is also small enough to not create garbage
collection problems with the memory, something that was detected after the
initial exploration. Experiments were repeated for the same chromosome size as
before, 1024, 2048, and 4096, and for the three JS runtimes used. Although the
business logic is exactly the same for the experiments, the script comes in two
versions, one for deno and the other for bun/node, due to the way they read
command-line arguments. This does not affect the overhead in any way. Code,
as well as the data resulted from the experiments and analyzed in this paper are
released with a free license (along with this paper) from the repository https://
github.com/JJ/energy-ga-icsoft-2023.

The charts presented in Fig. 1, which concern the simple computation related
to the One Max problem, show that for all three runtimes there is indeed a
variation with respect to the measurements previously made: moreover, the way
they vary is different.

In the case of node.js, newer JavaScript runtimes take more or less the same
time, but the consumption of energy is much less; since [14] showed that this is,
indeed, one of the choke points of this runtime, it makes it more interesting in
a low-consumption environment. The case of bun is more complicated: perfor-
mance is the same, but energy consumption seems to decrease only for smaller
chromosome sizes, getting an increase in size 4096. The case of deno is even more
complicated: there is a change towards higher performance (experiments taking
less time), which more or less corresponds to the decrease in consumption. How-
ever, the strange behavior of this JavaScript runtime regarding chromosome size
(already observed in [14]) will have to be checked further.

The scenario that is shown in Fig. 2, represents the performance for crossover,
it has some similarities with the one shown in Fig. 1, showing again the strange
performance correlations for the deno JS runtime. In the other two cases, there
is no great difference, it can even be slightly worse, although the difference does
not seem to be significant.

Since what we are seeking is the JavaScript VM that has the best energy
profile, we will first compare the energy consumption of the ones available in
March 2023, and published in [14], and the ones available in May 2023, when
this paper is being written. It does not seem like the slight disadvantage in
energy consumption for this new version, in this specific operator, is enough
to offset the savings obtained with the fitness function; let us not forget that
fitness evaluation usually takes the bulk of the energy consumption and time.
The fact that unexpected variations in energy consumption may occur when
versions change, and sometimes dramatic ones, is probably enough to warrant
re-profiling of all workloads (evolutionary algorithms or otherwise) and another
round of comparison of the performance and energy consumption for all three.
This is what we will do next, using the newest published versions (Fig. 3).

The figure shows how energy consumption grows less than linearly for bun;
this is a change with respect to [14], when it was flat. How consumption changes
for deno is weird, since it decreases as the size of the chromosome grows; this is

https://github.com/JJ/energy-ga-icsoft-2023
https://github.com/JJ/energy-ga-icsoft-2023
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Fig. 1. Comparison between different versions of the VMs on the OneMax problem;
from top to bottom: node, bun, deno

a slight change with respect to [14], when it decreased only for the biggest size.
node is, however, the bigger energy guzzler, consuming up to 3 times more than
deno on average, and more than 5 times as much as bun for the biggest size;
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Fig. 2. Consumption and time for the crossover operator in the three different VMs,
from top to bottom; node, bun, deno.

however, this new version of the interpreter 18.15.0 has a consumption similar
to bun for the smallest size. Taking into account that, in most cases, we are going
to deal with chromosomes with sizes that are around this order of magnitude,
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Fig. 3. Boxplot of PKG measurements for the OneMax fitness function and the three
different virtual machines. Please note this is the same data that was labelled May in
Fig. 1.

node might be a good alternative if considerations other than raw speed, such
as maturity of the product, enter into consideration.

Another function we have tested, crossover, involves copy operations between
strings that create new strings, since strings in JavaScript are immutable. We
will again generate 40K chromosomes and group them in pairs; the strings in the
pair will be crossed by interchanging a random fragment from one to the other
and back in what is usually called two-point crossover. The resulting pairs will be
stored in an array, which is eventually printed. The result of every experiment has
been already shown in an energy vs. wallclock time chart in Fig. 2, comparing
how it goes for different virtual machines. In Fig. 4 we render a boxplot for
different sizes and the different virtual machines, in order to compare their energy
consumption and how it grows with chromosome size.

The scenario is remarkably similar to the one shown in Fig. 1, and also similar
to what we found with the previous versions of all command-line interpreters in
[14]. Energy consumption for bun grows very slowly with chromosome size, less
so than figures for node, whose energy consumption duplicates from chromosome
size 1024 to 2048, and more than duplicates again for the bigger size, 4096, thus
growing approximately in a linear way with the chromosome size; consumption
is always better for bun, and the difference increases with size. But, again, the
surprising energy profile for deno, which decreases with size, makes it the most
energy-thrifty of the three for the biggest size. In any case, bun continues to
consistently yield very low-energy consumption values across all sizes.

In this paper, we will also be testing a third operator, mutation. Mutation
takes many different forms, but in its simplest form it changes a single bit in a
bit string. Again, due to the fact that strings in this language are immutable,
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Fig. 4. PKG consumption for the crossover and the three different virtual machines,
shown as a boxplot. Please note this is the same data that was labelled May in Figure 2.

the mutated string must be built from pieces of the original string, which will
have an impact on the performance (Fig. 5).
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Fig. 5. PKG consumption for the mutation operator and the three different virtual
machines, shown as a boxplot.
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What these measurements show is that, since they behave essentially as a
set of copy operations, its behavior is quite similar to that shown in Fig. 4. deno
decreases with size, bun increases very slowly, node faster to the point that it
spends three times more energy than bun for the biggest size.

It is interesting, however, to test the algorithms in different architectures,
even more using a native Intel architecture with all its registers. This is why we
have repeated the experiments in another computer, a Lenovo Carbon X1 with
Ubuntu 22.04.1, kernel version 5.19.0-43-generic and an Intel processor and
an Intel Core i7-10610U CPU @ 1.80 GHz, with 8 cores.

One of the advantages of using the native Intel architecture is that it gives
you more accurate estimations of consumption for specific parts of the system;
namely, it breaks the PKG reading into two, cores and ram. In this case, we will
be changing slightly the script so that we get separate readings for these two
sensors.
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Fig. 6. Consumption for the OneMax fitness function in the Intel architecture and the
three different virtual machines, shown as a notched boxplot; cores component (left)
and RAM component (right). Please observe that the scales in the y axes are different.

Results of these experiments for the OneMax fitness function, shown in Fig. 6,
allow us to check the influence on the overall energy expenses of the memory
operations, which are shown in the right-hand side panel. They are first barely
above the baseline, with averages rarely exceeding 20 J; but the most important
thing is that there are no significant differences among the interpreters. The
consumption by node seems to increase slightly with size, but it is not enough to
outspend the other two interpreters. The left-hand side panel in Fig. 6 does show
significant differences in every size. We can affirm that bun is, in general, better
than node, although the difference is not significant at the bigger size. But the
main issue here is that deno seems to be the best for any size above 1024 bits.

At any rate, comparing this graph with Fig. 1, we can see that the average
consumption for the smaller size, around 100 J, is less than half what is consumed
in the desktop system we have initially tested here and in [14]. The average time
needed to find the solution, however, is higher, although not by an order of
magnitude.
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Table 1. Comparing times (in seconds, s) and cost (in Joules, J) for an AMD desk-
top and Intel-based laptop (see text for specs). These are average times and energy
consumption, in seconds and Joules, respectively.

VM Size AMD - s AMD - J Intel - s Intel - J

bun 1024 5.07 141.19 7.95 78.31

bun 2048 7.84 253.48 12.52 117.63

bun 4096 13.74 377.82 24.41 193.08

deno 1024 12.61 400.63 19.33 143.78

deno 2048 9.97 319.43 19.35 70.28

deno 4096 9.70 297.88 20.08 132.41

node 1024 11.13 167.40 15.82 100.29

node 2048 17.75 460.25 32.42 203.13

node 4096 32.63 1145.89 29.29 228.25

A comparison of consumption and performance (running time) is shown in
Table 1. In most cases, the AMD-based desktop will beat the Intel-based laptop;
they are machines of (roughly) the same generation, however laptops are not,
as usual, designed for speed, but for a good performance/consumption ratio. It
is remarkable, however, that node is, on average, faster in the laptop than in
the desktop, and that, in any case, evolutionary algorithms can be run with a
reasonable expectation of performance in a laptop. Of course, this could also
means that node is faster on the Intel architecture, due either to a more efficient
interpreter (created by a more efficient compiler of C/C++ in that architecture)
or to the fact that the interpreter operations work better in that architecture.
Ascertaining this, however, falls outside the scope of this paper. On the other
hand, there is no single combination of interpreter and size that offers better
power consumption, to the extent that, in the case mentioned above, node at a
chromosome length = 4096, consumption is almost 6 times smaller in the case
of the laptop. In general, it will always be less than half.

4 Conclusions

In this paper we set out to study the influence on energy consumption of evo-
lutionary algorithms in three different directions: first, testing different versions
of the interpreters; second, including the mutation operator, since it seems to be
the one that consumes the most; and third, test different types of computers.

While in our previous paper, [14], the measurements showed clearly that bun
was the less energy-consuming interpreter across all evolutionary operators and
fitness functions, the experiments performed in this paper show a more nuanced
scenario. The first interesting conclusion is that there is nothing inherently
energy-saving in the architecture of that interpreter, and that the supremacy
can change when current versions of the interpreters are compared with each
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other; subsequent release might increase or decrease the energy consumption,
and do so differentially across different problem sizes, so this leads again to
experimentation as the only possible way to really ascertain which interpreter
is best. The counter-intuitive behavior of deno, which consumes less as the size
increases, also leads to this conclusion. We cannot even discard node as the
most energy-consuming interpreter, since it beats deno in the mutation opera-
tor, which is the one that consumes the most, at the smallest sizes, as well as
the OneMax operator, also quite energy-consuming.

These new experiments with the mutation operator, which basically involves
copying of large strings, do not actually show big differences between the three
interpreters for the smallest size, which is probably closer to the one actually
used in most EA applications. Larger sizes imply a disadvantage for node, so
your mileage may vary. At any rate, using bun or node is largely, in this case,
a matter of choice; a choice that should, nonetheless, be informed by actual
measurements, since experiments do not give you a general answer. This is also
true independently of the machine we choose: there is a slight advantage of bun
over node at the smallest size, deno seems to be better when size is increased.
Measuring in an Intel-powered laptop has several advantages, however: first,
it gives you real register measurements, as opposed to other brands of CPUs
that merely emulate them; second, it really allows you to pinpoint, as in the
tool we use, where is the actual energy consumption, by allowing to make core
consumption and memory apart; this has allowed us to find out that in the case
of evolutionary algorithms, it is actually the cores that are consuming energy
from the power source.

Finally, our experiment with a (powered) laptop shows that, as should be
expected, opting for an energy-saving computer architecture will give you energy
savings that can go from 50% to over 80%, depending on the size; these savings do
not imply a decrease in performance in the same scale; even in some cases, it can
be faster, in the case of deno. This leads us to encourage performing evolutionary
algorithms, wherever possible, in laptops, even more so if they have an Intel
processor and chipset, Apple Silicon, or any computer or processor architecture
designed for energy saving.

Even if energy saving is not the main concern of the evolutionary algorithm
practitioner, we encourage researchers to always follow a strategy of energy and
performance profiling to be able to extract the most from the existing hardware
architecture; this is always a software engineering best practice that we really
need to encourage in our area.

The fact that mutation is so power-hungry leads us to designing algorithms
that try and save energy in this area; this will probably imply changes in the data
structures used in the evolutionary algorithm. Since in this case, we have used
immutable strings, that might be the reason why it consumes so much energy.
Implementation matters, [15], so exploring and measuring will always help you
take the best decisions in the direction of making computing greener.
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Abstract. In this paper we propose an algorithm based on the Tabu
Search metaheuristic for the Map Labeling problem, i.e. the relevant
problem in cartography of assigning labels to specific points of interests
in a clear and readable way. It is a combinatorial problem known to
be NP-complete and therefore it needs to be tackled by means of good
and efficient heuristics. In our experiments, we used real maps of Italian
cities, Rome and Venice in particular.

Keywords: Metaheuristics · Tabu Search · Map Labeling ·
Combinatorial Optimization · NP-complete · Approximation algorithm

1 Introduction

The rapid growth of tourism and the mobility of people from one place to another
for business, vacation, culture and other reasons, has led to an increasing use of
online services to get all the information a traveler needs such as restaurants,
attractions, events, open parks and much more [8,16]. The increased comput-
ing power and storage capacity of computers and portable devices, along with
geolocation and connectivity capabilities, has led to a proportionally significant
increase in the availability of geographic data and the overall number of users,
encouraging service providers to strengthen them and make them more efficient.

A map service allows customers to visualize the main attractions of a region,
such as an entire city or part of it. There, the most important buildings, streets
or squares are highlighted and marked with a label placed on them. However,
given the huge amount of information that can be found on a map, it could
be very difficult to place these labels properly. As a consequence, new methods
must be developed in order to efficiently solve this problem which despite its
apparent simplicity, it is actually a computationally hard problem and, at the
same time, very important to provide a high-quality service to customers.

Our goal, in this research paper, is to find the best placement of the labels of a
map in order to optimize the visual aspect of such a map and provide a better ser-
vice to the customers. For this purpose, we used the Tabu Search algorithm and

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Villani et al. (Eds.): WIVACE 2023, CCIS 1977, pp. 16–28, 2024.
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we conducted several experiments to prove the efficiency of such a Metaheuristic
technique, which can be used in a wide range of applications to enhance tradi-
tional methods, such as machine learning [17,18]. The remainder of this paper
is organized as follows. The map labelling problem is described in Sect. 2 and
related work is discussed. Section 3 briefly introduces the Tabu Search algorithm.
In Sect. 4 we describe our approach. Section 5 shows the results. Finally, Sect. 6
draws some conclusions and future directions.

2 The Map Labeling Problem

In general a map consists of a graphic part, that is the representation of the
elements of a space by symbols or conventional signs, and a textual part, that is
the naming of the elements. A fundamental part of the map-making process is
the careful placement of toponymy to make the map “speakable”: symbols and
corresponding names must be placed naturally according to rules or priorities
that facilitate the use and understanding of the map. In theory, each label should
be placed near its object, and overlap should be avoided. Considering that each
label must be matched with all the others, the complexity is exponential.

Various methods have been proposed in literature to solve the task of auto-
matic labeling of different types of maps or figures. The final arrangement of
labels on sites and descriptive characteristics of points must comply with a series
of cartographic rules, graphic requirements and constraints. To be usable, maps
complete with text must be legible, clear and maintain an aesthetic balance,
respecting boundaries and avoiding overlapping. Although it may seem like a
problem based only on formatting style, for large areas it becomes problematic
to process and test a huge number of positions relative to the labels centered
on all possible pixels which are present on the map. Thus, map labeling can
also be seen as a geometric combinatorial optimization problem [13,15] and has
been shown to be NP-complete by reductions to 3−SAT (Boolean satisfiability
problem) [7], as well as the more general Edge Label Placement (ELP) problem
[9]. Thus, a good approximate solution may be found by metaheuristic methods
(see for instance [14] for another example of hard geometrical problem).

Lu et al. [11] use a hybrid algorithm called DDEGA that combines Discrete
Differential Evolution (DDE) and Genetic Algorithm (GA). The initial popu-
lation is randomly generated, and after calculating the fitness value through a
quality metric for each configuration, the best 50% individuals (solutions) par-
ticipate in a new generation. More in details, 80% of the new individuals are
generated using DDE, the remaining 20% using GA. After selection, individ-
ual chromosomes are combined through crossover, then go through a mutation
process, following GA and DDE standard procedures. Starting from the set of
possible solutions, the differential mutation produces the best positioning, that
is the one with the least possible number of overlaps, following lines which are
parallel to the present elements. Although such an algorithm manages to handle
conflicts between labels and elements with good results, it has limitations in
scalability and convergence on very large instances.
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The method proposed by Lhuillier et al. [10] supports constrained labeling
following the descending gradient in a density map. Dense areas of information
make it more difficult to insert non-overlapping labels, because there may not
be enough space. The barycentre of the label is initially positioned at the point
entity to which it refers to and is directed towards a local minimum of the spatial
density, where it is possible to position it in a suitable way. It may happen that
the algorithm stops because the maximum fixed number of iterations has been
reached without finding a suitable space or that the gradient has vanished, and
in these cases the label is not positioned and will be discarded. Alternatively,
curved lines called leaders, which connect the labels with the entities to be
described, are drawn. Following the smooth gradient descent trajectories, they
will not intersect, as the reference ordinary differential equations have unique
solutions, but for a large number of labels they could follow a similar trajectory.
So the drawback of this algorithm is that, even though it chooses not to obscure
information, the associations between labels and items may not be apparent due
to the convergence of leaders pointing to the areas in question. Especially for
a large number of sites to be associated this method would make it difficult to
recognize which label belongs to which point. The authors assume that the point
labels are rectangles of uniform size, setting a default size. An adaptation of the
algorithm for labeling polygonal areas is missing. Another approach concern-
ing the cartographic labeling of points was presented in [2]. The authors use a
combination of the Genetic Algorithm with a convex onion structure (COPGA),
which leads to a better initialization of the labeling and evolutionary process.
Given a set of points to label, the Convex Onion Peeling is formed by concentric
polygons interpolating the points. The sites to be described are then divided
among the different onion layers, that is, convex polygons extending from inside
out. The labels of the elements are positioned outside each layer, following the
standard steps of the evolutionary process. The algorithm manages to reduce
the conflicts between the labels, however it does not favor the positions at the
top right. Most studies have addressed the problem of labeling points, but only
few have focused on the case of polygonal areas or combined the two aspects
for the production of maps. In support of Geographic Information Systems, [1]
presents an algorithm for the internal labeling of areas, cities, lakes or areas
delimited by polygons. For narrow areas, label overlaps with edges or with the
descriptive text of the adjacent area may become unavoidable, and it is also
not recommended to place labels outside the areas. The proposed method finds
the minimum bounding rectangle of each area and, using the distances between
the intersections of auxiliary lines and boundary lines, chooses the most suitable
and centered positions for the labels. The dimensions of the rectangles are set
by fixing a single standard measure.

3 The Tabu Search Algorithm

Tabu Search is a heuristic search algorithm that is commonly used to solve opti-
mization problems. It is particularly useful for problems where the search space
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is large and the search time is long. One of the advantages of Tabu Search is
its ability to maintain a long memory of previously visited solutions, which can
be used to avoid getting stuck in local optima and to improve the efficiency of
the search (Algorithm 1). Our goal is to prove that Tabu Search can be effec-
tively used to optimize the placement of labels on a map. By maintaining a long
memory of previously visited solutions, the algorithm can avoid placing labels
too close to each other, which could lead to inaccurate labeling. Additionally,
Tabu Search can be used to improve the search efficiency by avoiding redundant
computations and by pruning the search space based on constraints.

Algorithm 1: Tabu Search algorithm
Input: Initial solution x, objective function f , neighborhood function nh,

tabu list size L, maximum number of iterations max iter
Output: Best found solution x∗

1 x∗ = x, tabu list = [];
2 for i = 1 to max iter do
3 best candidate = None; best candidate f = float(′inf ′);
4 for y in nh(x) do
5 if y not in tabu list and f(y) < best candidate f then
6 best candidate = y; best candidate f = f(y);
7 end

8 end
9 if best candidate = None then

10 break;
11 end
12 x = best candidate;
13 if f(x) < f(x∗) then
14 x∗ = x;
15 end
16 Add move (x, best candidate) to tabu list;
17 if tabu list size exceeds L then
18 Remove oldest move from tabu list;
19 end

20 end

We will now formally describe our approach and the methodology used to
tackle the map labeling problem.

4 Methodology

4.1 Solution Format

A solution format is a description of the structure or format of a solution to a
problem. In the context of map labeling, the solution format includes information
such as the position of labels on the map, the orientation of labels, and how to
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Fig. 1. Different types of position and orientation of a label.

distribute the text on multiple lines. This information is encoded in a vector
of integer numbers that contains 3 · n parameters, where n is the total number
of labels to be placed on a map. Thus, the vector represents a solution to the
problem of label placement. Each value in the solution vector ranges from 0 to
8, and each number encodes a position, orientation, and text distribution of the
labels. Therefore, a solution is encoded as (p1, o1, d1, p2, o2, d2, . . . , pn, on, dn)
where pi,oj and dj represent respectively the position, orientation, and text
distribution of the i-th label.

Position of Labels. A map can be used to represent a diverse range of geo-
graphic information, including buildings, monuments, squares, and points of
interest. The polygons that make up a map represent the boundaries of these
elements. The positions available for placing labels on a polygon are determined
by a fixed set of label positions. Figure 1a provides an illustration of the available
label positions for a given map element. The gray polygon represents a building
that we want to label. The point C = (xC , yC) is the center of the polygon.
The values xmax, xmin, ymax, ymin represent the maximum and minimum x and
y coordinates of the polygon’s bounding box, which is a rectangle that com-
pletely encloses the polygon and is used to determine the position and size of
the polygon on a map. The values Δx,Δy are defined as follows:

Δx = (xC − xmin)/2,Δy = (yC − ymin)/2 (1)

Text Distribution. Another parameter that affects how text is distributed
across multiple lines is the maximum number of rows allowed. This parameter is
crucial in avoiding overlapping between adjacent labels and ensuring that text
is properly formatted.



A Tabu Search for the Map Labeling Problem 21

If the maximum number of rows is greater than the number of words, the
text will be split at the word level. This ensures that each word is displayed on a
separate line, making it easier to read and understand. If, instead, the maximum
number of rows is smaller than the number of words, two or more words will be
displayed on the same line. Choosing how to divide a text is dependent upon the
goal of equal distribution of the text in all rows. More in details, the maximum
number of rows, according to the solution format, is an integer value between 0
and 8. If such a value is set to i, the text will be distributed across i + 1 lines.

Label Orientation. Once a position for the labels in the polygon has been
chosen, this parameter determines the orientation of the label. It can be either
vertical (Top, Center, Bottom) or horizontal (Left, Center, Right). For each
possible combination, we associate an integer value as described in Fig. 1b.

4.2 Label Placements Score

The quality of label placements (solution) is defined using two main concepts
that will be discussed in this section: the overlapping matrix, which contains the
cost of a solution, and the penalty vector, whose values represent a penalty. By
multiplying the rows of the overlapping matrix with the respective values of the
penalty vector we obtain a new n×n matrix, and the sum of all items contained
in it represents the label placements score, a value which must be minimized.

Cost Function and Overlapping Matrix. A cost function is a mathematical
function that assigns a numerical value to each possible solution to a problem. It
measures the “cost” of each solution, and the algorithm aims to find the solution
with the lowest cost. In the context of map labeling, the cost function may assign
a higher cost to placing labels too close to each other, or to placing labels on
unsuitable areas of the map. We define an overlapping matrix as a square matrix
Q ∈ R

n×n containing the percentage of overlap of the i-th label with the j-th
label, normalized between 0 and 1, given a possible label placements. The cost
is obtained by summing up all the values of the overlapping matrix.

Penalty Function. A penalty function assigns a numerical value to each infea-
sible solution to a problem. It measures the “penalty” of each infeasible solution,
and the algorithm aims to avoid finding them. In the context of map labeling,
the penalty function assigns a higher penalty in case the text of the label is
split across multiple rows. Ideally, the algorithm should try to position the text
on the map without any splits, to make it more readable. We define a penalty



22 C. Cavallaro et al.

vector as a vector of n elements P ∈ R
n such that the i-th element is calculated

as follows, with ri being the number of rows of the i-th label:

pi = 1 +
ri − 1

8
(2)

4.3 Neighbor Function

A neighbor function is a mathematical function that generates all possible solu-
tions that are neighbors of a given solution to a problem. It is used to generate
new solutions to the problem by modifying the current solution.

In the context of map labeling, the neighbor function generate new solutions
by moving existing labels. The neighborhood of a possible label placement is a
set of candidate solutions that are similar to the given solution S. The goal of
the labeling algorithm is to find the optimal solution within the neighborhood.

To generate the neighborhood, we start with the given solution S and ran-
domly vary the parameters of the solution in correspondence with the most
overlapped labels between them. We use the overlapping matrix to determine
which labels have a high overlap. To do this, we first compute the overlapping
matrix among the labels in the solution. We then find the labels that overlap
the most with the other labels by taking the maximum value in each row of the
overlapping matrix (which corresponds to the index of the label that overlaps
with most of the other labels). In details, the steps to compute the neighborhood
are the following:

1. Compute the overlapping matrix among the labels in the solution.
2. For each label i in the solution, find the label j that overlaps the most with i.

Formally, j = maxh=1,...,nQ[i, h] Subsequently, we determine the label k that
overlaps the most with label j, i.e. k = maxh=1,...,nQ[j, h]. If label k is equal
to i, then i and j have a strong overlapping and therefore it is necessary to
alter the placement of i in order to reduce the overlapping between these two
labels. All labels that satisfy these two conditions are selected to be mutated
in the next step.

3. Generate the neighborhood by randomly perturbing the parameters of only
a subset of labels in the solution.

4. Return the resulting neighborhood.

The specific parameters that are varied are chosen randomly from a set of possi-
ble values. For example, if we are varying the position of a label, we may choose
a random position within a certain range of the current position of the label. If
we are varying the orientation of a label, we may choose a random orientation
within a certain range of the current orientation of the label. Once the neighbor-
hood solutions are generated, the labeling algorithm can evaluate each solution
to determine its cost and penalty. The algorithm then selects the best solution
from the neighborhood as the next solution to be evaluated. This process is
repeated until the optimal solution is found within the neighborhood.
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5 Results

In our experiments, we chose to evaluate the effectiveness of the proposed algo-
rithm on real geographic data. The considered maps come from OpenStreetMap
[12], an open source service that allows exporting a zone in OSM format. It
contains a set of points, geographic coordinates and other additional data such
as the hierarchical relationships between them and various information. To eval-
uate our methodology, we compared it with a default label placement strategy,
which places each label as a single line in the center of a building. We scored
the results of four different map areas to determine the optimal label placement.
Note that the label placement score measures the overlap among the labels, so
the objective is to minimize it.

We ran the algorithm for a total of 500 iterations for any instance and
compared the results, denoted as Optimized Placements, with those denoted
as Default Placement in terms of the computed score as seen in Sect. 4.2. This
allowed us to determine the effectiveness of our methodology and identify where
our approach outperforms the default label placement strategy. We also mea-
sured the number of iterations in which the algorithm found the best solution
while in the remaining iterations it was not able to further improve such a solu-
tion.

The experiments on the map labeling problem show that the default strategy
is suboptimal in most cases as shown in Table 1, where we can see that the label
placement score achieved by the Tabu Search algorithm is lower than the score
achieved by the default strategy. We can, therefore claim, that the Tabu Search
algorithm can find better solutions by searching a larger and more diverse space.
Due to space limitations, we show only Figs. 3 and 4 which respectively display
the default label placement and the optimized label placement for Rome and
Venice. For more images and a better resolution of the images presented here,
we refer to the dedicated site1.

Table 1. Comparison of Default and Optimized Label Placement Scores on four maps.
The table includes the names of the maps, the number of labels, the score obtained
by using a default placement, the score obtained by using the placement computed by
our algorithm, the number of interactions required to obtain the best solution and the
time taken to obtain the best solution.

Map Name Labels Default Placement Optimized Placement Iterations Time (s)

Rome 40 2.0790E+01 1.0893E+00 60 5.0198E+02

Syracuse 24 7.6505E+00 3.9940E-01 36 4.6431E+01

Taormina 60 2.7589E+01 3.2716E+00 79 7.3909E+03

Venice 40 7.2168E+00 1.6048E-02 20 3.7179E+02

1 https://github.com/Complex-Intelligent-Systems/Map-Labeling.

https://github.com/Complex-Intelligent-Systems/Map-Labeling
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The number of labels in a map has a significant impact on the number of
iterations required for Tabu Search to achieve a feasible label placement. In
Fig. 2, we show the number of iterations needed by the algorithm to find an
optimal solution as the number of labels increased when the search space becomes
larger, and the number of iterations required to find a feasible solution increases.
The data are obtained by considering four maps and for each map an optimal
label placement is found by considering a different number of labels.

Summing up, the obtained results suggest that the Tabu Search algorithm
can be a valuable tool for solving the label placement problem in an efficient and
effective way.

Fig. 2. The x-axis represents the number of labels, while the y-axis represents the
number of iterations required to converge to the optimal placement.
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(a) Default Label Placement

(b) Optimized Label Placement with Tabu Search

Fig. 3. Optimized label placement algorithm for downtown Rome.
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(a) Default Label Placement

Fig. 4. Optimized label placement algorithm for downtown Venice.

6 Conclusions and Future Work

In this work, we addressed the problem of placing toponymy on a map, and
specifically city maps, using a Tabu Search algorithm. The initial results are
promising and worth a more in depth study along with new challenging experi-
ments. As a future research line, it would also be interesting to tackle the problem
using a different population based metaheuristic, such as Ant Colony Optimiza-
tion. Some preliminary experiments we have carried show that with an adequate
calibration of the parameters, an ACO algorithm may actually produce good
results, in a relatively short time and in a small number of iterations. Another
interesting research topic is dynamic map labeling. The wide-spread use of smart-
phones and location-based internet services (e.g., Google Maps) gives the oppor-
tunity to collect user locations, social interactions [6], and cultural interests (see
[3–5]), a city map could be labelled following the user interests. Thus, some labels
could, dinamically, be temporarily hidden while others highlighted according to
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specific criteria. As a consequence, an effective labeling of a city map could be
simplified while users could still be clearly read labels of points of interests.
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Abstract. The outstanding performance of deep neural networks often
comes at the expense of a lack of explainability of the results. In this
paper, we investigate mutual information between network layers as an
information-theoretic means to understand the learning process better.
When considering network layers as high-dimensional continuous random
variables, the computation of mutual information is a challenging prob-
lem. We focus on an approximation method provided by Rényi’s matrix-
based entropy functional and evaluate it in a classification task with a
multi-layer perceptron. We validate the approximation by checking the
data processing inequalities. Furthermore, we use mutual information to
detect data leaks, i.e., a loss of information between layers. Sealing such
leaks at the beginning of training improves the network’s performance
in our classification experiments.

Keywords: neural network · Rényi’s matrix-based entropy
functional · data processing inequality · information bottleneck
principle · minimal sufficient statistic

1 Introduction

More and more deep neural networks (DNNs) of various architectures solve tasks
equally well or even better than humans. In [3], Huber et al. compare the per-
formance of humans of four age classes versus state-of-the-art DNNs regarding
object recognition tasks with distorted images. The authors estimate that the
number of images humans refer to in training is three orders of magnitudes
less than in the case of the DNNs examined. How do DNNs learn, and why is
human learning more data-efficient than machine learning? We present a tool
to observe the learning dynamics of a network in training. Instead of a state-of-
the-art DNN, we restrict to a multilayer perceptron (MLP) with an architecture
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similar to Tishby and Schwartz introduced in [6]. These authors carefully design
discrete synthetical data and track mutual information (MI) through their net-
work. We replace the discrete and synthetical data of Tishby and Schwartz with
limited training, validation, and test sets we assemble from the MNIST data.
We regard each layer as a continuous random variable in computing the MI val-
ues between all network layers. The dimensionalities are much higher than in
Tishby and Schwartz’s example, and Rényi’s matrix-based entropy functional,
introduced by Giraldo et al. in [2], will provide an excellent approximation.

Relying on an approximation method requires an assessment of its qual-
ity. The fact that an MLP can not recover information in a higher layer once
lost in a lower layer gives rise to a data processing inequality (DPI). We will
check all possible DPIs and adjust the approximated MI values such that the
approximation of the entropy in the target is close to the entropy in the sense of
Shannon. Displaying epoch-wise the MI values with the cross-entropy objective
illustrates the learning dynamics of our MLP that we can interpret in a con-
sistent information-theoretic environment due to the validity of the DPIs. We
quantify the leaks in the hidden layers between the information available for
training and the information our MLP captures epoch-wise in training, and the
information bottleneck (IB) principle seals the leaks between the target and the
hidden layers.

In [8], the authors promote the same approximation method to quantify the
non-linear projection spaces’ behavior in training an autoencoder. Due to the
mirror symmetry at the bottleneck layer, they established two types of DPIs.
The first compares the MI values between the input and the last hidden layer
in the encoder and has a dual version in the decoder. The second compares
MI values between symmetric layers of the en- and decoder. To compensate for
the lack of symmetry in our MLP, we check the validity of all possible DPIs,
including the one involving the target.

We organize the paper as follows. We first motivate and summarize both
methods on which we base our study, i.e., Rényi’s matrix-based entropy func-
tional, the IB principle, and its role in providing approximately minimal suffi-
cient statistics. Next, we describe the experiments, i.e., the data sets, the model,
and the initialization schemes that mimic the leaky and sealed learner. Then, we
present the results, comprising the information-theoretic consistency by fulfilling
the DPIs, sealing the leaks between the target and the hidden layers, propagat-
ing the sealing to other layers, and comparing the learning dynamics between
the leaky and the sealed learner. In the last section, we discuss our work, i.e.,
we point out numerical issues and asses our result as a starting point for further
investigation.

2 Methods

2.1 Motivation

Our overall goal is to display the learning dynamics of an MLP at the beginning
of its training in a consistent information-theoretical environment. Since our
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layers are continuous random variables, the computation of the MI between its
layers is a non-trivial task, i.e., we have to rely on an approximation method.
We decided to validate Rényi’s matrix-based entropy functional presented by
Giraldo et al. in [2] because it offers two striking features. Firstly, it avoids
estimating the data’s probability distribution function (PDF), and secondly, the
convergence does not depend on the dimensionality of the random variables.
However, the convergence rate might depend on it. Hence, we must check that
the convergence is uniform in the range of dimensionalities we face in our MLP
cf. Fig. 1. In the rest of the paper, we will refer to the authors’ method in [2] by
the term “approximation.”

Fig. 1. The input is a picture with (28× 28) pixels of the figure ‘3’. It is flattened to a
vector of 784 components and passed through the layers (number of neurons indicated),
followed by a sigmoid activation function. The prediction layer contains the pseudo-
probabilities (softmax), and the prediction corresponds to the label of the highest value.

Using the IB principle between the target and the hidden layers not only seals
the desired leaks. It also turns the hidden layers into maximally compressed input
representations under the constraint of sealing the leaks. The principle allows
the network to focus on relevant features present in the data while ignoring noise
or features built into its architecture.

2.2 Rényi’s Matrix-Based Entropy Functional

Alfred Rényi generalizes in [5] the axioms that determine Shannon’s entropy and
presents a continuous family of real-valued functions that generate entropy-like
quantities converging to Shannon’s entropy as the parameter α of the family
tends to one, cf. [4], Sect. 2.2. The authors of [2] turn Rényi’s generalization into
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a matrix-based functional that assigns approximation values to entropy, joint
entropy, and mutual information in the case of high dimensional continuous
random variables.

We represent the target layer as Y , the input layer as X = T0, the three
hidden layers as Ti for i = 1, 2, 3, and the prediction layer as T4 = Ŷ with
corresponding batches y, x = z0, zi for i = 1, 2, 3 and z4, cf. Fig. 1 for the
notation of layers and corresponding batches. Next, we outline how to compute
the approximations in a loop over pairs of input-target batches. We exemplify
the procedure by approximating the MI I(Y ;T2). We set a = y and b = z2 to
avoid a cluttered notation. We denote the i-th row vector of a by ai and the
square of its Euclidean norm by ‖ai‖2. From a, we compute the kernel matrix:

Kij = exp
(

−‖ai − aj‖2
s2

)
(1)

The quantity s is the kernel width of the radial basis function we will estimate
from the data. Dividing the kernel matrix by its trace yields the matrix:

A =
K

tr(K)
(2)

from where we compute:

Hα(A) =
1

1 − α
log2 (tr(Aα)) (3)

that approximates the contribution of batch a to H(Y ).
An analog procedure for batch b results in a trace normalized matrix B.

Finally, we normalize the matrices A and B such that the uniform distribution
results on their diagonal. The last procedure ensures the DPIs, cf. [2], formula
(34). With the Hadamard product, A ◦B, the contributions to the joint entropy
H(A,B) and the mutual information I(A;B) become:

H(A,B) = Hα

(
A ◦ B

tr(A ◦ B)

)
(4)

I(A;B) = Hα(A) + Hα(B) − Hα(A,B) (5)

Averaging the contributions to I(A;B) over the number of loop passes yields
the approximation of I(Y ;T2). Replacing a and b by any two different batches
displayed in Fig. 1, we get the collection of 14 possible approximations of MI
values.

2.3 Information Bottleneck Principle

For given random variables Y and X, the IB principle provides a maximally
compressed representation X̂ of X that is as informative about Y as possible.
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The IB principle minimizes I(X; X̂) under the constraint that I(Y ; X̂) stays
above a threshold. Since the random variables Y , X, and X̂, given in that order,
form a Markov chain, the following DPI is valid:

I(Y ;X) ≥ I(Y ; X̂) (6)

In the case of equality, X̂ is a sufficient statistic of X w.r.t. Y , and if in addition
I(X; X̂) is minimal, X̂ is a minimal sufficient statistic of X w.r.t. Y . In [7],
Tishby and Zaslavsky apply the IB principle to approximate a minimal sufficient
statistic by minimizing the Lagrangian:

L = I(X; X̂) − β · I(Y ; X̂) (7)

The positive Lagrange multiplier β governs the bottleneck tradeoff between the
complexity I(X; X̂) and the predictivity I(Y ; X̂), i.e., the amount of information
about the target Y preserved in the compression X̂. To get the sealed learner,
we will sequentially turn each hidden layer of our MLP into an approximately
minimal sufficient statistic of its previous layer w.r.t. the target by minimizing
suitably modified Lagrangians on the validation data. The procedure ensures
that the MLP does not lose information about the target in the hidden layers.

3 Experiments

3.1 Data

We assemble stratified training, validation, and test sets of sizes 1000, 1000, and
200 from the MNIST data. The examples are handwritten digits from zip codes
containing labels. To set the stage, Fig. 2(a) presents a sample of 100 input
examples, and Fig. 2(b) shows the details of a specific input example, i.e., an
array of shape (28, 28) whose entries are greyscale values ranging from 0 to 255.
The number 0 corresponds to the color black, and the number 255 encodes white.
Since the approximation Hα(Y ) tends to Shannon’s entropy H(Y ) as α tends to
one, we chose the hyper-parameter α = 1.01. We must be careful since we divide
by 1 − α in the formula (3). A value of α too close to one results in a division
by a small number. With batch size 128, we can estimate the kernel width sest

from the validation data such that the relative error between the approximation
Hα(Y ) and the Shannon entropy H(Y ) computed from the validation data is
one percent in absolute value.

3.2 Model

Our model is a fully connected MLP, as shown in cf. Fig. 1. We flatten the input
to obtain a vector of 784 components and pass it through the layers by multiply-
ing with the associated connectivity matrix containing the weights Wi, adding a
bias vector bi, for i = 1, 2, 3 and applying the sigmoid activation function σ. The
parameters W4 and b4 govern the prediction layer that assigns the label with
the highest pseudo-probability.
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Fig. 2. MNIST: handwritten digits from zip codes

3.3 Initialization Schemes

We model the leaky and the sealed learner with two initialization schemes for our
MLP. Scheme S1 is the leaky learner we randomly initialize. To obtain scheme
S2 of the sealed learner we modify formula (7) for i = 1, 2, 3:

Li = I(Ti−1;Ti) − β · I(Y ;Ti) (8)

We first minimize L1 and freeze the network parameters up to T1, then we
minimize L2 and freeze the network parameters up to T2. Finally, we minimize
L3 and randomly initialize the network parameters governing the prediction
layer. We evaluate the ratio between successive mutual information values to
assess how close to equality we come, cf. the four biggest terms in equation (10).
E.g., to illustrate how close I(Y ;T2) comes to I(Y ;T1) we compute the ratio r2:

r2 =
I(Y ;T2)
I(Y ;T1)

≤ 1 (9)

Figure 3 shows the sensitivity of r2 in the bottleneck trade-off parameter β. The
choice β = 3.5 yields r2 = 0.99 after performing 200 iterations to minimize the
corresponding Lagrangian on the validation set. We train both learners with the
cross-entropy objective.

4 Results

4.1 Consistency

We aim to check the totality of the possible DPIs arranged in four chains. The
first chain starts with the target layer Y , the second with the input layer X = T0,
the third with the first hidden layer T1 and the fourth with the second hidden
layer T2:
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Fig. 3. Sensitivity of r2 in β: the closer its value is to one the less information about
the target is lost in passing from the first to the second hidden layer.

I(Y ;T0) ≥ I(Y ;T1) ≥ I(Y ;T2) ≥ I(Y ;T3) ≥ I(Y ;T4) (10)

I(T0;T1) ≥ I(T0;T2) ≥ I(T0;T3) ≥ I(T0;T4) (11)

I(T1;T2) ≥ I(T1;T3) ≥ I(T1;T4) (12)

I(T2;T3) ≥ I(T2;T4) (13)

Figure 4 and Fig. 5 depict the learning dynamics of the leaky and the sealed
learner during fifty training epochs, i.e., the curves corresponding to the MI
values in the chains (10), (11), (12) and (13). From the arrangement of the
curves in both figures, we observe that all possible DPIs are valid throughout the
training of the learners. In Fig. 5(a) the curves of I(Y ;T0) and I(Y ;T1) almost
coincide. Figure 6(a) is a zoom of Fig. 5(a), where we drop the MI between the
target and the prediction layer. The figure shows that even if the curves only
vary in a band of small width, the approximation respects the DPIs. The fact
indicates that the approximation is excellent, although the number of nodes in
the layers ranges from 10 to 784. The choice of the kernel width such that Hα(Y )
is close to H(Y ) justifies the unit bit on the vertical axes. We can interpret the
learning dynamics in a consistent information-theoretic setting. Our next goal
is to analyze the learning dynamics of both learners.
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Fig. 4. Learning dynamics of S1 (leaky learner): captured by all possible DPIs, ordered
by the starting layer.

4.2 Learning Dynamics of Both Learners

All curves in Fig. 4 monotonically increase until they saturate. Saturation
becomes a natural stopping criterion for further training. Figure 4(a) depicts
a leak between the target and the second hidden layer. The second hidden layer
captures less than 95 percent of the information about the target, i.e., the MLP
loses information. Similarly, we can define leaks between the input and its higher
layers, between the first hidden and higher layers, and between the second and
third hidden layers. Figure 5(a) shows that the optimization procedure affects
the learning dynamics as expected, i.e., it seals the leaks between the target
and the hidden layers. A computation shows that none of the curves in 5(a)
corresponding to I(Y ;T1), I(Y ;T2) and I(Y ;T3) loses more than 5 percent of
I(Y ;T0). Although we only seal the leaks between the target and the hidden
layers, we observe that the effect propagates to Fig. 5(b) and 5(c). Except for
the prediction layer, no curve of these figures falls below 5 percent of the curve’s
value at the top. In addition, the test accuracy of the sealed learner outperforms
the leaky learner after a few training epochs, cf. Fig. 6(b).
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5 Discussion

5.1 Numerical Issues

The kernel matrices corresponding to all batches have the universal shape
(128,128). To compare the MI values between all layers of our MLP, we choose
a kernel width estimate that is also universal to all kernel matrices. The fact
that H(Y ) is as close to Hα(Y ) as possible guides us. We assess our choice by
checking the strict validity of all possible DPIs. To perform the assessment, we
have to avoid two numerical issues. Firstly, if the kernel estimate is too small,
some kernel matrices may be ill-conditioned. In that case, the computation of the
eigenvalues is not possible. Any choice of the kernel width estimate has to take
care of it. Secondly, even if the kernel matrices are positive definite symmetric,
the algorithm may compute negative real eigenvalues of small absolute values.
According to the formula (3), we add the eigenvalues. Neglecting small negative
eigenvalues in the sum solves the issue.

5.2 Assessment and Further Investigation

Up to 50 training epochs, we can interpret the learning dynamics of a simple MLP
performing a classification task in a consistent information-theoretic setting, and
we can influence the learning behavior. At about 80 training epochs, the MI
curves in Fig. 4 and Fig. 5 begin to cross. To observe the learning dynamics
of a fully trained MLP, we need to refine the approximation. We also have to
analyze the influence of the learning rate. We trained all our networks with the
learning rate 10−4. Since we scale the MI values such that the approximation of
the entropy in the target is closest to Shannon’s entropy, we can even compare
the dynamics of MLPs that differ in architecture. The result is promising to
investigate the influence of architecture on learning dynamics. We also tested
our tool by analyzing an MLP Alemi et al. present in [1]. It has three hidden
layers of nodes 1024 − 1024 − 256 with relu activation functions. If we train it
with the cross-entropy objective on the same training set and compute the top
four MI curves of chain (10), Fig. 7(a) shows that it is well sealed, and Fig. 7(b)
shows that its training and test accuracies vastly outperform our MLP. The
sealing in the chain (10) becomes a tool to assess the performance of competing
MLPs. Although we can represent the learning dynamics of ours and Alemi’s
MLP, the tool does not yet explain the reason that makes Alemi’s MLP such an
efficient learner.
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Fig. 5. Learning dynamics of S2(sealed learner): captured by all possible DPIs, ordered
by the starting layer.

Fig. 6. zoom and comparison of test accuracies
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Fig. 7. Alemi’s MLP: well sealed and high accuracies

6 Conclusion

Overall, Rényi’s matrix-based entropy functional has provided a promising
approximation for computing mutual information between neural network layers,
especially at the beginning of the learning process. For a classification task with
a multi-layer perceptron, all data processing inequalities held over 50 epochs,
allowing the investigation of the learning dynamics with a sound information-
theoretic interpretation. The mutual information allowed us to identify infor-
mation leaks in the network. Sealing the leaks led to an improved classification
accuracy.

In future work, we aim to reduce the approximation error further and address
potential numerical problems in later stages of the training process. Another line
of investigation focuses on the extension of our experiments to more network
architectures and tasks, including, in particular, convolutional and recurrent
neural networks.
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Abstract. This work investigates the emergent complexity in Lenia,
an artificial life platform that simulates ecosystems of digital creatures.
Lenia’s ecosystem consists of a continuous cellular automaton where sim-
ple artificial organisms can move, grow, and reproduce. Measuring long-
term complex emerging behavior in Lenia is an open problem. Here we
utilize evolutionary computation where Lenia kernels are used as geno-
types while keeping other Lenia parameters, such as the growth function,
fixed. First, we use Variation over Time as a fitness function where higher
variance between the frames is rewarded. Second, we use Auto-encoder
based fitness where variation of the list of reconstruction loss for the
frames is rewarded. Third, we perform a combined fitness where higher
variation of the pixel density of reconstructed frames is rewarded. Finally,
after performing several experiments for each fitness function for 500
generations, we select interesting runs for an extended evolutionary time
of 2500 generations. Results indicate that the kernel’s center of mass
increases with a specific set of pixels and the overall complexity mea-
sures also increase. We also utilize our evolutionary method initialized
from known handcrafted kernels. Overall, this project aims at investi-
gating the potential of Lenia as ecosystem for emergent complexity in
open-ended artificial intelligence systems.

Keywords: Continuous CA · Lenia · Evolution · Artificial Life ·
Complexity

1 Introduction

Open-endedness is considered an important feature in Artificial Intelligence
(AI) [1,2], because it enables the development of more flexible, creative, and
autonomous systems that can solve a wider range of tasks. It also facilitates the
emergence of unexpected and potentially useful behaviors that may not have
been anticipated by human designers. In addition, open-endedness may allow AI
systems to continually learn and adapt to changing environments. Lenia is an
artificial life [3,4] where simple rules can give rise to complex behavior in a dig-
ital system. It is a digital simulation that uses a continuous cellular automaton
(CA) to generate complex patterns. Lenia differs from traditional CA in that its
cells are not limited to discrete states like “on” or “off”. Instead, each cell can
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Villani et al. (Eds.): WIVACE 2023, CCIS 1977, pp. 41–53, 2024.
https://doi.org/10.1007/978-3-031-57430-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57430-6_4&domain=pdf
https://doi.org/10.1007/978-3-031-57430-6_4


42 S. Jain et al.

Fig. 1. Visualising Kernel, Gaussian Kernel Cross-Section Function and Gaussian
Growth Function

take on a continuous range of values, which allows for more fluid and organic
patterns to emerge. Lenia is also unique in that it allows for a wide range of
parameters to be adjusted, such as the size and shape of the grid, the rules for
how cells interact (kernel), and the speed at which the simulation runs (growth
function). More in general, cellular automata (CA) have been recently shown to
be well suited for AI tasks [13,14]. In [5], a variant of CA called Neural Cellu-
lar Automata (NCA) has been used to develop a control system for a cart-pole
agent, demonstrating stable behavior over many iterations and exhibiting regen-
eration and robustness to disruptions. Further, extensions of classical Lenia have
been proposed, such as Sensorimotor Lenia [6], Flow Lenia [7], and Energy based
Particle Lenia [8], which show advanced physics, chemistry and biology of the
matter. In this paper, we investigate the emergent complexity in Lenia using an
evolutionary approach.

2 Lenia

Lenia [3,4] is a digital life simulation software that utilizes a unique approach to
simulate various patterns and behaviors through the use of an abstract concept
called the “growth function.” The growth function in Lenia represents the pro-
cess of growth and decay of various shapes and structures, which is governed by
two important parameters: μ and σ.

The μ parameter in Lenia’s growth function is the mean of the function,
which determines the overall behavior of the shapes in the simulation. The σ
parameter, on the other hand, represents the standard deviation of the function.
It controls the degree of randomness in the growth and decay process. Together,
the μ and σ parameters of the growth function enable Lenia to generate a wide
range of complex patterns. Over 500 species have been discovered so far [12],
with each residing in a unique combination of these parameters.

Similarly, the Gaussian kernel is used for smoothing and blurring the simu-
lation board, and it is a circular matrix that is centered around the current cell.
The number of smooth rings or “shells” in the Gaussian kernel is determined
by the “peaks” parameter, which specifies the amplitude of the peaks for each
shell. A detailed view of kernel and growth function can be seen in Fig. 1. For
more details on Lenia, please refer to [3,4].
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3 Methodology

We propose modified versions of two known approaches called compression based
metric and deviation based approach to evaluate cellular automata (CA) [11].
Previously these approaches have been studied on classical CA [9,10], we propose
novel modified approaches namely, AutoEncoder (AE) based compression met-
ric, Variation over Time (VoT) based deviation metric and a completely novel
technique called as Auto Encoder Variation Over Time (AEVoT) which is built
on top of known AE and VoT approaches. We describe each of them as follows:

3.1 Variation over Time (VoT) Fitness

One way to quantify complexity in Lenia is to measure the variation in the state
of the board over time. One approach is to measure the number of active cells
on the board at each time step. The number of active cells can provide a rough
estimate of the complexity of the system, as more active cells typically indicate
a higher degree of complexity. However, it is important to note that the number
of active cells can vary significantly between different time steps, and may not be
a reliable measure of complexity in all cases. A threshold (a hyper-parameter)
is used to determine the alive state of the grid. For pixel values smaller than
threshold, cells are considered dead. Count from each grid timestep is used to
calculate the standard deviation. Deviation is a measure of the randomness or
differences in states of a system, and can be used to quantify the variation of
complexity in a system over time. The VoT approach is particularly useful in
identifying temporal patterns and trends in the system’s behavior, which can be
indicative of its underlying complexity. An overview is shown in Fig. 2.

Fig. 2. Variation over time approach to measure complexity, where Lenia states (indi-
cated by arrows) change over time

3.2 Autoencoder (AE) Based Fitness

Another approach, which uses an encoder-decoder network to compress the input
images, has been proposed in [11] as a way to measure the complexity of CA. In
this approach, the encoder network is trained to encode the current state of the
Lenia board into a lower-dimensional feature space, while the decoder network
is trained to decode the features back to the original state. The key idea is
that the amount of information that is lost during the encoding and decoding
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process (reconstruction loss) can be used as a measure of the complexity of the
Lenia board. Our hypothesis is that if the input is complex or chaotic, it is
more challenging for the decoder to reconstruct the input (high reconstruction
loss), while in the ordered behaviour the reconstruction loss would be small.
The input frames are reconstructed using the trained AE and the Mean Squared
Error (MSE) loss is stored. The MSE is calculated between original frames and
reconstructed frames. After that, the standard deviation is calculated between
those errors. If the list of errors has a higher deviation, then there should be a
larger variance between the frames generated using the evolved kernel. To train
the encoder-decoder network, a dataset of Lenia board states is first generated.
The encoder network is then trained to map each board state to a set of features
that capture the key patterns and structures in the board. The decoder network
is trained to reconstruct the board state from the features, with the goal of
minimizing the reconstruction error. An overview is shown in Fig. 3.

Fig. 3. Auto-encoder approach to measure complexity

3.3 Auto Encoder Variation over Time

The Auto-Encoder based Variation over Time (AEVoT) approach combines the
two previously described methods, AE and VoT, to measure the complexity of
the Lenia patterns over time on reconstructed frames. It is very similar to the AE
and VoT approaches, with a difference that VoT is calculated on reconstructed
images from the AE. To use an AE for time series data, we can treat each time
step as a separate input and train the AE to reconstruct the original sequence
of data. The reconstruction loss, which is the difference between the input and
the reconstructed output, can then be used to measure the complexity of the
time series data. By analyzing the variation in the reconstruction loss over time,
we can gain insights into the complexity of the time series. For example, if the
reconstruction loss is relatively constant over time, it may indicate that the
time series is relatively simple or predictable. However, if the reconstruction loss
varies widely over time, it may indicate that the time series is more complex and
difficult to predict.
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4 Experimental Setup and Results

A high level overview of experimental setup is provided in Fig. 4.

Fig. 4. Overview of experiments performed with three different fitness measures and
relative parameters

We developed an evolutionary algorithm where Lenia kernels are evolved
with the three fitness functions outlined above. The initial population com-
prises randomly initialized kernels that are applied from a randomly initialized
Lenia board. Additionally, the Lenia frames are processed in three different ways,
namely “all produced frames for t time steps”, “every 10th frame” and “last 10
frames”. The idea is to capture long term emerging complexity so the behavior
should be present not only at initial frames but in later frames as well.

The selection function used in the code is a Roulette Wheel Selection method,
which selects individuals based on their fitness proportionate to the sum of the
fitness of all individuals in the population. The number of elites in the population
is set to one.

The mutation operator mutates an individual’s genes by randomly alter-
ing each gene with a probability equal to the mutation rate value. The
mutation rate value is set to 0.02, which means that each gene has a 2%
chance of being mutated. If the random value generated for a gene is less than
mutation rate, the gene is randomly reassigned a value between 0 and 1, rounded
to 3 decimal places.

For each of the experiments, a system configuration of 64 GB of RAM, 250 GB
Hard Disk space, 8vCPU, in a AWS Sagemaker ML.R5.2xLarge instance is used.
It takes almost 24 h to finish one run of 500 generations with our configuration.
For the AE training dataset, the Lenia parameters are given in Table 1. The
configuration for AE is provided in Table 2 and the overall configuration for the
Evolutionary Algorithm is provided in Table 3.

All experimental results for the different combinations of parameters are
displayed for 500 generations. In addition best fitness and average fitness are
also plotted in the Fig. 5 for VoT, Fig. 6 for AE and Fig. 7 for AEVoT.

Once all the experiments in Figs. 5, 6 and 7 were finished, we analysed and
selected one experiment from AEVoT and one from VoT on the basis of their
promising performance. We also found that AE itself is not able to perform
well as per the experiments shown in Fig. 6. AE alone could not capture the
complex of Lenia behaviours because it merely reconstructs the frames and tries
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Fig. 5. Plot data for Variation over Time fitness. Configuration should be read as for
example 1AE 36bottleneck allframe Autoencoder fitness for bottleneck size of 36 ran
for all 100 frames. Y-axis has upper limit of 1000.

to measure MSE loss over the reconstruction. AEVoT achieved the best fitness
performance when ran for 2500 generations. We found, for AEVoT, Active cell
threshold 0.5 and every 10th frame is working better than other configurations
(with fitness value of 500.27). Moreover in VOT, Active cell threshold 0.1 for
every 10th frame is working particularly well (with fitness value of 435.91).

It may be observed that for variation over time, active cell threshold should
be small and has to be calculated for a time delta of a significant value over
span of total time steps. In our case, we have a total time step of 100 where time
delta is 10 and hence fitness is being calculated for every 10th frame. Hence, we
provide a detailed analysis for the two selected experiments with kernel visuals
from generation 1 to generation 2500 along with their long term best and average
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Fig. 6. Plot data for AutoEncoder fitness. Configuration should be read as for example
1P10 G500 M0.02 ALIVE CELL THRESHOLD 0.1 100 FRAMES should be read as
population size (P) as 10 ran for 500 generations (G), with mutation rate (M) of 0.02,
active cell threshold 0.1 for 100 frames. Y-axis has upper limit of 0.1.

fitness plots in Fig. 10. It is important to note that after 2500 generations, the
kernel centre of mass should have more density of similar pixels (can be seen in
“ellowish” color map in the kernel center, however all the dark pixels with dark
blue color are outlined towards boundary in the plot). Finally we plot five-fold-
average for best and average fitness values of the same experiments shown in
Fig. 10 ran on five different run-times (with randomly initialized initial kernel
populations), which is shown in Fig. 8.

To compare our experiments with handcrafted kernels or known kernel, we
perform six experiments keeping growth function and the rest of the configu-
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Fig. 7. Plot data for AutoEncoder with Variation over Time fitness. Configu-
ration should be read as for example 1AE VOT P10 G500 M0.02 ALIVE CELL
THRESHOLD0.5 100 FRAMES should be read as population size (P) as 10 ran for
500 generations (G), with mutation rate (M) of 0.02, active cell threshold 0.5 for 100
frames with 64 as input image size. Y-axis has upper limit of 1000.

ration the same. Known kernels are very robust to perturbations. Even after
doing mutations for these kernels they show similar behaviour and complexity
measurement remains high, which can be shown by the generation fitness curve
depicted in Fig. 11. At the first place, even after mutations, there are very less
changes happened in the fitness measurement value. In other words, we let evo-
lution run for 500 generations and each generation has mutation that affects 2
pixels. However, the growth of fitness happens slowly in those generations, which
allows the behavior to remain robust even after perturbations. For example, with
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Table 1. Dataset Specifications

Parameter Value

Dataset Size 3000 frames

DPI 50

MuG 0.31

SigmaG 0.057

Dt 0.1

FPS 30

Kernel Size 16

Board Size 64

Table 2. Training Configuration for
AE

Parameter Value

Image Size 64× 64

AE test size 0.30

AE Input Size 64× 64

AE Hidden Size 36

AE Ouptut Size 64× 64

Epochs 300

Batch Size 128

Table 3. Configuration for Genetic
Algorithm

Parameter Value

Kernel size 16

Board size 64

Mutation rate 0.02

Population size 10

Generation 500

Elites 1

the kernel configuration and best plots in the 3rd column shown in Fig. 11, the
growth has happened only at first few generations and then it became stable very
soon. Finally, after handcrafting a kernel with a smoothed spherical Gaussian
pixel distribution which is shown in Fig. 9, along with the popular known growth
function, shows particularly complex and self-organising behaviour. Metaphori-
cally, it shows a ring like bacteria pattern emerging from a random grid. All the
results from such a kernel are shown in Fig. 9. The configuration used here is the
same used in Fig. 11.

Full code with results is openly available at this link: https://s4nyam.github.
io/evolenia. All experimental visualisations and animations were programmat-
ically processed to produce an overall summary shown on our YouTube chan-
nel: www.bit.ly/leniaonyt. The GitHub repository is www.github.com/s4nyam/
APCSP.

https://s4nyam.github.io/evolenia
https://s4nyam.github.io/evolenia
www.bit.ly/leniaonyt
www.github.com/s4nyam/APCSP
www.github.com/s4nyam/APCSP
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Fig. 8. Five-fold-averaging of best and average fitness values of five experiments with
same configurations shown in Fig. 10. First row shows VoT run over 500 generations
(5 times) using Alive threshold of 0.1 and measuring over every tenth frame. Second
row shows AEVoT run over 500 generations (5 times) using Alive threshold of 0.5 and
measuring over every tenth frame.

Fig. 9. Complex behaviour emerging in Evolutionary Lenia with the known kernel and
its mutation for 500 generations
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Fig. 10. Best and average fitness plots with kernel visualisations for the selected con-
figuration running for 2500 generations. First row is VoT based simulation with con-
figuration picked from Fig. 5 8th row and second row is AEVoT based simulation with
configuration picked from Fig. 7 7th row

Fig. 11. Running 500 generation based simulation for known kernels. The configura-
tion is kept same as the simulation shown in Fig. 10 second row. First column shows
the initial known kernel, second column shows mutated kernel after 500 generations.
Additionally, third column shows best fitness plot and fourth column shows average
fitness plot with cumulative mean-average line in between. (Plots have a y-limit of
2000)
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5 Conclusions

In this work, we evolve Lenia kernels to identify complex emerging behaviour
for a specific set of parameters in a large and wide existing parameter-space.
To explore such wide space of parameters, we performed multiple evolutionary
experiments that exploited mutations of kernel pixels while starting from a ran-
domly initialised kernel, and keeping growth function fixed. We measured com-
plexity using three techniques, namely AE, VoT and AEVOT. Once we found a
specific set of configuration performing well, we ran for longer generations and
achieved a rather different behaviour emerging in Lenia when compared with the
initial random behaviour. Lenia, as a computational system, provides a platform
for exploring emergent behaviors that mimics some of the properties of living
systems, such as self-organization, pattern formation, and adaptation to chang-
ing environments. By studying these behaviors in Lenia, we hope to gain insights
into key underlying mechanisms that may be beneficial for the development of
a more general AI.
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Abstract. Many systems in nature, society and technology are complex systems,
i.e., they are composed of numerous parts that interact in a non-linear way giving
rise to positive and negative feedback. The dynamic organization of these systems
often allows the emergence of intermediate structures that once formed profoundly
influence the system and therefore play a key role in understanding its behavior.
In the recent past our group has devised an effective method for identifying groups
of interacting variables within a system, based on their observation. The result is
a set of entities, each of which connects two or more nodes of the system: this
result can therefore be represented by a hypergraph, which can be of considerable
use for understanding the system under consideration. In particular, we use an
index that allows us to evaluate the level of integration of a group of variables.
In order for a group to be identified as significant, the value of this index must
exceed a threshold that corresponds (under appropriate hypotheses) to a level
of statistical significance decided by the user. In this work we propose a more
elaborate approach to determining the significance threshold, which is (i) in itself
theoretically interesting and (ii) of considerable practical utility. We use the new
approach to determine collections of pairwise relationships in meaningful cases,
such as relationships in gene regulatory networks.

Keywords: regulatory networks · graph reconstruction · relevance index ·
dynamic organization · integration

1 Introduction

Many systems in nature, society and technology are composed of numerous nonlinearly
interacting parts. The dynamic organization of these systems often allows the emergence
of intermediate structures that once formed deeply affect the system, and therefore play
a key role in understanding its behavior [1, 2].

In order to study complex systems, it is useful (if not essential) to represent themusing
a unifying mathematical language. In recent decades, researchers focused their attention
on two frameworks potentially able to represent the systems under study: graphs and
hypergraphs [3]. Indeed, a complex system is essentially a collection of units and their
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relations, and thereforeweneed representations able tomirror this composition.Theunits
of both frameworks are called nodes (or vertices). Graphs include a collection of pairwise
relations between nodes (called edges), whereas hypergraphs include a collection of
relationships linking an arbitrary number of nodes (hyperedges); graphs are therefore a
special case of hypergraphs with links only between two nodes at a time.

In the recent past our group has devised an effective method for the identification of
groups of interacting variables within a system, based on their repeated observation [4–
8]. The result is a collection of entities, each linking two ormore nodes of the system: this
result can therefore be represented by a hypergraph, which can be of considerable use in
understanding the system under examination. In particular, we use an index (called zI in
[5, 7]) that allows the evaluation of the integration level of a group of variables. In order
for a group to be identified as significant, the value of this index must exceed a threshold
θ corresponding (under appropriate hypotheses) to a level of statistical significance
decided by the user. A simple semi-empirical rule, based on the ubiquitous normal
distribution, consists in setting this threshold equal to 3.0 (or 5.0 in case of need for
greater selectivity).

In this work, we propose a more elaborate approach to the determination of the sig-
nificance threshold, which is (i) in itself theoretically interesting and (ii) of considerable
practical utility. In a nutshell, we go beyond statistical significance and also consider
practical significance. We use the new approach for determining collections of pairwise
relationships and so, in the following, we will discuss systems representable within the
graph framework.

The determination of a threshold for our method (or in general for any kind of
methodology) leads to a more interesting discussion concerning the possibility of iden-
tifying relationships starting from observational data [9, 10]. In this work we assume
that we do not always have time-ordered data series available: we therefore exclude
the analysis of causal relationships and focus on relationships identified by measures of
correlation or entropies.

2 The zI Index

Considering a system composed of m random variables X1, X2, …,Xm we suppose
that Sk is a subset composed of k elements, with 0 < k < m. Each variable Xi ={
X 0
i ,X 1

i , . . . ,X n
i

}
is present in n observations. Our purpose is to identify subsets of

variables that behave in a somehow coordinated way. To do this we make use of the
so-called Integration.

I(Sk) =
∑

s∈Sk
H (s) − H (Sk) (1)

whereH(Sk) denotes the joint entropy of the variables in group Sk andH(s) is themarginal
entropy of Xs.1

The index we use has the form:

zI(Sk) = 2nI(Sk) − 〈2nI(Sk)〉
σ(2nI(Sk))

= 2nI(Sk) − dk√
2dk

(2)

1 In the case of pairs of variables, this measure can be declined as mutual information.
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where n is the number of observations, and < 2nI(Sk) > and σ (2nI(Sk)) are, respec-
tively, the average and the standard deviation of 2nI(Sk) for a matching homogeneous
system (a system of the same size of the system under examination, whose variables
are mutually independent). These averages can be effectively approximated through a
Chi Square distribution, whose dk degrees of freedom depend on the size of the subset
and on the cardinality of its alphabet [6, 7]. Interestingly, the integration is related to the
identification of dynamical criticality in complex systems [11].

The zI index has thus the form of a distance from the independence case, measured
in standard deviations, whence the semi-empirical rule of using the threshold 3.0 (or 5.0,
or even 7.0, in case of need for greater safety) as the lower value [12, 13].

3 The New Approach

Given the formula of the zI index, in which there is an explicit dependence on the number
of observations involved, a fixed threshold is not completely satisfactory. Typically, more
observations allow to identify relationships (of a given strength) at a higher level of
statistical significance, or to detect as statistically significant (at a given level) weaker
relationships, which would not have been detected with fewer observations. Since a
fixed threshold corresponds to a fixed level of statistical significance, the fixed threshold
approach detects relationships of decreasing strength as the number of observations
increases. However, this could pose a problem, because the practical significance of a
relationship is linked to its strength, and we are not really interested in detecting weak
interactions, whose identification would only introduce confusion (sometimes to the
point of making the reconstructed graph unusable). Furthermore, series of observations
from the same system, but having different lengths, could lead to different reconstructions
(sometimes a disturbing scenario for a researcher). An approach based on the strength
of interesting interactions thus becomes noteworthy.

The proposed approach is based on a simple stochastic model of interaction. In this
work, we focus on interaction between two variables: we are interested in identifying
collections of connections between two nodes, and therefore in reconstructing graphs
(an approach already used in [8]). Let us consider the binary (for simplicity) variables A
and B and suppose that: A takes value “1” with probability Pa (value “0” with probability
1−Pa), then B either copies A with probability Pc or takes value “1” with probability
Pb (value “0” with probability 1−Pb). In this case it is possible to directly calculate the
entropy of the pair (A, B) as

H (AB) = −(P00ln(P00) + P01ln(P01) + P10ln(P10) + P11ln(P11)) (3)

Where
⎧
⎪⎪⎨

⎪⎪⎩

P00 = (1 − Pa)Pc + (1 − Pa)(1 − Pc)(1 − Pb)

P01 = (1 − Pa)(1 − Pc)Pb

P10 = (1 − Pb)(1 − Pc)Pa

P11 = PaPc + PaPc(1 − Pc)

(4)

and similarly calculateH(A) from the marginal probabilities P1 + = P10 + P11 = Pa

and P0+ = P00 + P01 = 1 − Pa, as well as H(B) from P+1 = P01 + P11 =
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PcPa + (1 − Pc)Pb and P+0 = P00 + P10 = Pc(1 − Pa) + (1 − Pc)(1 − Pb). It is
then possible to directly calculate the integration I(SAB(Pa, Pb, Pc)) of the pair (A, B)
and therefore the value of the zI index in case of n observations.

We consider the above described variables A and B as representative of the kind of
interaction we are interested in and, for a suitable (application specific) choice of Pc,
of the minimum level of interaction that is practically significant, that is, of the weakest
relationship that is worth detecting. This leads us to the new threshold:

θzI (Pa,Pb,Pc) = max

(
3.0,

2nI(SAB(Pa,Pb,Pc)) − dk√
2dk

)
(5)

where n is the number of observations, and the probabilities Pa and Pb can be estimated
from data (thus making the threshold specific for the case under examination). Notice
that the threshold (5) cannot be less than the aforementioned normal value (in this work
equal to 3.0) to avoid confusing noise with signal.2 The resulting behaviour (when the
threshold is above its minimum allowed value) increases linearly with the number of
observations, and shows a significant dependence on the values actually assumed by the
probabilities Pa, Pb and Pc (Fig. 1).

A very similar approach can also be carried out in the case of variables having 3
levels (conventionally, “0”, “1” and “2”). The procedure for calculating the threshold in
this case is shown in Appendix A.

If we wish to use the network obtained by thresholding pairwise integrations to
reconstruct the underlying structure of the system under examination not all the detected
relationships are really necessary, or “primitive”: a large fraction of these relations is
indeed indirect in nature. If variable A affects variable B, and if variable B in turn affects
variable C, any correlation measure will also show a relationship between variable A
and variable C, even in the absence of a direct causal link.

However, it is known that the evidence of this “epiphenomenal” link will be less than
or equal to the evidence of correlation between variable A and variable B, or between
variable B and variable C (an information theoretic property called Data Processing
Inequality—in short, DPI) [14]. It is therefore possible to carry out a pruning operation
by eliminating the link with lower evidence in each closed path. In most practical cases,
it is enough—and faster—to eliminate the link with lower evidence in each clique of
size three, a procedure already adopted in other contexts [8, 14, 15]. In case of tree-like
relationship structures, it is shown that this procedure leads to the correct underlying
network [15].

2 It can be noted that the proposed approach is asymmetric with respect to the “roles” ofA (copied
variable) and B (variable that can copyAwith probability Pc). Leaving the possible exploitation
of this asymmetry to further works, in this paper for each analyzed pair we will test both roles,
and we will use the threshold with the highest resulting value.
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                                  (a)                                                            (b)

                                     (c)                                                      (d)

Fig. 1. (a) The value of the threshold as the copy probability Pc varies between 0.1 and 0.5,
with Pa = 0.5 and Pb = 0.5. (b) The same as in (a), with the Y axis in logarithmic scale which
highlights the behavior of the function in correspondence with the minimum threshold value (in
this case equal to 3.0). (c) The value of the threshold as the probability Pa varies (between 0.1
and 0.9), with Pb = 0.5 and Pc = 0.2. (d) The threshold value as Pa varies, with the number of
observations set to 1000 (Pb = 0.2 and Pc = 0.2).

4 Results

We evaluated the accuracy of our approach on two datasets with a known dynamic struc-
ture, both already used to evaluate ARACNE [15, 16], an algorithm that is currently one
of themost used and performing in the field of genetic regulatory network reconstruction.

Specifically, regarding the analysis of single-cell data [17, 18] we used the BEELINE
data [19],whichprovide a framework for benchmarking algorithms that infer graphs from
observational data (in particular, genetic regulatory networks starting from single cell
gene expression data). BEELINE provides datasets with various levels of reconstruction
difficulty, six different architectures and various motif shapes. The data series have
different lengths; for each length and for each topology there are ten different series. In
order to analyze the data, we discretized them by using two levels (arbitrarily labelled
as “0” and “1”) depending on the fact that each individual value is lower or higher than
the overall mean of the specific gene in the observations. We used these data to highlight
the performance differences between the zI algorithm with a fixed threshold (hereinafter
set at 3.0) and the zI algorithm with a variable threshold (given in Eq. 5).
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We then examined data resulting from the simulation of knock-out experiments
(silencing of a single gene, followed by counting which and how many genes conse-
quently changed their expression) [20], presented by [21] as a platform for comparison
of reverse engineering algorithms; these are known as Century data. These networks
consist of 100 genes and 200 links organized in one of three topologies: Erdös-Rényi
(random network – RND in the following) [22], scale-free (SF) [23] or “small worlds”
(SW) [24]. In the first topology (RND), each vertex of a graph is equally likely to be
connected to any other vertex; in the second one (SF), the distribution of the number
of connections associated with each vertex follows a power law and large interactions
hubs are present; the third topology (SW) allows a fast diffusion of information, while
maintaining a high degree of compactness. Many biological systems appear to exhibit
organizations like the last two [25]. In order to analyze the data, we discretized them by
using three levels (arbitrarily labelled as “0”, “1”, and “2”) depending on whether the
gene has decreased, maintained, or increased its normal activity during the KO, a pro-
cedure already used in [6]. ARACNE instead has its own ways to discretize continuous
data, so we have directly passed to it the data matrix. As for ARACNE, all the genes are
considered transcription factors. The reconstructed networks are dynamic correlation
networks, and it is not possible to define a correct reference network (a ground truth). As
usual in the field, we therefore use as approximation of the reference the graph formed
by the structural links present in the equations of the model originating the data [16, 21].

In order to evaluate the effectiveness of the reconstructionwe employed the precision
and recall performancemetrics [26], comparing the reconstructed graphs and the original
ones. In our context, precision and recall are defined as follows: precision = TP/(TP +
FP) and recall = TP/(TP + FN), where TP are the true positives (number of correctly
inferred true relations), FP are the false positives (number of spurious relations inferred)
and FN are the false negatives (number of true relations that are not inferred). The closer
both precision and recall are to 1, the better. We remark that biologists are mainly
interested in precision, which allows them to be more confident about the acquired
knowledge. The introduction of a variable threshold in the new approach has resulted in
significant improvements compared to the approach with a fixed threshold. The extent
of these improvements varies depending on the underlying architecture of the data. Our
results are reported in Fig. 2.

The BEELINE data structure also allows other types of comparison, in particular:

• between the reconstructed graphs (concerning the same topology) starting from
different series having the same length;

• between the reconstructed graphs (concerning the same topology) starting from
different series having different lengths.
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Fig. 2. A Boxplot of Precision (upper row) and Recall (lower row) in the six topologies present
in BEELINE. In four out of six cases, the approach with variable threshold has significantly better
precision (the most relevant index in the cases of interest).

In order to compare two independent graph reconstructions concerning the same
system it is interesting to know how many links have been identified in the two recon-
structions, and in particular howmany of themare present in both.We therefore evaluated
the intersection between all the possible pairs in the two cases mentioned above (defined
as the ratio of the number of common edges to the minimal cardinality of the two), both
using the fixed threshold approach and using the new approach with variable threshold.
The higher the intersection of a pair of reconstructions, the greater their consistency (and
consequently the confidence placed in the reconstruction method).

Wemeasured the intersections before applying the DPI, in order to highlight the only
advantage of the variable threshold, compared to the fixed threshold. The intersection
values obtained using the variable threshold method are in most cases equal to or greater
than those obtained using the fixed threshold method (Fig. 3). It should be highlighted
that comparable graphs have been obtained by using data series of significantly different
lengths, varying even by an order of magnitude.
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Fig. 3. For every possible pair of reconstructions of the same system obtained from different
series (it does not matter whether of the same length or not), the graphs show the ratio between
the intersection obtained using a variable threshold and the intersection obtained using the fixed
threshold. Ratios equal to or greater than 1.0 indicate better intersections by the variable threshold
approach. The ratios settle in the majority of cases close to 1 or exceed it, which means that in
general the use of a variable threshold keeps the coherence of the algorithm almost unchanged or
even better increases it.

Finally, we applied the variable threshold method to the Century data. The recon-
struction of the Century series of artificial regulatory networks by our method is very
good. In particular, the precision of the method is always significantly higher than that
of ARACNE, with a very good recall—in SF and SW system a recall higher than that
of ARACNE (Fig. 4).
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                              (a)                                                            (b)

Fig. 4. The reconstruction of the Century series. (a) Precision and recall relating to the reconstruc-
tion of each class of the genetic regulatory networks present in Century. (b) Precision and recall
calculated on all systems together. The precision of the method is always significantly higher than
that of ARACNE, with a very good recall.

5 Conclusions

In this work we focused on a method we developed for reconstructing the organiza-
tion of a system starting from observational data regarding the activity levels of its
constituent parts. In particular, we analyzed the consequences of a change in strategy in
identifying the thresholds involved in determining the significance levels of the observed
correlations.

Interestingly, the considered approach turned out to be stimulating from a theoretical
point of view and of substantial practical usefulness. We applied the method to the
significant case of reconstructing the organization of genetic regulatory networks, usually
represented by collections of couples, that is, by graphs, starting from single-cell data
and knock-out experiments.

We are currently using the new method with variable threshold to analyze data
from real biological situations, and we are evaluating the extension of the proposed
approach to the identification of (hyper) links connecting more than two entities at a
time (hypergraphs).

Funding. This research was funded by Università degli Studi di Modena e Reggio Emilia
(FAR2023 project of the Department of Physics, Informatics andMathematics). Financial support
was provided also by the MUR-PRIN grant 2022 SMNNKY, CUP B53D23009470006.

Appendix A

The stochastic model presented in the paper can also be used to calculate the threshold
in the case of three-level variables. To this aim, let us consider the ternary variables A
and B and suppose that A takes value “0” with probability Pa0, “1” with probability Pa1

and “2” with probability Pa2, then B either copies A with probability Pc or takes value
“0” with probability Pb0, “1” with probability Pb1 and “2” with probability Pb2.
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In this case it is possible to directly calculate the entropy of the pair (A, B) as:

H (AB) = −(
P00 ln

(
P00

) + P01 ln
(
P01

) + P02 ln
(
P02

) + P10 ln
(
P10

) + P11ln
(
P11

) + P12 ln
(
P12

) + P20 ln
(
P20

) + P21 ln
(
P21

) + P22 ln
(
P22

))

where:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P00 = Pa0Pc + Pa0(1 − Pc)Pb0

P01 = Pa0(1 − Pc)Pb1

P02 = Pa0(1 − Pc)Pb2

P10 = Pa1(1 − Pc)Pb0

P11 = Pa1Pc + Pa1(1 − Pc)Pb1

P12 = Pa1(1 − Pc)Pb2

P20 = Pa2(1 − Pc)Pb0

P21 = Pa2(1 − Pc)Pb1

P22 = Pa2Pc + Pa2(1 − Pc)Pb2

As before, we can calculateH(A) andH(B) from the marginal probabilities. It is then
possible to directly calculate the integration I(SAB(Pa0, Pa1, Pa2, Pb0, Pb1, Pb2, Pc)) of
the pair (A, B) and therefore the value of the zI index in case of n observations.

This leads us to the new threshold:

θzI
(
Pa0,Pa1,Pa2,Pb0,Pb1,Pb2,Pc

) = max

(

3.0,
2nI

(
SAB

(
Pa0,Pa1,Pa2,Pb0,Pb1,Pb2,Pc

)) − dk√
2dk

)

where n is the number of observations, and the probabilities Paj and Pbj(j= 0,1,2) can be
estimated from data (thus making the threshold specific for the case under examination).
Notice again that the threshold cannot be less than the normal value of 3.0, to avoid
confusing noise with signal.
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Abstract. Random Boolean Networks are dissipative dynamical models of gene
regulatory networks, which are older than fifty years but still raise considerable
interest. In this paper we will rely on two key concepts which had been introduced
in previous works, namely those of pseudo-attractors (which are obtained by pro-
jecting true dynamical attractors onto constant vectors) and of the “common sea”
(de-fined as the set of nodes which take the same value in every pseudo-attractor
of a given network realization). In particular, we will study the dependence of the
number of pseudo-attractors and of the relative size of the common sea upon the
values of some key parameters, like the average number of connections per node
and the so-called bias of the set of Boolean functions, paying particular attention
to dynamically critical networks. We will also comment on the relationship of
these models with measured gene expression values in single-cell observations.

Keywords: gene regulatory networks · random Boolean networks · models ·
common sea · pseudo-attractors · dynamical regime

1 Introduction

Random Boolean Networks (RBNs for short) are extremely interesting models of gene
regulatory networks, which are older than fifty years [1] but still raise considerable
interest (see e.g. [2]).

Many books and papers describe the model (including inter alia [3–5]), so we limit
here to summarize the main features of its original and still most widely used (syn-
chronous) version: a RBN is a N-dimensional dynamical system with Boolean variables
X = (X1…XN), which changes in discrete time steps according to well-defined, deter-
ministic rules. Xi is meant to represent the activation of the i-th gene (a node of the
network). A fixed Boolean function Fi is associated to each variable, and the next state
Xi(t+ 1) is obtained by applying Fi to a set of k input variables. This set does not change
in time, and all the nodes are simultaneously updated at each time step.

The most original feature of the model is that connections are drawn at random
and Boolean functions are also chosen at random. This makes it unsuitable to describe a
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specific genetic circuit or an organism, but alsowell-suited to study the generic properties
of families of circuits or organisms. When Kauffman introduced RBNs very little was
known about gene regulation. Nowadaysmanymore information have become available,
however the search for generic properties of families of networks is still an important
research topic, since (i) the specific information are not complete, so important parts
of the regulatory systems are still unknown and (ii) knowing the properties of families
of networks is important per se, as it allows generalizations beyond the study of single
organisms.

This is particularly relevant since theory is now lagging behind data in biology, due
to the recent “data deluge”. And RBNs are among the few models that can contribute
to the development of wide-ranging theories. Our research is inspired by the idea is
that these networks can nowadays be improved, by introducing more precise constraints
based upon increased biological knowledge.

Among others, a particularly important class of experimental data are the measure-
ments of gene activation values, related with the amount of mRNA in single cells, which
allows one in principle to observe a single gene network at work [6]. A comparison of
the RBN model with these data requires considerable care. Besides the fairly obvious
remark that the Boolean approximation may be a poor representation of the existing
levels of gene expression, it is important to stress that the attractors (stable asymptotic
states, which can be reached by some initial condition) of a finite deterministic RBN
are bound to be either constant (fixed points) or oscillating (limit cycles) states. Fixed
points can be directly compared with measurements on single cells, but how shall we
interpret cycles?

One possibility might be that of comparing them with time courses, but these cannot
come from a single cell, which is destroyed by the measurement procedure. Moreover,
the properties, and the very existence of cyclic states are strongly related to the choice
of synchronously updating all the nodes, which is manifestly unrealistic since (i) the
various genes are not subject to any “central clock” and (ii) each node has its own “time
step”, whose length is determined by the possibility of forgetting the state at time t −
1 when updating the state at time t + 1; it is therefore related to the life-time of the
molecule which is synthesized by the corresponding gene (often a protein), and these
lifetimes can differ widely among various genes [7].

Should we then simply forget about RBNs?We do not think that this is the case, since
they provide useful indications, and they stand among the very fewmodels thatmaintain a
certain degree of understandability and can aimat somegenerality.Apromising approach
is that of introducing a gene-protein model, where different proteins may have different
decay times. This is awell-founded strategy,whichwehave introduced in the past [8–10],
which however pays the price of increasing the (already quite large) number of model
parameters. An alternative approach is that of projecting the time-varying expression
values of oscillating genes onto fixed points, which might then be directly compared
with single-cell measurements.

A possible way to perform this projection has been proposed and discussed in depth
in [11], where we introduced some new variables, including pseudo-attractors. For any
true dynamical attractorAd , a constant Boolean pseudo-attractorAp is defined as follows:
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• If the corresponding component of Ad is constant, that component of Ap takes that
same value

• If the corresponding component ofAd oscillates, that component ofAp takes the value
0 (resp., 1) if the time average of the oscillating values is larger than (resp., smaller
than or equal to) a given threshold θ

The pseudo-attractors thus represent a sort of coarse-graining of the set of dynamical
attractors, and their values can be compared with those of single-cell data, if the latter
are binarized using another threshold χ. Moreover, since single-cell expression data are
very noisy and can easily provide false negatives, it is convenient to take for comparison
average (or median) values on a number of different single-cell measurements, coming
from supposedly identical cell types in identical conditions [11]. A possible alternative
might be that of using samples which are directly taken from several cells belonging to
the same type, provided that the presence of cells of different types can be excluded.

The usual approach in applying RBNs to multicellular organisms is that of associat-
ing the various attractors to cell types, since they represent a “way of functioning” of the
gene regulatory network which is coherent and sustainable. Since pseudo-attractors are
obtained from dynamical attractors by freezing out their oscillations (which we regard
as artifacts due to synchronous updating), we will interpret here pseudo-attractors as
corresponding to cell types. This allows one to make some comparisons with experi-
mental data, provided that the latter are binarized in some way (e.g., by comparison
with some threshold value of gene expression). In this way, it is possible for ex-ample
to interpret the number of “1”s in a pseudo-attractor as the number of active genes in
the corresponding cell type. Of course, since we deal with random models, we cannot
associate a specific pseudo-attractor to a specific cell types but, as we shall see, we can
get useful information from statistical properties of these values.

Another interesting concept is that of a “common sea” CS of genes: for a given
network realization, it is defined as the set of all the nodes which take the same value
in every pseudo-attractor. Its relative size φCS , defined as the ratio between the number
of nodes in CS to the total number of nodes, can also be compared to the corresponding
quantity which can be estimated from experimental data.

In this paper we will deal with models, and we refer the reader interested in how
experimental data can be obtained from single cell measurements to [11]. Here we
will shed light on the behavior of pseudo-attractors, comparing it to that of dynamical
attractors, for different sets of parameter values. The main parameters of a family of
RBNs are the number of connections per node k and the properties of the al-lowed
Boolean functions, which are summarized by the parameter b (the bias) which measures
the probability that a set of input values turns the target node on [3, 4]: for every node,
for every set of input values, the corresponding output “0” or “1” is drawn at random, b
being the probability that “1” is chosen. We will mainly concentrate on so-called critical
networks, which are particularly interesting for a number of reasons, widely discussed
in the literature (see [2, 3, 12, 13]). Critical behaviors correspond to specific pairs of
values (k,b) and our analysis will largely (but not exclusively) focus on these pairs.

The outcome of various simulations will be described in Sect. 2, where it will be
observed that RBNs tend to give rise to very large common seas, which do not seem to
correspond to those which are actually found in data. While this can provide useful hints
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to modify the basic model, here (in Sect. 3) we limit to show that Boolean networks with
a not-so-large common sea can actually exist, although they are no longer fully random
but obtained by evolving a population of networks with a genetic algorithm. The final
Sect. 4 will be dedicated to summarize the main conclusions and to provide indications
for further work.

2 Simulation Results

In this section we will show different simulation results concerning different interest-
ing quantities. Unless otherwise stated, the networks comprise 100 nodes, the Boolean
functions are drawn at random with bias b. The attractors are identified by starting from
10.000 fully random initial states; the search for cyclic attractors is limited to those
whose periods do not exceed 1000 steps. The maximum allowed length of the transients
never exceeds 50.000 steps. The number k is actually the number of input connections
per node, which is the same for every node. Since the input nodes are drawn at random
with uniform probability, the number of output connections per node approximately
follows a Poisson distribution, whose average is of course k. Averages and medians are
computed on ensembles of 100 networks.

Figure 1 shows the behavior of the number of pseudo-attractors vs the number of
dynamical attractors for different sets of critical networks (with three different values of
the number k of connections per node). Since the number of pseudo-attractors cannot
exceed that of attractors, all the points lie below the bisector.

Fig. 1. Number of pseudo-attractors vs. number of attractors, in three critical ensembles with
different (k,b) pairs (log-log scale): values of 3*100 = 300 RBNs are shown. The green line is
the bisector. The averages are taken by counting, for every value of the parameter k, the average
number of networks with the corresponding value of the number of pseudo-attractors (Color figure
online).

It might be noticed that, although alle the networks are all critical, their distributions
look somewhat different. Figure 2 shows the relative size of the CS for different k values
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and for different values of the number of nodes. It should be observed that φCS is an
increasing function of both the total number of nodes and the number of connections
per node.

Fig. 2. Common part vs. number of nodes, critical ensembles each composed by 100 RBNs. Note
that (i) the greater the average connectivity k, the greater the size of the common part and that (ii)
the greater the number of nodes, the greater the size of the common part.

So far, all the networks which have been considered are critical. Let us now look at
the size of the CS for different ensembles. Figure 3 shows the relative size of the CS for
various ordered, critical and chaotic networks. It is interesting to observe (Fig. 3a) that
φCS seems to decrease slowly as the Derrida parameter increases, in the case of a fixed
number of connections per node. The Derrida parameter measures in a sense the “degree
of chaoticity” of a network, it takes the value 1 for critical networks, and larger values
for chaotic networks. In the case of Fig. 3a, higher values of the Derrida parameter are
associated to higher values of the bias. On the other hand (Fig. 3b), when the size of the
bias is fixed, the size of the CS seems insensible to changes in Derrida parameter (which
increases as k increases).

The analysis of the behavior of chaotic nets requires considerable care, since it may
happen that no attractor is found before the time limits of the simulation are reached.
While this is a well-known problem in dealing with chaotic networks, a further problem
is encountered here in analyzing ordered networks, where one sometimes finds only
a single attractor; in these cases it makes no sense to study the common sea, so one
needs to also disregard them (they are of course not well-suited to describe multicellular
organisms with different cell types).
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                               (a)                                                              (b)

Fig. 3. Relative size of the common sea in RBNs with 100 nodes (averages on 100 RBNs). (a)
Increasing disorder varying bias (k fixed at 3.0). (b) Increasing disorder varying k (bias fixed at
0.146 The green box highlights critical pairs of values (Color figure online).

3 Evolved Networks

In [11] the notion of “common sea” had been applied also to experimental data, by
identifying attractors with cell types. The results depend of course upon the threshold θ

but, using reasonable values of this threshold, it was shown that the simulated φCS turns
out to be much larger than the corresponding experimental quantity. In our simulations
for this work we have tested a wide set of (k,b) values, but we continued to find quite
large common seas.

                               (a)                                                              (b)

Fig. 4. Genetic algorithm applied to the search for a limited CS. X-axis: generation number; y-
axis: red line, fitness; grey line, number of dynamical attractors; yellow line, Derrida parameter.
(a) Simulation carried out without limiting the number of attractors (b) Simulation carried out
by limiting the maximum number of attractors to 20. It should be noted that the number of final
attractors is lower than this threshold (Color figure online).

One is therefore led to wander whether it is actually possible to obtain a “reasonable”
size of the common seawith aRBN.We tentatively used aGeneticAlgorithmwith fitness
function equal to 1-φCS to evolve networks with a smaller CS. Interestingly, the answer
turnedout to be positive (Fig. 3a), althoughof course the evolvednetworkswere no longer
fully random. It is also interesting to observe that the GA used a fairly understandable
“strategy” to achieve that goal, by increasing the number of attractors, which involves
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an increase in the number of pseudo-attractors and a shrinking of the CS. But, since
the number of pseudo-attractors should be related to that of different cell types, their
proliferation might lead to unwanted consequences. We therefore modified the GA in
order to exclude networks with more than a predefined number of attractors, and also
in this case the system found networks with a limited number of attractors and a CS of
reasonable size (Fig. 4b). This proves that BNs with those properties do actually exist.

4 Conclusions

A general observation is that the notions of pseudo-attractor and of common sea makes
sense when there are several different attractors which can be identified, therefore these
concepts are particularly useful for networks which are neither too chaotic (this would
make it very difficult to find the attractors in time-limited simulations) nor too ordered
(which sometimes leads to a single attractor).

Critical networks, which have attracted considerable attention and which seem able
to account for interesting experimental data [12, 13] belong to this region, so they are
amenable to be analyzed using these notions. It is interesting to observe that different
ensembles of networks, which are all critical but differ in number of nodes (and, corre-
spondingly, in bias of the Boolean functions), also show different sizes of the common
sea (while their Derrida parameters are all close to 1). One is therefore led to conclude
that the size of the common sea is not determined uniquely by the dynamical regime,
when measured according to the usual Derrida parameter.

The networks of Sect. 3 are not fully random, but they have been evolved tomatch the
typical values of the CS observed in experiments. It is well-known that the dynamics of
such networksmay differ from those of the initial ones [15], but it is interesting to observe
(Fig. 4) that the evolved networks, discovered by the GA, seem to be slightly chaotic,
since their Derrida parameter λ is slightly larger than one. This could make sense, since
chaotic networks have a larger number of attractors, and therefore (typically) a smaller
CS. However, it has already been observed elsewhere [14] that the classical way to
compute λ, by using fully random initial conditions, may be misleading when applied
to strongly non-ergodic systems like RBNs. Therefore we plan to use in a future work
some different measures of the dynamical regime, like e.g. the sensitivity on attractors
[14].

One might also consider hybrid networks, mixing with some known circuits (like
e.g. the TCA cycle [16]) with some random parts; while interpreting those results might
be really challenging, it would be interesting to observe which kind of phenomena may
show up.

The results shown above need to be complemented by further simulations, aimed
in particular at exploring the chaotic region. In spite of the difficulties of identifying
attractors in these simulations, they may provide a route to finding networks with a more
reasonable size of the CS than that of critical RBNs. Moreover, it might of course be
interesting to analyze further sets of single-cell experiments, to confirm the results of
the analysis in [11] and to get more accurate data.

Funding. This research was funded by Università degli Studi di Modena e Reggio Emilia
(FAR2023 project of the Department of Physics, Informatics and Mathematics).
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Abstract. In this work, we explore the expressiveness of three graph-
based representations of metabolic networks. We consider Abstract
Metabolic Networks (AMNs), metabolic-Directed Acyclic Graphs (m-
DAGs) and Reaction Graphs (RGs). These representations form a hierar-
chical view of the metabolism, AMNs being the most abstract, m-DAGs
serving as the intermediate, and RGs being the most detailed. We evalu-
ate their expressiveness for a case study comprising 331 Vertebrates and
by using the Weisfeiler-Lehman graph kernel to perform the compari-
son. The results show that AMNs are not able to discern the various
taxonomic groups at the Class level, while m-DAGs and RGs clearly
distinguish Mammals, Fishes and Birds. When focusing on Mammals at
the Order level, only m-DAGs are partially able to identify some of the
taxonomic groups. Moreover, m-DAGs are able to distinguish Primates
at the Infraorder level of taxonomy. Based on the obtained results, it
emerges that m-DAGs are a good compromise between the amount of
network information and the computational effort needed to obtain reli-
able patterns on the taxonomic clustering of the different organisms.

Keywords: Metabolic Networks · Abstract Metabolic Networks ·
Metabolic DAGs · Reaction Graphs

1 Background

Metabolism is the organism’s machinery that breaks down complex organic
molecules to produce the energy and building blocks needed for the organism’s
normal functioning. It comprises all chemical and physical processes that occur
within the cells of living organisms and that allow for maintaining life. These
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76 I. Garćıa et al.

processes interact with one another, creating a complex network structure. Each
process, in turn, is made up of a pathway of chemical or physical reactions, and
all the pathways together operate as a highly integrated network [6].

Literature on metabolomics in the last two decades ranges from the analysis
of single pathways [10,15], to the comparative analysis of a set of pathways [1],
together with the metabolic networks’ dynamics [3,17]. Automatic metabolic
network reconstruction and comparison can be performed thanks to the knowl-
edge stored in metabolic databases such as BioCyc [4], BioModels [5] and KEGG
(Kyoto Encyclopedia of Genes and Genomes) [11]. However, this reconstruction
generally requires human intervention since data repositories can be incomplete,
heterogeneous and incoherent. Furthermore, the comparison of metabolic net-
works is computationally challenging due to the huge number of chemical reac-
tions involved in the metabolism.

A crucial choice that greatly influences automatic metabolic network recon-
struction and comparison is how the network is represented. In [9], we employed
abstract metabolic networks (AMNs) to compare the metabolic networks of dif-
ferent species. An AMN is a graph that represents metabolic pathways as nodes,
and there is an edge between two nodes if their corresponding pathways share
one or more compounds. No information about chemical reactions is included.
The AMN of a given organism results in a small network that requires low
computational power to be analysed and makes it a suitable model to perform
a large-scale comparison of organisms’ metabolism. AMNs were shown to be
able to discriminate macroevolutionary events, indicating that they are expres-
sive enough to capture key steps in metabolism evolution. However, they are
clearly unsuitable for fine-grain metabolic network comparison. Therefore, fur-
ther research questions are the following: What are the benefits of refining the
representation of the metabolism? To what extent is the addition of information
useful to discriminate between different species? Is there a trade-off between
representation expressiveness and computational cost in studying metabolism?

To address these questions, we aim to extend the analysis in [9] to two other
representations of metabolic networks, namely m-DAGs and reaction graphs. A
reaction graph (RG) represents a metabolic network under study as a directed
graph where chemical reactions are nodes, and there is a directed edge from
reaction A to reaction B if a metabolite produced by A is consumed by B.
A m-DAG [2] is obtained from an RG by collapsing into a single node each
strongly connected component, which is called a metabolic building block in this
context. A metabolic building block corresponds to an autonomous subsystem,
a minimal set of reactions that can operate at a steady state. Contracting them
into single nodes allows for considerably reducing the size of the resulting graph
while keeping the interesting information. Note that AMNs, m-DAGs and RGs
form a hierarchical view of the metabolism, AMNs being the most abstract (only
the topological organisation of the metabolic pathways is considered) and RGs
the most detailed (all the reactions are included). For instance, for Homo sapiens,
the corresponding AMN representation is a graph with 84 nodes, the m-DAG
has 1006 nodes, and the reaction graph has 2218 nodes.
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The aim of the paper is to analyse the different contributions of AMNs, m-
DAGs and RGs to discerning the various taxonomic groups and species. As a
case study, we consider a set of 331 Vertebrates stored in the KEGG database,
an extensive, reliable and widely used source of metabolic data. We derive
their AMN, m-DAG and RG representations and study their expressiveness.
For each representation technique, we perform the pairwise comparison of the
obtained graphs and then analyse the results through Multi Dimensional Scaling
(MDS) [8] and clustering techniques. Since comparing graphs is computationally
impractical, we resort to the use of graph kernels as they allow for a feasible,
although not exact, comparison. Specifically, we employ the Weisfeiler-Lehman
(WL) graph kernel [18], which is based on subtrees comparison. In this way,
the pairwise comparison of the 331 considered Vertebrates can be done in a
few seconds for each of the considered graph-based representations. We remark
that the whole pipeline is performed in an automatic way and by using just the
information provided by KEGG.

The results demonstrate that AMNs are unable to differentiate between vari-
ous taxonomic groups at the Class level, whereas m-DAGs and RGs successfully
distinguish between Mammals, Fishes, and Birds. Focusing on Mammals at the
Order level, only m-DAGs are able to partially identify some taxonomic groups.
Additionally, m-DAGs can also distinguish Primates at the Infraorder level of
taxonomy. Based on the results, it becomes evident that, for the considered case
study, m-DAGs offer a balanced compromise between the amount of network
information and the computational effort required to obtain reliable patterns for
the taxonomic clustering of different organisms.

The paper is organised as follows: Sect. 2 introduces all the preliminary def-
initions and techniques needed to develop our study. Section 3 presents the per-
formed analyses and discuss the results. Finally, Sect. 4 draws some conclusion
and delineates some directions for future work.

2 Methods

In this section, we introduce the preliminary notions and methods needed to
develop our case study. First, we illustrate KEGG as a source of metabolic
data, and then we introduce AMNs, m-DAGs and RGs. Afterwards, we briefly
introduce the Weisfeiler-Lehman graph kernel and the methods employed for
evaluating the comparisons results.

2.1 KEGG as a Source of Metabolic Data

The first step in automatically creating a metabolic network representation of a
specific organism is automatic data retrieval. We used KEGG as the sole source
of metabolic data. Our approach strictly depends on the data representation
and the knowledge available in KEGG, including data incompleteness, incon-
sistency and biases that could reflect negatively on the subsequent comparison
and analysis phases. It is worth highlighting that biases exist in all metabolic
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databases and cannot be avoided while performing large-scale automated pro-
cesses. Nonetheless, we can count on the fact that KEGG is a widely known
database, whose content is constantly updated based on new knowledge.

The metabolic activity in KEGG is divided into various categories, which
are shown in Table 1. Each category is then composed of various metabolic
pathways. In order to consider the whole metabolic network, all categories and
all the corresponding pathways should be contemplated.

Table 1. List of KEGG metabolic categories: each one is composed by many metabolic
pathways.

Metabolic category

Carbohydrate metabolism

Energy metabolism

Lipid metabolism

Nucleotide metabolism

Amino-acid metabolism

Metabolism of other amino-acids

Glycan biosynthesis and metabolism

Metabolism of cofactors and vitamines

Metabolism of Terpenoids and polyketides

Biosynthesis of other secondary metabolites

Xenobiotics biodegradation and metabolism

Since the metabolic pathways are quite preserved among organisms, KEGG
associates to each metabolic function, a unique reference pathway, which corre-
sponds to the union of the corresponding pathways in all the organisms included
in the database. A pathway of a specific organism can be obtained from the
corresponding reference pathway. This standardised and modular representation
of pathways plays an important role in avoiding incoherence in metabolism com-
parison.

KEGG supplies two related representations for each pathway in its reposi-
tory: a graphical representation (pathway map), showing the network of chemical
reactions composing the pathway, and a textual one written in an XML format,
a KGML file, where KGML stands for KEGG Markup Language. Such a file con-
tains the information represented in the corresponding map. To automatically
represent the metabolism of a specific organism, it is necessary to download the
KGML files of each pathway of the organism through the public KEGG’s APIs,
and to parse each KGML file to extract the relevant information according to
the chosen representation (in our case the compounds and the reactions of each
pathway).
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2.2 Abstract Metabolic Networks, Reaction Graphs and Metabolic
DAGs

We present the three graph-based representations of metabolic networks under
study, namely AMNs, m-DAGs and RGs.

An abstract metabolic network (AMN for short) is an undirected graph in
which each node identifies a metabolic pathway, and an edge between two nodes
indicates that the two corresponding pathways share one or more compounds
among the ones defining their reactions network. Nodes are labelled with the
KEGG pathway identifiers, and edges are not labelled. Note that a shared com-
pound C between two pathways may represent different situations:

– C is produced by one pathway and consumed by the other;
– C is a compound used in the shared part of two overlapping pathways;
– C is a compound present in both pathways, even though they express unre-

lated functions or work in different environments or conditions.

Ubiquitous compounds such as H2O, phosphate, ATP and ADP are not con-
sidered since, though they are needed and assumed to be present everywhere,
they are not “representative” compounds of any pathway, and their consideration
would only add noise to our representation.

In this representation, all the reactions involved in the various pathways
are omitted, and just the minimal information about the presence of pathways
and their interconnections is taken into consideration. This clearly results in an
abstract and coarse-grain view of the metabolism.

A reaction graph representation of a metabolism is a directed graph GR =
(R,E) whose set of nodes is the set R of chemical reactions present in the
metabolism, and its set of arcs, E, is defined as follows: there is an arc from Ri

to Rj if, and only if, there exists at least one metabolite produced by Ri that is
consumed by Rj . Reversible reactions are modelled by two different nodes, one
for the forward reaction and the other for the backward reaction.

When a directed graph has no cycles, it is called a directed acyclic graph, DAG
for short. A path from a node u to a node v in a directed graph G is a sequence
of nodes {u0, u1, ...uk} such that u0 = u, uk = v and (ui, ui+1) is an arc in G for
i = 0, ..., k−1. Two nodes u, v are said to be biconnected if there is a path in each
direction between them. A strongly connected component of a directed graph G is
a subgraph such that every pair of nodes in it are biconnected, and it is maximal
under inclusion with this property [7,20]. Since biconnectivity is an equivalence
relation, the collection of strongly connected components forms a partition of
the set of nodes of G. If each strongly connected component is contracted to
a single vertex, the resulting quotient graph is a DAG, the condensation of G.
Notice that there is an arc from a node si to a node sj in the condensation of
a directed graph G if, and only if, there is an arc in G from a node u ∈ si to a
node v ∈ sj . Thus, for every reaction graph GR, we can consider its collection of
strongly connected components and compute its condensation, which will be a
DAG. We call metabolic building blocks (MBBs for short) the strongly connected
components in the reaction graph GR, and we call metabolic DAG, (m-DAG for
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short), the condensation of a reaction graph GR. In this representation, all the
reactions involved in the MBBs are omitted, and just the information about the
presence of cycles and their interconnections is taken into consideration. This
clearly results in a simplified view of the reaction graph topology.

2.3 Graph Kernels

Graph kernels can be intuitively understood as functions measuring the similar-
ity of pairs of graphs. Given two graphs in input, a graph kernel calculates a
real number that measures their similarity according to some graph’s features.
More in general, given a set of n graphs in input, the kernel’s output is a n × n
similarity matrix where each cell (i, j) contains the result of the pairwise com-
parison between graphs i and j. In our case the matrix is normalised, that is,
all similarity values are real numbers in the interval [0, 1], where 0 and 1 indi-
cate the minimum and maximum similarity values, respectively. The matrix is
symmetric, and the main diagonal contains only 1 values, each cell being the
comparison of a graph with itself.

A formal introduction to graph kernels can be found, e.g., in [12–14]. In
this paper we used the Weisfeiler-Lehman graph kernel [18] as implemented in
the GraKel Python library [19]. Roughly speaking, the Weisfeiler-Lehman (WL)
subtree kernel compares the subtrees rooted on each node of the two graphs
under consideration, taking into account their node labels: the more the subtrees
structures and labels coincide, the higher their similarity. The fundamental idea
of the Weisfeiler-Lehman algorithm is to replace the label of each node with a
multiset of labels consisting of the original label of the node and the sorted set
of labels of its neighbours. The resultant multiset is then compressed into a new
short label, which reflects the knowledge of the node and its neighbourhood.
This relabelling process is then repeated for h iterations. By performing this
procedure simultaneously on a set of input graphs, it follows that two nodes from
different graphs will get an identical new label if and only if they have identical
multisets of labels. The kernel function, in this case, compares the node labels
of the graphs resulting after h iterations and summarises the comparison with a
real number. It can be shown that this is equivalent to comparing the number of
shared subtrees between the two input graphs (the kernel considers all subtrees
up to height h).

2.4 Data Visualisation and Analysis

We performed exploratory data analysis using different techniques, such as
Multi-dimensional scaling to visualise the comparison results, and clustering
analysis, specifically k-means and hierarchical clustering, to classify the con-
sidered organisms and compare the obtained clusters with the real taxonomic
groups. All the analyses were performed using the R package [16], a language
and environment for statistical computing.

Multi-dimensional Scaling (MDS) is a classic multivariate data analysis tech-
nique that allows for obtaining a low-dimensional representation of the observed
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similarities [8]. Given a normalised similarity matrix Q, we implemented a metric
MDS by transforming Q into a distance matrix with elements.

d2ij = qii + qjj − 2qij = 2(1 − qij),

where qij is the element in row i and column j in Q and qii = qjj = 1.
The objective of the MDS is to represent the observed distances using a set of

variables y1, . . . , yk, where k < n, such that the Euclidean distances between the
coordinates of the elements for these variables are close to the original distances.
In this way, the graphical representation in k dimensions will faithfully reproduce
the observed structure.

K-means clustering divides the dataset into k subsets, where k is pre-
specified. This algorithm finds k groups with the smallest within the sum of
squares (WSS) and the largest between the sum of squares (SS). Each cluster
is represented by the mean of the data points belonging to the cluster itself.
We specified the number of clusters according to the phylogeny and using the
so-called Elbow method [8]. The Elbow method consists in plotting the value of
the WSS produced by different values of k. The bend (elbow) location in the
plot is generally considered an indicator of the appropriate number of clusters.

Agglomerative hierarchical clustering is an alternative approach that does not
require specifying the number of clusters to be generated. We used an average
linkage clustering, i.e. the distance between two clusters is calculated as the
average of distances between all pairs of organisms from each group. The formula
for calculating the distance is drs = Trs/(Nr × Ns), where Trs is the sum of all
pairwise distances between cluster r and cluster s, Nr is the number of organisms
in cluster r, and Ns is the number of organisms in cluster s.

The result of hierarchical clustering is a tree-based representation of the
objects; the visualisation is shown through a graph known as a dendrogram.

3 Results and Discussion

In this section, we analyse the expressiveness of the three different representa-
tions of metabolic networks for the considered case study. We first consider the
whole group of KEGG Vertebrates and test the ability of the three represen-
tations to distinguish the various taxonomic groups at the Class level, that is,
Mammals, Birds, Fishes, Reptiles and Amphibians. Subsequently, we focus on
Mammals at the Order taxonomic level and, finally, we consider only the Pri-
mates at Infraorder level. For each experiment, we show the comparison results
and discuss them in detail.

3.1 Vertebrates Analysis

In this section we consider whole group of KEGG Vertebrates. Figure 1 shows
the MDS plots of the comparison results for AMNs (plot on the left), m-DAGs
(plot in the center) and RGs (plot on the right). We notice that, while m-DAGs
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Fig. 1. MDS plots of Vertebrates compared using the WL graph kernel: AMNs (left),
m-DAGs (center) and RGs (right). The colors reflect the class each organism belongs
to (see the legend on the right side).

and RGs clearly distinguish Mammals, Fishes and Birds, AMNs are not really
able to separate them.

This is also evidentiated by the k-means analysis in Table 2, which reports
the results for AMNs, m-DAGs and RGs considering 4 clusters, as suggested by
the elbow method. We observe that AMNs do not exhibit homogeneous clusters,
and Mammals, Birds and Fishes are always mixed with other species. On the
other hand, m-DAGs and RGs present similar results. With the m-DAG model,
Fishes and Mammals fall into homogeneous clusters. With RG, the Mammals
cluster also contains 4 outliers and Fishes are split into two clusters, one of which
is homogeneous. Birds are equally classified in the two models: most of them fall
into a single cluster, together with 3 outliers. This may reflect that m-DAGs
are indeed a suitable reduction of RGs for studying and comparing metabolic
networks. They are able not only to highlight the relevant topological structure
under the RG, but also to capture the key metabolic information to discern the
different taxonomy groups as RGs.

Table 2. k-means clustering of Vertebrates for AMNs, m-DAGs and RGs

Class level AMNs Clusters m-DAGs Clusters RGs Clusters

1 2 3 4 1 2 3 4 1 2 3 4

Amphibians 1 0 0 5 0 6 0 0 5 0 0 1

Birds 0 43 7 20 0 9 0 61 8 62 0 0

Cartilaginous fishes 0 0 0 2 0 2 0 1 2 1 0 0

Fishes 75 0 0 14 86 3 0 0 13 0 76 0

Mammals 3 1 93 43 0 2 137 0 3 0 0 136

Reptiles 8 3 3 10 0 22 0 2 19 2 0 3

Tests performed on Vertebrates show that m-DAGs and RGs are able to dis-
tinguish three main groups, roughly corresponding to Fishes, Birds and Mam-
mals. Fishes usually live in entirely different habitats from other animals (i.e.
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water and land, respectively), which impact their respective water metabolism
and the physiological mechanisms they have evolved to maintain water home-
ostasis. One crucial feature is oxygen intake, for which fish use gills to “extract”
oxygen from the surrounding water environment. On the other hand, land ani-
mals developed new organs (namely lungs) to “extract” oxygen from the air.
Moreover, Mammals, in addition to Birds, are the only endotherms. The lat-
ter physiological feature requires the evolution of the pathways to metabolically
produce heat, which is absent in fishes. Instead, Amphibians and Reptiles are
not well separated, probably because they are more closely related than other
groups. Moreover, amphibians and reptiles possess several physiological features
that are similar (e.g., ectodermy, similar immune mechanisms).

3.2 Mammals Analysis

Since Mammals are well discriminated by m-DAGs and RGs, we further evaluate
their expressiveness by focusing on Mammals only and descending at the Order
level, see Fig. 2. This analysis shows that both m-DAGs and RGs are unable
to distinguish the various orders. However, m-DAGs clearly separate Primates
from the rest of Mammals, while RGs fail to separate many of them.

Fig. 2. MDS plots for Mammals with m-DAGs (left) and RGs (right). The colors reflect
the order each organism belongs to (see the legend on the right).

The MDS results are further supported by the k-means clustering, see Table 3.
For this analysis we used k = 4, as suggested by the elbow method. The results
show that while RGs do not separate the different clusters based on their tax-
onomical affiliation, m-DAGs are at least able to identify the Primates cluster.
Namely, cluster 3 contains most of Primates and two outliers, but similarly to
RG, all the other orders fall in the various clusters without a clear separation.
One possible reason that could explain these results is that most of the orders
are represented by a very low number of individuals.
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Table 3. k-means clustering of Mammals for m-DAGs and RGs.

Order level m-DAGs Clusters RGs Clusters

1 2 3 4 1 2 3 4

Afrosoricida 1 0 0 0 1 0 0 0

Artiodactyla 2 2 0 12 2 2 0 12

Carnivora 13 2 0 13 8 1 0 19

Cetacea 3 0 0 3 2 0 1 3

Chiroptera 5 8 0 5 10 3 5 0

Cingulata 0 0 1 0 0 1 0 0

Dasyuromorphia 0 2 0 0 1 1 0 0

Dermoptera 0 0 1 0 1 0 0 0

Didelphimorphia 0 2 0 0 2 0 0 0

Diprotodontia 1 0 0 0 1 0 0 0

Eulipotyphla 0 1 0 0 1 0 0 0

Lagomorpha 0 2 0 0 1 1 0 0

Monotremata 0 0 0 1 1 0 0 0

Perissodactyla 0 1 0 2 1 0 2 0

Pholidota 0 1 0 0 1 0 0 0

Primates 1 1 26 1 10 1 18 0

Proboscidea 0 1 0 0 1 0 0 0

Rodentia 13 0 0 9 4 1 17 0

Scandentia 1 0 0 0 0 0 1 0

Sirenia 1 0 0 0 0 0 1 0

Soricomorpha 1 0 0 0 1 0 0 0

Although there is no clear explanation why m-DAGs behave relatively better
than RGs in identifying the different orders of mammals, we can speculate that
the amount of information in the RGs could include some noise that ultimately
may result in blurring the identification of the clusters. It may also be possible
that the analysis carried out with the WL graph kernel could provide a better
result using the m-DAGs w.r.t RGs when considering lower taxonomic levels (i.e.
when comparing very similar species).

3.3 Primates Analysis

As a last experiment, we test the expressiveness of m-DAGs on Primates at the
Infraorder level. As we are now comparing fewer species, namely 29 Primates, we
opted for a dendrogram visualisation to show the results, see Fig. 3. We observe
that all Simiiformes are clustered together except for Piliocolobus tephrosceles
(KEGG code pteh), the Ugandan red Colobus, which falls in the other cluster



Analysing the Expressiveness of Metabolic Networks Representations 85

Fig. 3. Hierarchical clustering of Primates with m-DAG representation and WL kernel.
Colors in the tree identify the different branches. Colors in the horizontal bar are in
agreement with the Infraorder classification (see the legend on the top right box).

containing the rest of Primates. Conversely, the other taxa are grouped together
with no clear cluster. The difficulty of m-DAGs to identify clustering patterns
among the Lemuriformes, Lorisiformes, and Tarsiformes could potentially be
attributed to the low number of individuals in each infraorder. We also performed
the same experiment at a lower level of taxonomy, i.e., at the Family level, but
m-DAGs were unable to clearly distinguish the various taxonomic groups.

4 Conclusion

In this paper we explored the expressiveness of AMNs, m-DAGs and RGs for
a case study comprising all current KEGG Vertebates. We used the Weisfeiler-
Lehman graph kernel as a comparison method and exploratory data analysis
techniques to evaluate the results.

Representation and analyses of metabolic networks are not a substitute for
sequence-based phylogenetic studies to shed light on the evolutionary and tax-
onomic relationships between the different organisms. Nonetheless, the different
representations of the metabolic network are a fast tool to observe and detect
patterns that could later be the focus of more detailed studies. In this context, it
emerges that among the three possibilities of metabolic network representation,
m-DAG provides a good compromise between the amount of information to use
and the reliability of the clustering patterns that we observed. Such an approach
could represent a starting point to identify clusters that could be studied further
using more traditional biological and evolutionary tools.
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We plan to extend our exploration by considering various directions. On one
side, we aim at considering a much larger number of organisms, as for instance
all Eukaryotes and even Bacteria and Archaea. In fact, the effectiveness of a
metabolic network representation could depend on the species under exam, or
on the considered taxonomic level. On the other side, we would like to con-
sider a variety of comparison methods, such as other graph kernels or different
comparison techniques. Since exact comparison methods are unfeasible due to
the impractical computational complexity, different heuristics could affect the
effectiveness of the various metabolic network representations.
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Abstract. Constraint-based modelling (CBM) is a computational
method used in systems biology to predict metabolic fluxes. However,
modelling metabolic fluxes with CBM remains challenging due to the
complexity of metabolism and the need for omics data integration. This
study introduces scFBApy, a Python-based tool for simulating CBM and
the metabolic cooperation between cells. It allows the flux simulation of
a population of networks for a target objective, such as biomass produc-
tion, with or without cooperation. The tool integrates single-cell tran-
scriptomics data using Reaction Activity Scores and uses a denoising
algorithm for pre-processing scRNA-seq data. Five real-world scRNA-
seq datasets were used to demonstrate the applicability of the pipeline.
Results showed that cooperation between cells increased biomass produc-
tion compared to independent cell simulations. The scFBApy package
provides an open-source alternative to MATLAB-based CBM tools.

Keywords: Metabolic networks · Flux Balance Analysis ·
Constraint-based modelling · super-network based modelling

1 Introduction

Constraint-based modelling (CBM) is a computational method commonly used
in systems biology to predict metabolic fluxes, with many possible applications
in health, wellness, and bio-transformations [7]. It is based on the principle that
cellular processes operate under certain constraints, such as the availability of
nutrients and energy. By mathematically representing these constraints and the
metabolic reactions within a cell, CBM can predict how cells will behave under
different conditions and identify optimal strategies for cellular functions.

Modelling metabolic fluxes with CBM remains challenging for many rea-
sons. First, creating a feasible and plausible metabolic network is not simple.
Toy models made by a few reactions are not able to capture the complexity
of metabolism, and large genome-wide models can have many numerical arte-
facts such as unfeasible loops or hide the essentiality of such reactions. Second,
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a correct simulation of metabolic fluxes requires the integration of omics data
(proteomics, transcriptomics, and metabolomics) into a metabolic network, and,
even if several methods have been provided to do this [1,10,18], there is no gen-
eral consensus on the best way to integrate such data. In particular, the integra-
tion of transcriptomics data at the single-cell (sc) level represents an important
challenge due to the possible generation of numerical artefacts due to the high
number of false zero values in the sc-RNA seq data [6,12].

1.1 State of the Art

CBM is usually used to simulate an individual metabolic network. This network
can either represent an entire organism, such as Escherichia Coli, or a part of a
multi-cellular organism, as in tissue-specific models [2], or a single-cell.

Recently, some works have also explored the possibility of using a super-
network model, in which a set of cells are modelled as a set of networks, one for
each cell, to simulate a possible environment in which cells interact with each
other and cooperate for a common purpose like the growth or the ATP mainte-
nance. Such type of model could be useful to describe, for instance, the tumour
microenvironment (TME) in which interaction/cooperation phenomena between
cells have been reported in the literature [14]. In [4], the authors provided an
extension of the classical FBA, called popFBA, to explore how metabolic het-
erogeneity and cooperation phenomena affect the overall growth of cancer cell
populations. They showed that a population of cells may follow several different
metabolic paths and cooperate to maximize the growth of the total population.
In [6], the authors proposed single-cell Flux Balance Analysis (scFBA), a com-
putational tool to translate single-cell transcriptomes into single-cell fluxes. In
this framework, the growth of a population of cells is simulated as in popFBA,
but also cell-specific constraints from sc-RNA seq data with the use of Reaction
Activity Scores(RAS) [13].

All these frameworks have been developed in MATLAB, currently limiting
the application of the pipeline, because MATLAB is proprietary software and
many life scientists do not have the software licence. Moreover, the optimization
of metabolic fluxes can be performed on the entire super-network, which is time-
consuming for large single-cell datasets.

1.2 Our Contribution

To the best of our knowledge, no Python software has ever been implemented to
simulate CBM and cooperation between cells. Here, we present scFBApy (single-
cell Flux Balance Analysis in Python), a Python-based COBRApy extension
that provides a simple and effective method for the simulation of a population
of networks for a specific purpose like biomass production. The simulation can
be done assuming cooperation between all the cells, or without cooperation. In
this last case, the optimization problem is split into n sub-problem, where n is
the number of cells. This strategy is less time-consuming and parallelizable.
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We also added the possibility to pre-process the RNA-seq data with a denois-
ing algorithm, called MAGIC [8], to remove the possible false zero values in
single-cell RNA-seq data.

Finally, we demonstrate the applicability of the pipeline to five real-world
scRNA-seq datasets, where we computed the optimal flux configuration of the
metabolic super-network with and without the interactions between cells.

2 Material and Methods

2.1 Constraint-Based Modelling

A metabolic network can be represented by a stoichiometric matrix S of dimen-
sions M × R, where M is the number of metabolites and R is the number of
reactions. A steady-state condition is imposed, meaning that the total produc-
tion of any metabolite must equal the total consumption of that metabolite.
Therefore, any possible configuration of metabolic fluxes is represented by a
vector �v such that S�v = 0.

Among the numerous feasible steady-state flux distributions, Flux Balance
Analysis (FBA) [16] calculates a single feasible flux distribution that maximizes
the flux through a target function by solving the following linear programming
(LP) problem:

max z = f(�v), (1)

S · �v = �0,

�vL ≤ �v ≤ �vU ,

where �vL and �vU represent the possible flux bounds, and f(�v) in an objective
function to maximize.

2.2 From a Single-Network to a Super-Network

To pass from a single-cell metabolic network model to a super-network one, we
follow an approach similar to that in Damiani et al. [6].

We consider a generic input network of R reactions per M metabolites. From
this network, we extract all the internal reactions Rint and the transportation
reactions Rt, i.e. the reactions which transport one or more metabolites from
the internal to the extra-cellular compartment.

We create a new network formed by C × (Rint + Rt) reactions where we
label the reactions with the suffix “ cell ” + c where c is one of the C cells. We
do the same thing for the metabolites except for the external metabolites. In
this way, we are able to simulate a situation in which any cell can uptake/secret
any metabolite from any other cell if there is a transportation reaction from the
internal to the external compartment, and if this reaction is reversible. Therefore,
any cell can cooperate with any other cell of the tissue even if cells are far from
each other. We added the Rexc = R−Rint−Rt exchange reactions of the original
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network, to simulate the exchange of metabolites with an external compartment,
such as a growth medium or blood. The final network has C × (Rint+Rt)+Rexc

reactions. Finally, we create a new objective function, that corresponds to the
sum of all the biomass reactions of all the cells.

2.3 Transcriptomics-Derived Constraints to Metabolic Fluxes

Starting from the RNA-seq count matrix and the reactions involved in the
metabolic network, we computed the Reaction Activity Scores(RAS) matrix as
an R × C matrix, where R ≤ R represents the number of reactions associated
with a Gene Protein Reaction (GPR) rule, and C is the total number of cells.
The entries in the matrix are calculated by substituting the mRNA abundances
into the corresponding GPRs, as done in [13]. To solve the logical expressions,
the minimum transcript value is taken when multiple genes are joined by an
AND operator, and the sum of their values is taken when multiple genes are
joined by an OR operator.

After the RAS computation, specific constraints on internal fluxes of the
network are built following the approach adapted in [10,12]. In a nutshell, for
each reaction j = 1, . . . , R and cell c = 1, . . . , C, an upper bound U c

j and a lower
bound Lc

j to the flux capacity are defined, based on the following formulas:

U c
j = Fu

j × RASc
j

maxc RASc
j

, (2)

Lc
j = F l

j × RASc
j

maxc RASc
j

, (3)

where Fu
j and F l

j represent the maximum and the minimum flux that reaction
j might carry, obtained by Flux Variability Analysis [15], and RASc

j is the RAS
value for cell c and reaction j. These constraints are used to map RNAseq data,
with a one-to-one correspondence between the single cell transcriptomics profile
and the corresponding sub-network of the super-network. Therefore, each sub-
network has specific constraints derived from the transcriptomics and defined in
Eq. 2 and 3.

2.4 Data Pre-processing

The integration of scRNA-seq data in a metabolic network requires special atten-
tion. Indeed, the high number of possible false zeros in a scRNA-seq count matrix
causes a high number of fluxes constrained to be zero using Eqs. 2 and 3. So many
zero fluxes can cause feasibility problems for FBA solutions.

To mitigate the presence of false zero values in the transcriptomics data, we
applied a denoising algorithm, called MAGIC [8], on the count matrix using the
default values of the algorithm, except for the numbers of nearest neighbours
that we set to 3 instead of 5.
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2.5 The ScFBApy Package

The core code of the tool is a Python function that takes as input a metabolic
network model and a scRNA-seq dataset. The metabolic network is loaded from
SBML or JSON format using the COBRApy library [11], while the scRNA-
seq data is provided as an annotated data matrix (AnnData), an efficient data
structure provided by the Scanpy library [19]. The output is an AnnData object
in which the optimal flux matrix of the entire super-network is provided. The
integration with Scanpy offers the possibility to apply several methods, e.g.,
quality check, denoising, clustering, and differential expression testing on the
flux matrix.

2.6 Datasets

To demonstrate the applicability of our strategy to real-world datasets, we con-
sidered five different single-cell datasets:

LCPT45 Composed of 34 cells acquired from a xenograft, obtained by sub-renal
implantation in mice of a surgical resection of a 37-mm irregular primary lung
lesion in the right middle lobea of a 60-year-old untreated male patient.

H358 Composed of 50 cells from NCI-H358 bronchioalveolar carcinoma cell line.
LCMBT15 Composed of 49 cells acquired from a xenograft, obtained by sub-

renal implantation in mice of a surgical resection of a metachronous brain
metastasis acquired from a 57-year-old female after standard chemotherapy
and erlotinib treatments.

BC04 [3] Composed of 59 human epidermal growth factor receptor 2 positive
(HER2+) cells.

BC03LN [3] Composed of 55 lymph node metastases of human estrogen
receptor-positive (ER+) and human epidermal growth factor receptor 2 pos-
itive (HER2+) cells.

The first three datasets are obtained from the NCBI Gene Expression Omnibus
(GEO) data repository under GEO accession number GSE69405. The last two
datasets are a breast cancer dataset of scRNA-seq under GEO accession number
GSE75688. Each of the 5 datasets includes the gene expression level in the form
of Transcript Per Kilobase Milion (TPM). For each dataset, we retained only
the genes included in the metabolic network.

2.7 The Metabolic Network Model

We used the recently published network model ENGRO2 [10] of the human
central carbon and essential amino acids metabolism. It contains 484 reactions,
403 metabolites, and 497 genes, and represents a follow-up of the core model of
human central metabolism ENGRO1 [5]. 337 model reactions are associated with
a GPR rule. Biomass pseudo-reaction is the biomass reaction of the Recon3D
model, in terms of the set of metabolites considered and corresponding stoi-
chiometric coefficients. The only difference is that, given that ENGRO2 does
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not explicitly include lipid synthesis, the biomass pseudo-reaction assigns the
sum of the stoichiometric coefficients of 1-Phosphatidyl-1D-Myo-Inositol, Phos-
phatidylcholine, Phosphatidylethanolamine, Phosphatidylglycerol, Cardiolipin,
Phosphatidylserine, and Sphingomyelin to palmitate [10].

2.8 Experimental Setting

We simulated a growth medium condition in which a specific set of metabo-
lites was abundantly available. This set included glucose, glutamine, arginine,
glycine, cystine, oxygen, water, hydrogen, folic acid, and all essential amino
acids. We examined two scenarios: one without any cooperation, where each
cell’s network operated independently from others (NO-COOP), and one with
cooperation (COOP), where metabolites secreted by one cell could be utilized
by other cells. In the COOP scenario, cells had the potential to secrete several
metabolites, including all non-essential amino acids, glucose, lactate, palmitate,
and pyruvate, while maintaining a significant biomass production. The produc-
tion of Pyruvate in particular can occur in multiple ways in the ENGRO2 model,
e.g. from the glycolysis pathway, lactate dehydrogenase and the degradation of
alanine, serine, or cysteine.

3 Experimental Results

3.1 Cooperation Between Cells Increases the Biomass Production

In Table 1, we report, for each dataset, the total biomass production per cell and
the percentage of cells having a non-negligible biomass production (% feasibility)
in case of no cooperation (NO-COOP) and cooperation (COOP) between cells.
We can note that the cooperation increases the biomass production across all five
datasets. This improvement varies between 32% for the BC03LN to 216% for the
BC04 dataset. For this last dataset, we have also an increase in the percentage
of feasible cells, which passes from 0.78 to 1.

Table 1. Biomass production per cell and the percentage of cells having a non-
negligible biomass production in case of no cooperation (NO-COOP) and cooperation
(COOP) between cells.

Dataset NO-COOP COOP

Biomass per cell Feasibility Biomass per cell Feasibility

BC04 2.42858 0.784314 5.268854 1

BC03LN 27.83925 1 36.81522 1

LCPT45 SC 21.5471 1 28.72713 1

H358 SC 34.0013 1 44.97986 1

LCMBT15 SC 44.0021 1 58.18925 1
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3.2 Cells Exchange Specific Metabolites to Increase the Biomass
Production

Fig. 1. Scatter-plots illustrating the impact of cooperation. Each subplot represents a
different simulation of FBA on the network, with the columns representing different
datasets, and the rows representing different reactions. The scatter-plot in each subplot
compares the values obtained with (COOP) and without cooperation (NO-COOP).

We examined the level of cooperation between cells for the five different
datasets. More in detail, we verified that for the super-network models, some cells
secret metabolites that are up-taken by other cells, when cooperation is present.
In Fig. 1, we reported the comparison of the fluxes for the alanine (Ala L t),
proline (pro L t), palmitate (HDCAt), pyruvate (PYRt2), lactate (DmLact),
glucose (GLCt1) exchange, in the no cooperation case (NO-COOP, horizontal
axis) and the cooperation one (COOP, vertical axis). Since the growth medium
does not contain any of these metabolites, in case of no cooperation, such reac-
tions are used only to secret the metabolites. In the case of cooperation, the
flux can be positive or negative as a function of the secretion or consumption of
these metabolites, respectively. In particular, it can be observed that a consistent
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group of cells consumes the alanine, pyruvate, and palmitate that are secreted by
the other cells. On the contrary, there is no significant lactate exchange between
cells for all the datasets except for BC03LN one. The proline exchange is moder-
ate but non-negligible in all the datasets. No cell in any dataset secretes glucose
to be consumed by other cells, reasonably because the medium is rich in glucose,
hence the cells do not need to exchange glucose with each other. However, it
is interesting to note that the uptake of glucose inside the cells in the coop-
erative case is generally lower than in the non-cooperative one. We speculate
that it could mean that the general glucose consumption of the super-network
is optimized for biomass growth.

Finally, to demonstrate the significance of specific metabolite exchange
between cells, in Table 2, we reported the relative variation in biomass production
when the exchange of a particular metabolite is restricted on the super-network.
It can be noted that the removal of proline exchange strongly affects biomass
production for the BC04 dataset only. We observed also that the palmitate
exchange between cells affects biomass production for three of these datasets.
On the contrary, lactate exchange is not strictly required for maximal growth
for any cells of any dataset.

Table 2. Relative variation in biomass production per cell when the uptake of a par-
ticular metabolite is restricted for all cells.

Reaction BC04 BC03LN LCPT45 H358 LCMBT15

Palmitate 1 1 0.96 0.96 0.99

Pyruvate 1 1 1 1 1

Lactate 1 1 1 1 1

Alanine 1 1 1 0.99 1

Asparagine 1 1 1 0.99 1

Aspartic acid 1 1 1 1 1

Serine 1 1 1 0.98 1

Proline 0.60 1 1 1 1

3.3 Software Availability and Computational Architecture

All computations were performed on an Intel(R)@3 GHz 32 GB, using GLPK as
solver and one single CPU. The source code and documentation are available at
https://github.com/CompBtBs/scFBApy.

4 Discussion and Conclusions

Constraint-based modelling to calculate feasible metabolic fluxes is gaining grow-
ing significance in comprehending the mechanisms associated with the physiolog-
ical and pathological conditions of cells or organisms. In this work, we considered

https://github.com/CompBtBs/scFBApy
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Flux Balance Analysis for a super-network model. Starting from a previously
published framework in MATLAB, we provide a Python tool for single-cell Flux
Balance Analysis which integrates the information coming from transcriptomics
data and allows cells to cooperate to maximize the total biomass production.

The possible limitations of this work are the following. First, since the def-
inition of a biomass reaction is a hard task, this can be a factor limiting our
ability to describe metabolism using FBA [9]. This is because the composition
of biomass can be tissue and physiological condition-dependent. Another lim-
itation of the work is related to the assumption of biomass production as a
common FBA objective of the cell population of the four datasets. Defining an
objective function of FBA is a hard task, even in the simplest case of a single cell.
Indeed, defining one or multiple objective function(s) intrinsically introduces an
observer bias as to what the main “goal” of the cell is, in the context of the anal-
ysis. However, biomass production can be a realistic assumption for proliferative
conditions like in a tumour microenvironment [17]. Moreover, we remark that
in our implementation we do not assume that each cell must grow, but that the
overall population must. To this aim, another possible limitation of our approach
is that any cell can cooperate with any other cell in the tissue to increase the
total biomass production, even if they are far from each other. Finally, one last
limitation is related to the denoising strategy used to remove false zero values.
Since the application of denoising alters the RNA profiles, it might be necessary
to check the robustness of the results using different parameter configurations
or denoising algorithms.

As a further work, we plan to include spatial information on the super-
network, to have possible cooperation between cells as a function of their prox-
imity. This could be useful for the analysis, e.g. of datasets of single-cell spatial
transcriptomics. Indeed, with this tool, one could simulate the single-cell spa-
tial fluxomics from spatial scRNAseq data and perform flux cluster analysis to
study the possible metabolic differences between sub-populations of cells, along
the space, and compare the clusters with the ones obtained from transcriptomics.

References

1. Agren, R., Bordel, S., Mardinoglu, A., Pornputtapong, N., Nookaew, I., Nielsen,
J.: Reconstruction of genome-scale active metabolic networks for 69 human cell
types and 16 cancer types using INIT. PLoS Comput. Biol. 8, e1002518 (2012)

2. Bordbar, A., Feist, A., Usaite-Black, R., Woodcock, J., Palsson, B., Famili, I.:
A super-tissue type genome-scale metabolic network for analysis of whole-body
systems physiology. BMC Syst. Biol. 5, 1–17 (2011)

3. Chung, W., et al.: Single-cell RNA-seq enables comprehensive tumour and immune
cell profiling in primary breast cancer. Nat. Commun. 8, 1–12 (2017)

4. Damiani, C., Di Filippo, M., Pescini, D., Maspero, D., Colombo, R., Mauri, G.:
popFBA: tackling intratumour heterogeneity with Flux Balance Analysis. Bioin-
formatics 33, i311–i318 (2017)

5. Damiani, C., et al.: A metabolic core model elucidates how enhanced utilization
of glucose and glutamine, with enhanced glutamine-dependent lactate production,



scFBApy: A Python Framework for Super-Network Flux Balance Analysis 97

promotes cancer cell growth: the WarburQ effect. PLoS Comput. Biol. 13, e1005758
(2017)

6. Damiani, C., et al.: Integration of single-cell RNA-seq data into population models
to characterize cancer metabolism. PLoS Comput. Biol. 15, e1006733 (2019)

7. Damiani, C., Gaglio, D., Sacco, E., Alberghina, L., Vanoni, M.: Systems
metabolomics: from metabolomic snapshots to design principles. Curr. Opin.
Biotechnol. 63, 190–199 (2020)

8. Dijk, D., et al.: MAGIC: a diffusion-based imputation method reveals gene-gene
interactions in single-cell RNA-sequencing data. BioRxiv, p. 111591 (2017)

9. Dikicioglu, D., Kı́rdar, B., Oliver, S.: Biomass composition: the “elephant in the
room” of metabolic modelling. Metabolomics 11, 1690–1701 (2015)

10. Di Filippo, M., et al.: INTEGRATE: model-based super-omics data integration to
characterize super-level metabolic regulation. PLoS Comput. Biol. 18, e1009337
(2022)

11. Ebrahim, A., Lerman, J., Palsson, B., Hyduke, D.: COBRApy: constraints-based
reconstruction and analysis for python. BMC Syst. Biol. 7, 1–6 (2013)

12. Galuzzi, B., Vanoni, M., Damiani, C.: Combining denoising of RNA-seq data and
flux balance analysis for cluster analysis of single cells. BMC Bioinform. 23, 1–21
(2022)

13. Graudenzi, A., et al.: Integration of transcriptomic data and metabolic networks
in cancer samples reveals highly significant prognostic power. J. Biomed. Inform.
87, 37–49 (2018)

14. Junttila, M., De Sauvage, F.: Influence of tumour micro-environment heterogeneity
on therapeutic response. Nature 501, 346–354 (2013)

15. Mahadevan, R., Schilling, C.: The effects of alternate optimal solutions in
constraint-based genome-scale metabolic models. Metab. Eng. 5, 264–276 (2003)

16. Orth, J., Thiele, I., Palsson, B.: What is flux balance analysis? Nat. Biotechnol.
28, 245–248 (2010)

17. Santi, A., et al.: Cancer associated fibroblasts transfer lipids and proteins to cancer
cells through cargo vesicles supporting tumor growth. Biochimica Et Biophysica
Acta (BBA)-Mol. Cell Res. 1853, 3211–3223 (2015)

18. Wagner, A., et al.: Metabolic modeling of single Th17 cells reveals regulators of
autoimmunity. Cell 184, 4168–4185 (2021)

19. Wolf, F., Angerer, P., Theis, F.: SCANPY: large-scale single-cell gene expression
data analysis. Genome Biol. 19, 1–5 (2018)



Semantic Information as a Measure
of Synthetic Cells’ Knowledge

of the Environment

Lorenzo Del Moro1, Maurizio Magarini1(B), and Pasquale Stano2(B)

1 Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB),
Politecnico di Milano, Milan, Italy

lorenzo.delmoro@mail.polimi.it, maurizio.magarino@polimi.it
2 Department of Biological and Environmental Sciences and Technologies

(DiSTeBA), University of Salento, Lecce, Italy
pasquale.stano@unisalento.it

Abstract. The concept of semantic information refers to the type of
information that has some “significance” or “meaning” for a given sys-
tem. Its use to describe how precisely the desired meaning is conveyed
makes possible to characterize systems in terms of autonomous agents
that are able to achieve an intrinsic goal or to accomplish a specific task.
Two different types of semantic information are well recognized and used
in the literature: i. ‘stored’ semantic information, which refers to infor-
mation exchanged between a system and its environment in its initial
distribution, and ii. ‘observed’ semantic information, which denotes the
information that is dynamically acquired by a system to maintain its
own existence. Both the concepts of stored and observed semantic infor-
mation were first introduced by Kolchinsky and Wolpert in 2018.

In this paper we present an approach to measure observed seman-
tic information. Its quantitative measure is obtained for a smart drug
delivery scenario where synthetic cells sense an environment made up of
cancerous cells. These release a signal molecule that triggers the produc-
tion of a cytotoxic drug by the synthetic cell. For the same scenario, the
stored semantic information has already been computed. The main novel
contribution compared to the evaluation of stored semantic information
consists in a measure of the minimal perception of the environment [in
bits] that allows a system to maintain its own functionality (as a proxy
of its own existence) during its joint dynamic evolution with the envi-
ronment, i.e. not decreasing its viability compared to full environment
perception. Moreover, we provide a preliminary discussion about how the
quantification of semantic information can contribute to better define
what is meaningful to an agent. With this result we emphasize once
again the role that “synthetic cells” have as new (bio)technological plat-
form for theoretical and applied investigations of semantic information
in biological systems.
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1 Introduction

Recent studies in biological systems [8] have acknowledged the importance of
examining living systems and their components from an information-centric
perspective. The classical measures from Shannon information theory, however,
seem not to be suitable to fully characterize all aspects of the transfer of infor-
mation in living systems, as they focus on syntactic aspects, disregarding the
concept of what the information means, i.e., its semantic/pragmatic aspects,
its “meaning” for the sender and the receiver (considered, each one or both
of them, as agents). Terms as semantic information and meaning need more
specifications. As evidenced in [17] (and references therein), the definition and
usage of the information concept (a mathematical one), is not connected to its
meaning. Developed mainly as a theory for the transmission of digital signals,
the Shannon information theory does not deal with what messages mean. Mes-
sages, of course, typically have meaning, but their meaning is not necessary for
the Shannon information theory. This approach was considered incomplete by
other scholars (e.g., MacKay [2,18]), who wanted to highlight semantic aspects
of information too, according to the common usage of the word information in
human communication. Actually, a theory of semantic information was devel-
oped in the 1950s [5] for logical propositions (for a review of this and other
theories, see [10]). The concept of meaning refers, directly or indirectly, to the
purpose for which the information-bearing data was sent and/or what changes
the information-bearing data generate once received. Transmitted data should
“make sense” for the sender and/or for the receiver in order to be meaningful,
otherwise they represent just noise. The meaning of information, in a commu-
nication process, can be identified by the observers, but the process that gave
rise to its origin is more complex. In biological agents, it can be argued that
it is linked to their functioning mechanisms, their specific way of interacting
with the environment – in other words to their evolution [3,9,21–23]. However,
the mechanism of meaning origination is gaining major relevance also in the
sciences of artificial, because artifacts normally do not recognize meaning in
their input/output data [13]. Understanding meaning and semantic information
becomes, therefore, a timely scientific question. For these reasons, the interest
in the semantic aspects of information and meaning has increased recently.

Although the importance of adopting a measure of information that takes
into account the semantic aspects is of fundamental importance in the context of
biological systems, up to now only few works in the literature have addressed the
problem of its quantitative evaluation. Among the approaches to measure seman-
tic information, that proposed by Kolchinksy and Wolpert (KW) [14] seems to
be one of most promising for application into the biological domain because of its
operative definition. Its introduction allows for the definition of new quantitative
metrics to measure semantic information that are more suitable to describe the
interaction between an agent and its surrounding environment. The authors of
[19] first conceived the idea of applying the KW approach to model the behavior
of a synthetic cell (SC). The idea was then developed from a operational point of
view in [24], where a (bio)technological platform was proposed to describe how
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SCs extract semantic information from the environment with the intrinsic goal
of releasing a cytotoxic drug to kill cancerous cells. An alternative to the KW
approach was proposed in [4], where a computational state machine was intro-
duced to evaluate the “subjective information.” Subjective information refers to
the ability of a living system to optimize its growth and survival over time and its
capacity to maximize information acquisition from its surroundings. Reported
simulation results demonstrates that a strategy that maximizes information effi-
ciency grows at a slower rate than a strategy that gets less information but has a
greater survival value. It is worth noting that, while the subjective information
plays an important role in characterizing the ability of an individual organism
to opportunistically manipulate the information channel between itself and its
environment, our interest is more towards the cost of acquiring or processing
more “relevant” information from the environment. We therefore keep the focus
on the quantitative evaluation of the semantic information to gain a deepen
insights on how it affects the agent’s viability.

The main goal of this article is to delve further the application of the KW
approach to characterize the impact of coarse-grained joint dynamics induced
by interventions of the SC and its surrounding environment. Differently from
[7,24], where the goal is to evaluate the amount of stored semantic information
between an autonomous agent and its environment, in this work we present a
computational approach to evaluate the observed semantic information in the
same scenario as [24], i.e., a “smart” drug delivery system (an SC) engaging
semantic molecular communication with its environment.

The rest of the article is organized as follows. In Sect. 2 we introduce the con-
cept of observed semantic information, its mathematical formalism, and give its
interpretation for the considered SC scenario. Numerical results showing the tem-
poral behaviour of the viability for different intervened joint agent-environment
dynamics are reported in Sect. 3. Section 4 presents a preliminary discussion
on how semantic information can be associated with the degree of “knowledge”
SCs possess about their environment. Finally, conclusions are reported in Sect. 5,
where the main properties of semantic information are summarized and inter-
preted from the point of view of meaningfulness for an SC.

2 Observed Semantic Information

Observed semantic information refers to that amount of syntactic information
that, differently from the stored one, is acquired during the autonomous agent-
in-the-environment joint dynamics, and that causally contributes to maintain the
autonomous agent in existence. Joint dynamics describe the interaction and coor-
dination of an agent with its surrounding environment, wherein the environment
and the agent both influence and are influenced by the generated, transmitted,
and updated semantic information. In the context of the present analysis, joint
dynamics are defined by the joint conditional probabilities of the states of the
agent and of the environment in a time instant given those at the previous time.
To evaluate observed semantic information, interventions are applied to the joint
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dynamics of the autonomous agent and of the environment with the objective of
perturbing the flow of information between them and then evaluate the part of
such a flow that affects the autonomous agent existence. The temporal flow of
syntactic information is evaluated by computing the concept of transfer entropy
from the state description of the environment Yt at time t to the state of the
system Xt+1 at time t + 1 as [25]

Tp(Yt →Xt+1)= Ip(Xt+1;Yt|Xt)=H(Xt+1|Xt)−H(Xt+1|Xt, Yt), (1)

where Ip (Xt+1|Xt, Yt) is the conditional mutual information, i.e. the differ-
ence of conditional Shannon entropies H (·|·), for a given joint distribution
pXt+1,Xt,Yt

[14]. The above equation defines how much uncertainty is reduced
about the state of the autonomous agent Xt+1 at time t+1 by the knowledge of
the state of Yt at time t, conditioned the full knowledge of the state Xt at time
t.

Furthermore, since the goal is to compute the transfer entropy over time
from 1 to τ , that is the time interval of the simulation, the overall syntactic
information flow is simply the sum over time of each dynamic flow from an
instant to another, so that we compute:

τ−1∑

t=0

Tp(Yt → Xt+1) =
τ−1∑

t=0

Ip(Xt+1;Yt|Xt). (2)

Interventions are defined by coarse-grain functions that are applied to the
overall dynamic of the system. This latter is given by a first order Markov
described by the following conditional probability pXt+1,Yt+1|Xt,Yt

= pXt+1|Xt,Yt
·

pYt+1|Xt+1,Xt,Yt
, which is factored by applying the chain of conditional probabil-

ity. To evaluate observed semantic information, interventions are applied only to
the first term on the right-hand side since, in this manner, only the information
flow between the environment and the system is scrambled and not the opposite
flow of information.

The intervened conditional probability is then computed as reported by KW
in the following way

p̂φ(xt+1|xt, yt) � p(xt+1|xt, φ(yt)) =

∑
y

′
t:φ(y

′
t)=φ(yt)

p(xt+1|xt, y
′
t)p̂

φ(xt, y
′
t)∑

y
′
t:φ(y

′
t)=φ(yt)

p̂φ(xt, y
′
t)

,

(3)
where φ(·) denotes the coarse-graining function that is applied to the discrete
state space of the environment. The sum over y′

t means that the intervention
coarse-grains the environment state and the system cannot recognize that gran-
ularity.

Clearly, there is the need to understand which of the different interventions
destroy only that part of the overall syntactic information that is meaningful
(that causally contributes to the system existence), and therefore an optimal
intervention must be found. This optimal intervention is defined as the one that
preserves the viability function of the system (that describes the autonomous
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agent existence), while reducing as much as possible the transfer entropy. In
this case the remaining part of transfer entropy is the part of information that
is meaningful for the system existence. Eventually, the optimal intervention is
defined as

p̂opt
X0,...,τ ,Y0,...,τ

∈ arg minp̂φ
X0,...,τ ,Y0,...,τ

:φ∈Φ

∑τ−1
t=0 Tp̂φ(Yt → Xt+1)

s.t V (p̂φ
Xτ

) = V (pXτ
) , (4)

where p̂φ
X0,...,τ ,Y0,...,τ

describes the joint distributions over time, from 0 to τ and
Φ represents the whole set of possible interventions.

Once the optimal intervention p̂opt
X0..τ ,Y0..τ

is obtained, it is straightforward to
find the amount of observed semantic information as

Sobs �
τ−1∑

t=0

Tp̂opt(Yt → Xt+1). (5)

From the perspective of more traditional digital communication systems,
interventions play the same role as that of the semantic source encoder, whose
role is to encode noisy data gathered by a sensor and deliver the pertinent and
important piece of information [11]. Interventions consists in a randomization
of the environment with the goal of breaking the (possible) correlations it has
with the agent. Here, the randomization method suggested by KW is used, where
interventions are generated by applying permutations with repetition to give the
coarse-graining functions merging the discrete states of the environment. Ran-
domization ensures that any potential irrelevant factor, known or unknown, is
similarly distributed in each of the intervened groups. Therefore, the measure of
the observed semantic information can be associated with the maximum degree
of randomization of the environment that does not affect the viability of the
agent. It is measured in bits and the resulting value gives the power of 2 that
corresponds to the minimal number of states that allow for not decreasing the
agent’s viability and maintains it in the desired state of staying alive.

3 Numerical Results

As detailed in [7,24], the scenario consists of an SC that perceives signaling
molecules from cancerous cells (CCs) in the surrounding and releases, based on
an internal mechanism, cytotoxic drug molecules with the goal of killing CCs.
In this manner, we sought to devise and model a realistic scenario, inspired to
published reports [15,16]. In particular, it has been shown that SCs can produce
a toxin called Pseudomonas exotoxin A, capable of killing 4T1 breast cancer
cells in culture [15]. Such a result, combined with other investigations showing
that SCs can start protein synthesis upon receiving a chemical signal [1], makes
our scenario convincing, although its actual realization is still lacking. In the
following, we will use the term “toxin”, but the general case would correspond
to SCs capable of producing any type of cytotoxic drug.
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Table 1. Initial parameters of the simulation.

Parameters

Environment and SC variable states Possible levels Initial probabilities

XSper {0, 1, 2, 3, 4, 5} {
0, 1

5
, 1
5
, 1
5
, 1
5
, 1
5

}

XSin {0, 1, 2, 3, 4, 5} {1, 0, 0, 0, 0, 0}
Xptox {0, 1, 2, 3, 4, 5, 6, 7, 8} {0, 0, 0, 0, 1, 0, 0, 0, 0}
YS {0, 1, 2, 3, 4, 5} {

0, 1
5
, 1
5
, 1
5
, 1
5
, 1
5

}

The environment Y is characterized by the level of signalling molecules
released by the CCs and described by a single state variable YS = {0, . . . , 5},
while the autonomous agent X , i.e. the SC, is described by a state variable X
with three degree of freedom, such that X = XSin

× XSper
× Xptox. In particu-

lar XSper
= {0, . . . , 5} is the variable associated with the perceived level of the

signaling molecules, supposed to be always equal to YS . XSin
= {0, . . . , 5} is

instead the internalization level of YS and it is directly related to XSper
. In addi-

tion, Xptox = {0, . . . , 8} is the amount of toxin molecules inside the SC. At time
t = 0 the signaling molecules levels are considered to be uniformly distributed
over 1, . . . , 5 which means that at least a signaling molecules is always present.
Furthermore, we supposed to have perfect correlation between YS and XSper

,
i.e. YS = XSper

, while initially the internalization level and the amount of toxin
molecules inside the SC are XSin

= 0 and Xptox = 5. Table 1 summarize the
initial parameters of the simulation.

As in [7,24], the joint dynamics are based on internal SC mechanisms and
on the interaction with the signalling molecules. Even though, the aim is the
evaluation of the meaningful flow of syntactic information exchanged during the
dynamics, the scenario and the dynamics are exactly the same.

3.1 Evaluation of Viability and of Semantic Information

Figure 1A shows the viability over time for different interventions. The reference
curve for the viability is the non-intervened one, which is that with the highest
values in each time step. The interventions that do not lead to a decrease of the
viability are those for which there is not any degradation in the SC’s percep-
tion of the environment. These can be obtained only by evaluating the temporal
evolution of the viability considering all the possible interventions. Therefore, in
Fig. 1A are reported the different temporal evolution’s of the viability obtained
considering all the possible interventions for the considered scenario. As it can
be observed, only six different curves are distinguishable because the overlap
among the obtained curves. The differences in the viability are due to the reduc-
tion of SC’s perception of the environment that arises due by the merging of
the states induced by permutations with repetitions used for intervention. Some
of these interventions leads to the same reduction of the SC’s perception. The
dashed line in the figure defines the time instant τ = 6, which will be consid-
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ered in the following to evaluate the observed semantic information. From the
figure it is possible to note how some interventions can decrease the viability
over time, reducing consequently the meaningful flow of information during the
dynamics. Here, a ‘coarse-grained’ intervention has been used to scramble the
channel between the SC and the environment. This type of intervention is quite
a conventional approach in the evaluation of information-theoretic metrics when
applied to a discrete state variable. A decrease of the viability is associated with
coarse-grained interventions where the merging of the states lead to a reduced
perception of the environment, and therefore destroy part of the information
flowing across the channel.

An issue can be noted. There should not be a steady state viability, after a
certain time instant, different for each intervention. Viability in the steady state
regime has to be roughly the same for each intervention, due to the fact that
the autonomous agent must be dead after a certain time instant (we consider
the SC dead when all the toxin are released) and thus it must have a viability
of −100 bits at least, which is the dead entropy value we set. Therefore, it is
needed to understand why, even though interventions affect viability, the steady
state regime is not the same for each of them.

Another issue, related to the simulation itself, comes from the highly variable
number of possible states we have introduced for the autonomous agent and the
environment. In fact, in this particular simulation, a reduced states space is
used. However, in case we want to increase it, we may face some computational
problems due to the limited size of the computer memory.

Back to the first issue, we can say it is related to the probability distribution
pYt+1|Xt+1,Xt,Yt

, in fact this probability is not normalized due to our particular
joint dynamics. This means that even though we have a defined probability
for a possible joint state Xt+1,Xt, Yt, the probability of being in state Yt+1 is
not always defined. In order to solve this problem, we introduce four different
approaches to normalize pYt+1|Xt+1,Xt,Yt

. These are explained in the following
section.

In addition, Fig. 2 depicts the viability curve at time τ = 6 (vertical red
dot line in Fig. 1) both for the normalized and not normalized case. Applying
interventions as previously explained leads to the decrease of the viability. In our
simulation, there are more optimal interventions and these lead to an observed
semantic information Sobs = 3.91 bits both in absence of normalization and by
applying a normalization as explained in the next section.

3.2 Normalization of pYt+1|Xt+1,Xt ,Yt

The first approaches consists in having a stochastic matrix of the dynamics that
is strictly positive and consequently the matrix pYt+1|Xt+1,Xt,Yt

is fully specified.
The second one, also proposed in [14], consists instead in the definition of a
Bayesian network, so that we can specify the matrix pYt+1|Xt+1,Xt,Yt

. By the
way, the first approach depends on the dynamics we want to apply, while the
second one is sometimes hard to implement due to a complex dynamics, therefore
they are not always feasible. A third approach could be that of approximating
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Fig. 1. (A) Viability over time without normalization of pYt+1|Xt+1,Xt,Yt . Different
viabilities under different interventions are associated to letters from ‘a’ to ‘f’. (B) Via-
bility over time with normalization of pYt+1|Xt+1,Xt,Yt . The figure has been presented
as a poster at the NANOCOM 2023 conference, see Acknowledgements and [6].

the matrix pYt+1|Xt+1,Xt,Yt
by specifically adding some values, when it is not

specified with the aim to normalize it, but of course we cannot master the degree
of approximation. A fourth approach, instead, requires the a-priori knowledge
of the intervened matrix of the dynamics. In this way, from the already known
intervened matrix we can obtain the matrix pYt+1|Xt+1,Xt,Yt

that is normalized
where we are interested. As an example, Fig. 1B shows the viability over time
for different interventions, when the third approach is used. We choose the third
method because it is easy to implement and because it gives the same semantic
information as the non-normalized case.

4 Interpreting Semantic Information Values as a Measure
of “Knowledge” SCs Have About Their Environment:
A Preliminary Discussion

We have shown how to calculate the values (in bits) of observed semantic infor-
mation referred to a SC situated in a very simple environment (E), constituted by
CCs that secrete a chemical signal capable of activating a SC response (Sect. 3).
In a previous study, we have calculated, for the same system, the stored seman-
tic information [24]). The dynamics of the SC/E have been described, in both
cases, by a set of rules that, based on SC and E variables, allow the calculation
of the viability V . By applying coarse-graining functions to the distribution of
variables in E, the SC viability in several intervened E can be calculated, and
semantic information finally obtained by a ranking process. As metrics for mea-
suring stored and, respectively, observed semantic information, we have used
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Fig. 2. (A) Viability curve over time without normalization of pYt+1|Xt+1,Xt,Yt .
(B) Viability curve at time instant 6 with normalization of pYt+1|Xt+1,Xt,Yt .

mutual information and transfer entropy, respectively (in principle, other met-
rics could be used [14]). The calculated values are 1.92 bits (stored) and 3.91 bits
(observed). The next crucial question is the following: does semantic information
values correlate with the knowledge SCs have of their environment, and how?

Two additional considerations are needed to start a discussion, even if pre-
liminary as in the current case. First, we need to make a step back and recall
that the viability function V , in our specific scenario, has been defined based
on the SC capacity of producing a toxin that would kill CCs. In other words,
our scenario is referred to a system whose goal is performing a useful action
(killing CCs). At this aim, SCs have internal mechanisms that are functional
to merely achieve this goal. SCs are intended as chemical machines, designed
and constructed for a goal which is different than the production of themselves.
By production of themselves we mean the production of their own constitutive
components, necessary to their very existence as dynamical systems. In other
words, they are allopoietic machines. On the other hand, KW devised their
semantic information theory to investigate systems (in particular, living ones
although the analysis can be applied to not living ones too) whose viability
function specifically mirrors their capacity of maintaining their own structure
and their functioning, in order to continue to exist. These are self-maintaining
systems. It is important to recall, indeed, that the systems we are interested
in are dynamical systems existing in non-equilibrium conditions. In the context
of SC research, when systems exist because they maintain their structure via a
continuous production of their components, which otherwise disappear because
of disruptive transformations, they are called autopoietic machines, and are alive
according to Maturana and Varela [20]. Therefore, although the results of our
numerical simulations refer to allopoietic systems, a similar approach could have
been applied to autopoietic ones.
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Second, we should consider that the specific SC we have devised, whose
behavior is determined by a certain set of rules, it is just a particular case of a
hypothetical variety of SCs whose individual behavior differs owing to different
internal mechanisms. We can call a “set of rules”, for short, an “organization”.
Regardless of whether SCs under scrutiny are allopoietic or autopoietic machines,
we can imagine a variety of SCs, and therefore a variety of different organiza-
tions, that will generate different SC/E dynamics, different values of the viability
function, and different semantic information values. Clearly, the scenario we have
studied is particularly simple, and probably the allowed variability of organiza-
tion/behavior/viability function is, for all practical purposes, rather limited. On
the other hand, if E would have been much more complex (e.g., made of several
variables such as nutrients, signals, inhibitors, etc., each one with its own pecu-
liar distribution), the diversity among all possible organizations that allow SCs
cope with the environment (and the set of joint dynamics) would be much more
evident.

Based on these consideration, we can extrapolate a hypothetical scenario
that is useful to propose the following interpretation of semantic information.
Stored or observed semantic information, measured in bits, is a measure of the
“knowledge” SCs have about their environment. Let us imagine have a popula-
tion of different autopoietic SCs situated in a certain environment E. The goal of
autopoietic SCs is maintaining their own structure in a dynamical homeostatic
state, i.e., maintain their internal processes of self-production so that their exis-
tence is assured (SCs with organizations not compatible with E will disappear,
and they are of no interest). SCs, whose organization leads to viability func-
tion values that allow self-maintenance, will survive. However, because of their
diversity, it is expected that their viability function values will be different, and
consequently the semantic information associated to the SC/E dynamics will
differ too. High values of semantic information, in general, would mean that
SCs lose viability even when minor coarse-graining interventions are applied to
the environmental variables. Low values of semantic information instead would
mean the opposite, i.e., that SC lose viability only when extensive coarse-graining
interventions are applied. In the latter case, SCs internal organization, although
assuring high-enough viability values, cannot distinguish the fine details of the
environment: coarse-graining interventions does not damage their viability. For
these SCs, not all details of the environmental variables’ distributions “make
sense” or “have meaning” (e.g., they can be scrambled, with no - or minor
- effects on SCs functioning). Vice versa, SCs characterized by high values of
semantic information have internal organizations that match well and with a
major resolution with a certain E, exploiting the environmental patters at a full
extent. For these SCs, environmental variables’ distribution and their details do
make sense, or have meaning. It can be said that SCs, which “extract” more
semantic information from the environment, know better their environment, or
are better observers of it.

In this artificial scenario, whereby SCs have been constructed in the labo-
ratory, their inner organization is given by the designer. In a natural evolution
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scenario, the SC inner organization would instead result from a process of pro-
gressive adaptation of the SC to the environment, in a process of reciprocal
influence (in language of autopoietic theory: due to the structural coupling).

The discussion on the link between semantic information, meaning, and its
origin in natural and artificial systems, clearly, is highly speculative at this stage.
But we believe that the tools provided by the KW strategy are powerful ones
and very apt to face these investigations. Simulations specifically devised to
explore the behavior of varieties of SCs have not been performed yet. Moreover,
the best models would be autopoietic systems, not allopoietic ones. One critical
hypothesis in our discussion is that SCs with different organizations, placed in
the same environment, all display high, but essentially comparable, value of
viability function. The second (implicit) hypothesis is that the maximum value
of the metric used to quantify information (e.g., mutual information or transfer
entropy) is at least approximately constant for the joint SC/E dynamics for
different SCs. Future work will be devoted to answer these questions.

The final remark is that the meaning and its emergence have a relational
nature. It depends on the SC/E interplay, in particular on how SCs literally bring
environmental perturbations into its organization, augmenting its probability of
existence. This is, actually, the basis of the concept of cognition in the autopoiesis
theory.

5 Conclusion

In conclusion, here we have presented results about the quantification of KW
observed semantic information based on the dynamic exchange of information
across a channel that characterizes a SC in an environment, where it operates
according to a perception-action dynamics. This is achieved by resorting to the
concepts and the methodologies firstly introduced by [14] and applied by us to a
realistic SC scenario. In particular, while Kolchinsky and Wolpert in their sem-
inal work have defined ideas, terms, and mathematical approaches to compute
the stored and semantic information, here we have applied their strategy to a
specific case. The key elements for applying the KW approach are the “interven-
tions” that consist in coarse-graining, randomizing, scrambling the distributions
of environmental variables in order to quantify the part of syntactic informa-
tion that has a causal role in maintaining the SC functionality (or, in the more
general case, the SC existence), measured by a viability function.

Next, we have provided a preliminary discussion about whether, and at what
extent, it is possible to interpret semantic information values, calculated à la
KW, as a measure of knowledge that agents have about their environment: i.e.,
with respect to what can be considered as meaningful to them. The question
refers to a possible connection to the more general concepts of meaning, ori-
gin of meaning [3], and the mechanisms of “assignment” of meaning to those
environmental perturbations affecting the agent dynamics (this is akin, in AI
language, to the symbol grounding problem [12]). While SC are constructed in
the laboratory and, for them, what is – or is not – meaningful has been decided
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by the designer/constructor, in biological cells meaning has emerged by evolu-
tionary processes. Measures of semantic information are, probably, the best tools
for quantitatively addressing the meaningful and the meaningless parts of the
information flow impinging on an agent. Our discussion is largely speculative
and here we intended to just sketched some hypotheses. Rather than providing
a definitive answers to these questions, which are of great relevance for all artifi-
cial systems, the proposed discussion (Sect. 4) should motivate further enquiries,
possibly carried out thanks to the application of KW approach.
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Abstract. In this contribution we would like to put forward a proposal about
a novel form of AI, called “Wetware Embodied AI”, based on the construction
of bio-chemical dynamical systems intended as models of living and cognitive
systems. The ambition is complementing common approaches in robotics and
AI, mainly characterized by behavioral imitation of the cognitive processes under
inquiry, with more radical approaches, aiming at creating artificial models repro-
ducing (aspects of) the organizational mechanisms underlying the target process
in nature. To this aim, we will first recapitulate some aspects of frontier research
lines in AI (in particular, Embodied AI and related approaches), and then present
a wetware version of it, together with a brief plan for theoretical and experimental
investigations. The role of synthetic biology and systems chemistry to accomplish
these goals will be highlighted. Considering the connection of this program with
the current experimental trends about communicating synthetic cells, a final brief
comment on the “social chemical robotics” perspectives closes the article.

Keywords: Autopoiesis · Artificial Life · Cognition · Embodied AI · Synthetic
Biology · Synthetic (Artificial) Cells · Philosophy of Artificial Intelligence ·
Wetware Embodied AI

1 Exorcizing the “Ghost” in the Machine

In line with the programmatic ambition of releasing the cognitive mind from the “ghost-
ly” status it had assumed in computationalism [1–3], pioneering Embodied AI (EAI)
programs worked on synthetically modeling natural cognition not through computer
programs, but through “embodied agents” [4–6]. The idea was that of “biological-like
robots”, which learn about their environment and accomplish cognitive tasks through
their bodies, as living systems do. By modeling in these robots the whole range of nat-
ural cognitive processes through an “emergent design”, the goal was the generation of
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increasingly complex cognitive processes by means of combining basic sensory-motor
processes [6]. The novel programmatic idea, we would like to discuss here, makes one
step forward and beyond EAI. It starts from the consideration that hardware robots, even
biological-like ones, miss a fundamental life-like mechanism, i.e., the continuous regen-
eration of their material body via a continuous destruction and reconstruction of its parts.
In accordance with the theory of autopoiesis [7], taken here as the reference theory, we
propose the Wetware EAI: a synthetic study of natural cognitive processes based on the
construction and experimental exploration ofwetware – i.e., chemical – implementations
of the model of the biological organization.

2 Wetware EAI

2.1 From EAI to “Organismically-Inspired Robotics”, “Enactive AI”
and Beyond: A Recap

EAI emerged in the early 90s to overcome the “crisis” of computationalist or classic AI
by focusing on the role of the body in cognition [8, 9]. In the late 90s, while EAI was
already producing effective “adaptive robots”, it became evident that this goal was out of
reach. Pioneers such as Brooks announced that a “fundamental change” was needed, as
EAI’s robots lacked “organizing principles of biological systems” and could not aspire to
their cognitive performances [10]. Related analyses in philosophy of AI prospected the
needed turn as the transition from “organismoid” to “organismic” robots. The referred
shift points to move from artifacts sharing superficial features of natural organisms, such
as anatomical structures, to artifacts sharing the living form of organization, viewed as
the network of functional relations generating living systems’ self-production – their
capability of producing their material identity by themselves, based on metabolism [11,
12]. Dedicated philosophical debate can be divided into two camps: a pessimistic camp,
affirming the impossibility of recreating the biological organization, e.g., [13], and a
proactive camp, engaged in filling EAI’s gap. The latter generated some of the most
interesting EAI’s programs, such as “Organismically-inspired robotics” [14] and “Enac-
tive AI” [15]. Both are (i) inspired by a well-defined theoretical model of the biological
organization, life, and cognition, namely, autopoiesis [7]; (ii) limited to hardware and
software models that implement autopoiesis and its filiation [2, 16], at an acceptable
level of abstraction. Despite their theoretical value, more than ten years after their def-
inition, these programs have not produced concrete organizational approaches in EAI,
that is, approaches grounding their ambition of modeling natural cognition in system-
atic attempts of implementing artificially the biological organization. Indeed, the most
significant recent results in EAI are extensive advances in building organismoid robots.

2.2 Wetware EAI: The General Lines

Our theoretical-experimental research program intends to join the proactive camp of
Philosophy of AI to lay the grounds of a new organizational approach for EAI. As
mentioned, the programmatic idea (wetware EAI) refers to the synthetic study of natural
cognitive processes based on the construction and experimental exploration of wetware –
i.e., chemical – implementations of the autopoietic model of the biological organization
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[7]. It can be properly identified as wetware autopoietic EAI. The program will be
possible thanks to the experimental “platform” provided by Synthetic Biology, Systems
Chemistry, and related approaches such as Molecular Communication, Neuromorphic
Chemical Networks, intended as a set of frontier chemical approaches of reference, with
a specific attention for those dedicated to the construction of “artificial cells” (ACs).

Wetware autopoietic EAI will fill the gap constituted by the missing effective orga-
nizational approach in other forms of EAI. Attempts of grounding modeling of the
biological organization in hardware and software systems cannot generate the required
dynamics we hold as fundamental for actual modeling life and cognition in the physical
(material) domain. Our plan for theoretical and experimental investigations includes: (i)
a theoretical framework of reference, (ii) technical and experimental specifications for
its implementation, (iii) epistemological criteria for assessment, (iv) a detailed descrip-
tion of potential applications, and (v) ethical indications. Current theories of biological
organization have to be used to generate theoretical models implementable in wetware
models. In view of such an implementation, theoretical models have to be used as ref-
erences to determine the technical general lines of their appropriate translations into
chemical models. Moreover, epistemological criteria need to be developed in order to
evaluate the relevance, for the scientific understanding of life and cognition, of the wet-
ware models to be implemented. On these bases, wetware models can be ideated, ana-
lyzed, implemented, and empirically explored for scientific purposes. At the same time,
a library of potential applications should be developed, and the elaboration of related
ethical guidelines to warrant the sustainability of the applicative endeavor should be
included.1 The wetware autopoietic EAI adopts (E)AI’s “understanding-by-building”
method [9, 12], through which it engages in the (bio)chemical fabrication of non-trivial
chemical systems that display at least some of the living or living-like properties of
biological organisms.

2.3 Wetware Modeling of Life and Cognition

Historically, the first attempt of building chemical autopoietic systems has been due to
Humberto Maturana and Francisco Varela, the authors of the theory of autopoiesis, by
means of a project called “molecular protobionts”. This program was based on coac-
ervates made of cedar oil and proteinoids in presence of salts, sand and sugars [19],
but without any significant dynamics (i.e., it just showed the formation of coacervates).
Interestingly, in that report Gloria Guiloff mentioned very clearly that “a molecular pro-
tobiont should not include a permanent component” (p. 119), highlighting the ultimate
feature of the chemical networks that generate autopoietic systems: the precariousness of
the components, which is continuously counteracted by processes for their production.
Said in another way, it is not the structure that counts, even if it is the first thing we might
note, but the underlying processes which keep the system out-of-equilibrium (from the
viewpoint of chemical energy fluxes). However, the processesmust also generate a struc-
ture that is “permanent”, despite and also thanks to the underlying (anabolic/catabolic)
processes.

1 More exhaustive descriptions of the theoretical, technical and applicative aspects of the wet-
ware autopoietic EAI program can be found in, e.g., [12,17]. The epistemological aspects are
thoroughly discussed in [18].
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Some years later, Varela and Luisi proposed that fatty acid-based reverse micelles –
while undergoing some chemical transformations – could be a viable example of chemi-
cal autopoiesis [20]. Itwas a prolific intuition as it has been followedby a series of seminal
studies on micelles, vesicles, and solute filled vesicles [21–23], generally referred to as
synthetic cells, minimal cells, artificial cells (ACs). It should be remarked that these
names can be occasionally misleading because AC complexity is not comparable to the
complexity of biological cells, and ACs, even the most advanced ones which have been
recently built, are not yet alive. Ultimately, however, the research on autopoietic solute-
filled vesicles kicked-off the bottom-up branch of Synthetic Biology in early 2000s, and
some current research lines in Systems Chemistry, as well as the most common branch
of wetware Artificial Life. Around these themes a mature movement involving several
dozens of highly skilled researchers worldwide has gathered.

Two comments come immediately in mind when chemical systems of this sort are
employed and conceived as models of living and cognitive systems. The first refers to
the unique features of chemical transformation, chemical interactions (which are “infor-
mationally open” [24]) and intrinsic self-regulative dynamics (e.g., think, for example,
to the Gibbs free energy principle of minimization in chemical equilibria and to the Le
Chatelier’s principle). With respect to this first aspect, we note that the chemical domain,
made of molecules, supramolecular systems, colloidal structures and reaction networks,
provides an opportunity to construct models of life and cognition in a way that hardware
and software approaches cannot achieve. In particular, wetwaremodels, being physically
embodied and thermodynamically constrained, can undergo physical interactions with
the world in a very permissive manner (only partially achieved in robotics). Wetware
models are open to all sorts of interactions/perturbations. Elements of the environment
can freely alter the course of chemical reactions and, consequently, can elicit adaptive
behavior. Chemical systems (networks of reactions) are intrinsically open to those inter-
actions and can find, possibly, a new dynamical organization in order to accommodate
these perturbations, in an autonomous manner (i.e., plasticity). These features, in turn,
allow the emergence of meanings and suggest how to overcome the symbol-grounding
problem [25, 26], in artificial systems – a well-known fundamental issue in Artificial
Intelligence (AI), and similarly important in AL.

In the virtual domain (e.g., software models), all sorts of interactions are possible,
and they are pre-determined by the designer, even when the outcome of the simulation is
not foreseeable. Constraints, if present, have been set by the designer. Hardware systems
have a body, and for this reason they can have physical interactions with the surrounding
world (e.g., with the ground, with gravity) and with themselves (a robotic arm and a
robotic leg cannot occupy the same space), and must deal with energy issues to allow
movement. However, the macroscopic size of a robot and the materials used for its
construction set limits to the kind of physical interactions the robot can experience.
On the contrary, wetware (chemical) AL models are able to experience all sorts of
physical and chemical stimuli because of their size and to the allowed energy exchanges
at the nanoscale. It has been emphasized that molecular machines are privileged objects
because various forms of energy (thermal, chemical, mechanical, and electrostatic) have
the same order of magnitude [27, 28].
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The second comment is instead about the type of processes that should occur in the
designed and built chemical network. Essentially all current studies focus on ‘anabolic’
reactions, i.e., processes of production of the system components. As highlighted in the
very first report on chemical autopoiesis [19], this constitutes only one part of the story.
The two Janus-like faces of autopoiesis include necessarily anabolism and catabolism,
which must coexist to generate a circularly closed organization. Moreover, only in such
precarious systems it is true that the structure and the out-of-equilibrium state are per-
manent thanks to and despite a continuous component turnover. Moreover, this dynamic
state allows (and needs) self-regulation as a result of inner organization rules (autonomy).
Such conception of simultaneous anabolic/catabolic co-existence (and its major impli-
cation: circular metabolism) is generally not present in current experimental research.
Many studies focus on the capacity of synthesizing some component of the system, such
as DNA, or lipids, or energy-rich molecules. This is acceptable, because research in
the field is still at its infancy, and achieving these syntheses in artificial systems is still
a challenge. However, the core idea behind the autopoietic organization should not be
forgotten.

A notable exception to the generalized interest toward anabolic reactions comes
from a noteworthy 2001 study, not often mentioned, where the synthetic and disruptive
reactions related to fatty acids simultaneously occurred on fatty acid vesicles [29]. The
two opposing reactions were finely tuned in order to run at the same rate, so that the
vesicles could remain as they are (in a homeostatic state) despite a continuous turnover of
their components. Despite its simplicity (and the need of re-investigating this interesting
system, furthering the study with more accurate analyses), this experimental approach to
artificial homeostasis is a beautiful example of structural stability at a higher hierarchical
level (the vesicle) despite the instability of components at a lower hierarchical level. It
is also an example of how out-of-equilibrium processes generate a “structure”, which in
turn allows for the existence of such processes.

2.4 Autopoiesis and Autonomy

While it is true that only a chemical approach matches the requirements for the autopoi-
etic dynamics, contemporary research has also shown that building artificial autopoietic
systems is quite challenging (and not yet achieved, to date). By keeping in mind the
central idea of circularity, an alternative and not less interesting theoretical target is the
concept of autonomy, as expressed and defined by Varela [16]. While in autopoiesis the
processes that generate an autopoietic system are intended as “processes of production
(transformation and destruction)” of the components participating into the autopoietic
dynamics, in the definition of autonomy the specification of “processes of production”
is dropped off, in favor of processes which “recursively depend on each other in the gen-
eration and realization of the processes themselves” (p. 55). However, the processes still
need to “constitute the system as a unity recognizable in the space (domain) in which the
processes exist” (p. 55). A somewhat analogous shift – from autopoiesis to autonomy –
can be found in recent discussions on artificial agency in robotics (“Instead of building
robots that instantiate metabolic processes that self-organize to form autonomous net-
works, the strategy has been to build robots whose sensorimotor processes self-organize
to form autonomous networks” [30]). The analogous goal in wetware autopoietic EAI
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would be minimal forms of chemical autonomy by exploiting AC systems that include,
in their chemical network, multiple entailing steps for a closure organization pattern.

This perspective can suggest new and original directions to generate autonomous
ACs, the latter being potentially less demanding than autopoietic ACs. For example,
it would be possible to refer to processes that entail each other, in closed loops. We
can imagine developing one or more autonomous module(s) to be engrafted in non-
autopoietic ACs. We imagine having sets of reactions (modules) that satisfy the first
condition for minimal autonomy (recursive dependence from each other in order to gen-
erate the processes themselves), while the second condition is met at the containment-
property level (the processes occur inside a system that is physically distinct from the
environment, like an AC). However, a link should be provided to causally join the set of
reactions and the containment-property, e.g., the production of the boundary molecules,
as in early chemical autopoiesis reports from Luisi and collaborators [20–23, 31]. The
autonomous module, in this simplified and tolerant design, could be surrounded and
sustained by other supporting pathways that most follow logics of non-cyclic transfor-
mations. If the demanding conditions for realizing full-fledged autopoiesis are provi-
sionally eliminated, opportunities arise to focus on how to make autonomous moduli
adaptable, plastic, self-regulative.

Examples of “bricks” that could be assembled as individual entailing steps in more
complex networks can be identified in the literature of bottom-up ACs. Now “classic”
investigations, such as the “bioreactor” of Noireaux and Libchaber [32], the Yomo’s
self-encoded Qβ-replicase [33], the Kuruma’s protein synthesis that self-promote its
realization via light-induced ATP generation [34], the Rossi’s enzyme-generated self-
perturbation of membrane curvature and vesicle division [35]; the Sugawara’s enzyme-
generated cooperativeDNAbinding onmembrane and the resultant vesicle division [36],
and others can bementioned. The common traits of these studies are the series of entailing
processes, sometimes spanningmultiple organizational levels, that can serve as bricks for
constructing autonomous ACs or as inspiration sources for self-regulation and adaptive
behavior. They can surely be starting points for further explorations, modifications, and
engineering.

Another clue might come from the translation of “sensorimotor” dynamics from
the hardware to wetware domain. The sensorium layer of ACs can be made of a single
receptor on their membrane, or by an array of receptors. The motoric part corresponds to
the chemical processes that are activated upon receiving signals. These considerations
have inspired us to propose scenarios based on the integration of Synthetic Biology
with neuromorphic engineering: the inclusion of neural network-like circuitries in ACs
[37–39]. Here, practical importance can refer to classification problems (how to behave,
given an environment). Amore intriguing option, related to the concept of autonomy, can
be identified when the results of a neural network computation feedback in the network
(i.e., a recurrent chemical neural network [40]). The latter dynamic is possible because
in chemical systems, as we have emphasized elsewhere [41, 42], the difference between
computer and computed substantially blurs, so that the result of a computation can well
be one of the computing elements itself. A concentration changes for one element in the
chemical neural network, for example, would correspond to a change of the organization
(it is a trivial change, but it does have consequences on the network dynamics).



General Lines, Routes and Perspectives of Wetware Embodied AI 117

3 Social Robotics in the Chemical Domain

One of themost interesting applicative directions ofAC research is related to the capacity
of communication [43, 44] and the construction of artificial or hybrid (artificial/natural)
networks of interacting agents, for example to realize application scenarios such as the
“smart” drug delivery system ones [45]. This is a perspective that displays intriguing
implications for the Philosophy of AI in particular for the similarities they have with
the emerging techno-scientific area called Social Robotics, born at the dawn of the new
millennium from the convergence of frontier fields in Robotics such as Human-Robot
Interaction (HRI), Cognitive Robotics and Social Embodied AI, among others [46].

The application of ACs in the development of hybrid (artificial/natural) networks
of interacting agents offers to Social Robotics an unprecedented opportunity to extend
their groundbreaking lines of development, prolonging them into the chemical domain.
The new scenario that today emerges is that of a Chemical Social Robotics, engaged in
the creation of synthetic and hybrid “nano-cognitive-ecologies”.

In particular, here we would like to offer a preliminary epistemological considera-
tion (see also [47]) of these hybrid ecologies emerging from cross-fertilization between
fields as synthetic biology, systems chemistry, biology, neurobiology, cognitive sciences,
unconventional computation, AI and artificial life.

3.1 Social Robotics

Since its birth, Social Robotics has been engaged in the design and construction of elec-
tromechanical robots capable of interacting through social signals—e.g., gaze, gestures,
emotional expressions, verbal communication. Research on Social Robotics currently
focuses in several directions.

A first one is the creation of robotic agents that communicate with each other through
shared signals and, on this basis, generate robotic social aggregates endowed with novel
cognitive capacities of a collective nature, as occurs in paradigmatic cases of social
insects and, more generally, in social forms of collective intelligence. Another one is the
implementation of social interactions between natural and robotic agents. This is realized
either (i) by creating robotic “social partners” for humans, capable of communicating
with humans through social signals compatible with human ones; (ii) by introducing
more intuitive and effective ways of interacting with robotic platforms destined for a
variety of operational uses. The latter finds a major implementation for the construction
of a “social presence” for robots, that is, appearance and behavioral features apt to
stimulate humans to recognize these machines as agents with whom they can interact
socially.

But a conceptually relevant implication of projects and approaches in social robotics
lies in the development ofmixed (human–robot) “social ecologies”, prospected as hybrid
social contexts in which social collaboration can be established by humans with a variety
of robotic agents, so that humanperformance is improved. Enhancing the human capacity
to solve cognitive tasks based on relations of social coordination with robotic artifacts
is an empowerment often described through wide notions of the cognitive mind (e.g.,
[48]). The concept of distributed mind, directly stemming from the above-mentioned
scenarios, can be defined as a co-evolutionary complex network of human and robotic
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agents that collaboratively coordinate their behaviors based on effective social signaling
to generate (augmented) cognitive performance [49]. To maximize the success of a
hybrid (human-robot) distributed mind, social robotics must be grounded in synthetic
modeling: the incorporation of scientific hypotheses about human social processes into
these robotic artifacts and their behavioral patterns. This adds a significant scientific
interest to social robots, making them synthetic tools to deepen the scientific knowledge
of human sociality based on a specific way of implementing the understanding-by-
building method [50]. In other words, social robots have to be conceived of not only
as artifacts to improve our daily lives but also, and inseparably, as tools serving our
self-knowledge. This latter consideration brings us to extend such a vision to a chemical
Social Robotics and its potentials.

3.2 Chemical Social Robotics

Considering ACs as chemical robot-like agents, among other implications, has the con-
sequence that it is possible, although still in a speculative manner, to conceive them in
a Chemical Social Robotics scenario.

To this aim, it is firstly necessary to imagine a hybrid artificial/natural scenario that
parallels the human/robot one described in Sect. 3.1. The growing interest in developing
communicating ACs perfectly suits this need as it implies the capacity of engineering
ACs that exchange chemical signals between each other or with biological cells. Seen
from this perspective, ACs actually can be conceived as chemical robot-like agents that
can be placed in scenarios as those described above. In particular, ACs that communicate
to each other represent multi-agent systems that generate an overall behavior thanks to
the coordination of individual ACs; while ACs that communicate with biological cells
represent hybrid multi-agent systems where the actions of ACs affect (and are affected
by) biological cells. Moreover, ACs can be conceived, in some cases, as a cognitive
extension of biological cells (think, for example, to ACs that, thanks to specifically
designed mechanisms, can “translate” toxic xenobiotic signals to biochemical signals,
allowing biological cells perceiving, the xenobiotic ones without being directly exposed
to them).

The subject of communicating ACs is one of the most recent ones in synthetic biol-
ogy, currently under intense investigation. In 2012, based on previous reports onACs that
could send chemical signals to bacteria [51], we highlighted the perspective of exploit-
ing gene expression mechanisms to build communicating ACs [52], and indeed several
studies have confirmed this capability. Similar ideas have been developed by scholars
in the community of “Molecular Communication” (MC), a sub-field of communication
engineering initiated by Tadashi Nakano and collaborators in the early 2000s [53]. In
the latter field, high relevance is given to the application of information and communi-
cation theories, à la Shannon, to chemical signaling, and therefore to ACs. The interest
of the communication engineering community for application has led to a concept that
fits well with the hybrid artificial/natural network we have envisioned here. In particu-
lar, it has been imagined that a network of “nano-machines” (artificial and biological)
will come into existence when (and if) it will be possible to finely control molecular
communication inside the human body – for medical applications. The evocative term
for such a network is “Internet of Bio-Nano Things” (IoBNT, [54]), and represents a
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long-term goal of bioengineering, based on these new (unconventional) mechanisms of
information transfer and information processing.

From our viewpoint, we recognize the importance of practical applications and the
utility, in some contexts, of adopting the usual engineering perspective, the IoBNT is
first of all a platform that offers AC research an unprecedented opportunity: extending
the theoretical approaches currently developed (and under development) of (electrome-
chanical) Social Robotics into the chemical domain (chemical Social Robotics). The
new scenario we are referring to is based on the creation of synthetic and hybrid nano-
cognitive ecologies grounded in effective forms of signaling—communication. Thewide
range of potential and incipient applications of ACs in the IoBNT, as described else-
where [47], expresses well the need of a vast, programmatic work of developing new or
augmented technological functionalities.

The cross-fertilization between ACs and a IoBNT scenario opens the possibility of
exploring, at the nano-level, natural cognition and, more specifically, social cognition
based on a new application of the understanding-by-building method. Deepening our
understanding of social cognition, down to the cellular/artificial cellular level, will be
possible by synthetically reconstructing and studying the involved nano-mechanisms so
as to identify the transition from non-cognitive to minimally cognitive processes, and
from non-social to minimally social processes. These open questions will be faced by
crucial attempts, like those aiming at nano-forms of distributed organizations capable
of accomplishing social cognitive tasks based on behavior coordination grounded in
effective signaling. As in electromechanical Social Robotics, chemical Social Robotics
also requires an active effort to orient its development toward sustainability involving
the constitution of partnerships in the form of effective communications and collabora-
tions between disciplines, aiming to create a positive interplay between the processes of
knowledge generation through these new techno-scientific developments.

4 Concluding Remarks

The wide range of potential and incipient applications of ACs for EAI, Artificial Life,
Synthetic Biology suggest the emerging option of a vast, programmatic work of design
of forms of chemical systems as models of natural processes (life, cognition). Mostly,
these perspectives are generated by focusing on reference organization theories such
as the autopoiesis, and via a productive cooperation between artificial, or artificial and
natural, interactive systems. The employment of ACs in basic and applied fields (such as
the IoBNT) opens the possibility of exploring, at the nano-level, natural cognition, and,
more specifically, social cognition, based on a new application of the understanding-
by-building method. The range of potential scientific developments is broad, including
(i) the transition from non-cognitive to minimally cognitive processes, and from non-
social to minimally social processes, and (ii) the construction of wetware autonomous
systems in an Artificial Life context, (iii) the reconstruction and the study of nano-forms
of distributed organizations capable of accomplishing cognitive tasks based on behavior
coordination grounded in effective signaling.
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Abstract. Transmembrane G-protein coupled receptors (GPCRs) are
ideal drug targets because they resemble, in function, molecular micro-
processors for which outcomes (e.g. disease pathways) can be controlled
by inputs (extracellular ligands). The inputs here are ligands in the extra-
cellular fluid and possibly chemical signals from other sources in the cel-
lular environment that modify the states of molecular switches, such as
phosphorylation sites, on the intracellular domains of the receptor. Like
in an engineered microprocessor, these inputs control the configuration of
output switch states that control the generation of downstream responses
to the inputs.

Many diseases with heterogeneous prognoses including, for example,
cancer and diabetic kidney disease, require precise individualized treat-
ment. The success of precision medicine to treat and cure disease is
through its ability to alter the microprocessor outputs in a manner to
improve disease outcomes. We previously established ab initio a model
based on maximal information transmission and rate of entropy pro-
duction that agrees with experimental data on GPCR performance and
provides insight into the GPCR process. We use this model to suggest
new and possibly more precise ways to target GPCRs with potential new
drugs.

We find, within the context of the model, that responses downstream
of the GPCRs can be controlled, in part, by drug ligand concentration,
not just whether the ligand is bound to the receptor. Specifically, the
GPCRs encode the maximum ligand concentration the GPCR experi-
ences in the number of active phosphorylation or other switch sites on
the intracellular domains of the GPCR. This process generates a memory
in the GPCR of the maximum ligand concentration seen by the GPCR.
Each configuration of switch sites can generate a distinct downstream
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response bias. This implies that cellular response to a ligand may be
programmable by controlling drug concentration. The model addresses
the observation paradox that the amount of information appearing in
the intracellular region is greater than amount of information stored in
whether the ligand binds to the receptor. This study suggests that at least
some of the missing information can be generated by the ligand concen-
tration. We show the model is consistent with assay and information-flow
experiments.

In contrast to the current view of switch behavior in GPCR signaling,
we find that switches exist in three distinct states: inactive (neither off
nor on), actively on, or actively off. Unlike the inactive state, the active
state supports a chemical flux of receptor configurations through the
switch, even when the switch state is actively off. Switches are activated
one at a time as ligand concentration reaches threshold values and does
not reset because the ligand concentration drops below the thresholds.
These results have clinical relevance. Treatment with drugs that target
GPCR-mediated pathways can have increased precision for outputs by
controlling switch configurations. The model suggests that, to see the
full response spectrum, fully native receptors should be used in assay
experiments rather than chimera receptors.

Inactive states allow the possibility for novel adaptations. This
expands the search space for natural selection beyond the space deter-
mined by pre-specified active switches.

1 Introduction

Protein receptors that span the cell membrane are molecular microprocessors
[20]. They gather information from outside the cell and process and transmit
the information to the intracellular space, where it is directed to chemical path-
ways that lead to cellular response to extracellular conditions. The molecular
microprocessors are programmed by natural selection and chemical conditions
within the organism. For disease control, the programming is achieved mostly
through the directed application of drugs. It requires higher-resolution drug tar-
gets and increased understanding of the effects of high-resolution drug targeting
[2].

The most important class of these transmembrane receptors, both scien-
tifically and medically, are the G-protein coupled receptors (GPCRs). More
than 30% of all prescription drugs target GPCRs [18]. The advent of preci-
sion medicine has increased the importance of understanding how information
can be controlled at higher levels of resolution. As an example, the hormone
angiotensin II increases blood pressure and prolonged hypertension drives dia-
betic kidney disease (DKD). Renin angiotensin system inhibitors (RASi), such
as angiotensin converting enzyme inhibitors (ACEis) and angiotensin II recep-
tor blockers (ARBs) block the formation and action of angiotensin II and lower
systemic blood pressure. Interestingly, when compared with other antihyper-
tensive agents, ACEIs and ARBs stabilize kidney function at the same level of
achieved blood pressure better than conventional antihypertensive therapy [22].
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This suggests that angiotensin II also operates in other processes [2,13]. Indeed,
the angiotensin receptor and other G-protein coupled receptors can trigger dis-
tinct multiple downstream responses that depend on the cellular environment
[6,11,17] and thereby may lead to heterogeneous disease progression and effect
of therapy.

As the angiotensin example illustrates, the era of precision medicine requires
much higher resolution drug targeting to reduce the heterogeneity of disease pro-
gression. This requires a better understanding of the details of how the information
is processed by GPCRs. Recent attempts [6] at making progress on this ambitious
goal have relied on teleonomy, the imparting of goals to natural selection. In this
case, a model was developed that imparted goals of maximal rate of energy pro-
duction and information transmission. In this study, we use the model developed
in [6] to improve the resolution of GPCR information processing and increase our
understanding of how this resolution can be used to program the molecular micro-
processors to individualize patient treatments for improved prognosis.

Information is a type of entropy [5,7,10,21]. Systems in equilibrium are those
in which entropy is maximized and entropy flow is zero. Systems in equilibrium
are not alive. Living systems are those in which entropy, and hence information,
flows. Entropy flow can occur, for instance, when a chemical concentration is far
from its equilibrium value as is the case with adenosine triphosphate (ATP) in
biological systems. Entropy and information flow can also occur in the presence
of spatial gradients such as those found at cell membranes. Both types of entropy
flow are important in this study. Figure 1A illustrates a case in which information
flows across a cell membrane. Figure 1C illustrates an active phosphorylation
switch in which a chemical flux is driven by excess of ATP.

Information contained in the extracellular space is transmitted to the intracel-
lular space by receptors (Fig. 1A). Ligands, such as hormones, auxins, nutrients,
neurotransmitters, and many other molecules in the extracellular fluid, announce
their presence to the cell by binding to extracellular domains of the receptor and
allosterically altering the intracellular properties of the receptor. The intracellular
changes in the receptor effect the cell’s response to the ligand stimulus. In many
cases, the extracellular changes take the form of phosphorylated and unphospho-
rylated sites on the C tail of the receptor protein (Figs. 1B and C) [11]. The sites
form a barcode that is read by intracellular processes that respond to the infor-
mation in the code [3,4,11,23–26]. Other receptor conformations are possible but
the barcode process described here is a good representative exemplar.

A number of questions emerge. How is the barcode programmed? In other
words, which sites are phosphorylated and which are unphosphorylated? How
many active sites, or switches, are there? How is the phosphorylation state of the
barcode changed? What determines the number of active phosphorylation sites
and how is that number changed? The issue is that any set of molecules that store
information, as does the barcode, must be stable to thermal and other fluctua-
tions [19]. Yet, rearrangement of the barcode must be possible. Since many phos-
phorylation sites may be present, this requires a significant amount of energy to
effect a global change. Typically sites are phosphorylated and dephosphorylated
by catalyst kinases and phosphatases, respectively. How can both kinases and



126 R. D. Jones and A. M. Jones

Fig. 1. A. A ligand binds to the extracellular domains of a receptor that spans the cell
membrane. A number of phosphorylation sites occupy the C tail of the receptor. Some
of the sites are inactive (not shown); some are active and phosphorylated (designated
by P); and some are active and unphosphorylated. Phosphorylated sites are designated
on, while unphosphorylated states are designated off. The site labeled G is a GTPase
switch found in G-protein coupled receptors (GPCRs). B. An inactive PdPC switch.
Every physical path from unphosphorylated (off) to phosphorylated (on) has a micro-
scopically reversed path. The chemical flux in the forward path is equal to the flux in
the microscopically reversed path. The flux is in detailed balance and the reaction is in
equilibrium. C. An active PdPC switch. The reactions in a forward circular direction
have significant chemical flux J0 and are catalyzed by kinases and phosphatases. The
microscopically reversed pathways in the opposite direction have negligible flux and
are not displayed. The switch is driven far from equilibrium by the flux J0.

phosphatases act in global concert to change the information content across an
entire barcode of several phosphorylation switches?

This study attempts to address some of these questions. Our approach
is grounded in recent theoretical work [6] fitting biochemical data [17], site-
directed spectroscopy observations [11], molecular dynamic simulations [11] and
information-flow measurements [9]. Our approach differs from the mass-action-
driven modeling approaches on signaling bias, e.g. [1], thus it may be unfamiliar
to some due to its new approach and its heavy reliance on non-equilibrium ther-
modynamic principles. However, the fundamentals of the original model are well
described by [6]. Therefore, we only introduce here some of the relevant features
of the approach in Figs. 1 and 2. The new findings are illustrated and supported
by data in Table 1 and Figs. 3 and 4. Briefly, we show that in addition to infor-
mation for output (e.g. effector coupling, MAPK cascading, gene expression)
induced by ligand binding to the GPCR, the dynamics of ligand concentration
presented to this receptor, both concentration and time, provide information
that is transmitted to downstream responses. Consequently, new drug presenta-
tion strategies may provide an additional tool in targeting GPCRs for disease
control.
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2 Approach and Results

2.1 Relation Between Ligand Concentration and Number of Active
Phosphorylation Sites

We build on the study in [6]. That work used maximum entropy production
along with maximum information storage and transfer to generate the bag-of-
independent-switches (BOIS) model picture, which imposes a number of con-
straints on the barcode. The model predicts that three switch configurations
are possible, on, off, and inactive and that the phosphorylation sites (switches)
are effectively uniform, except for a small number of differences that divide
the switches into the three configurations. Active switches are distinguished
from inactive switches in that active switches support a finite chemical flux
through the switches [16], while inactive switches have zero flux Fig. 1B and
C). Active switches are divided into phosphorylated (on) and unphosphorylated
(off) sites. The chemical flux in active switches serves as a local energy/heat
source that drives the process. The basic exemplar switch is a phosphorylation-
dephosphorylation cycle (PdPC) [16] displayed in Fig. 1B for the inactive switch
and Figure C for an active switch. The number of switches N , in this case, is
equal to the number of phosphorylation sites on the C tail. The receptor con-
centration is designated RT .

For a receptor that has never been exposed to a particular ligand, all switches
in the barcode are inactive with no chemical flux. As ligand concentration
increases, the switches activate one at a time (Fig. 2). The first switch activates
when the receptor concentration reaches an experimentally accessible [17] refer-
ence concentration of Rref = RT /N that is independent of the type of ligand
or the ligand concentration [6]. As ligand concentration increases, the switches
activate one-by-one until all N switches are activated. If the ligand concentration
is then reduced, the switches that have been activated do not deactivate. This
is conceptually similar to a ratchet and pawl that ratchets to a higher number
of activated states (Supplement A.1).

According to the BOIS model, the maximum concentration L∗ that the ligand
reaches, the total number N of switches, and the number M of activated switches
obey the relationship (Supplement A.2)

RL

Rref
=

L∗

KD + L∗ (N − M) < 1 (1)

where KD is the ligand/receptor dissociation constant. Equation 1 is a constraint
on the number of activated switches M . If the ligand concentration is very large,
Lmax � KD, then all the phosphorylation sites are activated, M = N . If the
receptor has never encountered the ligand, L∗ = 0, then the arguments of Sup-
plement A.2 indicate that no switches are activated and M = 0. The predicted
value for M is the minimum value of M for which the inequality Eq. 1 is true.
This can be written

M = floor
[
(N + 1)

L∗

KD + L∗

]
(2)
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Fig. 2. ratchet. A. Early time, low ligand concentration. The ligand-bound core con-
centration RL = 0. The concentration of active switches RA = 0 All switches are
inactive (I). B. As ligand concentration increases, the ligand-bound core concentra-
tion RL approaches the reference concentration Rref . C. When the ligand-bound core
concentration RL equals Rref , the core concentration RL goes to zero and the concen-
tration RA of active switches goes to Rref . D. The process repeats until the number M
of active switches is equal to the number pf phosphorylation sites N . At any given time
the concentration of active switches is RA = M Rref . The number of active switches
M does not decrease when the ligand concentration decreases.

where floor chooses the largest integer less than the argument. When the maxi-
mum ligand concentration is zero, M = 0. When the argument of floor becomes
slightly greater than one, then M = 1. When the maximum ligand concentra-
tion becomes very large, then M = N . The ligand concentrations L(M) at which
switch M turns on is determined by

M = N
L∗(M)

KD + L∗(M)
(3)

The quantity L∗(M) can be approximated by the half-maximal effective concen-
tration EC50(M) for switch M . This prediction is consistent with observations
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that significant downstream response can be observed even when a significant
fraction of receptors are not engaged causing EC50 values to be potentially much
smaller than the value of the dissociation constant KD [27].

We see from Eq. 2 that an approximation of the value of the largest ligand
concentration the receptor has encountered is coded into the number of active
switches, according to the BOIS model. The amount of information per bit IM

stored in this manner is (Supplement A.2)

IM = log2
N !

(N − M)!
(4)

where M is given by Eq. 2. The BOIS model thus provides a mechanism for
encoding and transmitting information related to extracellular ligand concen-
tration. The maximum information IB stored in the binding of ligand with the
receptor is

IB = log2 2 = 1 bit (5)

Therefore, the amount of information we have identified in the extracellular fluid
that can be transmitted to the intracellular fluid is the sum of Eqs. 4 and 5. This
extra information about the maximum ligand concentration may contribute to
the observed excess transmitted information [9].

2.2 Application to G-Protein Coupled Receptors

An important GPCR feature, in the context of this study, is that, in addition to
the barcode on the C tail, there is a GTPase switch [16] that activates particular
downstream responses to ligand stimuli [14].

The BOIS model predictions of the previous section can be compared with
GPCR assay observations [17]. The results are summarized in Table 1 and Fig. 3.
The assays examined the response in two receptors, adrenergic and angiotensin,
when tested with several ligands. The responses in two downstream pathways
were measured, the response to the Gα GTPase switch turning on and the
response of the recruitment of β arrestin (βarr) to the C tail barcode of the
receptor GPCR [12]. The βarr is thought to be a scaffold for other responses
mediated by the barcode [12]. To reduce noise, the C tails of the light recep-
tors in the assay were replaced with C tails of the vasopressin. Receptors with
this alternate tail are known as chimeric. While the βarr recruitment site was
preserved, the remaining phosphorylation sites on the C tail may not have been
preserved on the chimeric-receptor tail.

The ligand concentration was slowly increased from 0 molar to a concen-
tration at which the response was saturated. It was found that the maximum
response was approximately equal to a common reference concentration Rref for
each receptor in agreement with the BOIS predictions [6]. This can be seen in
Fig. 3C and D where the maximum values of the response concentrations normal-
ized to Rref are found at the corners, (00), (10), (01), and (11), of a hypercube.
Moreover, the switches turned on one at a time also as indicated by the BOIS
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Table 1. Summary of Assay Data. Two receptors were tested with several ligands.
The detailed results and the ligands are given in the Supplement and reference [17].
The purple row is for those outcomes in which both the Gα and the βarr recruitment
switches are turned on by the ligands. The red cells indicate assays in which the Gα

switch is turned on by the ligands, but the βarr recruitment switch is off. The blue
cells indicate assays in which the Gα switch is turned off by the ligands, but the βarr
recruitment switch is on. The yellow cell indicates a ligand that did not turn on either
the Gα or the βarr switch. The Gα column indicates the mean logarithm of the molar
ligand concentration at which the Gα switch turns on. The βarr column indicates the
concentration at which the βarr switch turns on. An X indicates that the switch did
not turn on. The Order columns indicate the order in which the switch turns on as
ligand concentration increases. We see, for balanced ligands, that the second switch
turns on at a ligand concentration approximately one order of magnitude higher than
the concentration at which the first switch turns on. For the biased ligands, the order
of the switch turning on is determined by comparison with the concentrations of the
balanced ligands. For example, the biased Gα ligands are determined to be the second
switch turning on by noting that the concentration -7.76 for the biased turn on is
approximately equal to -7.95, the concentration of the second switch to turn on for the
balanced ligands.

Adrenergic Angiotensin II
Order Gα Order βarr Order Gα Order βarr

Bal 1st -9.44 2nd -7.95 Bal 1st -8.06 2nd -7.14
Bias 2nd -7.76 X Bias X 2nd -6.86
None X X

model (Table 1, Fig. 3A and B). In the case we have here in which the ligand con-
centration of the second switch is much greater than the ligand concentration of
the first switch, then, from Eq. 2, the dissociation constant KD is approximately
the L∗(1) = EC50(1) of the first switch, which is given in Table 1 as 10−9.44 M
for the adrenergic receptor and 10−8.06 M for the angiotensin II receptor. This
implies, from Eq. 3, that the total number N of switches is

N = 2 (6)

This means that the experimenters [17] observed all the states in the two recep-
tors that were affected by the increasing ligand concentration. Moreover, it
implies that the replacement of the adrenergic and angiotensin II C tails with
vasopressin tails did not preserve the ability of the barcode to trigger responses
other than βarr recruitment.

From Eq. 4, we see that two bits (2 log2 2) of information is transmitted across
the cell membrane to the intracellular space.

The BOIS model predicts that these receptors are able to detect if a ligand
is attached and whether the ligand concentration is greater than or less than the
half maximal effective concentration EC50(1) for the first switch.

Four distinct responses were observed, a balanced response to the bound
ligand in which both the Gα switch and the βarr recruitment switch turn on
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Fig. 3. A. Adrenergic Receptor with Formoterol as Ligand. Here, L is the ligand con-
centration. The theory is displayed in red. The dashed line is the simulation of the
activation of the first switch. The dotted curve is the activation of the second switch.
The yellow markers are the observed assay dose response for the Gα pathway. The cyan
markers are the observed assay dose response for β arr. B. Angiotensin II Receptor
with Angiotensin II as Ligand. C. Bias Plot for All Ligands for Adrenergic Receptor
(see Table 1). The simulation results are displayed in red. Note that some ligands are
Gα biased; their endpoints lie close to the Gα axis. Other ligands are balanced; their
endpoints lie at (1,1). No β arr bias is seen in this set of ligands. D. Bias Plot for All
Ligands for angiotensin II Receptor. This plot illustrates balanced bias and β arr bias.
For balanced bias the first switch is the GTPC and the second switch is the PdPC
that activates arrestin recruitment. For β arr bias, the GTPC is not activated. The
BOIS model predicts that the first ACTIVATED is a PdPC that is not observed. Here,
Gα bias is only seen for ligand concentrations that are associated with sub-maximal
response.

(purple row in Table 1), a situation in which just the Gα switch turned on (red
cells), a situation in which just the βarr switch turned on (blue), and a situ-
ation in which no switches turned on (yellow). For the balanced ligands, both
switches are seen to activate, first the Gα switch and then the βarr recruitment
switch (Fig. 4). The first switches to activate in the case of biased ligands is now
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Fig. 4. BOIS interpretation of bias data. Ligands can be classified by whether the
response is balanced or biased. The upper curve is the response for balanced ligands.
The lower curve is the response for biased ligands. The system supports two switches
that activate sequentially. For low initial values of ligand concentration, all switches are
inactive. As ligand concentration increases, the first switch is activated. For balanced
ligands, the first switch observed to be activated is Gα, while for biased ligands the
first switch can be either Gα A. or βarr B.. For biased ligands, the first switch is
activated in the off state. For the adrenergic receptor A., The Gα switch does not
need to be activated in order to activate the βarr switch into the off state for biased
ligands. After the first switch activates, but before the second switch activates, half the
switches are active and half are inactive. As ligand concentration increases further, the
second switch activates activating the βarr recruitment pathway for balanced ligands
and the remaining inactive pathways for the biased ligands. Note that the BOIS model
predicts that if the ligand concentration is lowered from its maximum that the activated
switches do not deactivate. Therefore, the number of active switches is a measure of
the maximum ligand concentration.

observed, however. The adrenergic receptor responds with Gα response when
the second switch activates, while the angiotensin II receptor responds with the
βarr recruitment response when the second switch activates.

The BOIS model predicts that, for biased ligands in these observations, the
first switch is activated, but set to the off state. In other words, the switch sites
are absorbing energy and dissipating heat but they are in the off position. This
means, for example, that if the switch is a phosphorylation site, it is active and
generating chemical flux through the site but the site spends most of its time
unphosphorylated and not activating downstream response.

The BOIS model predicts that, for the one ligand that displayed no response,
the switches may have been activated but they were in the off state.
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3 Discussion

This study starts from an abstract model, the BOIS model [6] that was built on
the assumptions of maximum rate of entropy production and maximum storage
and flow of information. To validate the model with experiment, the BOIS model
was specialized in [6] to address information flow in GPCRs. The process of this
specialization was continued in this study and further hypotheses were gener-
ated that were compared with assay observations of [17] and information-flow
experiments [28].

Specifically, switches can exist as phosphorylation sites on the C tail or on
the GPCR or they can exist as GTPase switches on the core of the receptor. The
switches can exist in three distinct states [6], inactive, active/on, and active/off.
Active states are distinguished from inactive states in that active states support
a chemical flux of receptor states through the switches while the inactive states
have zero flux. For switches in the on state the receptor spends most of the time
in the phosphorylated state in the case of phosphorylation switches. In the off
state, the receptor spends most of the time in the unphosphorylated state.

Each active switch associates with a quantum of the total receptor concen-
tration equal to Rref = RT /N where RT is the receptor concentration and N
is the number of switches. This is true for both inactive and active switches [6].
This is a collective process. Each switch has a local property Rref affected by a
global quantity N , which is non-local. It is not clear how an individual switch
gains access to how many switches, active and inactive, there are.

The switches are activated one at a time in units of Rref as ligand concentra-
tion increases from an initial zero value and assuming all switches in the receptor
are inactive. Therefore N is the total number of switches than can be activated.
Whether a switch is in the on state or to the off state seems to be determined
at activation. If a switch becomes activated, then it remains active if the ligand
concentration drops. Therefore, the number of active switches is a measure of
the maximum concentration the receptor has experienced. The expression for
this is given in Eqs. 3 and 4.

These predictions are consistent with experimental observations that signifi-
cant response can occur when only a small number of total receptors are engaged
with active switches [27]. They also suggests that observations that do not use
chimeric-receptor C tails may be of importance. Chimeric-receptor tails were
used to reduce noise, but the model predicts that the only switches available in
assay experiments [17] were the βarr recruitment switch and the Gα switch when
chimeric-receptor tails were employed. One expects many more phosphorylation
switches [11]. This hints that the native C tails had relevant phosphorylation
sites that did not appear on the chimeric-receptor tails. This suggests that the
some of the noise that was eliminated by the chimeric-receptor tails was actu-
ally signal. If one redoes the assay experiments with native tails and measures
more than two downstream responses, then the model predicts a series of signal
switches that turn on sequentially and that the EC50s of those switches would
be closer together.
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The amount of information transmitted through the membrane, Eq. 4, from
the ligand concentration can account for some of the information found missing
in information flow measurements [28]. In the observations, two bits or more of
information was observed transmitting through the membrane, but if the only
source of the information was whether the ligand was bound or not to the recep-
tor, then only one bit, at most, was available to be transmitted. This suggests
that there might be information other than simple binding that is associated
with the ligand. At least some of the missing information seems to originate
with the value of the ligand concentration.

Comparison of the BOIS model with assay experiments [17] indicates that
the first switch that is activated may be either a Gα switch or a βarr switch for
biased ligands (Fig. 4). For the two receptors observed, the first switch was Gα

for balanced ligands and the second switch was for βarr recruitment. Bias may be
determined at the time of switch activation. Our small observational sample [17]
suggests that the first state activated is activated to the off state and determines
the bias, at least in the case of a small number of switches (N = 2).

This picture differs from the canonical model of GPCR activation [15]. In
that model, the Gα switches activates and turns on first. Subsequently, the βarr
switch activates and turns on. Somewhat surprisingly, for the adrenergic receptor
in this study coupled with the assay study [17], the Gα switch does not need
to be activated in order to activate the βarr switch into the off state for biased
ligands. Within the context of the BOIS model and the assay experiments [17],
the βarr switch is first to activate, but it is turned off. The Gα switch may
be turned on after the βarr recruitment switch, but the mechanism for this is
currently unclear. These observations may also be affected by the information
lost in the chimeric-receptor tail.

These results suggest some options for programming the receptor micropro-
cessors with drugs for application in precision medicine. The new information in
this study relates to the importance of ligand concentration in determining the
downstream response.

In addition to ligand type, downstream response seems to be determined
by the ligand concentration. Ligand concentration determines the number of
active switches and the downstream response. Presumably there is a different
downstream set of responses for each value of the number of active switches. Bias
is determined by first switch activated. Ligand selection indicates that ligands
determine the Gα pathway and the βarr pathway.

This study indicates that bias can be determined at the time that switches
are activated. It is still not clear, however, if or how switch states can be altered
between on and off after the switch is activated. Altering switch states at this
level is a competition between the longevity and stability requirements for useful
information and the need to be able to change the states for adaptability [19].

The observation that a biological switch can have three possible states rather
than the two in a Boolean world leads to implications for adaptability. The
switches in inactive states are switches that can be either on or off when acti-
vated. They represent the possibility of future information encoding for unknown
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future cell responses. The possible information in the barcode is no longer con-
strained by the number of active switches that are definitely in on and off states.
The number of potential barcode configurations has increased significantly over
the number encoded by on and off. This concept of increasing the size of the
available search space to respond to future unknown events has been dubbed
adjacent possibility [8] and has been suggested to be a necessary requirement for
natural selection.
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ous molecules. Furthermore, we study the rich behavior of a randomly
generated instance containing an autocatalytic metabolism, in which
molecules are created by ligation processes and destroyed by cleavage
processes and vice versa or generated and destroyed both by ligation
processes.

Keywords: Kauffman model · origin of life · chemical evolution · Fick
diffusion · autocatalytic set

1 Introduction

Over the past decades, the Kauffman model [11–13] has been intensively studied
[7,9,10,21]. It deals with one of the basic questions of the origin of life [14] how
macromolecules could be created via chemical evolution. As a possible answer,
it proposes the emergence of autocatalytic sets in which some molecules are able
to mutually catalyze each other’s formation and which are self-sustaining if some
food source in the form of monomers or small oligomers is provided. The basic
condition for the production of macromolecules from an autocatalytic set is that
the framework of catalyzed ligation and cleavage reactions forms a graph which
in principle allows the production of the desired macromolecules [8]. This condi-
tion is necessary but not sufficient. Also the dynamics has to be considered as e.g.
in the work of Bagley and Farmer [1]: They define an autocatalytic metabolism
(ACM) as a coupled set of catalyzed reactions which lead to permanent concen-
trations pi(t) for the various molecules i that significantly depart from values one
would obtain without catalysis. Füchslin et al. [5] simulated the Kauffman model
in one container: They chose appropriate values for the occurrence of catalyzed
cleavage and ligation reactions, started off with pi(t = 0) = 1 for all molecules,
allowed only an inflow of two constituent monomeric molecules, and measured
probabilities for the occurrence of an ACM and the sizes of the ACM by having
a look at the final values of pi for the non-monomeric molecules. If at least one
of them was larger than a proposed threshold, an ACM existed in their system.

In nature, one will find that catalyzed reactions are often only performed
under some specific conditions, as e.g. enzymes only work in specific pH ranges.
We assume that these specific conditions which change spatially might increase
the probability for the existence of autocatalytic sets leading to macromolecules
required for more complex forms of life. In order to make a first step in inves-
tigating this assumption, we extend the work by Füchslin et al. [5] to a system
comprised of two containers: In one container, only catalyzed cleavage reactions
shall be performed, in the other container, only catalyzed ligation reactions.
Both containers are connected, such that molecules can diffuse into the other
container depending on the concentration difference and the diffusion constant.
This paper is organized as follows: We describe in general our extended model
with spatially separated ligation and cleavage reactions in Sect. 2 and provide
the simulation details for its application to a system of copolymers in Sect. 3.
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Computational results for two randomly generated instances, one of them con-
taining an ACM and the other displaying no ACM, are discussed in Sect. 4,
before a conclusion and an outlook to future work is given in Sect. 5.

2 Extension of the Kauffmann Model

Based on the statements above, we now extend the model to a system with
multiple containers. We thus deal with unnormalized densities pi,j annotated
with two indices, where the first index i denotes as before the number of the
corresponding molecule and the new second index j denotes the number of the
container. The time evolution of pi,j is described by a set of differential equations.
The total derivative dpi,j/dt subsummizes the various temporal changes of pi,j(t)
imposed by different processes.

2.1 “In-Out” Processes

As most basic processes, we assume a constant inflow ki,j,in and an outflow which
depends linearly on the density pi,j with a factor ki,j,out in each container:

(
dpi,j

dt

)
in−out

= ki,j,in − ki,j,out × pi,j (1)

For these “in-out” processes, we consider the system of various containers as
homogeneous, i.e., we set the k-parameters to the same values for all containers.
Furthermore, we set all outflow-parameters for the various molecules to the same
value. Second, we want to have the same amount of inflow for two constituing
molecules with indices i = 1 and i = 2 only, all other molecules shall be created
through ligation and cleavage processes. Thus, we have

ki,j,out ≡ kout > 0 and ki,j,in ≡ ki,in =

{
kin > 0 for i = 1, 2
0 otherwise

. (2)

In the absence of other processes, these in-out processes would converge to an
equilibrium in which

(pi,j)in−out−equ =

{
kin
kout

for i = 1, 2

0 otherwise
(3)

in all containers, to which also systems with reactions but no ACM converge.
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2.2 Cleavage and Ligation Processes

A ligation process is simply given by
α + β −−→ γ

and the corresponding cleavage process by
γ −−→ α + β .

As already mentioned above, reactions enabled by catalyst molecules are con-
sidered within the Kauffman model. Let R be the set of possible reactions and
R = |R| be their number. Then, for cleavage reaction r, there is a set K(r) con-
taining K(r) = |K(r)| catalyst molecules κk(r), k = 1, . . . , K(r), each of which
is able to catalyze the reaction

γ(r)
κk(r)−−−→ α(r) + β(r) .

Thus, for the cleavage reactions, we get the addend

(
dpi,j

dt

)
cleavage

= kj,C ×
R∑

r=1

pγ(r),j

(−δi,γ(r) + δi,α(r) + δi,β(r)

) ×
K(r)∑
k=1

pκk(r),j

(4)
with the Kronecker symbol

δi,x =

{
1 if i = x

0 otherwise
(5)

and the cleavage parameters kj,C relating the cleavage processes to the in-out
processes.

Note that in the special case that there are no catalyst molecules for some
cleavage reaction r̃, such that the reaction cannot be performed, the set of cata-

lyst molecules is empty, K(r̃) = 0, and
0∑

k=1

· · · = 0, such that this reaction does

not contribute to the derivatives of the densities.
Analogously to the cleavage reactions, for each ligation reaction r, there is a

set L(r) containing L(r) = |L(r)| catalyst molecules λl(r), l = 1, . . . , L(r), each
of which is able to catalyze the reaction

α(r) + β(r)
λl(r)−−−→ γ(r) .

Thus, for the ligation reactions, we get the addend

(
dpi,j

dt

)
ligation

=

R∑
r=1

kα(r),β(r),j,L×pα(r),j×pβ(r),j

(
δi,γ(r) − δi,α(r) − δi,β(r)

)×
L(r)∑
l=1

pλl(r),j

(6)
with the ligation parameters kα(r),β(r),j,L. The reason behind making the liga-
tion parameters depending on the molecules is the insight that if two different
molecules get into close enough contact for a reaction, their corresponding end
monomers must get into contact. For simplicity, we define

kα,β,j,L =
kj,L

Λ(α) × Λ(β)
(7)
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with constant ligation parameters kj,L and Λ(α) and Λ(β) being the lengths of
molecules α and β, rsp., which we define as the numbers of monomers in the
molecules.

The dependency of the cleavage and ligation parameters kj,C and kj,L on the
index j of the container allows us to separate cleavage and ligation processes
spatially as intended:

– If we intend to have only cleavage processes in some specific container ĵ, then
we set kĵ,L = 0 and kĵ,C to some non-vanishing value.

– Analogously, if we intend to have only ligation processes in some specific
container j̃, then we set kj̃,C = 0 and kj̃,L to some non-vanishing value.

2.3 Consideration of Finite Energy Amounts

In [5], the authors extend the Kauffman model by introducing an energy consid-
eration: For many cleavage and ligation reactions in nature, an activation energy
is required. However, the available amount of energy is rather limited. So far,
the formulas (4) and (6) assume an infinite amount of energy or at least a large
and renewable amount of energy which provides no obstacle for the reactions to
be executed.

In order to include energy restrictions, a further variable εj is introduced for
each container j, with εj(t) denoting the amount of energy available at time t
in container j. In order to consider the energy, the right sides of Eqs. (4) and
(6) need to be multiplied with εj and a further differential equation has to be
added,

(
dεj

dt

)
total

= kE,j − kE,j,out × εj

− εj × kj,C ×
R∑

r=1

pγ(r),j ×
K(r)∑
k=1

pκk(r),j

− εj ×
R∑

r=1

kj,L

Λ(α(r)) × Λ(β(r))
× pα(r),j × pβ(r),j ×

L(r)∑
l=1

pλl(r),j

(8)

with the energy inflow kE,j , which we choose identical for all containers, i.e.,
then kE,j ≡ kE , and the outflow rate kE,j,out, which we set identical with the
corresponding parameter for all molecules, i.e., kE,j,out ≡ kout.

2.4 Diffusion Processes

So far, we only considered processes taking place separately in each container,
such that we only have a set of separate containers up to now. But now, we want
to take diffusion between neighboring containers into account. For simplicity, we
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want to rely hereby on Fick’s first law of diffusion [4], according to which the
diffusion velocity vD is given by

vD = kD
Δc × T

Δx × r × η
, (9)

with some diffusion constant kD, the concentration difference Δc, the tempera-
ture T , the path length Δx which needs to be transversed, the radius r of the
particle, and the viscosity η of the medium. In our case, the radius corresponds
to the length Λ(i) of molecule i and the concentration difference corresponds
to the difference pi,j − pi,n of the densities of molecule i in neighboring con-
tainers j and n. As diffusion processes occur only between neighboring pairs of
containers, we need to create neighborhood lists: let N (j) be the set containing
N(j) = |N (j)| index numbers of containers being neighbor to container j. Then
we can write the addend for the diffusion processes as

(
dpi,j

dt

)
diffusion

=
∑

n∈N (j)

kD
pi,n − pi,j

Λ(i)
=

kD

Λ(i)
×

⎛
⎝−N(j)pi,j +

∑
n∈N (j)

pi,n

⎞
⎠
(10)

with the diffusion constant kD. As in Fick’s first law of diffusion, the diffusion
is proportional to the difference of the densities and inverse proportional to the
length of the corresponding molecule. For containers of equal shape and volume
with the same distance to all of their neighbors, we can omit the dependency on
the path length.

Please note that we consider here only passive diffusion, i.e., diffusion does
not use up any energy. Furthermore, only molecules can move to neighboring
droplets, but there is no diffusion of energy in our model.

Such an approach with a time-independent diffusion constant kD is at odds
with the experimental reality: Experiments performed on the development of
aHL pores opening channels in bilayers between droplets by William David
Jamieson at Cardiff University clearly show that it takes a significant amount
of time until the first pore is formed. Thereafter, the number of pores increases
monotonously in time, with decreasing slope. Thus, we have to alter Eq. (10)
in order to consider the increase of the number mj,n(t) of pores between the
neighboring containers j and n:

(
dpi,j

dt

)
diff.incr.

=
kD

Λ(i)

∑
n∈N (j)

mj,n(t) × (pi,n − pi,j) (11)

As the pores themselves are created by ligation of polymers (for example, aHL
pores are comprised of seven macromolecules), one might think of considering the
energy required for the creation of the pores, but we will abstain here from such
an approach and neglect the energy consumption for the creation of pores. Fur-
thermore, in order to show more clearly the effect of the opening of an increasing
number of pores, we omit the dependencies of mj,n(t) on the container numbers
j and n, i.e. mj,n(t) ≡ m(t).
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3 Simulation Details

In this paper, we apply the Kauffman model to a set of reactions generating and
splitting copolymers comprised of a linear sequence of two different monomers A
and B. Thus, there are 2Λ different molecules containing Λ monomers. (Please
note that we assume the molecules to be directed, e.g. the molecules A − B and
B − A are different molecules.) We consider only polymers comprised of up to a
maximum number Λmax of monomers.

The total number M of different molecule types is given by

M =
Λmax∑
Λ=1

2Λ = 2Λmax+1 − 2. (12)

The number R of cleavage reactions can be determined to

R =
Λmax∑
Λ=2

(Λ − 1)2Λ = Λmax2Λmax+1 − 2M. (13)

In contrast to [5], we do not allow ligation reactions leading to molecules with
more than Λmax monomers, such that the number of ligation reactions equals
the number of cleavage reactions.

In our simulations, we use Λmax = 3, such that we have 12 non-monomeric
different molecule types in our system and a reaction framework containing 20
possible reactions. For the various parameters, we choose values already used in
[5]: The two monomers are not allowed to serve as catalysts, each of the other
molecules is chosen with probability rC = 0.05 to serve as catalyst for a cleavage
reaction and with probability rL = 0.1 to serve as catalyst for a ligation reaction.
The other parameters are set to

ki,in =

{
1 for the monomers, i.e., for i = 1, 2
0 otherwise

,

kout = 0.02, kC = 1, kL = 1, kE = 1, and kD = 0.05.
We will first have a look at the original Kauffman system with only one con-

tainer for which we set kC = 1 and kL = 1. In order to study the effect of spatial
separation of cleavage and ligation processes without any further side-effects
occurring in more complex systems, we consider the extended Kauffman system
with two containers only, one container j = 1, in which only cleavage reactions
take place, and a second container j = 2, in which only ligation reactions are
performed. For this purpose, we set k1,C = k2,L = 1 and k1,L = k2,C = 0.

We will also consider both diffusion processes as given in Eqs. (10) and (11).
For the function m(t), we choose

m(t) =

{
0 if t < 1
�log(t)� otherwise

. (14)
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This simple function is still able to reflect the key properties of the time evolution
of the number of pores as observed in the experiment, i.e., the significant amount
of time before the first pore opens up, the monotonous increase, and the concave
shape after the opening of the first pore. As the pores open up at the times
t = e, e2, e3, . . . according to Eq. (14), the changes due to the opening of more
pores are equally spaced out on a logarithmic time scale.

We use the Dormand-Prince method [3] for the numeric solution of the set of
differential equations. This algorithm which belongs to the class of Runge-Kutta
methods allows us to adaptively change the length of the time interval between
successive time steps by determining two different solutions of fourth and fifth
order and halving the length of the time interval if the deviation between them
is too large. We redo the calculation with a halved time interval if the relative
deviation exceeds a value of 10−8. We integrate over the time interval from t = 0
to t = 104. As initial conditions, we set pi,j(t = 0) = εj(t = 0) = 1 as in [5].

4 Computational Results

4.1 Revisiting the Original Kauffman Model Within One Container
Only

Fig. 1. Time evolution of the densities pi of the non-monomeric molecules in the
original Kauffman model with one container and without energy consideration, for
a randomly created instance displaying an ACM (left) and another randomly created
instance displaying no ACM (right)

We start out simulating the original Kauffman model in one container only and
present results for two randomly created catalyzed reaction instances, one of them
displaying an ACM and another one displaying no ACM. For the instance display-
ing an ACM, we provide the list of reactions in Table 1. We will use these two
instances with the same random choice of catalyst molecules for the various reac-
tions also in the simulations for the next scenarios and will use the same colors
for the same molecules. The time evolutions of the densities pi(t) of all 12 non-
monomertic molecules are shown for both instances in Fig. 1. In order to better
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Table 1. List of reactions in the instance containing an ACM: In this instance, we have
14 successively numbered molecules, with the monomers being denoted as Nos. 1 and
2, and 20 possible reactions. In the right two columns, only those cleavage and ligation
reactions are noted for which there is at least one catalyst molecule. This instance was
randomly generated.

Reaction No. reaction cleavage ligation

1 3 ←−→ 1 + 1 1 + 1
5−−→ 3

2 4 ←−→ 1 + 2 1 + 2
3,6,10,11,12,14−−−−−−−−−→ 4

3 5 ←−→ 2 + 1 2 + 1
4,6,8,12−−−−−→ 5

4 6 ←−→ 2 + 2

5 7 ←−→ 1 + 3 1 + 3
4,12−−→ 7

6 7 ←−→ 3 + 1 7
10−−→ 3 + 1

7 8 ←−→ 1 + 4

8 8 ←−→ 3 + 2 3 + 2
12−−→ 8

9 9 ←−→ 1 + 5 1 + 5
6−−→ 9

10 9 ←−→ 4 + 1 9
8−−→ 4 + 1 4 + 1

12,14−−−→ 9

11 10 ←−→ 1 + 6 10
5−−→ 1 + 6

12 10 ←−→ 4 + 2 4 + 2
5,9−−→ 10

13 11 ←−→ 2 + 3 2 + 3
5,12,14−−−−→ 11

14 11 ←−→ 5 + 1

15 12 ←−→ 2 + 4 12
9−−→ 2 + 4

16 12 ←−→ 5 + 2 5 + 2
4−−→ 12

17 13 ←−→ 2 + 5 2 + 5
7−−→ 13

18 13 ←−→ 6 + 1 13
13−−−→ 6 + 1 6 + 1

11,13−−−→ 13

19 14 ←−→ 2 + 6 14
13−−−→ 2 + 6 2 + 6

7,8−−→ 14

20 14 ←−→ 6 + 2 6 + 2
9−−→ 14

display the developments at short time scales, we use a logarithmic time scale.
After some intermediate increases and decreases of the various densities, the sys-
tem converges to final values for the various densities between t = 5 × 102 and
t = 103. The non-vanishing final values for some densities in the left picture indi-
cate that this instance displays an ACM, whereas the finally vanishing densities
in the right picture show that the second instance does not contain an ACM. For
the instance with an ACM, the Dormand-Prince method needs 194059 time steps,
whereas only 1772 are needed for the instance without an ACM. In order to get
results of equal quality for the time evolution of the densities, much more com-
puting time is needed for an instance with an ACM.

Please note that each color in the curves in Fig. 1 corresponds to one distinct
molecule. We will use the same color for the same distinct molecule in the curves
of Figs. 2, 3, 4, 5, 6, 7 and 8 and in the boxes in Figs. 9, 10 and 11.
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Fig. 2. Time evolution of the densities pi of the non-monomeric molecules as in Fig.
1, but now with energy consideration, both for the instance displaying an ACM (left)
and the instance displaying no ACM (right)

In the next step, we consider the model extended with an energy considera-
tion as introduced in [5]. We use the same instances as before. The computational
results are shown in Fig. 2. The instance which displayed an ACM before again
shows an ACM, but the resulting values of the densities for the various molecules
differ strongly from those in Fig. 1. The other instance again contains no ACM. A
further effect of considering the finite available energy is that it retards the dynam-
ics, as the curves for the various molecules start to deviate from the original val-
ues significantly later. Furthermore, one can state that the consideration of the
energy stabilizes the dynamics, as already mentioned in [5], as the intermediate
maxima are much smaller than without energy consideration. The computing time
required increases strongly when considering the energy: for the instance with an
ACM, the Dornand-Price method requires more than 8.6 million time steps and
it takes 8193 time steps for the instance without an ACM.

4.2 Two Separate Containers

Fig. 3. Time evolution of the densities pi,j of the non-monomeric molecules as in Fig.
1, but now in two separate containers, one of them only allowing cleavage reactions
(left part, j = 1), the other one only allowing ligation reactions (right part, j = 2),
both for the instance displaying an ACM (left) and the instance displaying no ACM
(right)
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Fig. 4. Time evolution of the densities pi,j of the non-monomeric molecules as in Fig.
3, in two separate containers, one of them only allowing cleavage reactions (left part,
j = 1), the other one only allowing ligation reactions (right part, j = 2), but now with
energy consideration, both for the instance displaying an ACM (left) and the instance
displaying no ACM (right)

The results discussed so far for one container can also be interpreted as the
results obtained with two containers with spatially separated cleavage and lig-
ation reactions if the diffusion takes place so fast that any density differences
between the two containers are resolved immediately. Before considering the con-
nected containers with diffusion, we would like to study the other extreme case
first, in which the two containers are separate and in which no diffusion takes
place. The results for the scenario without considering the energy are shown
in Fig. 3, the results for the scenario including the energy in Fig. 4. For the
instance, which contained an ACM before, we find that the densities vanish in
the container with the cleavage processes as has to be expected (The original
densities of the non-monomeric molecules decrease due to outflow and cleavage
reactions and no new non-monomeric molecules are formed as there is no liga-
tion. So, there is no ACM.), whereas an ACM can still be found in the container
with the ligation processes. We also investigated other instances, for some of
them which contained an ACM in one container only there is also no ACM in
the container with only ligation processes.
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4.3 Two Containers with Diffusion

Fig. 5. Time evolution of the densities pi,j of the non-monomeric molecules as in Fig.
3, but now with diffusion between two connected containers, one of them only allowing
cleavage reactions (left part, j = 1), the other one only allowing ligation reactions
(right part, j = 2), both for the instance displaying an ACM (left) and the instance
displaying no ACM (right)

Finally, we get to the main point of this paper, the Kauffman model implemented
with spatially separated cleavage and ligation processes in two containers with
diffusion between them. First, we consider diffusion according to formula (10)
and present computational results without energy consideration in Fig. 5 and
with energy consideration in Fig. 6. We find that the instance which contained
an ACM before now contains ACMs in both containers despite the fact that the
diffusion constant kD is set to a very small value. On the other hand, the instance
which displayed no ACM before now also shows no ACMs. The molecules whose
curves plotted in light blue and light green dominated the ACM in the left
picture in Fig. 1 now also belong to the dominating molecules in the ACMs in
the left pictures of Fig. 5, but there are now more significant contributions of
other molecules as well. The same behavior is found for the molecules plotted in
dark yellow and orange when comparing Figs. 2 and 6.

Then we have a look at the diffusion with an increasing number of pores
according to formulas (11) and (14). The computational results are shown in Fig.
7 for the scenario without energy consideration and Fig. 8 with consideration of
the energy. For the left instance, we again get an ACM, the steps in the curves
reflect the opening of an increasing number of pores. These steps are smaller if
the energy is considered. As the number of pores increases in time, equilibrium
cannot be reached. For the instance without an ACM, we hardly see any steps,
the breakdown of the densities dominates the behavior.
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Fig. 6. Time evolution of the densities pi,j of the non-monomeric molecules as in Fig.
5, with diffusion between two connected containers, one of them only allowing cleavage
reactions (left part, j = 1), the other one only allowing ligation reactions (right part,
j = 2), but now with energy consideration, both for the instance displaying an ACM
(left) and the instance displaying no ACM (right)

Fig. 7. Time evolution of the densities pi,j of the non-monomeric molecules as in Fig. 5,
but now with diffusion through an increasing number of pores between two connected
containers, one of them only allowing cleavage reactions (left part, j = 1), the other
one only allowing ligation reactions (right part, j = 2), both for the instance displaying
an ACM (left) and the instance displaying no ACM (right)

Fig. 8. Time evolution of the densities pi,j of the non-monomeric molecules as in Fig. 7,
with diffusion through an increasing number of pores between two connected containers,
one of them only allowing cleavage reactions (left part, j = 1), the other one only
allowing ligation reactions (right part, j = 2), but now with energy consideration, both
for the instance displaying an ACM (left) and the instance displaying no ACM (right)
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4.4 Comparison of Final Dynamics

Finally, we want to get a better insight in the behavior of the Kauffman model
and in the roles the various molecules play. For this purpose, we have a close
look at the final densities of the various molecules in the instance containing an
ACM, for the three scenarios of the original Kauffman model, the model with two
separate containers, and the model with two containers connected by diffusion
with a time-independent diffusion constant, each without consideration of finite
energy. The final values for the densities of the various molecules for these three
scenarios are provided in Table 2.

Table 2. Final values for the densities of the various molecules in the instance display-
ing an ACM for the original Kauffman model, for the extreme case without diffusion,
and for the scenario with a constant diffusion constant, without energy consideration

Molecule No. original model no diffusion with diffusion

i pi(tfinal) cleavage-only
pi,1(tfinal)

ligation-only
pi,2(tfinal)

cleavage-only
pi,1(tfinal)

ligation-only
pi,2(tfinal)

1 0.505 50 0.457 21.76 0.635

2 0.070 50 6.52E−2 14.71 8.27E−2

3 0.404 2.25E−87 0.155 1.385 0.316

4 0.352 3.64E−87 1.138 4.108 0.889

5 0.145 1.38E−87 0.365 0.184 0.331

6 6.775 5.47E−87 2.47E−323 6.708 6.66E−2

7 0.023 5.08E−88 3.219 4.67E−2 3.369

8 6.15E−5 1.38E−87 0.171 6.80E−2 0.150

9 20.56 2.66E−109 8.803 2.309 14.51

10 1.553 2.66E−109 17.00 1.165 15.41

11 1.416 1.38E−87 0.264 0.420 0.924

12 8.69E−5 5.08E−88 0.677 2.36E−3 0.333

13 2.615 2.71E−89 1.915 0.256 4.511

14 1.856 2.71E−89 2.10E−87 7.91E−2 1.391

Here we first have a look at pi(tfinal) for the original model. If choosing a
threshold ≥ 10−4, we could state that the ACM contains all molecules except
two. But the question arises whether we are right to exclude molecules Nos. 8
and 12 or whether they play a role in the ACM, even if their final densities are
very small. As Table 1 shows, each molecule can be created either by a ligation
or by a cleavage reaction or both.

When having a look at the results for the two separate containers, we find
as expected that there is no ACM in the cleavage-only container. All longer
molecules are destroyed by the cleavage processes and by the outflow. No new
longer molecules can be created, as the constant inflow of the two monomers
cannot be used for ligation, as there are no ligation reactions. Thus, we get a value
of 50 for the densities of the two monomers, which is just the ratio between the
inflow and the outflow parameters, and a vanishing value for all other molecules.
In the ligation-only container, we get final densities which partially slightly, but
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Fig. 9. Final dynamics: final values for the derivatives (dpi/dt)contr. of the densities
for the various non-monomeric molecules for the instance containing an ACM in the
original Kauffman model, for the various contributions: IO – inflow and outflow, CL+ –
generated by cleavage processes, CL- – destroyed by cleavage processes, LI+ – generated
by ligation processes, LI- – destroyed by ligation processes

most often strongly deviate from the final densities in the original Kauffman
scenario. Obviously, the additional cleavage processes in the original Kauffman
scenario lead to these large differences. Molecules Nos. 6 and 14 are obviously
not part of the ACM anymore, their densities truly vanish.

Then we have a look at the results for two containers connected by diffusion.
Here we see that the densities for the molecules Nos. 8 and 12 are much larger
in both containers than in the original Kauffman model. Obviously, a spatial
separation of reactions can lead to an enlargement of an ACM. But this result
also raises questions to the approach of determining the size of an ACM, i.e., the
number of molecules being part of an ACM, by excluding those molecules whose
densities are smaller than some arbitrarily chosen threshold. Here one has to be
very careful of how to choose the value of the threshold, in order to not exclude
those molecules which contribute to the ACM, even if their contribution seems
to be tiny.

In order to even better understand the final dynamics for these three sce-
narios, we have a look at the final values for the various contributions to the
derivatives of the densities, which are shown for the three scenarios considered
here in Figs. 9, 10, and 11. We consider separately the contributions by the
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Fig. 10. Final dynamics: final values for the derivatives (dpi,j/dt)contr. of the densities
for the various non-monomeric molecules in the cleavage-only container (left) and the
ligation-only container (right) in the scenario with two separate containers, for the
various contributions: IO – inflow and outflow, CL+ – generated by cleavage processes,
CL- – destroyed by cleavage processes, LI+ – generated by ligation processes, LI- –
destroyed by ligation processes, DIF – diffusion

various processes in-out-flow, cleavage, ligation, and diffusion. Already for the
original Kauffman model, we see a rich behavior: Molecules 4 and 5 are created
by ligation processes but also destroyed by ligation processes, molecules 7, 10,
12, 13, and 14 are created by ligation and destroyed by cleavage, while molecule
6 is created by cleavage and destroyed by ligation. Molecules 8, 9, and 11 are
created by ligation, but destroyed by outflow. Molecule 3 exhibits the richest
behavior, it is both created by cleavage and ligation and it is destroyed by liga-
tion. Of course, for all of these molecules, also the outflow plays some role, but
only for some of them the outflow provides the main contribution to decreasing
their densities. Thus, we get a very rich variety of behaviors already here in Fig.
9 for the original Kauffman model. Please note that all the bars in the subgraphs
for the various molecules add up to zero, as the final densities are constant such
that the sum of all contributions to their derivatives has to vanish.

Figure 10 shows the results for the scenario with two separate containers. As
expected, there is no ACM in the cleavage-only container, such that the deriva-
tives vanish there. In the ligation-only container, the derivatives for molecules 6
and 14 vanish as well, they are not part of the ACM here. But all other molecules
contribute to the ACM. Molecules 7–13 are created by ligation processes, their
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Fig. 11. Final dynamics: final values for the derivatives (dpi,j/dt)contr. of the densi-
ties for the various non-monomeric molecules in the cleavage-only container (left) and
the ligation-only container (right) in the scenario with two containers connected by
diffusion, for the various contributions: IO – inflow and outflow, CL+ – generated by
cleavage processes, CL- – destroyed by cleavage processes, LI+ – generated by ligation
processes, LI- – destroyed by ligation processes, DIF – diffusion

densities are reduced by outflow only. Molecules 4 and 5 are both created
and destroyed by ligation processes, additionally also outflow is reducing their
densities.

Figure 11 shows the corresponding results for the scenario with two containers
connected by diffusion, for which we again find interesting behaviors. Molecules
7 and 9–14 share the same behavior: they are produced in the ligatrion-only
container. Part of the density diffuses to the cleavage-only container where the
incoming density is destroyed by a cleavage process. In both containers, also
the outflow reduces the densities. Like in Fig. 9, molecule 6 demonstrates just
the opposite behavior, it is produced by a cleavage process in the cleavage-only
container, part of its density diffuses into the ligation-only container, where it
is destroyed by a ligation process and the outflow. Molecules 4 and 5 are again
dominated by the production and destruction via ligation processes. Please note
that also here the bars need to add up to zero, separately for both containers.

5 Conclusion and Outlook

For this paper, we performed simulations for the original Kauffman model, the
Kauffman model extended with the consideration of finite energy amounts, and
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our approach of spatially separating the cleavage and ligation reactions in two
containers connected by diffusion. We present computational results both for a
randomly created instance displaying an autocatalytic metabolism (ACM) and
for another randomly created instance without an ACM. The densities of the var-
ious non-monomeric molecules, which initially start out at the same value, first
undergo some intermediate transition. For the instance without the ACM, all of
them vanish in the long term in all simulations, whereas in the other instance,
the densities of some of the non-monomeric molecules converge to finite values,
thus forming the ACM. This other instance continues to display an ACM in all
scenarios. While the molecules dominating the ACM in the original Kauffman
approach with only one container stay dominant when spatially separating the
cleavage from the ligation processes in two different containers, other molecules
become dominant when including the energy finiteness. The size of the ACM,
i.e., the number of non-monomeric molecules with significant final density values,
increases when spatially separating cleavage from ligation processes. Studying
the final values for the contributions of the various processes to the derivatives
of the probabilities, we get a rich behavior, with some molecules produced and
destroyed by ligation processes, others produced by ligation and destroyed by
cleavage processes, and one molecule produced by cleavage and destroyed by
ligation processes. These results are to be expected, they reflect the list of reac-
tions in Table 1. This close look at the contributions to the overall derivative
obviously provides a better insight whether a molecule is part of the ACM than
the comparison of its density to an arbitrarily chosen threshold.

We intend to continue our investigations by creating larger statistics of these
scenarios and by applying all of them to large networks of spatially connected
droplets [15–19], in which either only ligation or only cleavage reactions are
performed. Depending on the simulation parameters, we expect to be able to
enlarge the probability for the occurrence of an ACM, for those instances in which
it is possible from a graph-theoretical aspect, but in which the dynamics prevents
the creation of an ACM in one container only. We also expect to get much larger
average sizes of an ACM. These large networks also provide a further advantage:
While it is impossible to change the kinetic parameters for the reactions as
well as the diffusion and transport parameters for real systems, large networks
of droplets with spatially separated reactions allow to put more emphasis on
some reactions, e.g., to implement many more droplets with ligation than with
cleavage reactions, thus increasing the probability for the occurrence of an ACM.

Furthermore, instead of using the approach to set up and numerically solve
a set of differential equations, we alternatively intend to apply a stochastic sim-
ulation framework, e.g., to work with the Gillespie algorithm [2,6], which we
recently applied to a minimum reaction system with one undesired side product
[20]. The Gillespie algorithm is better suited for large numbers of small contain-
ers in which the number of the various molecules could be so small that the
continuous density approach is no longer justified. This stochastic simulation
framework offers new possibilities and new insights, but also leads to further
difficulties: Here we would not have to depend on the value of a threshold for a
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density whether we would consider a specific molecule to be part of the ACM
or not. When using the Gillespie algorithm with its integer numbers for var-
ious molecules, we can simply state that a molecule is not part of the ACM
if its number is exactly zero over a sufficiently long time period. However, in
another simulation run, it might be the case that this molecule does not vanish
and thus is part of the ACM. Thus, the shape of the ACM achieved with the
Gillespie algorithm might depend on whether some number of catalyst molecules
necessary for some reactions become exactly zero due to a specific sequence of
stochastic random choices of reactions or due to the late opening up of pores,
or due to some other reasons, whereas in the continuous density approach, the
density might become very small but then has the chance to increase again.
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A and C, in which only connections of the type A − A can be formed.
We study the breakdown of the percolation in the agglomeration at the
bottom of the cylinder with an increasing fraction of C-particles.

Keywords: percolation · polydisperse · binary system · ternary
system

1 Introduction

Fig. 1. Left: Snapshot of an agglomeration of droplets recorded from an experiment.
Right: Agglomeration of a polydisperse system of 2,000 spherical particles with types
A and B, depicted as red and green, at the bottom of a cylindrical container, obtained
in a computer simulation. (Color figure online)

We intend to develop a probabilistic compiler [3,22] to aid the three-dimensional
agglomeration of droplets filled with various chemicals (see Fig. 1) in a specific
way in order to e.g. allow the creation of desired macromolecules via a successive
reaction scheme [12,13,18,19]. Neighboring droplets can form connections, either
by forming bilayers [7] or by getting glued to each other by matching pairs of
single-stranded DNA [4], as sketched in Fig. 2. Chemicals contained within the
droplets can move to neighboring droplets either directly, as hydrophobic com-
pounds can be exchanged between adjacent oil droplets at the contact face, or,
if the oil droplets are contained in a hull comprised of amphiphilic molecules
like phospholipids, through pores within these bilayers. An example for such a
pore is shown in Fig. 3. Thus, a complex bilayer network is created [16], with
the droplets being the nodes of this graph and the existing connections being
the edges between the corresponding droplets. In such bilayer networks, a con-
trolled successive reaction scheme can be effectuated to produce the intended
macromolecules. As already demonstrated for a toy example, a gradual reaction
network with three educts, two reaction steps, a desired product, and an unde-
sired side product, can achieve a higher yield and a smaller amount of undesired
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Fig. 2. Sketch of a pair of oil-filled droplets in water, to which complementary strands
of ssDNA oligonucleotides are attached: The surfaces of the droplets are composed by
single-tail surfactant molecules like lipids with a hydrophilic head on the outside and
a hydrophobic tail on the inside, thus forming a boundary for the oil-in-water droplet.
By adding some single-strand DNA to the surface of a droplet, it can be ensured that
only desired connections to specific other droplets with just the complementary single-
strand DNA can be formed. Please note that the connection of the droplets in this
picture is overenlarged in relation to the size of the droplets. In reality, the droplets
have a radius of 1–50µm, whereas a base pair of a nucleic acid is roughly 0.34 nm in
length [1], such that the sticks of connecting DNA strands are roughly 5 nm long.

Fig. 3. Alpha hemolysin (aHL) pore: The left picture reveals how the aHL, which is
comprised of seven macromolecules, sticks its trunk through the bilayer between two
droplets. The right picture presents in detail a cut through the pore formed, revealing
the channel through which molecules can move between the adjacent droplets.

side products in an agglomeration of droplets with restricted molecule transfer
than in a scenario in which all educts would be put in one well-stirred pot only
[17].

For some applications, it is necessary to thin out the network, i.e., to reduce
the number of edges connecting nodes in the network. This leads as we will
show later to smaller numbers of nodes a node is attached to on average, to
smaller cluster sizes and in turn to larger numbers of clusters which are isolated
of each other, just as we need them for these applications, in which we either
need to better govern the gradual chemical reaction process or in which we need
to strongly reduce the maximum number of steps within such a gradual process.
In order to achieve this thinning-out, particles which do not connect to any other
particle can be added to the system. Within the scope of this paper, we study
the effects of these auxiliary particles on the properties of the overall network
for two basic scenarios:
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– “Ternary” scenario:
In the ternary scenario, systems with three particle types A, B, and C are
considered. Only connections between neighboring A- and B-particles can be
forged. Besides these A − B-connections, no other connections to particles of
the same type or to C-particles are possible. Without the C-particles, this
system would form a so-called bipartite network. In our simulations, we only
consider the special case that the fraction fA of A-particles equals the fraction
fB of B-particles. We will study the changes of the properties of the network
for an increasing fraction fC of C-particles, with fC = 1−fA −fB = 1−2fA.

– “Binary” scenario:
For comparison, we also study a binary scenario with two particle types A
and C, in which only pairs of neighboring A-particles can form connections.
Besides these connections of the type A − A, there are no other connections,
such that also here the C-particles serve as auxiliary particles for thinning
out the network. Again we want to study the effects of an increasing fraction
fC of C-particles on the properties of the network. This scenario can also be
considered as a site percolation problem [20], in which the locations of the
A-particles represent the occupied sites and the locations of the C-particles
represent the empty sites. The probability p for an occupied site is simply
given by p = fA = 1 − fC .

In our computer simulations, we study both polydisperse systems, in which the
radii of the particles differ from each other, and monodisperse systems, in which
all particles share the same radius value, in order to mimick experiments of var-
ious kinds: The production of droplets using a microfluidic approach, in which
an inner stream of fluid within an outer stream of another fluid is broken up
in droplets in e.g. a t-junction under specific pressure conditions [7], leads to
a rather monodisperse system of droplets. Contrarily, in other experiments, we
are repeatedly rubbing a phial filled with water and one drop consisting of oil
molecules and amphiphilic molecules over a rough surface, thus sending excita-
tions into the system, which lead to a breakup of the large drop into many small
droplets of varying sizes, resulting in a polydisperse system [4].

Within the scope of this paper, we present computational results for simula-
tions based on a simplified stochastic-hydrodynamic model of an agglomeration
process of a system of droplets, mimicking experiments. Here we want to focus
on the influence of the fraction fC of auxiliary C-droplets on some specific prop-
erties of the networks created, which are of crucial importance for the gradual
reaction scheme intended. We are especially interested in the question whether
there is a percolation transition at some critical value of fC : For an infinitely
large system, one expects to get a sharp transition between two phases, with an
infinitely large cluster for fC below the critical value and no such infinitely large
cluster for fC above that value. For finite systems, one gets a smooth transition
between a regime with a large cluster dominating the system for small fC and
a regime with no such large cluster but many small clusters for large fC . In
order to focus on these questions and to exclude effects from other experimental
properties, we simulate the droplets as hard spheres and ignore details of the
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surface structure of the particles, attractive forces as well as adhesion effects. As
the extension of the bilayers is very small and as due to their small radii [2], the
droplets keep their spherical shape during the experiments, as shown in Fig. 1,
such that this simplified approach is justified.

This paper is organized as follows: In the next section, we sketch briefly
how we simulate the agglomeration of droplets in a container. Then we give
a short introduction to network analysis and percolation theory, focusing on
those network properties for which we will present computational results. As we
are mainly interested in the description of the percolation transition with an
increasing fraction fC of auxiliary C-droplets, we present results depending on
fC for the decreasing maximum and average number of nodes a node is attached
to, for which we find power laws depending on 1−fC , for the increasing number
of clusters, for which we get a linear behavior, and for the decreasing size of
the largest cluster, which clearly exhibits a percolation transition. Finally, we
provide a summary and give an outlook.

2 Simulation Details

At the beginning of the simulations, we place N spherical particles at randomly
selected positions in a cylindrical container with radius 1mm and height 4mm
in a way that they do not overlap with each other and that they do not overlap
with the walls of the cylinder. For the polydisperse system, we randomly choose
the particle radii ri uniformly from the interval [10–50]µm, whereas we set all
radii ri ≡ 30µm for the monodisperse system.

After this initialization, we perform the main simulation which is comprised
of 107 time steps of a duration of δt = 10−5 s. In each time step, the particles
are subjected to various forces:

– They sink in water due to gravity �FG reduced by the buoyant force �Fb:

�FG(i) − �Fb(i) =
4π

3
r3
i (�oil − �water) g (1)

For the oil density, we use the value �oil = 1.23 kg/l, which is just the density
of the oil used in some experiments.

– Secondly, the spatial components vx,y,z(i) of the velocity vectors �v(i) are
subjected to random velocity changes: They are randomly altered by up to
±5% of their absolute values in order to take at least in this small random way
into account that the containers are moved by the experimentalists during the
agglomeration process.

– The particles are also subjected to the Stokes friction force �FS :

�FS(i) = −6πηri�v(i) (2)

The viscosity of water at 25 ◦C is η = 0.891mPas.
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– As in classic hydrodynamics, the concept of added mass [21] is used. When
applying Newton’s second law, we have to consider an effective mass of the
particle, i.e., �F (i) = meff(i)�a(i). This effective mass is composed of the mass
m(i) of particle i and of the added mass madded(i). This added mass is caused
by the inertia of the surrounding fluid, which needs to be deflected or attracted
if the particle itself is accelerated or decelerated in the water, and can be
determined to being half of the mass of the water displaced by oil particle i.

When working with such a set of second order differential equations governing
the laws of motion for the particles, the question arises as to which integrator
to use. Due to the stochastic nature of random velocity changes, only an Euler
scheme with very small time intervals is suitable for the determination of new
velocities and positions [6]. In the case of collisions between pairs of particles
or between particles and walls, a mostly elastic collision dynamics with 90%
elasticity and 10% plasticity is imposed. Overlaps occurring at the end of each
time step are resolved as in [9,14].

3 Network Analysis and Percolation Theory

For network analysis, we first of all have to define a network related to the
problem we intend to study. As mentioned above, we are interested in gen-
erating gradual chemical reaction schemes performed in networks of droplets,
with neighboring droplets being able to exchange molecules if pores within their
bilayers exist or, more theoretically speaking, if a connection between the par-
ticle types of the two adjacent droplets is allowed. Then we can define an edge
matrix η with

η(i, j) =

⎧
⎪⎨

⎪⎩

1 if droplets i and j are neighbors of each other
and a connection between them exists

0 otherwise.
(3)

Two droplets i and j with their midpoints (xi, yi, zi) and (xj , yj , zj) and their
radii ri and rj are neighboring each other if the condition

√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 ≤ ri + rj + 0.1µm (4)

is fulfilled, i.e., if the distance between their midpoints is smaller or equal to the
sum of their radii plus some small offset which we need to introduce because
of finite numerical precision. One usually sets η(i, i) ≡ 0 for all nodes i. Such
a matrix η contains all the information about the network. For this paper, we
study both a binary scenario and a ternary scenario, for which we can generate
two different edge matrices, considering the different conditions for the existence
of a connection.

When analyzing a network, one mostly takes either an atomistic view, looking
at the various nodes and determining their network related properties, or a global
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view, determining clusters of nodes. Clusters are defined as maximum subgroups
of nodes in which each node within this cluster can be reached from any other
node in the cluster by gradually traversing edges, thus walking along a path from
this node perhaps via other nodes in the subgroup to the destined node. More
seldomly, networks are considered at an intermediate level, e.g., for the detection
of the maximum clique [8], or one asks for the importance of specific nodes for
the overall network in a local-global view, see e.g. [11].

When looking at a network from a global point of view, one of the most impor-
tant questions arising is whether the network is percolating. For an infinitely
large network, this means that one has to ask whether there is an infinitely
large cluster in the network [20]. In the finite networks resulting from computer
simulations, one thus asks whether a dominating cluster exists in the network.

Mostly, the so-called site percolation is studied in which sites on a regular
lattice are either occupied or empty and in which each site is connected to all
neighboring sites. Theoretically, one finds for infinitely large systems that there
is a critical probability pcrit of occupied sites above which an infinitely large
cluster exists in the system and below which there is no percolation anymore.
Alternatively, also the so-called bond percolation is considered in which all lattice
sites are occupied but only a fraction p of the edges exist. Also here one finds
such a critical probability pcrit dividing two such regimes. For some scenarios,
this critical probability can be calculated exactly, but mostly, one has to make
use of computer simulations with increasing system size, to determine the various
clusters in the system and the size of the largest cluster, and finally to carefully
determine pcrit numerically [20].

4 Computational Results

The results presented in Figs. 4, 5, 6, 7 and 8 are averaged over the properties
of the final configurations of 100 independently performed simulation runs.

The first observable we have a look at is the number e of edges, which can
be derived from the edge matrix η with

e =
∑

i<j

η(i, j). (5)

Figure 4 displays the results for e for the binary and the ternary scenario in
simulations of monodisperse systems of 2,000 droplets and polydisperse systems
of 2,000 droplets. We generally find that there are more edges in the binary
scenario and that the number of edges decreases with an increasing fraction fC
of C-particles, which do not connect with each other and with other particles.
On average, there are slightly more edges in the monodisperse systems than in
the polydisperse systems, both for the binary and for the ternary scenarios.

When taking a local perspective, one of the most important observables for
a specific node i is its degree d(i), which can be calculated as

d(i) =
N∑

j=1

η(i, j). (6)
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Fig. 4. Decrease of the number e of edges with an increasing fraction fC of C-particles
for the binary and ternary systems as described in the text: Results are presented
for monodisperse systems consisting of 2,000 particles (left) and polydisperse systems
consisting of 2,000 particles (right).

Thus, the degree d(i) counts to how many other droplets the droplet i is con-
nected. We are mainly interested in the maximum degree

dmax = maxi d(i) (7)

of all nodes. Of course, also dmax decreases with increasing fC , but in a specific
way, such that we plot dmax vs. 1 − fC in a double-logarithmic way in Fig. 5.
The graphics reveal the existence of a power law for dmax. For the monodisperse
systems comprised of 2,000 particles, we find a power law of the type

dmax = a(1 − fC)1/2, (8)

both for the binary and the ternary scenarios, whereas we get a power law of
the type

dmax = a(1 − fC)2/3 (9)

for the polydisperse systems comprised of 2,000 particles, both for the binary and
for the ternary scenarios. The values for the various prefactors a are provided in
Table 1.

In the next step, we have a look at the mean value 〈d〉 of the degrees, which
can be calculated as

〈d〉 =
1
N

N∑

i=1

d(i). (10)

〈d〉 is related to the overall number e of edges via

N × 〈d〉 = 2e. (11)

Also for 〈d〉, we find a complex power law behavior depending on 1 − fC , such
that we plot 〈d〉 vs. 1 − fC in a double-logarithmic way in Fig. 6. We get both
for the binary and for the ternary scenario, both for the monodisperse and for
the polydisperse systems the power law

〈d〉 = a(1 − fC)2. (12)
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Fig. 5. Increase of the maximum degree dmax vs. the remaining fraction 1 − fC of
particles not being C-particles for the binary and ternary systems as described in the
text: Results are presented for a monodisperse system consisting of 2,000 particles (left)
and a polydisperse system consisting of 2,000 particles (right).

Table 1. Prefactors a found for the power laws as described in the text.

degree scenario system a

dmax binary 2000, mono 11.5

dmax binary 2000, poly 15.3

dmax ternary 2000, mono 8.6

dmax ternary 2000, poly 10.2

〈d〉 binary 2000, mono 5.6

〈d〉 binary 2000, poly 5.3

〈d〉 ternary 2000, mono 2.8

〈d〉 ternary 2000, poly 2.6

The prefactors can again be found in Table 1.
Please note that both the maximum degrees and thus also the mean degrees

are restricted in size. For the monodisperse system, dmax cannot exceed the
value of the so-called kissing number k [15]. The kissing number problem is
stated as follows: How many spheres of equal size can be placed around a sphere
in their midst touching it without any overlaps? This kissing number equals 12
in three dimensions, as already stated by Newton and proved in the 1950s. For
the polydisperse system, there is a related restriction: Here dmax cannot exceed
a value of k, which depends on the ratio between the radii of the smallest and
largest spheres. As the radii of the spherical particles are randomly chosen from
the interval [10–50]µm, this ratio could be up to 1 : 5, for which we obtained a
bidisperse kissing number of 120 [15].

Furthermore, we would like to compare our results for 〈d〉 for monodisperse
systems with results obtained for other configurations of spheres. First of all, let
us consider the densest packing of spheres of the same size: The densest packings
can be achieved both in a face centered cubic (fcc) lattice and a hexagonal close
packing (hcp). For these densest packings, one gets 〈d〉 = dmax = 12, in the
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Fig. 6. Increase of the average degree 〈d〉 vs. the remaining fraction 1− fC of particles
not being C-particles for the binary and ternary systems as described in the text:
Results are presented for monodisperse systems consisting of 2,000 particles (left) and
polydisperse systems consisting of 2,000 particles (right).

case of infinitely extended lattices or lattices with periodic boundary conditions.
Contrarily, if studying entirely random packings of spheres of the same size, one
obtains 〈d〉 = 6 [10], a value which is almost in agreement with our values for
the binary scenario at fC = 0 for the monodisperse system. The deviation is due
to the finite extension of our agglomerations.

Now we turn to the global view in network analysis and have a look at the
number n of clusters in the system, which is plotted vs. the fraction fC in Fig. 7.
For fC = 0, we trivially have only a very small number of clusters in the binary
scenario, whereas there is already a significant number of clusters of roughly
n ≈ 0.05N − 0.07N in the ternary scenario. For small fC , n increases linearly
with fC , until it approaches sigmoidally the value n = N in the limit fC → 1.
For the ternary systems, there seems to be a little bending in the curves at
fC ≈ 0.5.

Finally, we end up at the most important point of our investigation. We
consider the size smax of the largest cluster in the system, which is plotted vs.
fC in Fig. 8. Generally, we get a linear decrease of smax with increasing fC for
small fC , before a transition takes place, in which the percolation breaks down:
For the binary scenario, we find a critical value of fC of roughly 0.55±0.05 both
for the monodisperse and the polydisperse system. For the ternary scenario, we
get 0.3 ± 0.05 both for the monodisperse and for the polydisperse system.

Here we again would like to compare these results with other results obtained
for spheres. As already mentioned, the densest packings of spheres of the same
size can be achieved in a fcc and a hcp lattice. The critical probability for an
infinitely large fcc lattice with periodic boundary conditions has been determined
to be pcrit = 0.198 [20]. But also hcp lattices on a slab with open boundary
conditions and infinite extensions in two dimensions have been studied. The
threshold depends on the thickness h (i.e., the number of layers on which the
midpoints of the spherical particles are located) of the slab, one gets pcrit =
0.2828 for h = 2 and pcrit = 0.2086 for h = 16 in the limit of infinite extension
in the other two dimensions [5]. For randomly packed spheres, a threshold of
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Fig. 7. Increase of the number n of clusters with an increasing fraction fC of C-particles
for the binary and ternary systems as described in the text: Results are presented
for monodisperse systems consisting of 2,000 particles (left) and polydisperse systems
consisting of 2,000 particles (right).

pcrit = 0.31 [10] was obtained. Thus, we see that the critical values strongly
depend on the systems under study. In our case, the spherical particles are
neither located on the sites of a regular grid nor placed entirely randomly.

5 Summary and Outlook

In this paper, we presented results of simulations for the agglomeration of poly-
disperse and monodisperse systems of droplets. We were mainly interested in
the effects the addition of auxiliary particles, which do not connect to any other
particles, has on the networks and their properties. We found a power law behav-
ior for the maximum degrees and mean degrees of the particles depending on
the fraction of the auxiliary particles in the system. Furthermore, we detected a
percolation breakdown if this fraction exceeds some critical value.

We will continue this study also with other connection scenarios, in which
e.g. A-particles can connect to other A-particles and to B- and C-particles, while
B-particles and C-particles cannot form connections. This scenario can be easily
realized in experiments by only placing the constituents for pore macromolecules
exclusively in the A-particles. Furthermore, we will extend our study to further
system sizes in order to get better estimates for the critical values and also to
find out in which way the prefactors a in the power laws found for the maximum
and the mean degree depend on the system size N .
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Fig. 8. Decrease of the size smax of the largest cluster with an increasing fraction fC
of C-particles for the binary and ternary systems as described in the text: Results are
presented for monodisperse systems consisting of 2,000 particles (left) and polydisperse
systems consisting of 2,000 particles (right).
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Abstract. Swarms of robots can be thought of as networks, using
the tools from telecommunications and network theory. A recent study
designed sets of aquatic swarms of robots to clean the canals of Venice,
interacting with computers on gondolas. The interaction between gon-
dolas is one level higher in the hierarchy of communication. In other
studies, pairwise communications between the robots in robotic swarms
have been modeled via quantum computing. Here, we first apply quan-
tum computing to the telecommunication-based model of an aquatic
robotic swarm. Then, we use multilayer networks to model interactions
within the overall system. Finally, we apply quantum entanglement to
formalize the interaction and synchronization between “heads” of the
swarms, that is, between gondolas. Our study can foster new strategies
for search-and-rescue robotic-swarm missions, strengthening the connec-
tion between different areas of research in physics and engineering.

Keywords: swarm intelligence · swarm robotics · telecommunication ·
quantum computing · multilayer networks

1 Introduction: The Core Idea

Multiple simple entities, interacting and achieving a complex task: this could be
the preamble on a presentation about flocking birds, schooling fish, or foraging
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ants. It could also be the opening phrase of a chapter on networked telecom-
munications, or of a study on distributed, collective intelligence. They are all
instances of distributed dynamic networks, that we can investigate under differ-
ent points of view, from different disciplines. Here, we focus on quantum-driven
swarms of robots, interacting between them and with computational units. Let
us present here the core definitions of these topics, and our proposal to join them
into an engineering project.

A swarm of robots is a set of simple, interacting, decentralized robots.
A swarm is robust, that is, the loss of a unit does not affect the behavior of
the whole system [10]. A swarm is also scalable, that is, the same behavior is
observed even if the size (the number of units) of the swarm changes. Quantum
computing is a branch of computer science derived by some basic principles
of quantum mechanics in Physics [23]. It starts with the definition of qubit, the
“quantum bit,” that, according to the state superposition in quantum mechan-
ics, can assume all the intermediate values between the classical 0 and 1. A
quantum circuit is a model where initial configurations of qubits undergo a
set of transformations, corresponding to reversible logic gates. The qubits are
finally measured through a “destructive measure” as in quantum mechanics, and
the result is stored in classical variables. We can cite some pioneering applica-
tions of quantum computing to artificial intelligence [13,25], robotics [6,14], and
swarm robotics [1,12,26]. The application of quantum computing to robotics is
motivated by an increased computational efficiency, particularly evident in tasks
such as information retrieval. Quantum computing can enhance robots’ visual
perception (via quantum image processing); thinking (via decision-making under
uncertainty); dynamics (finding better solutions for path-planning); data mining
(to face NP-hard problems) [21]. More in general, quantum computing is a new
paradigm which is largely unexplored, and the conversion itself from classical to
quantum algorithms, and the subsequent investigation of issues and advantages,
are topics of contemporary interest.

In particular, quantum computing has recently been used to model pairwise
interactions between the robots of a swarm in a simulated environment [15,16].
In the context of a search-and-rescue mission, each robot communicates with its
peers, transmitting them its position and proximity to the target, in terms of
probability amplitude to be in a certain space position, and probability ampli-
tude to be close to the target. In particular, as described in [16], we consider
values along the x, y axes as the peaks of the wavefunction. The values 0 and
1 are assigned to the extremes of the arena where the robots are moving. Thus,
concerning the position, the logic 0 indicates closeness to 0 along the x-axis (y-
axis). About the target reaching, the logic 1 indicates success and 0 failure. Let
us initially consider an abstract scenario as a 2D arena of side 1, with robots,
schematized as points [16], first randomly exploring the space, then exchanging
information about position and “degree of success” in target finding, and decid-
ing where to go next according to the output of the quantum circuit. This is
quite an abstract scenario with a search mission, which can be instantiated with
different kinds of robots. After each step of individual exploration, the other
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robots receive the corresponding information, letting it enter a quantum circuit,
whose output contains an indication of the space points to be approximately
reached during the next step of the simulation. In fact, according to the degree
of precision in position location and success in target reaching, the robots can
decide to follow a particular peer, or to explore elsewhere. In [18], a classic-
only version of the search algorithm was considered. The abstract scenario was
contextualized as the tract of a canal in Venice. Aquatic (surface) robots were
considered, being organized as multiple swarms. In addition, computing centrals
were introduced, one for each swarm. Each robot was able to interact with the
computing central of its swarm, while the computing centrals were able to inter-
act with all robots of their swarm, and with the other centrals. The centrals
were computers put on gondolas, with the functionality of collecting data from
the individual exploration of robots and giving them indications of the portions
of water to explore next. Each robot was equipped with GPS sensors, distance
sensors, and an underwater camera to observe the ground of the canal. The sin-
gle robots were coded to identify trash on the seabed and send this information
jointly with position and time. The computers on gondolas elaborates on this
information. In this study, we extended the algorithm of [16] with the hierarchi-
cal network of robots and gondolas, including quantum computing. The scope
of the mission is now the search for a target (which can be instantiated accord-
ing to the specific considered problem). When one of the swarms finds it, the
corresponding gondola sends the information to the other gondolas, which start
following it. We can use the idea of entanglement of states to indicate such a
“locking” of the relative positions of the gondolas between them. We describe
such a new strategy in Sect. 2.3, in Algorithm 2.

Figure 1 shows the quantum circuit designed in [16], which computes the
truth table of Table 1. What is shown in Table 1 and Fig. 1, is the “mechanism”
of pairwise interaction between robots. The overall behavior emerges from these
pairwise interactions. In particular, the position along the x axis is described by
the first qubit, that is, q0 = αx

1 |0〉+βx
1 |1〉, where 0, 1 indicate the extremes of the

horizontal side of the arena, and αx
1 , βx

1 indicate the probability amplitudes for
robot 1 to be on one extreme or on the other one. With a little abuse of notation,
in [16], we considered as the “position” the actual value of βx

1 , considering it as
the peak of the wavefunction. Similarly, we define the position along y as the
second qubit, that is, q1 = αy

1 |0〉 + βy
1 |1〉. The position along x, y of robot 2

is defined as q3 = αx
2 |0〉 + βx

2 |1〉, q4 = αy
2 |0〉 + βy

2 |1〉 respectively. The qubit q2
indicates the reward of the first robot, that is defined here as 1 - the distance
from the target. We consider here 0 as failure, and 1 as success: q2 = γ1|0〉+δ1|1〉.
The reward of the second robot is not indicated, because it is computed after
that it reaches the position suggested by the outcome of the quantum circuit.
Then, the cycle starts again.

What we have described so far is a general approach for an abstract swarm in
a 2D arena. What we can do next, is connecting this approach with some more
realistic scenario, and proceed raising the level of complexity. In a recent study
[18], a set of swarms of aquatic robots designed to clean the canals of Venice,
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communicating with centralized computational units on gondolas (1-level higher
in hierarchy), has been modeled using the language and formalism of network
theory in telecommunications [5,7,20,24]. Overall, in this research, we started
our analysis from a general case of agents in a 2D arena in [16]. The model of
gondolas + robots was conceptualized in a context of energy-efficiency telecom-
munication protocol, and referred to environmental care of Venice [18]. It was
structured as master-slave system, where the “masters” are the gondolas, and
the “slaves” are the robots of each swarm. Thus, in this new article, we intro-
duce the formalism of multilayer networks. As an additional novelty, we join
the quantum computing element, developed in [16], with the application to a
multilayer approach, contextualized in environmental care of the city. The idea
is the following: we start with a toy-model for robots and quantum computing,
discussing it and its advantages [16], then we add complexity to the formaliza-
tion, adding physical constraints [18], and using a mathematical framework to
well describe the study (here). In this article, we (1) refine the quantum-swarm
approach, with robots acquiring information through their sensors and not via
an omniscient system; (2) we add this quantum-based decision system to the
telecommunication model of aquatic swarms and gondolas; (3) we formalize the
whole system via the concept of multilayer networks [3,4], and, finally, (4) we
propose quantum entanglement [23] to synchronize the decisions of the central-
ized units on gondolas at certain points of the exploration, and not at all times
and between all robots, as proposed in [11]. Thus, as a homage to Venice, we
can nickname this research as entangled gondolas. The article is structured as
follows. In Sect. 2, we present the original contribution of this study. In Sect. 3,
we summarize our findings and discuss some further research developments.

Table 1. Truth table for two robots Ri, Rj on the plane, not reversible because of
the indeterminacy on x, y in the case of 0 reward, from [16]. The reward is computed
as 1− the distance of a robot from the normalized target. q0 . . . q4 are the qubits. All
robots are exchanging information and according to the reward indication

q0 q1 q2 q4 q3 q2

x-pos y-pos reward y-pos x-pos reward

Ri Ri Ri Rj Rj Ri

0 0 0 0/1 0/1 0

0 0 1 0 0 1

0 1 0 0/1 0/1 0

0 1 1 1 0 1

1 1 1 1 1 1

1 0 0 0/1 0/1 0

1 1 0 0/1 0/1 0

1 0 1 0 1 1
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Fig. 1. Quantum circuit realizing the truth table of Table 1, from [16]. The circuit
is made of NOT, Toffoli, and Hadamard gates. The white “plus” inside a blue circle
indicates the NOT gate; the same symbol connected with two other smaller blue cir-
cles indicates the Toffoli gate. The symbol containing the red square with the white
H indicates the Hadamard gate. The gray boxes with the Z letter characterize the
measurement operation. These are standard symbols used in quantum computing, to
indicate logic gates. Each line indicates a qubit (q[0], ..., q[4]) and a classical bit (mq21,
mq31, mq41), where the results of the measurements are stored. At the end of the cir-
cuit, there are measurements for each qubit. As an example, the initial configuration
with |q0〉 = 0, |q1〉 = 1, |q2〉 = 1 is shown. (Color figure online)

2 Novelties: Joining Swarm Robotics, Quantum
Computing, and Multilayer Networks

2.1 A Quantum-Based Swarm of “Telecommunicating” Robots

In this Subsection, we join the quantum-based decision-making model presented
in [16] for a swarm of robots, applying it to a working simulated model for
telecommunications. The system presented in [16] had the limitations of an
omniscient system, that knew the position of obstacle and target, and where
the distance of robots from the target is simply computed as the Euclidean dis-
tance between their coordinates. Here, the information on target proximity is
acquired through robotic sensors. From [18], we borrow the simulation parame-
ters of aquatic robots and the overall architecture with computational units on
gondolas, which will be explicitly used in Subsects. 2.2 and 2.3.

We present now a computational example of a swarm of aquatic robots with
telecommunications protocols and quantum computing. The implemented net-
work consists of N aquatic devices, the same as the ones defined in [18] (moving
according to a Random WayPoint mobility model — RWP [27]. Each node has
a radio coverage radius RM and a sensing radius (generally optical) RS , able to
check if the target is near the node. Connections are peer to peer, so they create
an Ad-hoc network. Nodes move into a square map.

As aforementioned, robots have visual sensors. The measure of “success” is
here called reward, and it is measured as 1−(perceived) distance from the tar-
get. Possible values of the reward are comprised between 0 and 1. The value 1
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is reached when the robots stop their motion on the target. The values of posi-
tions and reward are thought of as the values of the peak of the wavefunction,
as discussed in detail in [16]. Algorithm 1 summarizes the steps of the proposed
code, and Table 2 shows the results of some simulations. In Algorithm 1, we
indicate two robots of a pair inside the swarm as R1 and R2. The algorithm is
classic, except for the decision-making step, which is the result of the measure
from the quantum circuit of Fig. 1. A similar search-and-rescue can also be car-
ried out completely classically with If-Then-Else; however, in [16], the strategy
was implemented via a logic gate implemented inside a quantum circuit. The
advantages provided by this approach, against up-to-date competition-winner
algorithms (CEC 2022 Bound Constrained Single Objective Numerical Opti-
mization benchmark problems; NL-SHADE-RSP with midpoint, [2]), are pre-
sented in detail in [16]. In this model, the number of robots can be changed. In
this way, we can prove that the quantum protocol can be applied to inter-robot
communications in the picture of Fig. 2. In Subsect. 2.2, we describe the overall
system in terms of multilayer networks, and in Subsect. 2.3, we apply entangle-
ment to inter-gondolas communications. From Table 2 it can be seen that with
a low number of deployed nodes, more time is needed to accomplish the mission
(in the table, tj − ti = 120 s). So, the collaborative approach is evident: the
information discovered by each node is disseminated, if under coverage, giving
the possibility to other robots to reach the target, instead of moving randomly.
The code is available from authors upon request.1

Table 2. Results of ten simulations for a quantum-driven swarm of telecommunicating
robots. Each simulation campaign involves the quantum circuit with 1024 shots, that
is, 1024 runs of the code for each given configuration of the circuit. The most frequent
states obtained in the output are the result of the measure. Map dimensions are 400 ×
400 m, each robot has a sensing capacity of RS = 20 m and a coverage radius of RM =
50 m. We assume that the robots communicate with the classical Ad-hoc On-demand
Distance Vector (AODV) protocol, without any scalability issue, given the low number
of involved mobile nodes. Robots, target, and obstacles are initially deployed randomly
and when the map bounds are sensed, the robots change their moving direction.

N trial average reward

t0 t1 t2 t3

2 1 0 0 0.002 0.08

2 0 0.001 0.003 0.15

3 0 0 0.0015 0.22

10 1 0 0.2 0.4 0.73

2 0 0.212 0.416 0.8

3 0 0.34 0.436 0.828

1 It is the application of the codes in https://github.com/medusamedusa/10 little
ants to the considered case.

https://github.com/medusamedusa/10_little_ants
https://github.com/medusamedusa/10_little_ants
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Algorithm 1. Quantum-driven robots and telecommunications
Input: initial position of robots; position of the obstacle (unknown to the robots);
position of the target (unknown to the robots)
while the swarm barycenter is far from the target do

while R1 explores the space do
R1 broadcast its position and reward
if R1 robot finds an obstacle in its visual field then

it changes direction of motion
end if
if R1 robot finds the target in its visual field then

it slows down and starts to approach to it
its reward slowly increases from 0 to 1 as the robot gets close to the target
R1 robot remains on
keep broadcasting its position
R2 and the other robots get updates on position and reward of R1, and

this information enters the quantum circuit; its output indicates the positions to
be reached next.

end if
if R2’s reward is higher than R1’s reward then

the coordinates of R2 enters the quantum circuit.
end if

end while
end while

Fig. 2. Representation of the overall system with swarms of aquatic robots and com-
putational units on gondolas, from [18].

2.2 Multilayer Networks to Model the Interactions Between Robots
and Gondolas

The second novelty we introduce here is the hierarchical definition of communi-
cating aquatic swarms and gondolas via the concept of multilayer networks.

Whereas a complex network in general consists of nodes which are connected
by links, a multilayer network is constituted by a multitude of different kinds
of nodes and connections. Therefore, the concept of multilayer networks is very
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powerful for the description and modeling of systems with multiple types of
interactions, subsystems, and multidimensional structures [4]. We considered
two hierarchical levels: base stations, responsible for dropping down the robots
into water and to collect statistics, and superficial nodes, as illustrated in Fig. 2.
Base stations are indicated with vbi , while superficial robots are indicated with
vsi,j

, where i, here, is the subscript of the belonging base station. The num-
ber of deployed superficial nodes is N , while there are M base stations. For
more details, see [18]. The most important thing is that vsi,j

nodes may com-
municate with each other directly (Ad-hoc mode) or through their base stations
(Infrastructured mode). The links in a (unweighted) complex network can be
represented using the adjacency matrix A with Ai,j = 1 representing a link
between nodes i and j (and 0 for no link). In a multilayer network, we have for
each individual layer α a separate Aα (with the greek letters α, β, etc. indi-
cating a separate layer), indicating the intra-layer links. The inter-layer linking,
i.e., links between different layers are represented by the adjacency matrix Aα,β

(with α, β indicating the corresponding layers α and β).
For our special case of swarm robots connected to gondolas, we present a

multilayer approach taking into account submatrices describing the swarm com-
ponent, and submatrices describing the gondolas component. The connected
gondolas can be represented by one layer, using the long-range communication
between them. Since the gondolas are all connected with each other (complete
network), the corresponding adjacency matrix consists everywhere of values 1
except at the main diagonal (to exclude self-links):

Ag =

⎛
⎝

0 1 1
1 0 1
1 1 0

⎞
⎠ (1)

for an example of 3 gondolas as in Fig. 2.
The robots within a swarm are all connected with each other, thus, the corre-

sponding adjacency matrix would be similar to the above one, Eq. (1), consisting
of values 1 except for the main diagonal. The adjacency matrix of the different
gondolas can be considered as of the same kind of layer and, therefore, form-
ing just one layer but without links between the different swarms (the coloring
indicating the different swarms):

As =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 1 1
0 0 0 0 0 1 0 1 1
0 0 0 0 0 1 1 0 1
0 0 0 0 0 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2)
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The multilayer network is the combination of these adjacency matrices Ag (here
indicated with red) and As with the inter-layer connectivity matrices Ag,s:

A =
(
Ag As,g

Ag,s As

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 1 1 0 0 0 0 0 0
1 0 1 0 0 0 1 1 0 0 0 0
1 1 0 0 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 0 0 0 0
1 0 0 1 0 1 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 1 1
0 0 1 0 0 0 0 0 1 0 1 1
0 0 1 0 0 0 0 0 1 1 0 1
0 0 1 0 0 0 0 0 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3)

The colored matrices along the diagonal represent the intra-layer communica-
tion and the off-diagonal parts (i.e., As,g) the inter-layer communications, i.e.,
the exchange of information between robots in a swarm and their connected
centralized gondola.

In an extension, we could also think of exchanging information between the
robots of different swarm directly (without the gondola layer). Then the off-
diagonal elements in As in Eq. (2) would have values 1, too.

This kind of representation can be used to model the information flow
through the network. Studies with diffusive processes have shown that the diffu-
sion can be much faster in multilayer networks than in the separate single layers
[8], or that multiplex networks can enhance congestions [22]. Such a model app-
roach can be based on a Markov chain model [9], a simple standardized model
[22], or diffusion model [8]. A block-matrix representation for a single swarm
was proposed in [15,16]. In that representation, diagonal submatrices contained
the information on single robots, while the off-diagonal submatrices represented
the pairwise interactions. As one of the next steps of research, we can develop a
comprehensive formalism, where we connect the parameters of each single robot
with the overall architecture of swarms and gondolas.

2.3 Entanglement Between “Gondolas”

The third and last novelty we introduce in this study is the application of entan-
glement to force gondolas follow each others’ change of positions if certain con-
ditions are verified. Thus, we borrow the (theoretical) use of the entanglement,
computationally used in quantum circuits, to model interactions between the
“heads,” that is, the central units on gondolas.

In quantum mechanics, the entanglement is a non-local phenomenon, where
two different particles behave as being part of the same physical system, despite
possible ample space distance [23]. It means that, if a measure is performed on a
particle, forcing it to enter into the eigenstate of the solution (destructive mea-
sure in physics), automatically, and instantaneously, the other particle switches
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its configuration to the same or opposite value, according to the overall state
definition. In the case of classical devices as robots, we cannot think of instante-
nous exchange of information. Nevertheless, the core idea of considering multiple
elements as part of the same physical system can be borrowed. And this idea
can be considered as central to the very same concept of swarms: multiple units
acting as elements of the same object.

Algorithm 2. Mechanism of entanglement-setup for gondolas
Input: max reward in each swarm; average reward in each swarm; barycenter posi-
tion in each swarm
Each gondola computes and broadcasts these information to the other gondolas
if There is a swarm whose robots have max absolute individual reward; max average
reward; more precise barycenter position then

The entangled condition is activated
The other gondolas switch their indication of position according to the one of the

most successful swarm, following the eventual changes of position of the correspond-
ing gondolas
else if None of the swarms is successful then

The independent search of each swarm and their gondolas keeps going
else if There is a swarm presenting the worse values of the initial inputs then

The entangled condition is activated in the opposite sense
The other gondolas switch their indication of position as the opposite (randomly

exploring in opposite regions of space) to the one of the most successful swarm
end if

In our study, the entanglement can intervene as part of the inter-gondolas
communication, when the barycenter (and the majority) of the robots in a swarm
reached the target. So, the information is acquired by the computational unit in
the corresponding gondola, and the message “success of the search-and-rescue
mission of my swarm” is transmitted to the other gondolas, to synchronize their
movements. This is, of course, only an instance of modeling. In general, the inter-
gondolas synchronization can be activated according to some threshold values
of swarm-success or failure, depending on the specific mission assigned to each
swarm. The synchronization between gondolas can be expressed via correlated,
anticorrelated, or uncorrelated states. From quantum mechanics, we can borrow
the idea of Bell states, maximally entangled. For instance, we can consider the
Bell state 1√

2
(|00〉 + |11〉), where the first qubit exemplifies here the (mean)

reward of the most successful swarm as transmitted by its leading gondola, and
the second qubit, the activation of the entangled condition for the other gondola.
If the reward is high, then the other gondola, with its corresponding swarm,
follows the successful one. If even the most successful swarm has a reward which
is still quite low, and thus it is considered as a logic 0, then the other gondola is
unticorrelated to the other one, and explores elsewhere. If the reward of even the
most successful swarm is considered as 0.5, than no correlation or unticorrelation
is activated, and thus, there is no entanglement. In a quantum circuit, a Bell
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state is easily realized with a Hadamard gate (H) and a controlled NOT gate
(CNOT). Algorithm 2 presents a possible organization of this step of research,
which is to be implemented in next applications. It is mainly a “switch” that
activates and de-activates the “entangled state” when the IF conditions are no
longer verified.

3 Discussion and Conclusions

In this article, we proposed a study to join efforts from different disciplines,
namely swarm robotics, telecommunications, and network theory. The consid-
ered problem, that is, the formalization and computational analysis of a set of
swarms of robots interacting with central units, has been investigated in light of
diverse languages and formal approaches. In particular, we presented a compu-
tational example of a swarm of aquatic robots, interacting via broadcast commu-
nications, where the decision-making system is based on quantum computing.
Then, we considered the case of multiple swarms of robots, where each swarm
is also exchanging messages with a central unit put into a boat, specifically a
gondola. Units on gondolas are also able to exchange messages between them.
To model the overall system of swarms and gondolas, we can borrow the for-
malism of multilayer networks. Finally, the synchronization between gondolas,
occurring at certain points of the simulation—e.g., when one of the swarms was
overall successful in finding the target of the mission—can be modeled using key
ideas from entanglement in quantum mechanics.

This study can open new questions, mainly concerning the limits of applica-
bility of the proposed system of communication and decision-making in real
devices, taking into account limits of battery, noise disturbing the message
exchange, and limits of internet connectivity. In fact, internet is required to
remotely access IBM quantum simulators and quantum computers, which we
exploited in our working example. In [18], an essential model of aquatic robot
had been modeled, with four propellers, cameras for object detection, GPS sen-
sors, and distance sensors. Thus, a first assessment of practical limitations was
feasible. However, in that study, the quantum computing for robotic decision-
making had not been introduced yet. And that was one of the novelty of the
present research. As a possible strategy to overcome limitations of our study,
we can choose a model of existing aquatic robot used in swarms, and conduct
a sequence of experiments, to refine the models and highlight potential, unex-
pected problematics. A series of experiments with real devices could also help us
more realistically estimate the advantage provided by quantum efficiency, com-
paring it against the computational resources needed by quantum devices, even
if accessed remotely, and the time delay induced in communications. Further
developments can include the use of sonification to highlight patterns of behav-
ior in swarms at different hierarchical levels. The new development can draw
upon swarm-robotic sonification [17] and soundscape analyses [19].



188 M. Mannone et al.

References

1. Atchade-Adelomou, P., Alonso-Linaje, P., Albo-Canals, J., Casado-Fauli, D.:
qRobot: a quantum computing approach in mobile robot order picking and batch-
ing problem solver optimization. Algorithms 14 (2021)

2. Biedrzycki, R., Arabas, J., Warchulski, E.: A version of NL-SHADE-RSP algorithm
with midpoint for CEC 2022 single objective bound constrained problems. In:
IEEE, Padua, Italy (2022)

3. Boccaletti, S., Bianconi, G., Criado, R., Genio, C.: The structure and dynamics of
multilayer networks. Phys. Rep. (2014)

4. De Domenico, M., Granell, C., Porter, M., Arenas, A.: The physics of spreading
processes in multilayer networks. Nat. Phys. (2016)

5. De Rango, F., Palmieri, N., Yang, X.S., et al.: Swarm robotics in wireless dis-
tributed protocol design for coordinating robots involved in cooperative tasks. Soft.
Comput. 7(4), 4251–4266 (2018)

6. Dong, D., Chen, C., Li, H., Tarn, T.: Quantum reinforcement learning. IEEE Trans.
Syst. Man Cybern. Part B (Cybern.) 38, 1207–1220 (2008)

7. Fazio, P., Mehic, M., Voznak, M.: Effects of sampling frequency on node mobility
prediction in dynamic networks: a spectral view. Digit. Commun. Netw. 9, 1009–
1022 (2022)
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9. Granell, C., Gómez, S., Arenas, A.: Competing spreading processes on multiplex
networks: awareness and epidemics. Phys. Rev. E 90, 012808 (2014)

10. Hamann, H.: Swarm Robotics: A Formal Approach. Springer, Cham (2018)
11. Ivancevic, V.: Entangled swarm intelligence: quantum computation for swarm

robotics. Math. Eng. Sci. Aerosp. 7, 441–451 (2016)
12. Koukam, A., Abbas-Turki, A., Hilaire, V., Ruichek, Y.: Towards a quantum model-

ing approach to reactive agents. In: 2021 IEEE International Conference on Quan-
tum Computing and Engineering (QCE) (2021)

13. Kwak, Y., Yun, W., Jung, S., Kim, J., Kim, J.: Introduction to quantum rein-
forcement learning: theory and PennyLane-based implementation. In: International
Conference on Information and Communication Technology Convergence (ICTC)
(2021)

14. Lamata, L., et al.: Quantum mechatronics. Electronics 10, 2483 (2021)
15. Mannone, M., Seidita, V., Chella, A.: Categories, quantum computing, and swarm

robotics: a case study. Mathematics 3(372) (2022)
16. Mannone, M., Seidita, V., Chella, A.: Modeling and designing a robotic swarm: a

quantum computing approach. Swarm Evol. Comput. 79(101297) (2023)
17. Mannone, M., Seidita, V., Chella, A.: The sound of swarm. Auditory description

of robotic movements. ACM Trans. Hum.-Robot Interact. 12(4), 1–27 (in press)
18. Mannone, M., Seidita, V., Chella, A., Giacometti, A., Fazio, P.: Energy and SNR-

aware robotic swarm coordination for aquatic cleaning operations. In: 97th IEEE
Vehicular Technology Conference (VTC), Florence, Italy, pp. 1–7 (2023, in press)

19. Haselhoff, T., et al.: Complex Networks for Analyzing the Urban Acoustic Envi-
ronment. EarthArXiV. https://eartharxiv.org/repository/view/5371/

20. Palmieri, N., Yang, X.S., De Rango, F., et al.: Comparison of bio-inspired algo-
rithms applied to the coordination of mobile robots considering the energy con-
sumption. Neural Comput. Appl. 31, 263–286 (2019)

https://eartharxiv.org/repository/view/5371/


Entangled Gondolas 189

21. Srivastava, S.: Quantum Robotics: Applications of Quantum Computing in Robotic
Science. Analytics Insight (2020). https://www.analyticsinsight.net/quantum-
robotics-applications-quantum-computing-robotic-science/
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Abstract. This paper presents a study investigating the generalization
characteristics of two neuro-controllers underpinning decision-making
mechanisms in a swarm of robots engaged in a collective percep-
tion task. The neuro-controllers are both designed—using evolutionary
computation—to operate in a randomly distributed cues environment,
but under different conditions for what concerns the length of the com-
munication range characterising the robots interactions. For one neuro-
controller, the communication range during the design phase is 30 cm,
while for the other is 50 cm. The aim of the study is to explore the robust-
ness and the limitations of the two distinct neuro-controllers across a
range of different conditions and to establish the optimal bounds on the
swarm communication range for this collective perception task. To exam-
ine the performance of the two neuro-controllers we conduct a series of
post-evaluations in 45 distinct environments, given by nine different dis-
tributions of the perceptual cues, and five different communication ranges
(i.e., 10, 20, 30, 40, and 50 cm). The results demonstrate that the neuro-
controller evolved with a swarm communication range of 30 cm gener-
alizes better and exceeds the performance of the other neuro-controller
evolved with 50 cm communication range in a vast majority of the post-
evaluation conditions. However, the swarm performance degrades in con-
ditions with patchily distributed perceptual cues and/or very short com-
munication range.

Keywords: Swarm robotics · Collective perception · Evolutionary
robotics

1 Introduction

Swarm robotics studies multi-robot systems in which each robot has its own con-
troller, perception is local and communication is based on spatial proximity [10].
The group-level response emerges from a self-organisation process [7], based on
the interaction between the robots and their physical environment. However,
the autonomous nature of this process poses a challenge for designers, since it
is notoriously difficult to infer which set of individual actions leads to the emer-
gence of a desired collective response. Moreover, traditional design methods lack
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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the ability to tackle problems and swarms of increasing complexity in uncertain
and unpredictable environments. This further intensifies the need for fundamen-
tal and generic automated methodologies for modulating collective behaviour,
with the potential to circumvent tedious trial-and-error model tuning.

One type of widely studied paradigms in swarm robotics is the “best-of-
n” problem set [18,21], which requires the swarm to reach a consensus on the
best among a number of available options. Consensus achievement is a process
in which swarm members exchange their opinions with each other and even-
tually converge to a unique opinion. These studies instigate the search for con-
trollers that perform robustly in different conditions, while at the same time opti-
mize the utilization of critical device-operating resources. For example, emitting
longer-range signals for swarm communication inevitably contributes to higher
energy consumption and negatively impacts the autonomy of the robots. Since
swarm communication is inherently local, it is important to establish the opti-
mal bounds for the maximal communication range (and therefore constrain the
energy consumption) and the exact trade-offs with respect to swarm performance
in a particular task.

In this paper, we investigate the ability of two particular neural models [1] to
generalize the opinion selection in a swarm of robots, engaged in the collective
perceptual discrimination task, across a range of qualitatively and quantita-
tively different conditions, while preserving their effectiveness. We evaluate one
previously developed neural model [1–3] and one recently evolved controller over
a set of test conditions in the collective perceptual discrimination task, while
varying the environmental patterns with respect to the spatial distribution of
the options and the communication range. We use the nine benchmark environ-
ments proposed in [4] in which the options are more patchily distributed than
the environment experienced by the swarm during the control system design
phase. To our knowledge, this is the first study exploring swarm performance
across environmental patterns and communication ranges simultaneously. The
results of this study highlight important time vs. accuracy trade-offs, elucidate
the interplay between swarm communication range and generalization capabili-
ties and contribute to providing better awareness about the robustness of evolved
controllers for swarm robotics. In the next section we present the related previ-
ous work, followed by the methodology of our study, the presentation of results
and the discussion of salient observations, and finally we close with conclusions
and directions for future work.

2 Related Work

For designing large groups of robots, which coordinate and cooperatively per-
form a task, swarm robotics takes inspiration from natural self-organizing sys-
tems and attempts to recreate the emergence of collective behaviour from simple
local interaction rules [12,22]. Through the design of individual robot behaviour,
swarm robotics aims to achieve locally coordinated interactions that results in
a self-organized collective behaviour [6,9,11]. Collective decision-making mecha-
nisms, designed by behaviour-based modular control systems, have demonstrated
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their effectiveness in a variety of scenarios [15,19,20]. However, the adaptabil-
ity of these swarms to unexpected and unpredictable circumstances tends to
be limited by the designer imposed bias. Further research is required to design
collective decision-making mechanisms that allow swarms of robots to mimic
natural swarms with respect to robustness, scalability, and flexibility [10].

The collective perceptual discrimination task for swarm of robots has been
originally introduced by [14], who used a binary version of this scenario to
design and evaluate individual mechanisms underpinning the collective decision-
making process. In this task, the swarm explored a close arena patched with
tiles, randomly painted in black and white, with the aim to collectively decide
which colour is dominant. The two colours are the options or features, and the
proportion with which each colour covers the arena floor corresponds to the
option/feature quality. The goal is to design individual opinion selection mech-
anisms that allow the swarm to converge on the desired consensus state (i.e., all
robots sharing the correct opinion about the arena colour dominance). Various
individual mechanisms for opinion selection have been developed, from the clas-
sical hand-crafted solutions, based on the Voter model, the Majority rule, and
their variants [21], to more recent ones, based on the synthesis of artificial neu-
ral networks [1]. More recently, an opinion selection mechanism based on artifi-
cially synthesised neural network using evolutionary algorithms [2] have proved
effective for the collective perceptual discrimination task [19]. Further studies
with evolved controllers [3] demonstrated that the neural network based opinion
selection mechanism is more effective and scalable than the Voter model [19] in
a set of environmental patterns, however, with a fixed swarm communication
range. The perceptual discrimination task has been used by [19] to investigate
the performance of various decision-making strategies for swarm of robots while
varying the options quality (i.e., the features ratio) for controlling task diffi-
culty. [16] explored further variations of this task, characterised by the presence
of byzantine robots, i.e., robots that communicate deceptive messages with the
intent to entice the swarm to converge on a consensus to a non-optimal choice.
[8] investigated scenarios with more than two options/features. Arguing that the
key determinant of the difficulty of the perceptual discrimination task for swarms
of robots required to choose the best option is the features’ distribution, [4] pro-
posed a set of nine structurally different variations in the environmental topol-
ogy of the patterns (Fig. 1) and a set of measures for their characterization,
without considering the communication range as an important system variable.
Their work was further expanded by [17], who proposed a universal and generic

Fig. 1. The benchmark patterns used in our study, proposed by [4] and employed in
other perceptual discrimination tasks [1] to assess the swarm performance.
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measure of task difficulty, which takes into account not only the environmental
complexity, but also the agent’s capabilities. More recently, [1] used this set of
patterns to evaluate the effectiveness of neural network-based decision-making
mechanisms with a fixed communication range. This set of spatial distributions
of the perceptual cues have been evaluated in [5] with a decision-making mech-
anism tackling spatial correlations in unknown environments statistically.

3 Methods

This study is based on the collective perceptual discrimination task as described
in [1,4], and is conducted in a simulation environment represented by a square
arena of 2× 2m, whose floor is covered with black and white tiles (see Fig. 2a),
10×10 cm each, distributed according to the patterns shown in Fig. 1. The domi-
nant colour (either black or white) covers 55% of the arena floor and corresponds
to the best quality option/feature, while the other colour covers the remaining
45%. In this scenario, a swarm of 20 robots navigate the arena with the task to
reach a consensus on the type of environment on which they are placed. Con-
sensus refers to a state in which all robots share the same opinion on the arena
colour dominance.

Our robot model simulates the widely popular in the research community
e-puck2 robot [13], which is equipped with eight proximity infra-red sensors, a
binary floor colour sensor, and a range&bearing board for local communication.
Swarm communication consists of emitting a binary signal, which represents the
robot’s current opinion about the arena colour dominance. To compensate for
the simulation–reality gap, 10% uniform noise is added to all sensor readings,
motor outputs and robot position.

Initially, a homogeneous swarm of 20 robots is distributed randomly in the
arena. During the evaluation the robots explore the arena with a random walk

Fig. 2. (a) Simulated arena of the collective perceptual discrimination task. (b) Multi-
layer CTRNN underpinning the opinion selection of a single agent.
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with a fixed step length (5 s, at 20 cm/s), and turning angles chosen from a
wrapped Cauchy distribution, while avoiding obstacles (arena walls and neigh-
bours) for up to 1000 s. On every iteration, the robots sample the arena under
their body and communicate their opinion on the dominant colour to spatially
proximal robots. The objective of the swarm is to reach a consensus (i.e., all
robots sharing the same opinion) on the correct colour dominance. The pro-
cess underpinning the development of the individual opinion is regulated by a
continuous time recurrent neural network (Fig. 2b), synthesised using evolution-
ary algorithms. In this study, we have evaluated and compared the performance
of one previously developed controller [1] designed to operate with a commu-
nication range of 50 cm, and one recently evolved neuro-controller designed to
operate with a shorter 30 cm communication range.

A simple evolutionary algorithm with linear ranking is used with a popula-
tion of 100 genotypes. Generations are produced by a combination of selection
with elitism, and mutation. For each new generation, the highest scoring individ-
uals are retained unchanged. The remainder of the new population is generated
by binary tournament selection from the 70 best individuals of the old popula-
tion. Each genotype is a vector comprising 15 real values with 10 connections,
2 decay constants and 3 bias terms. At the beginning of each evaluation trial,
each genotype is decoded into a neuro-controller, which is cloned on each robot.
Robots are randomly placed in the arena with a random orientation. The fitness
of a genotype is its average swarm evaluation score after it has been assessed
twice for both, black-dominant and white-dominant environments. In each trial
e, the opinion of robot r is evaluated at every time t (i.e., Or

t ) for every robot
in the swarm, and the swarm is rewarded by the following function:

Fe =

⎧
⎪⎨
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r=1 o

r
t if swarm located in a white-dominant env.

2
T

∑T
t=T/2

∑R
r=1(1− ort ) if swarm located in a black-dominant env.

Since the operational principles of our controller are not functionally sym-
metrical with respect to the dominant colour, we performed the evaluation both
in black-dominant and white-dominant environments separately and contrast
the outcome. The maximal robot–robot communication range, which allows a
reliable implementation on the physical e-puck2 robot with the range&bearing
board, is 50 cm, therefore we explore five communication range limits between
10 cm and 50 cm. In order to investigate the trade-offs between communication
range, time-to-consensus and swarm accuracy, we analyze the performance of
simulated robot swarms over 50 trials per each communication range for black-
dominant and white-dominant floor distributions in all nine environmental con-
ditions (patterns). To characterize swarm performance, we employ two measures
– decision accuracy and time-to-consensus. The former quantifies the proportion
of trials in which the swarm reached consensus on the correct opinion/option
and the latter characterizes each successful trial.



Generalizations of Evolved Controllers in Swarm Collective Perception 195

4 Results

In order to explore the relationship between the time the swarm spent on the
task, as a key performance indicator, and the swarm communication range, we
averaged the execution time of all 50 trials per condition, including the time-
to-consensus of successful and the time limit (1000 s) of unsuccessful trials. In
the following, for brevity, we will denote the controllers evolved with communi-
cation range of 50 cm and 30 cm with NN50 and NN30, respectively. The results
reveal decreasing trends (Fig. 3) with the increase of communication range for
all environmental patterns, as expected, however, with significant variability in
the shapes and slopes. At one extreme, for the homogeneous Stripe pattern, the
swarm achieved negligible success across conditions, revealing the limitations
of the controllers. At the other extreme, the curves for the Random pattern
show consistent monotonic trends of execution time as the communication range
increases, outperforming the rest with minor exceptions. This is unsurprising, as
the neuro-controllers are evolved in the Random pattern environment. The gen-
eralization capabilities of the controllers are best evidenced for the Star pattern,
which approaches the performance levels of the Random pattern as the commu-
nication range increases and surprisingly exceeds those in the largest range.

Interestingly, NN30 demonstrates faster average execution times than NN50
overall, in particular with respect to more challenging environmental patterns.
Strikingly, in the communication range of 50 cm NN30 is superior to NN50 for
most patterns, which is surprising, provided that NN50 was evolved for the
communication range of 50 cm in particular. The results reveal that NN30 is
narrowing the performance gap between the Random and the Star patterns and
the rest of the pack, which is large in the case of NN50.

Figures 4 and 5 present the accuracy and the time-to-consensus distributions
respectively, for all conditions (pattern, communication range, dominant colour),
which provide further insights about the generalization abilities of the controllers.
Both controllers generalize rather well in the Star and the Random patterns
across the range of 20 cm to 50 cm.

Figure 4 reveals the superior overall accuracy of NN30 over NN50 across
conditions. NN30 performs markedly better than NN50 in the shorter communi-
cation ranges of 20–30 cm, however, it excels in the larger ranges as well. NN30
generalizes better than NN50 across environmental patterns in the communica-
tion ranges of 30 cm to 50 cm, and has a significantly stronger performance also in
the ranges of 10–20 cm. Furthermore, the evolutionary bias between black and
white dominant environments, strongly evident in the performance of NN50,
mostly vanishes in the case of NN30.

The time-to-consensus distributions (Fig. 5) exhibit large variability across
patterns and communication ranges. The exception is confined to the Random
pattern and to some extent to the Star pattern, with more compact time dis-
tributions. The results reveal a quasi-monotonic relationship between execu-
tion time and communication range for most patterns, as increasing the range
increases both the average time and its variance. Increasing the time limit to
1000 s appears to allow to a certain degree the convergence to consensus for cer-
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tain patterns as the communication range decreases. The time distributions for
NN30 reveal that while 500 s are sufficient for convergence in the largest com-
munication range for the majority of the conditions, this time limit is insufficient
for shorter communication ranges, which require 600–800 s for some patterns.

Fig. 3. Average execution time over 50 trials per communication range (on the x axis
in decimeters) in all nine environmental conditions for black-dominant (a) NN50 and
(b) NN30, and for white-dominant environments (c) NN50 and (d) NN30. For one type
of environment—Stripe—the swarm achieved only negligible success across-the-board.
For the Random environment, the graphs show a steady decrease of execution time
as communication range increases, with minor exceptions. The trends for NN30 reveal
better performance than NN50, overall.
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Fig. 4. Swarm consensus accuracy of successful trials, recorded in 50 simulation trials
per condition in the nine environmental patterns and five communication ranges: for
NN50 (a) 10 cm, (b) 20 cm, (c) 30 cm, (d) 40 cm, and (e) 50 cm, and for NN30 (f)
10 cm, (g) 20 cm, (h) 30 cm, (i) 40 cm, and (j) 50 cm. NN30 achieved higher accuracy
than NN50 overall across conditions. The superior performance of NN30 over NN50 is
most pronounced in the communication ranges of 20–30 cm, and extends to the larger
ranges as well.
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Fig. 5. Consensus time distribution (in sec) of successful trials, recorded in 50 simu-
lation trials per condition in the nine environmental patterns and five communication
ranges: for NN50 (a) 10 cm, (b) 20 cm, (c) 30 cm, (d) 40 cm, and (e) 50 cm, and for
NN30 (f) 10 cm, (g) 20 cm, (h) 30 cm, (i) 40 cm, and (j) 50 cm. NN30 achieved faster
consensus and more compact time distributions than NN50 overall. The effect that
decreasing communication range has on time is consistent for both controllers, as the
consensus time and its variance both increase.
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5 Discussion

The results of this study complement the findings reported in [1] by extending
the scope of the test conditions. In this work, we have evolved a new neuro-
controller using the same mechanism as in [1], however, restricting the commu-
nication range to 30 cm instead of 50 cm. We have evaluated both controllers,
the new one (NN30) and the previously reported one (NN50) in [1], in the collec-
tive perceptual discrimination task on the nine environmental patterns using five
communication settings, ranging from 10 cm to 50 cm, with the aim to explore
the limits of generalizability of the controllers. Anticipating slower than typi-
cal convergence to consensus, in this study, we have increased the cut-off time
from 400 s to 1000 s, which proved beneficial overall. Certain patterns required
longer time for convergence (600–800 s), especially with decreasing communica-
tion ranges. This insight is an important empirical benchmark, given that the
typical cut-off time used by the research community in this type of studies is
400 s.

The results demonstrate the superior generalization capabilities of NN30 over
NN50 across conditions. The NN30 controller, surprisingly, outperforms NN50 in
the largest communication range, for which NN50 was evolved in particular. The
effect of the evolutionary bias between black-dominant and white-dominant envi-
ronments is also significantly reduced by NN30, which is a major step forward.
As expected, performance drops with decreasing communication range, gradu-
ally for NN30, and more dramatically for NN50. More clustered pattern types,
e.g., Stripe, proved difficult for both controllers, achieving very low accuracy in
all conditions.

The results highlight that the overall performance drops with decreasing com-
munication range across all environmental patterns, as expected, however at a
different rate for different patterns. Time-to-consensus increased gradually for
all pattern types as the communication range decreased, as expected, however,
the increase for the Random pattern was negligible and for the Star pattern
moderately steeper, which highlights the robustness of the controllers. Interest-
ingly, the Star and the Block patterns outperformed the Random pattern in some
of the conditions. Furthermore, in the white-dominant environment the NN50
performance for the Random pattern was unexpectedly higher in the ranges of
20 cm and 30 cm, compared to the ranges of 40 cm and 50 cm, an artefact of the
evolutionary bias effect. Similarly, NN30 achieved higher accuracy in the range
of 20 cm than 30 cm for the Random pattern.

6 Conclusion

This paper presents an investigation into the performance of two neural net-
work controllers recently evolved for the collective perceptual discrimination
task with swarm communication ranges of 50 cm and 30 cm respectively. The
controllers were evaluated in a simulated homogeneous swarm of 20 robots in a
set of conditions, varying the structural distribution of the arena floor pattern
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and the swarm communication range. The results indicate the ability of this type
of neural models to generalize their decision-making behaviour towards swarm
consensus in a range of test conditions, and highlight their limitations. This work
demonstrates the potential of the evolutionary approach to automatically design
decision-making mechanisms for swarm robotics and represents an important
milestone towards the development of robust controllers that adapt successfully
to unexpected conditions while retaining their performance. Future research will
focus on the evolution of controllers for various conditions in order to identify
the optimal configurations and establish the precise performance bounds and
trade-offs in swarm collective perception.
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Abstract. The ability to resist to faults is a desired property in robotic
systems. However, it is also hard to obtain, having to modify the behavior
to face breakdowns. In this work we investigate the robustness against
sensor faults in robots controlled by Boolean networks. These robots are
subject to online adaptation—i.e., they adapt some structural proper-
ties while they actually act—for improving their performance at a simple
task, namely phototaxis. We study their performance variation according
to the number of faulty light sensors. The outcome is that Boolean net-
work robots exhibit graceful degradation, as the performance decreases
gently with the number of faulty sensors. We also observed that a mod-
erate number of faulty sensors—especially if located contiguously—not
only produces a negligible performance decrease, but it can be some-
times even beneficial. We argue that online adaptation is a key concept
to achieve fault tolerance, allowing the robot to exploit the redundancy
of sensor signals and properly tune the dynamics of the same Boolean
network depending on the specific working sensor configuration.

Keywords: Boolean networks · Robot · Online adaptation · Graceful
degradation · Fault-tolerance

1 Introduction

Research in robotics has often been influenced by biology. Sometimes the goal
is to explore natural behaviors in a controlled setting, some others to bring the
effectiveness of natural strategies to artificial applications [5,9,11,17,19]. Never-
theless, one often neglected property is the natural ability to survive to faults.
The motivations are many, and rooted in the differences between artificial and
biological bodies. For instance, organisms are able to recover from limited dam-
ages regenerating tissues, while machines are not. Even the perception capabil-
ities differ, with biological bodies having many more redundant and degenerate
sensors. This directly enhances the survival of an organism, since in case of faults
essential information can be retrieved—and reconstructed—from the remaining
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signals. From this point of view, the gap between artificial and biological agents
is still huge and far from being filled.

Although we cannot expect to achieve the same resilience of living organ-
isms soon, we can still aim at improving the current state of robotics. Many
robots work in a fragile equilibrium, where a single breakdown can lead to the
catastrophic fault of the entire system. This problem is too often ignored, as it is
frequently possible to reach the robot and recover the damage. Nevertheless, this
binds the robot existence to us and prevents the creation of really autonomous
robots, i.e., robots able to operate without the need of human intervention [18].
Autonomy is important especially in situations in which the robot have to act
in an isolated environment, for example during rescue operations in hostile envi-
ronments. We believe that the first step to obtain autonomous robots consists
in making them less dependent on human support. This can be achieved by
improving their resilience to faults, i.e., by making them able to continue their
duties when subject to breakdowns. Obviously, the limited amount of sensors
and actuators in a robot still makes it sensible to faults. Nevertheless, we aim
at a graceful degradation of performance according to the amount of damage.
This property alone is already an important improvement over the current state,
where the lack of a single cue can lead to a critical decrease in performance.

Previous attempts to tackle the problem consisted in defining an internal
representation of the robot structure, allowing to adapt the behavior as soon as
some part of the body were detected to be damaged [4]. The robot synthesizes
a new behavior simulating its self-model and finding the most suitable solution
to the fault. This technique is very powerful, but also highly computationally
demanding. This makes the approach unsuitable for computationally limited
robots. In this work we build upon previous works of online adaptation in order
to provide an alternative approach for minimally cognitive agents [1,5,6]. The
idea is to continuously adapt the behavior with a simple strategy in order to
maximize a performance metric. We expect this approach to lead to a graceful
degradation of performance, as the reaction of the robot adapts to exploit the
best information available. However, as the adaptation process is not instan-
taneous, we expect the performance to briefly drop before each recovery. The
decrease directly correlates with the importance of the faulted signal in the reac-
tion of the robot. Therefore, it is expected that different faults will recover in
different amounts of time. In order to overcome this problem, we propose to
analyze the performance of a robot that does not have any innate behavior or
any sort of reactive mechanism. This allows us to assess the average time needed
to recover, regardless of any previous known behavior.

Our investigation consists in evaluating the graceful degradation of perfor-
mance in robots controlled by Boolean networks (BN). During the adaptation,
only the couplings between robot sensors and BN nodes undergo changes, leav-
ing the BN itself unchanged. The performance is evaluated in a phototaxis task,
in which the robot has to reach a light source. The results aim at providing a
first assessment as to whether online adaptation induces a graceful degradation
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of performance in BN-robots that perform phototaxis. Finally, we also try to
understand to what extent the kinds of damage affect the performance.

This paper is structured as follows. In Sect. 2 we give an introductory descrip-
tion of BNs and their working principle. In Sect. 3 we describe the adaptive
approach used in the experiments. Section 4 delves into experimental details.
Following, Sect. 5 presents and discusses the results of the study. Finally, in the
conclusion section we summarize the work done and we illustrate future explo-
rations on the topic.

2 Boolean Networks

The core of the robot controller used in this work is a Boolean network (BN). BNs
can be represented as a discrete set of Boolean variables and Boolean functions.
The state of a variable depends on the state of the neighbors and on the transition
function that controls it. Since their introduction as an abstract model of gene
regulatory networks [14], BNs have been the subject of many works investigating
their computational and dynamical properties. Notably, they effectively capture
significant biological phenomena, such as cell differentiation [7,8,12,13,16,23,
24]. One interesting application is in the context of robotics, where they have
been used to develop adapting and evolving1 robots [5,22].

A specific class of BNs is Random Boolean Networks. Those are created
randomly according to some rules, such as the (possibly average) number of
neighbors K of each node. Also the transition functions are randomly generated,
usually creating a mapping from the state of the neighbors to the resulting state
of the variable. This can be done by creating a table enumerating the possible
input states and by randomly setting the corresponding output. The setup can
be influenced by a bias p representing the probability of an output to be set to 1.
Different combinations of values for p and K change the dynamic of the network
towards different dynamic regimes [15]. BNs possess an interesting dynamics
that can be divided in two regimes: order and chaotic. The ordered region is
characterized by a short propagation of the signals, and by the tendency of the
system to return to a stable state. The chaotic regime enhances and favors the
perpetuation of perturbations that may permanently change the state evolution
of the system. The result is that the state of a chaotic network is never stable. A
critical region lies at the boundary between these two regimes, separating them.
In this condition the perturbations propagate more than in the ordered region,
but fade away faster than in the chaotic one. Many works suggest critical BNs
favors computation, and indeed have been successfully used to complete different
tasks, such as classification, filtering and control [21]. Even BNs evolved to solve
specific tasks were often found to be critical [2].

1 This mostly thanks to their simple encoding and mutation.
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Fig. 1. Example of an adaptation step. The subset of sensor-node couplings to be
reconnected is indicated by a red dashed line on the left. The reconnected couplings
are represented by a blue dashed line on the right. As visible, the adaptation affects
only the node to which a sensor connects, and leaves unchanged the topology of the
BN. (Color figure online)

3 Adaptation

We claim that the ability to adapt is a major facilitator to achieve a graceful
degradation of performance. In this work, we use a previously proposed adaptive
mechanism for the adaptation of the robot behavior [6]. This is designed to work
on network based control systems, and has been already successfully used for the
adaptation of robots controlled by random BNs.

In this schema, the BN mediates the signals from the sensors in order to
produce an adequate output to control the actuators. The BN itself is random,
and never changes during the experiment. Indeed, the adaptive process does not
directly affect the BN. The only way to modify the behavior of the robot is thus
by modifying the couplings between network nodes and sensors/actuators (see
Fig. 1). Specifically, in this work we only change the sensory couplings, i.e., those
from the sensors to the BN. The idea is that it is possible to perturb the internal
state of the BN in order to generate a desired response, i.e., a desired output
which is used to properly control the actuators. Differently, we can state that the
adaptation modifies the point of view of the robot, increasing or decreasing the
focus on (i.e., effect of) some signals. When the robot behavior adapts, a sub-
set of couplings between the robot light sensors and a BN controller is chosen
and modified. The new couplings must connect to different nodes of the BN.
Moreover, no more than one sensor can connect to a single node. Previous works
demonstrated that this simple adaptive strategy is powerful enough to produce
complex behaviors [5].

4 Experimental Setting

The robot used in the experiment is a foot-bot, simulated in ARGoS [3,20]. The
foot-bots are equipped with 24 light sensors placed in a circular ring around the
chassis of the robot, and can move by acting on the motors of two wheels. Before
being passed to the BN, the values of the sensors are encoded in binary form
according to a threshold t = 0.2. The outputs provided to the two wheels are
either 0 or 1, converted either into a stopped wheel or a wheel that provides a
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fixed linear velocity (2 cm/s in our experiments). A modulation of the speed is
possible by controlling the output at each step.

The task on which the performance degradation will be assessed is phototaxis.
This consists in moving as fast as possible towards a light source, and staying
close to it once it is reached. The experiment takes place in a squared arena
with an edge equal to 100 m. The destination marked by the light is the center
of the arena, while the starting point is in one of its corners. Robots undergo
an adaptation process composed of 1200 epochs, each lasting one minute in
simulation time. At the start of each epoch the robot adapts its controller, that
is then evaluated at the end the epoch. At the end of each epoch the robot
evaluates its performance as the difference between initial and final distance
from the light. For ease of the experiments we provide this information directly
to the robot. However, in principle robots are situated in their environment and
should use only the information they can get from their sensors. For example, in
this case we could use the variation of light intensity read by the light sensors. If
the performance is not worse than the best one achieved so far, the incumbent
mapping becomes the starting point for subsequent adaptations. Otherwise, the
previous mapping is restored and adapted once more. In this experiment the
adaptation can affect up to 6 connections from sensors to BN nodes.2

As we are in an online setting, besides the final distance to the light, we are
also interested in the life performance of the robot, i.e., in the performance they
achieve in the whole duration of a single experiment. For this reason, we assess
the performance according to three different measures: (a) the distance from the
light along the epochs; (b) the run length distribution (RLD), which represents
the fraction of successful runs at each epoch;3 (c) the final distance from the
light.

Since a real robot may undergo many types of fault, we analyze how the
performance changes in different situations. (i) The first case considers the event
in which the sensors simply stop to produce any output. For instance, this may
be due to the disconnection of a cable. Although the BN node to which the
broken sensor connects can be changed, its signal will never affect the internal
state of the BN controller. (ii) The second case consists in sensors producing
random outputs. Differently from before, those still perturb the BN internal
state. However, their signal can be considered noise, and is therefore expected
to be detrimental. (iii) The third scenario considers the output of the faulted
sensors to block in a fixed (random) state. This simulates the case of a short
circuit in which the output connection touches the source voltage or the ground.

All these type of damages can affect randomly picked sensors (case R) or a
contiguous set of sensors (case A). The aim is to represent both random faults
and breakdowns due to external events. For instance, a robot passing near a
strong heat source or crashing against an obstacle may be subject to localized
damages. In this case, the affected sensors would likely be physically contiguous.

2 The number of changes is randomly chosen in 1–6.
3 We consider a run successful if the robot reaches a point in the arena at a distance

less than or equal to a given threshold value dθ.
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We tested the working conditions with 0, 3, 6, 9, . . ., 24 faulty sensors. The
faulty sensors are chosen at random at the beginning of each replica of the
experiment. We collected results on 300 replicas for each type of damage.

5 Results

We expect to identify a graceful degradation of performance, where it decreases
according to the number of faulted sensors. Overall, the results support this
hypothesis, as we can observe from the barplots depicting the average final dis-
tance from light reached at the end of the 1200 epochs (see Fig. 2). This func-
tion estimates the capability of the robot to adapt to faults in the long run.
Apart from some fluctuations due to variance in the experiments, the higher the
number of faulty sensors, the higher the final distance from light. Notably, the
performance decreases sensibly when the number of faulty sensors is fairly high.

The RLD is computed at a given target distance dθ from the light and pro-
vides an estimation of the efficiency of the adaptive process to exploit the (lim-
ited) resources the robots can use: the steeper and the higher the curve, the
better the performance at reaching for the first time a distance less than or
equal to dθ from the light. We computed the RLD with dθ = 1m and dθ = 5 cm.
The plots are depicted in Fig. 3 and Fig. 4, respectively. Also in this case we
observe a gradual decline in performance, as the number of defective sensors
increases. Nevertheless, here a striking difference emerges between the cases R
and A: when contiguous sensors are damaged, the RLD does not decrease until a
large fraction of sensors is touched. In some cases (i and ii) it seems even better
to have few sensors out of order. A possible explanation of this phenomenon is
that when contiguous sensors are damaged the remaining sensors are sufficient
to provide the robot the necessary information to navigate the arena correctly.
Less inputs also imply a search among a lower number of working configurations,
therefore the adaptation process can proceed faster.

Finally, the distance from light at each epoch provides a complementary view
of robot performance, as it captures the performance in time, taking also into
account the performance achieved in the adaptation attempts (i.e. the adaptation
epochs). The distance from light—averaged across the replicas for each epoch—is
plotted in Fig. 5. We can observe a qualitative behavior analogous to the previous
cases. It is remarkable that, also under this evaluation, the performance with few
damaged sensors is still equivalent to—or even better than—the one in which
all sensors are working. This observation reinforces our previous hypothesis, as
it provides an online view of the impact of having less information. We conclude
by observing that when all the 24 sensors do not work and just provide noise
or fixed random values, the distance from light decreases anyway, as some lucky
combinations can drive the robot towards the light even if it does not perceive it.



208 M. Braccini et al.

0 3 6 9 12 15 18 21 24

no. of faulty sensors

av
er

ag
e 

fin
al

 d
is

ta
nc

e

0
10

20
30

40
50

60

0 3 6 9 12 15 18 21 24

no. of faulty sensors

av
er

ag
e 

fin
al

 d
is

ta
nc

e

0
10

20
30

40
50

60

0 3 6 9 12 15 18 21 24

no. of faulty sensors

av
er

ag
e 

fin
al

 d
is

ta
nc

e

0
10

20
30

40
50

0 3 6 9 12 15 18 21 24

no. of faulty sensors

av
er

ag
e 

fin
al

 d
is

ta
nc

e

0
10

20
30

40
50

0 3 6 9 12 15 18 21 24

no. of faulty sensors

av
er

ag
e 

fin
al

 d
is

ta
nc

e

0
10

20
30

40

0 3 6 9 12 15 18 21 24

no. of faulty sensors

av
er

ag
e 

fin
al

 d
is

ta
nc

e

0
10

20
30

40

Fig. 2. Barplots of final distance from the light, averaged across 300 replicas. Columns:
left, case R – random picked sensors; right, case A – contiguous faulty sensors. Rows
corresponds to kinds of damage (from the top, i : detached sensor, ii : noisy sensor, iii :
random fixed value).
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Fig. 3. Run length distribution for target distance equal to 1m. A point (x, y) in
the plot represents the fraction of replicas (y) that achieved a distance less than or
equal to 1 m at epoch x. Columns: left, case R – random picked sensors; right, case
A – contiguous faulty sensors. Rows corresponds to kinds of damage (from the top, i :
detached sensor, ii : noisy sensor, iii : random fixed value).
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Fig. 4. Run length distribution for target distance equal to 5 cm. A point (x, y) in
the plot represents the fraction of replicas (y) that achieved a distance less than or
equal to 5 cm at epoch x. Columns: left, case R – random picked sensors; right, case
A – contiguous faulty sensors. Rows corresponds to kinds of damage (from the top, i :
detached sensor, ii : noisy sensor, iii : random fixed value).
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Fig. 5. Distance from the light along adaptation epochs, averaged across 300 replicas.
Columns: left, case R – random picked sensors; right, case A – contiguous faulty sensors.
Rows corresponds to kinds of damage (from the top, i : detached sensor, ii : noisy sensor,
iii : random fixed value).
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6 Conclusion

In this work we tested how a robot able to continuously modify its behavior
adapts to faults in its sensors. The goal is to verify if an online adaptation
allows the performance of the robot to recover to a similar level of the start.
The expected result is that the performance will keep decreasing according to
the amount of damage, possibly gracefully.

The results of our experiment suggest that indeed online adaptation induces
a graceful degradation of performance. The distance of the robot from the tar-
get increases with the amount of damage, meaning that some lost information
cannot be recovered to keep succeeding in the task as well as without being dam-
aged. Nevertheless, this general situation has some notable exceptions. In fact,
the results also show that in some conditions the lack of few sensors increases the
performance of the robot (or the reduction is negligible). Our hypothesis is that
removing some cues to the BN simplifies the correct combination of the remain-
ing. In other words, removing some irrelevant signals may help the controller to
focus on more relevant ones. This last aspect addresses another crucial point in
online adaptation: the contingent optimization of the resources available to the
robot.

In a future work, we plan to consider the effect of faulty actuators on the
performance. For instance, a wheel may simply start to turn slower due to con-
sumption. In similar situations we expect the controller to adapt in order to
modulate the output accordingly. Indeed, the output signal may change in inten-
sity of frequency in order to mediate the fault. Finally, the results of this work
push toward the analysis of possible degeneracy of sensors [10], i.e. the capability
of compensate damages in some sensors with the integration of the information
retrieved from other ones. The goal is to assess if different sensors and different
types of sensors providing different information can be used to induce the same
robot behavior.
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Abstract. Swarm robotics is an innovative field that utilizes collective
behavior principles to design systems where multiple robots coordinate
through simple rules and interactions. It faces the challenges of decen-
tralized governance, security, and scalability. Due to its decentralized
optimization capabilities, Particle Swarm Optimization (PSO) has shown
promise for controlling robot swarms. However, implementing PSO in a
distributed manner still poses problems in achieving full scalability and
fault-tolerant operation. Blockchain, a decentralized system that securely
stores and distributes data, enables transparent and autonomous commu-
nication among robots. Integrating blockchain with PSO can potentially
revolutionize swarm robotics by providing secure and decentralized coor-
dination through Decentralized applications (Dapps). The work proposed
here demonstrates the application of blockchain technology, utilizing ad-
hoc techniques, to manage a swarm of robots in conjunction with particle
swarm optimization for solving navigation paths. In particular, the emer-
gent Tendermint platform is exploited as a lean blockchain infrastructure
for supporting asynchronous swarm robotics applications by showing its
main advantages compared to a more traditional blockchain platform.

Keywords: Blockchain · swarm robotics · swarm intelligence ·
Particle Swarm Optimization (PSO) · Tendermint

1 Introduction

Swarm robotics harnesses collective problem-solving capabilities to achieve effi-
cient results. Inspired by natural systems, multiple robots work together through
local communication and sensing, resulting in desired collective behavior [1]. Uti-
lizing a cooperative algorithm, this decentralized approach eliminates the need
for external centralized control. Autonomous and scalable robots maximize per-
formance, with the ability to add new units easily. The swarm remains robust
in the presence of individual robot failure. The decentralized and flexible nature
ensures continued coordination.
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Swarm robotics finds applications in miniaturization tasks like nanorobotics,
distributed sensing, surveillance, and environment monitoring [2]. It helps to
investigate environmental parameters, search and rescue, and detect hazards
such as spills, pollution, and radioactivity. Swarm robots can cover broad regions,
making them suitable for dispersed monitoring and large-scale agricultural appli-
cations. They also excel in solving problems in IoT systems. However, transi-
tioning swarm robotics from academia to real-world scenarios poses challenges.
Consensus is achieved through local communications without global knowledge,
necessitating distributed decision-making algorithms. Furthermore, flawed or
malicious agents, called Byzantine robots, pose risks to objectives and secu-
rity [3]. Spanish engineer Eduardo Castelló [4] combines robotics and blockchain
to address these challenges. He aims to enable simple machines to collaborate,
exchange information, and contribute to knowledge while ensuring security and
consensus. Integrating blockchain technology into swarm robotics enhances data
security, enables cross-referencing, and accelerates task execution [5]. Castelló’s
study explores the feasibility of using blockchain-based swarm intelligence. By
leveraging blockchain, swarm robotics participants share a common worldview,
facilitating consensus without a centralized authority. Blockchain provides a
shared, secure, immutable ledger for transactions, tracking assets, and estab-
lishing trust. It eliminates the need for intermediaries. Dapps [6] are distributed
applications that run on a blockchain network of computers, establish secure
swarm coordination mechanisms, and exclude Byzantine members. The goal is
a safe and reliable consensus among all participants.

Our research uses PSO combined with a blockchain network to coordinate
multiple robots as a swarm, allowing them to reach a desired solution through
a decentralized and self-organizing approach. The paper’s original contribution
is twofold: (I) it exploits a lightweight blockchain layer developed on top of the
emergent Tendermint platform; (ii) it proposes a decentralized implementation
of the asynchronous PSO compliant with a blockchain environment. As a benefi-
cial side-effect, by leveraging this decentralized implementation and blockchain,
robots can dynamically join or leave the application without affecting the sys-
tem’s evolution, thus opening dynamic scalability. Specifically, in our implemen-
tation, each robot is treated as a particle in the PSO algorithm. This allows for
local best updates of the velocity and position of each robot without relying on
a central authority, and global best values updates are not broadcast but are
shared. The exchange of information and the velocity modification is carried out
by each particle, based on their own experiences and those of the other parti-
cles, by using the blockchain. To validate the whole approach, a PSO scenario is
considered in which robots in a swarm have to search for some targets deployed
in a bi-dimensional space.

The paper is structured as follows. Section 2 provides an overview of the
existing PSO frameworks for swarm robotics, while Sect. 3 offers a description
of blockchain technology and introduces the Tendermint platform. Section 4 dis-
cusses the implementation of blockchain PSO on Tendermint and presents the
experimental setup and results. Finally, the conclusions end the paper by sum-
marizing this study’s essential findings and contributions.
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2 PSO in Swarm Robotics

PSO, developed by Kennedy and Eberhart in 1995 [7], is an optimization tech-
nique inspired by bird flocking and fish schooling. From this perspective, in the
PSO, movement rules are assigned to agents (particles), leading them to explore
the assigned spatial domain to search target points. These points minimize a
certain objective function. During the exploration, each agent can also share
information with the rest of the swarm. Therefore, given the optimization prob-
lem of a function f of n variables on a set or feasible region X, the f : Rn → R

is called the objective function while each point x = (x1, x2, . . . , xn) ∈ X consti-
tutes a feasible solution. The problem therefore consists in determining a point
x∗ ∈ X, which makes the function f minimal:

x∗ : f(x∗) = min
x∈X

f(x) (1)

As an example, let’s consider a two-dimensional XY space. For each agent i, the
position of the agent at a given instant t is given by the coordinates (xi(t), yi(t)),
with i ∈ {1, 2, . . . ,M}, where M is the number of agents in the swarm. By indi-
cating with (xtarget, ytarget) the position to be reached, it is possible to evaluate
the current distance of the agent i to the target as:

d = f(xi(t), yi(t)) =
√
(xi(t) − xtarget)2 + (yi(t) − ytarget)2 (2)

To reach the desired point and, therefore, ensure that the distance described
above is finally equal to zero, the movement of each agent i can be determined
by taking into account two factors:

– the ability to remember the own local current best personal position so far
achieved, which is indicated with the coordinates pBest = (pBestX, pBestY );

– the current global best position, represented with the coordinates gBest =
(gBestX, gBestY ), evaluated by considering the whole swarm.

The particles’ positions are updated based on a weighted sum of vectors
determined by equations involving their current positions, the best-found per-
sonal positions (pBest), and the global best-found position (gBest) among all
particles. In this paper, the Heppner model [17] is adopted, which considers
that each agent always moves on time-step bases, i.e., the time is discrete, and
a certain random quantity, i.e., a random perturbation, is considered during
movements.

More formally, let X be the feasible region belonging to the continuous n-
dimensional space in which the particles can move, let t be the current time
step of the system, let i ∈ {1, 2, . . . ,M} be the index of an agent in the system,
and let f : Rn → R be the objective function to minimize. Three n-dimensional
vectors can represent the status of each particle :

– xi(t) = (xi,1(t), xi,2(t), . . . , xi,n(t)) indicating the position of the agent i at
time t
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– pBesti(t) = (pBesti,1(t), pBesti,2(t), . . . , pBesti,n(t)), indicating the local
best position of the agent i at time t, where:

pBesti(t) = arg min
x∈Ei

t

f(x)

and
Ei

t = {xi(0),xi(1), . . . ,xi(t)}
is the set of all the positions explored by the agent i up to time t

– vi(t) = (vi,1(t), vi,2(t), . . . , vi,D(t)) indicating the velocity of the agent i at
time t.

A particle communicating with each other particle in the swarm is influenced
by their own experience and, above all, by the swarm best position gBest chosen
among all the local best positions in the swarm:

gBest(t) = arg min
x∈∪M

i=1E
i
t

f(x)

To define the movement of particles, starting from the laws of dynamics, both
gBest and pBesti have to be used. In other words, the swarm is more than just
a collection of particles; a particle by itself does not have enough capability to
solve the whole problem, and progress relies on particle interaction.

In this paper, we adopted the following rules to determine the dynamics of
a particle i:

vi(t + 1) = vi(t) + c1r1(t)(pBesti(t) − xi(t)) + c2r2(t)(gBest(t) − xi(t)) (3)

xi(t + 1) = xi(t) + vi(t)Δt = xi(t) + vi(t) (4)

Where:

– c1 and c2 are positive constants, called acceleration coefficients, used for scal-
ing the contribution of the pBest and gBest components, respectively;

– ri,d(t) is a vector of a random number between (0,1) for favoring space explo-
ration.

In the original PSO algorithm, particle updates occur synchronously, with the
entire swarm’s fitness being evaluated before the particle update process takes
place. Conversely, particles can update their velocities and position by asyn-
chronous updates after the gBest is evaluated. This introduces the challenge of
carrying out the particle’s search with imperfect information. However, asyn-
chronous updates proved advantageous in practical applications such as swarm
robotics search problems, where robots can continuously move based on available
information without waiting for the entire swarm to complete its current evalu-
ation. In addition, asynchronous updates permit support changes in the number
of robots in the system, opening to dynamic system behavior and scalability.
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PSO resemblance to physical robotic swarms has led to its proposal as
a control strategy for swarm robotic systems. Modified PSO algorithms and
other swarm intelligence algorithms like Glowworm Swarm Optimization (GSO),
Artificial Bee Colony Optimization (ABCO), Bacterial Foraging Optimization
(BFO), the Firefly algorithm, and the Bees algorithm have been explored for
obstacle avoidance and target localization tasks [8]. The distributed PSO (dPSO)
implementation for robotic search applications presented in [9] stresses distribu-
tiveness, simplicity, and scalability concerning the number of robot particles.
The concept behind the dPSO algorithm revolves around the possibility of each
robot conducting measurements, updating its position and velocity, updating
its personal best measurement, and personal best location (if needed). Addition-
ally, if a particle discovers a global best measurement/position, it broadcasts this
information to other robots. Consequently, each robot performs all velocity and
position updates locally, while global best updates are shared through broad-
casting. As a result, the amount of information exchanged between robots is
minimized, thus enhancing the algorithm’s scalability. The dPSO can behave as
a parallel variant of the PSO. However, the primary objective of the dPSO is to
reduce communication overhead between particles or robots and yield favorable
results with complex search functions.

A parallel asynchronous PSO implementation is presented in the literature
and was developed using the multi-agent approach [10]. The multi-agent app-
roach can generally handle a problem by breaking it down into simpler sub-
problems so that agents have to focus only on sub-tasks of the general problem.
The multi-agent approach is used to achieve parallelism and the simultaneous
execution of calculations (possibly linked) to speed up the processing of intensive
computer problems and perform many operations in a limited time. The pres-
ence of a central entity called broker can characterize the Multi-Agent Systems
(MAS). All the system agents can communicate among themselves using the bro-
ker as a postman to the other agents of the group. Before interacting with the
system, each agent must declare himself to the broker and provide him with his
characteristics. The advantage of this centralized communication architecture is
the ease of adding and removing an agent: for a new agent to integrate, it is
sufficient to establish an interaction protocol with the broker. The downside is
that centralization can slow down exchanges and communication in the system.

Instead of a broker, a MAS can use a distributed communication approach. In
this case, each agent can interact with the other agents without an intermediary.
Each element must maintain a knowledge base that describes the characteristics
and addresses of the agents with whom it collaborates. When an agent wants
to provide a new service, he must inform everyone else about this new service.
The advantage of the distributed approach is that it facilitates exchanges and
improves communication. The downside is that the new service provision requires
updating each agent’s knowledge base.

In [11], the paper presents a blockchain-powered PSO algorithm for swarm
robotics. However, this specific implementation does not incorporate asyn-
chronous functionalities. Our work stands out due to the utilization of Tender-
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mint. Tendermint presents a distinctive perspective within the blockchain land-
scape. According to its vision, every application should operate on a dedicated
blockchain, which sets it apart from Ethereum, where numerous applications
coexist on a shared blockchain. Moreover, Tendermint employs a proof-of-stake
consensus mechanism that promotes interoperability and is well-suited for the
Internet of Things (IoT) environment. Consequently, Tendermint can reach thou-
sands of transactions per second, representing a considerable improvement [14].

3 Blockchain and the Tendermint System

Blockchain technology enables a distributed database’s creation, coordination,
and synchronization. It consists of blocks containing transactions between net-
work nodes, forming a chain. Transactions are validated by network nodes, estab-
lishing a distributed network of trust. Consensus mechanisms ensure agreement
on the network’s current state, guaranteeing fault tolerance and security.

In summary, blockchain is a secure, distributed, immutable data storage sys-
tem shared among network actors. It maintains a public, auditable ledger of
transactions and combines various fields such as cryptography, distributed sys-
tems, and finance. The technology allows the creation of Dapps that run on the
blockchain, enabling user interaction with smart contracts. Dapps encompass a
range of applications, including exchanges, loans, games, and payment terminals.

Tendermint [12] is a blockchain system that introduced a slashing variant
of proof-of-stake consensus. It replaced Nakamoto Consensus [13], which used
proof-of-work [15] or stake. Early concerns about proof-of-stake were addressed
with validator deposits that could be slashed for Byzantine behavior. Ten-
dermint’s consensus algorithm is the Practical Byzantine Fault Tolerance [16]
(PBFT), which provided the first optimal Byzantine fault-tolerant algorithm
for practical use, built on top of an efficient gossip layer. It supports open-
membership peer-to-peer networking and can be used in public or private set-
tings.

Tendermint is a distributed message-passing system with dynamic nodes.
Nodes communicate through encrypted point-to-point channels and rely on gos-
sip for indirect communication. It tolerates benign and Byzantine faults, with
a subset of nodes acting as validators. The set of validators is dynamic and
known by all nodes. Tendermint assumes partial synchrony and relies on partial
synchrony for progress.

Tendermint aims to be fast, flexible, and language-independent for large-
scale, geographically distributed environments. It enables the development of
open, public, and general-purpose blockchain applications. Tendermint is a sig-
nificant component of the Cosmos Network project, facilitating communication
between blockchains through sidechains. Tendermint’s goals include deployment
flexibility, scalability, Byzantine fault tolerance, language independence, and sup-
port for light clients. Tendermint proposes an application-based blockchain by
separating the application layer from the consensus and networking layers. With
Ethereum, the programmer usually codes a smart contract deployed and exe-
cuted by the Ethereum Virtual Machine. With Tendermint, the programmer
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codes an application compiled into a process. Its architecture includes peer-to-
peer communication, mempool, consensus, and application interface modules.

4 Blockchain-Based PSO for Swarm Robotics

Swarm robotic systems can utilize particle swarm optimization (PSO) as a con-
trol strategy. Each robot acts as a particle in PSO, updating its position, velocity,
and personal best measurements. Swarm intelligence, facilitated by PSO, enables
decentralized behavior and collective decision-making in robotic swarms.

Combining blockchain with robotic swarm systems offers improved security,
autonomy, flexibility, and profitability. Blockchain allows agents to reach agree-
ments and record them without a central authority. Swarm members can use
blockchain to achieve consensus through voting, associating addresses with vot-
ing options. This ensures a quick, safe, and verifiable agreement among robots.
The following section presents a blockchain-based PSO, bPSO, implemented as
a Dapp using the Tendermint framework.

4.1 A Tendermint PSO Implementation

Our implementation of the PSO algorithm on the blockchain network is similar
to the broker-based approach in the MAS system. The blockchain replaces the
work of the broker. A new node that wants to be added to the chain must declare
itself and use the formalism of the chain to which it subscribes; each node does
not know the other nodes’ number and locations and interacts only with the
chain.

You can choose between asynchronous or synchronous versions when imple-
menting the PSO algorithm. In the synchronous approach, after each optimiza-
tion operation, each element in the swarm computes its local best, sends such a
value to the blockchain, and then waits for all the other particles to execute the
same operation on a synchronization barrier. After the synchronization barrier is
satisfied, the particles ask the blockchain for the global best value and continue
their work.

The asynchronous version, depicted in Fig. 1, aligns well with the utilization
of a blockchain since the only information exchanged with the swarm is the value
of the gBest calculated so far. To maintain a fully asynchronous behavior, each
node, having improved its gBest value, communicates its gBest to the blockchain
and continues its processing by utilizing the gBest stored in it. Further details
of the asynchronous mode will be provided in the following.

4.2 Asynchronous bPSO Implementation in Tendermint

The most straightforward approach to implement the asynchronously distributed
PSO in Tendermint is creating an external Dapp that uses the functions and
data that the blockchain provides through the Application BlockChain Inter-
face (ABCI) application, which is the way Tendermint provides to implement
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Fig. 1. Asynchronous PSO with blockchain.

Fig. 2. Software Architecture.

custom applications. The Dapp software runs on each node in a decentralized
architecture, as shown in Fig. 2. The Dapp that executes the PSO Java code will
then communicate with the blockchain using the RPC (Remote Procedure Call)
protocol on port 26657. At the same time, the ABCI will use the JTendermint
library and then communicate with the Tendermint Core through port 26658
on four sockets (Consensus connection, Mempool connection, Info connection,
Snapshot connection) predefined by the ABCI protocol.

The ad hoc blockchain architecture (Tendermint Core + ABCI) to receive
and manage the requests of the Dapp PSO (for the execution of the asynchronous
PSO algorithm) is shown in Fig. 2. The PSO Dapp will have to manage several
robots that optimize the entire solution space. Each robot performs the search
for the optimal solution in parallel. Whenever a robot residing on a node of the
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blockchain network finds a better gBest value than the one found so far by the
other groups, it publishes it on the chain, making it available (public) for the
other robots through the mechanisms of the underlying blockchain.

At each optimization iteration, a robot issues a query on the chain to verify
the gBest value. This last operation might seem redundant since gBest represents
the state of the app that is updated following each approval operation of a new
block in the chain. Still, it is important to be done since we interact with a
distributed ledger. Therefore, the query (which is a quick operation as it does not
affect other nodes except the one to which the request is forwarded) guarantees
the consistency of the information, suspending the request if, in the meantime,
a new block is being approved.

When a request is sent from a node, Tendermint Core manages it by trans-
mitting it to the ABCI application for validation. The development of the ABCI
app consists of implementing some methods by the blockchain protocol.

A client cannot directly interact with the ABCI application but must use Ten-
dermint Core. The Core handles the exchange of messages between the ABCI
application and the Dapp. The blockchain keeps the validated data sent by
Dapps, while the ABCI application keeps the updated gBest value at each iter-
ation.

A description of the Dapp code of the asynchronous bPSO algorithm is pro-
vided in Listing 1.1. For the sake of simplicity, we have assigned a client to each
Tendermint node in our code. The client sends a localhost request to its corre-
sponding node in this setup. However, if necessary, the request is forwarded to
one of the available peer nodes in the addBlock file in the node configuration
folder.

Our application utilizes the non-blocking send and get methods. Conse-
quently, if there are any communication issues within the chain, each robot will
continue optimizing while considering its gBest. Once the connection is reestab-
lished, robots align themselves with the chain’s gBest.

Listing 1.1. The Dapp algorithm in pseudo-code of the asynchromous bPSO.
Vector position; Vector velocity; // Current position and velocity. A random starting position is

considered.
Vector pBestPos; Double pBestVal = MaxDouble; // Personal best solution.
Vector gBestPos; Double gBestVal = MaxDouble; // Global best solution.
while (target not found or max iterations not reached)

value = evaluate_fitness(position); // evaluate the distance, using Eq. (2)
if (value < pBestVal) // Update Personal best solution value and location if necessary

pbestVal = value;
pbestPos = position;
if (pBestVal < gBestVal) // Update Global best solution value, if necessary

sendgbest(pbestVal,pbestPos); // Send the new value of gBest into the blockchain
end

end
result = null;
result = get_gBestWithTimeout(); // Returns the gBest value and position calculated in the chain

through a non−blocking call
// Update gbest value and position based on the result obtained
if (result == null) // Robot is offline

gbestVal = pbestVal;
gBestPos = pBestPos;

else // Robot is online
gbestVal = result.gbestVal;
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pBestPos = result.gBestPos;
end
// Move robot based on PSO rules
velocity = updateParticleVelocity(); // update velocity, using Eq. (3)
position = updateParticlePosition(); // update position, using Eq. (4)

End while

A description of the ABCI application is instead provided in Listing 1.2.
The ABCI application performs data validation of each transaction through
the CheckTx method. In this phase, the transition does not cause any state
change (nothing is written in the database managed by the application). If the
preliminary application determination is valid, Tendermint Core broadcasts and
synchronizes the transaction to all network nodes configured for mining. At fixed
time intervals, the network creates a new block with all the transactions validated
during this time frame. Once a new block has been added to the blockchain, each
node will locally execute all transactions included in the block, using the node’s
local ABCI application for processing. At this point, the ABCI application can
update its database to store changes in the application state. A new node that
you wanted to add to the network, carrying out all the transitions starting from
the genesis block, would synchronize the data and state of the blockchain.

Listing 1.2. The ABCI algorithm in pseudo-code for the asynchronous bPSO.
// −−−−−−−−−−−−− These methods are overridden and triggered by the Tendermint Core

−−−−−−−−−−−−−−−
// When a block is committed in the blockchain, Tendermint makes a list of DeliverTx requests (one

for each transaction),
//This is to check if a malicious proposer eventually put a wrong value in the transaction.
// At this stage, we also update the status (stgBestVal, stgBestPos) of our application.
@Override requestDeliverTx(pBestVal, pBestPos)

//localMemory.stgBestVal is the stored best value obtained by each robot in the swarm.
//localMemory.stgBestPos is the stored best position obtained by each robot in the swarm.
code = validate(pBestVal, pBestPos); //check correctness of the received parameters
if (code == 0) //if parameters are OK

if(pBestVal < localMemory.stgBestVal) // update gBest value and position
localMemory.stgBestVal = pBestVal;
localMemory.stgBestPos = pBestPos;

end
end
// −−−−−−−−−−−−− These methods are triggered by Dapp client −−−−−−−−−−−−−
// requestCheckTx is triggered when a transaction is received by the Dapp.
// It receives the value and position of pBest sent by the Dapp using the sendgbest(pBestVal,

pBestPos) method.
@Override requestCheckTx(pBestVal, pBestPos);

code = validate(pBestVal, pBestPos); //check correctness of the received parameters
if (code == 0)

return OK;
else

return NOTOK;
end

end
// It is triggered by the Dapp when calling the get_gBestWithTimeout() method without engaging

consensus.
// It returns the value and position of gBest.
@Override Query(msg);

if(msg == "request of gBest")
return (localMemory.stgBestVal, localMemory.stgBestPos);

end
end
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4.3 Results and Evaluations

For validation purposes, the approach was applied to a simple robot-search sim-
ulation scenario. The goal is to describe the architecture setup on which the
system is executed, along with some execution paths showing that the system
properly evolves. Specifically, it was considered a deployment scenario composed
of four Raspberry Pi4 connected through an Ethernet switch. Docker-based con-
tainerization [18] on Raspberry Pi devices with limited resources was used to
deploy the application across the different nodes in the network. Each device
was used for executing the code simulating the behavior of a robot and for
implementing a blockchain network node. On each container, we have config-
ured the Ubuntu operating system. The working environment was obtained by
installing the following libraries: jtendermint0.32.3 [19] and openjdk-17-jdk [20].
In the container, we deployed the developed ABCI and Dapp applications. The
containers communicate towards the outside through the communication ports
26657–26666 of the Tendermint Core protocol. In the experiment, we set the
httpURLConnectionT imeout to 1 s for the non-blocking ABCI-Dapp communi-
cations. The constants c1 and c2 of Eq. 3 have been set to 2, while the number of
iterations was set to 300. The simulation scenario refers to a 30m × 30m room
with multiple target points. Ten different target points were chosen, as depicted
in Fig. 3. These target points were strategically positioned throughout the room,
some near the center and others near the edges. A variable number of robots,
ranging from 2 to 10, was considered. During the simulation, the robots must
reach the target point (one per simulation) assigned within the search space.
The function of Eq. 2 is employed as the objective function, where (xi(t), yi(t))
is the position of the robot and (xtarget, ytarget) is the position of the target.

Fig. 3. Map of the room showing the ten different target points.

At t = 0, the robots were randomly deployed across the search space. Figure 4
and Fig. 5 showcase sample plots with three and four robots, respectively, illus-
trating the search progress of the gBest of the robots using bPSO to locate the
target point (represented by a circle symbol). In both cases, a robot is positioned
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Fig. 4. Plot of the gBest of three robots using the bPSO algorithm.

Fig. 5. Plot of the gBest of four robots using the bPSO algorithm.

Fig. 6. Percentage of successful searches (out of 1000) for different numbers of robots.
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at the center and another at the edge, serving as target points. In all the cases,
the robots finally reach the targets.

We carried out a study consisting of 1000 test runs, wherein we utilized 10
unique target points and conducted 100 test cases for each target point. The
initial starting positions of the robots were varied for each test case. Our evalu-
ation focused on two primary aspects: the overall effectiveness of the algorithm,
specifically assessing the frequency of successful target location and the influence
of the number of robots on the search process. Figure 6 depicts the algorithm’s
overall effectiveness by presenting the percentage of successful target locations
by the robots operating under the control of bPSO. The graph portrays three
distinct lines: a gray dotted line representing a maximum of 100 iterations per
robot, a red dash-dot line indicating the number of bots reaching the target
within 200 iterations, and a solid black line representing the number of robots
reaching the target within 300 iterations. The graph demonstrates that increas-
ing the number of robots yields improved results. With five or more robots, the
bPSO successfully finds the peak in 100% of the cases.

5 Conclusions

We have developed an implementation of the asynchronous PSO algorithm that
leverages a blockchain network to distribute the computational workload among
multiple simple, compact, and mobile robots. In our blockchain PSO algorithm,
each robot independently performs all calculations locally. The only informa-
tion that other robots may require is the value and location of the global best
solution, referred to as gBest. Our algorithm is designed such that gBest is trans-
mitted only when a robot discovers a value in the search space that surpasses
the current gBest. As a result, communication between robots is minimal and
occurs only when a significant point is found during the search process. Inte-
grating blockchain technology with swarm robotics holds promise in addressing
existing limitations and establishing robust and scalable systems. However, fur-
ther research is necessary to fully harness the potential of this combination and
overcome the remaining challenges.
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Abstract. A popular low-dimensional latent representation that retains
as much information as possible about a data set is the one represented
by the output of a hidden layer located within a neural net having homo-
morphic input and output layers, termed autoencoder, trained to produce
a copy of the input data as its output.

This exploratory paper suggests that reformulating the problem as a
GP-based symbolic regression can achieve the same goal. The latent rep-
resentation, in this case, is obtained as a byproduct of the solution to the
problem of finding a parametric equation that represents a model of a
family of signals (functions) that share the same equation, differing only
for the values of a set of free parameters that appear in their definition.

This hypothesis is supported by a simple proof of concept based on
the results of symbolic regression of a set of Gaussian functions. A discus-
sion of possible issues that might need to be tackled when the method
is applied to more complex real-world data and of the corresponding
possible countermeasures concludes the paper.

Keywords: Latent Representations · Genetic Programming ·
Symbolic Regression · Machine Learning

1 Introduction

Deep Learning (DL) is undoubtedly one of the driving forces of the current
Artificial Intelligence (AI) revolution. As soon as massive and often open data
sets, along with moderately priced high-performance computing resources, were
made widely available soon after the turn of the century, ideas and computation
models that had been lingering in scientists’ drawers for some decades could,
at last, become concrete and effective Machine Learning (ML) applications. In
most cases, they could outperform any previously developed approach by far and
soon proposed themselves as “The solution” to many complex ML and Pattern
Recognition (PR) problems. The general applicability of such methods and the
possibility of quickly setting up scalable architectures that support them make
it possible to reach limits that make the curse of dimensionality less scary.

At the same time, however, the velocity at which this process has progressed,
along with the millions of users to whom such technologies have been made avail-
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able, has led to questioning the principle by which what limited many theoret-
ically possible achievements in ML and AI was their intrinsic practical infeasi-
bility, giving for granted that what was feasible was also sustainable. Especially
after the development and wide availability of Large Language Models (LLMs),
the present forecast on the diffusion of DL applications, and the near-future esti-
mate of the consequent electric and computing power requirements urge us to
consider sustainability a most relevant issue. However, even if we supposed all
imaginable power to be available, data requirements would raise sustainability
concerns. The applications for which DL has been most beneficial are certainly
those related to multimedia technology: Image Analysis (IA) and Natural Lan-
guage Processing (NLP). This does not come as a surprise if one thinks about
the contemporary flourishing of the user-fed image and text databases on which
social networks rely. This consideration raises a further issue since the require-
ment for vast amounts of data practically rules out a whole set of problems, of
which medical applications are possibly the most frequent examples. For these
problems, on the one hand, insufficient data are available to build appropriate
models using DL. On the other hand, data augmentation methods are at high
risk of generating unreal cases.

Finally, one of the main and most often cited drawbacks of DL is the lack of
explainability and interpretability of the generated solutions, often characterized
by millions (when not billions) of parameters.

The above considerations show that DL cannot be considered a universal
solution despite its superior performance and general applicability. This calls for
the study and development of alternative options that can trade a reasonable
decline in performance for computationally lighter, less data-demanding, and
more interpretable solutions.

Among Evolutionary Computation (EC) methods [4], Genetic Programming
[12] has been proposed as a possible candidate for substituting DL effectively.
Considering the typical structure of a deep network, represented by a set of cas-
caded layers, it is possible to group layers such that each group represents one
of a set of cascaded functions, each playing a specific role. This is, for example,
the classical case of image classifiers based on Convolutional Neural Networks
(CNNs), in which a first set of convolutional and pooling layers acts as a feature
extractor, i.e., a function having an image as input and a set of features as out-
put, followed by a second set of dense layers that act as a classification function,
i.e., a function having a set of features as input and a label or a probability
distribution as output. Since GP’s primary goal is evolving symbolic represen-
tations of functions, the above schematization justifies the choice of GP as a
substitute for DL. The following considerations further support this choice:

– It has often been demonstrated that GP solutions can be evolved based on a
limited set of “training” examples.

– A symbolic representation of a function composed of a set of basic high-level
operators is more informative and interpretable than the sparse representation
of deep neural nets, comprising thousands of instances of the same elementary,
threshold-like operator and millions of associated parameters. This observa-
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tion could be summarized as follows: “While GP-based solutions are encoded
by the structure of the function that represents them, DL-based solutions are
encoded by the function parameters.” Such a distinction, therefore, indicates
that GP-based solutions are more accessible to interpret than DL-based ones.

GP’s capacity to evolve functions at their symbolic representation level fits
very well the current request for explainable Artificial Intelligence (XAI) meth-
ods [2,9], primarily when the decision they take affects human beings, as stated
by the EU in the recently proposed AI Act [1].

1.1 Genetic Programming and Latent Data Representations

Therefore, aiming to substitute DL feature extraction layers, GP has been exten-
sively used for finding low-dimensional non-linear representations of images or
high-dimensional data, as recently described in [5]. As mentioned above, in its
simplest and most general structure, a classification architecture based either on
classical pattern recognition methods or DL can be modeled as a pipeline com-
posed of a feature extractor that computes a new representation of the input
and a cascaded classifier whose performance is optimized by having such a rep-
resentation as its input.

Autoencoders [3] are a common and powerful way to obtain such a latent
intermediate representation in a self-supervised way, using neural architectures
having a single hidden layer up to very deep neural networks. GP has been
used to develop autoencoders or autoencoder-like structures, as described, for
example, in [7] or in [13], where a GP-evolved multi-tree function representation
substitutes the encoder.

This paper proposes a method of generating latent representations of time-
dependent signals, somehow inspired by autoencoders, based on the concurrent
use of GP-based symbolic regression and Particle Swarm Optimization (PSO)
[11] of the free parameters of the symbolic function thus obtained.

In the following chapters, we will first describe the proposed approach, start-
ing from its inspiring principles taken from symbolic regression. We will then
show that modeling families of signals by functions characterized by a sufficient
number of free parameters can help reconstruct possible instances of the signal
with high precision, using the parameter values that optimize their reconstruc-
tion as their latent representation. The paper will then describe some prelimi-
nary results obtained, as a proof of concept, on a set of simple, noiseless Gaussian
functions, suggesting possible future applications focused on medical signals.

1.2 Autoencoders

In their most typical realization, autoencoders are deep or shallow feedforward
neural nets having equally-sized input and output layers (I, O) and at least
one lower-dimensional (with respect to the input/output layers) hidden layer H.
They are trained to reproduce, as their output, the same patterns they receive in
input. As a result, the output of H can be seen as a lower-dimensional encoding
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Fig. 1. Autoencoder for image representation (from [3])

of the input, from which the input pattern can be recovered by the section of the
net comprised between H and O ([H:O]). Because of this, the network section
[I:H] is termed encoder, while the section [H:O] is termed decoder.

In pattern recognition, autoencoders can synthesize large-dimensional inputs
without losing information content, generating easier-to-handle compact repre-
sentations of the input data that often lead to better performances when training
classifiers.

Also, autoencoders have a crucial role in generative approaches since the
mapping, produced by the decoder, from the latent representation to the data
domain is such that appropriately feeding it with random tuples generates a
process that samples the same statistical distribution of the data by which it
was trained. This means it creates new patterns belonging to the same family as
the input data, finding obvious applications in data augmentation and knowledge
transfer (Fig. 1).

2 GP2SO: Symbolic Regression-Based Representation
of Time-Dependent Signals

Unlike the sub-symbolic approach of Neural Network (NN)-based regres-
sion, symbolic regression consists of finding a symbolic representation of an
input/output mapping, i.e., finding the expression of a function that best approx-
imates a sampling of the unknown mapping.

In most cases, symbolic regression is applied to a single mapping, e.g., a law
expressing a causal relationship between the measures of two physical quantities
based on a set of observations, as is typical of the experimental method or
inductive learning.

Suppose, instead, that one wants to model different instances of the same
phenomenon (e.g., several Gaussian functions) that share a common model and
expression but can be differentiated as the shift/scaling/deformation of that
basic pattern. In that case, we can divide the process into two steps:

1. Symbolic regression, to find the expression of a common model f̂(t,K), that
represents the common dependency of all instances on time t, but also includes
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some undetermined parameters K whose values can differentiate each instance
from the others.

2. Parameter fitting, to find, for each possible instance, the optimal values of
the parameters and obtain the equation that fully describes it.

Similarly to the decoder section of an autoencoder, the general model evolved
in the first step is a function, having the free parameters of the model as inputs,
that can generate/reconstruct all possible instances of the modeled function
family by adequately setting the parameter values. In practice, we can say that
the set of parameters Ki that optimize the reconstruction of a particular instance
Ii is a latent, lower-dimensional representation of Ii, i.e., Ii = f̂(t,Ki).

The expected advantages of using an evolved expression instead of an autoen-
coder are the following:

1. In the ideal case of noiseless signals, a single instance of the function family
could be a sufficient training set for modeling any other instance. Suppose
the unknown functions we are modeling are Gaussian; if the model evolved
by GP is correct (an exponential function with two free parameters: mean
and standard deviation), then one only needs to determine the values of the
two parameters to characterize all other possible Gaussian functions.

2. GP evolves directly interpretable expressions, provided the model is not too
complex.

3. The concurrent use of PSO for parameter optimization compensates for the
problems that GP often finds when it has to evolve functions containing
constants that need to be precisely set, as discussed in [14].

In Sect. 4, we describe how we used our approach (GP2SO) to evolve, as a
proof of concept, a model representing all possible Gaussian functions using only
the sampling of three specific Gaussians to derive it.

3 Implementation

GP2SO has been implemented using the Python package DEAP (Distributed
Evolutionary Algorithms in Python) [6], a popular tool that provides classes
and easily customizable code for both GP and PSO.

3.1 Function and Terminal Set

We have used traditional tree-based GP, with an essential function set F , includ-
ing the four arithmetic operators (with protected division), protected exponen-
tial, sine, and cosine.

The terminal set T is peculiar to our method. Besides the independent vari-
able (e.g., time, if the function represents a signal) and some ephemeral random
constants, as usual, it also includes the free parameters that PSO is then expected
to set for fitting the different instances, both during training and in computing
the embeddings when the model is applied to new data.
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3.2 Fitness Function

The fitness function of the GP optimizer is applied to a GP tree T representing
the model f̂(t,K) and does nothing but pass f̂ to the PSO, whose duty is to
find the optimal values for the free parameters K, i.e., the values that minimize
the sum of squared differences between f̂ and the target function to be approx-
imated. Such a value will be returned to the GP fitness function and assigned
to T . Alternative fitness functions, such as the cosine distance, could also be
considered.

4 Proof of Concept

We generated a training set including the sampling of three Gaussian functions

G(x) = 1√
2πσ

· e− (x−μ)2

2σ2 having μ = {0,−3, 4} and σ = {4, 1, 2}, respectively,
sampled in the interval x = [−10, 10) with a step of 0.01, obtaining 200 samples
per function, thus a total of 600 samples in the whole training set.

GP was run with a population of 300 individuals, crossover probability of
0.6, mutation probability of 0.2, and tournament selection, with tournament
size equal to 7. PSO relied on a swarm of 50 particles, run for 150 iterations for
each fitness evaluation of a GP tree, with the inertia coefficient w set to 0.7 and
local and global attraction coefficients c1 and c2 set to 1.7.

Although the exponential function was included in F , and the direct expres-
sion of a Gaussian function was within the GP search domain, the rather complex
structure of the exponent and the normalization factor of the Gaussian made it
simpler for GP to evolve the following model:

pDiv(k2, add(k1, mul(add(x, k4), mul(add(x, k4), add(k3, mul(add(x, k4),

mul(add(x, k4), add(k5, mul(add(x, k4), mul(add(x, k4), mul(add(x, k4),

mul(add(x, k4), k6))))))))))))

that represents the polynomial model:

Ĝ(x, ki, i = 1 . . . 6) =
k2

(k1 + k3(x + k4)2 + k5(x + k4)4 + k6(x + k4)8)

To verify the generality of the evolved model, we tested its capacity to recon-
struct unseen instances of Gaussian functions generating 300 random pairs (μ, σ),
μ ∈ [−7, 7], σ ∈ [0.5, 4], corresponding to as many test instances. All of them were
sampled within the same domain [−10, 10) as the training instances.

We then fit the model to each of the test instances by computing their embed-
ding, i.e., by invoking PSO to find the optimal values of K = {k1, k2, ..., k6} that
minimize the mean squared error of the reconstruction. To ensure the best pos-
sible parameter set could be found, exploiting the fast convergence properties of
the algorithm, PSO was run five times for each test function, and the best of the
five parameter sets was finally used.

Results demonstrated that the model we found was virtually equivalent to
the original Gaussian function, the maximum total squared error over the 200
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samples being lower than 10−4 in 286 cases out of 300 (95.34%), the worst results
being 0.101 and 0.0091.

After evaluating regression quality, we tried to analyze how consistent each
parameter set used to embed a Gaussian function was with its natural characteri-
zation as a (mean, standard deviation) pair. We first projected the 6-dimensional
embedding obtained for each function in two dimensions using tSNE [8]. We then
used the two representations to create two 2-D plots in each of which each point
represents a function; the x and y coordinates are from one of the two represen-
tations (tSNE parameters or mean/standard deviation), while the other repre-
sentation is used to encode color. In particular, in Fig. 2, in the upper graph, the
mean was encoded as the Red color component, and the standard deviation was
encoded as the Blue component, while, in the lower graph, the Red and Blue
color components encode the two tSNE coordinates.

In the two plots, one can observe a strong correlation between color and
position (or, equivalently, between color difference and distance), which suggests
that the embedding obtained through the regression can preserve the topological
properties of the original representation, i.e., that the representations of two
function instances that are similar in the mean-standard deviation space are
also similar in the embedding space.

5 Possible Applications, Preliminary Tests, and Open
Problems

Our very preliminary tests show that the hybrid GP/PSO approach can find
a model that parametrically represents a family of curves/functions, thanks to
GP’s symbolic regression capabilities. The application of PSO to the model thus
derived can transform each curve instance into a vectorial embedding, repre-
sented by the set of parameter values that minimize the error in recovering the
original signal based on the GP model.

This encoding method is functionally and semantically similar to using neural
network-based autoencoders since it allows one to evolve an encoder/decoder pair
in an unsupervised way. The encoder is obtained by GP-based symbolic regres-
sion of only a few instances of the functions of interest. The decoder is obtained
by applying PSO to the free parameters of the GP-evolved general model. There-
fore, we are considering an “asymmetric” hybrid encoding/decoding scheme with
the same applications as neural network-based autoencoders. Among these, we
can highlight:

– Finding a low-dimensional representation of a family of functions (as the
Gaussians used in the example) or finding the model underlying a physical
phenomenon whose structure is represented as a symbolic equation, while the
peculiarities that allow one to distinguish one instance of the phenomenon
from another are encoded as a vector of real numbers.

– Using the evolved model to implement generative approaches where a random
generation of parameter vectors from a proper distribution can produce new
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Fig. 2. Above: 2-D projection of the six-dimensional embedding of 200 Gaussian func-
tions using 2-component tSNE (color encoding: Red component = mean; Blue com-
ponent = standard deviation). Below: mean (x-axis) vs. standard deviation (y-axis)
representation of 200 Gaussians (color encoding: Red component = first tSNE coordi-
nate; Blue component = second tSNE coordinate)
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synthetic data that could be used, for instance, to augment a training dataset
in a machine learning application.

– Classifying anomalies based on the magnitude of the minimum reconstruction
error achievable by the PSO-based optimization of the model parameters’
vector. Suppose the model is derived from a set of time series describing, e.g.,
measurements from sensors in a properly working industrial plant or from the
acquisition of physiological medical signals (ECGs/EEGs). In that case, one
might assume that the presence of anomalies in such measurements would
not follow the general model so closely as “normal” signals. This observation
could lead to defining binary classifiers by thresholding the reconstruction
error.

The method is, therefore, applicable to very different contexts. While devel-
oping the method, we made some exploratory tests on signals from the medi-
cal domain (detection of pathological ECG signals) and signals acquired from
an electronic tongue (classification of tomato preserve obtained from different
tomato species). Even if these tests are by far too preliminary to be worth a
detailed report, they are certainly suggestive of future work. We can, therefore,
anticipate some problems that need to be tackled when using GP2SO and sug-
gest possible future extensions of the method.

Function Embedding. One trivial consideration about the nature of the
embedding produced by GP2SO is that it is not unique. This can be trivially
demonstrated if one considers the likely case in which one of the free parameters
optimized by PSO is, directly or through some scaling factor, the argument of a
periodic function like a trigonometric one. That case would result in an infinite
number of possible solutions, which might hamper, or even destroy, the com-
pactness of any possible cluster representing a specific class. In fact, in the most
optimistic hypothesis in which the parameter under consideration is the single,
possibly scaled, argument of a sine or cosine function, a class would be frag-
mented into a set of equivalent clusters. Such clusters could become very hard
to identify if the dependency of the model on the parameters was not trivially
expressed or separable.

A possible and immediate solution to this problem could be introducing a
regularization term proportional to the magnitude of the parameters’ vector into
the fitness function. The fitness function could then be expressed as

f̂(w) = f(w) + normx(w),

where f is the basic fitness function (e.g., the sum of squared regression errors)
and normx(w) the x-degree norm of the parameter vector w. This way, we would
introduce a bias in the fitness function that, in case of equivalent solutions, would
make the one characterized by the smallest values of w preferable to the others.

Reconstruction-Oriented Representations. Many popular data represen-
tations designed for maximizing the preservation of the original information are
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often also used for classification, as happens, for instance, with Principal Compo-
nent Analysis. Unfortunately, there is no guarantee that such a representation
will also be optimal for classification. This is often the case with biomedical
signals, in which the components that characterize anomalies from physiological
signals have very low amplitude with respect to the signal’s total energy, causing
the encoding to filter them out. The use of different, scale independent distance
measures as fitness functions could limit this partial reconstruction problem.
When using this method to solve classification problems, a possible counter-
measure could also be adding the residuals of the signal reconstruction to the
embedded representation, followed by further feature selection to identify the
most relevant components for classification.

Implementation Efficiency. While the low requirements in terms of the
amount of training data can undoubtedly be a plus also from the viewpoint
of computation load, GP2SO is certainly not intrinsically efficient, requiring an
entire PSO run for each GP fitness case evaluation during training, and another
PSO run for encoding each new unseen data instance after the model has been
evolved. However, the choice of PSO as an algorithm in the second-level optimiza-
tion (i.e., the optimization model’s free parameters) is justified by PSO search
efficiency and, even more, by its algorithmic structure that lends itself very nat-
urally to a GPU-based implementation [10] with speed-ups easily reaching two
orders of magnitude using a single-thread implementation as a reference.

6 Conclusions

This position paper has argued and demonstrated, solving a straightforward
toy problem, that Genetic Programming-based parametric symbolic regression
can replace Deep Learning in developing latent data representations following an
autoencoder-like approach. The models developed by GP2SO, an algorithm that
implements such an approach, have several advantages over the corresponding
representations obtained by DL, the most relevant of which are related to their
lower requirements of training data and higher interpretability.

The paper has anticipated possible practical applications of GP2SO to real-
world data and problems, mainly focusing on representing and classifying one-
dimensional signals. In doing so, it has highlighted some issues likely to occur
in GP2SO practical applications and suggested possible solutions to circumvent
them. Future work will thoroughly evaluate GP2SO’s potential in applications
like classification and anomaly detection and increase its computation efficiency
by exploiting PSO’s intrinsic parallelism.

Acknowledgments. Giulia Magnani is supported by the METROFOOD-IT project,
funded by the PNRR - Mission 4 “Education and Research” Component 2: from
research to business, Investment 3.1: Fund for the realization of an integrated sys-
tem of research and innovation infrastructures-IR0000033 (D.M. (Ministerial Decree)
Prot. n. 120 of 21 June 2022).



238 G. Magnani et al.

References

1. The Artificial Intelligence Act. https://artificialintelligenceact.eu/. Accessed 13
Jan 2024

2. Bacardit, J., Brownlee, A.E.I., Cagnoni, S., Iacca, G., McCall, J., Walker, D.:
The intersection of evolutionary computation and explainable AI. In: Proceedings
of the Genetic and Evolutionary Computation Conference Companion, pp. 1757–
1762. GECCO 2022, Association for Computing Machinery, New York, NY, USA
(2022)

3. Bank, D., Koenigstein, N., Giryes, R.: Autoencoders. arXiv preprint
arXiv:2003.05991 (2020)

4. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-44874-8

5. Fan, Q., Bi, Y., Xue, B., Zhang, M.: Genetic Programming for image classifica-
tion: a new program representation with flexible feature reuse. IEEE Trans. Evol.
Comput. 27(3), 460–474 (2023)

6. Fortin, F.A., De Rainville, F.M., Gardner, M.A., Parizeau, M., Gagné, C.: DEAP:
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Abstract. We propose a novel local learning rule for spiking neural
networks in which spike propagation times undergo activity-dependent
plasticity. Our plasticity rule aligns pre-synaptic spike times to produce
a stronger and more rapid response. Inputs are encoded by latency cod-
ing and outputs decoded by matching similar patterns of output spik-
ing activity. We demonstrate the use of this method in a three-layer
feed-foward network with inputs from a database of handwritten dig-
its. Networks consistently showed improved classification accuracy after
training, and training with this method also allowed networks to gen-
eralize to an input class unseen during training. Our proposed method
takes advantage of the ability of spiking neurons to support many dif-
ferent time-locked sequences of spikes, each of which can be activated
by different input activations. The proof-of-concept shown here demon-
strates the great potential for local delay learning to expand the memory
capacity and generalizability of spiking neural networks and offers new
perspectives on how to configure neuromorphic hardware.

Keywords: delay plasticity · local learning · spiking neural networks ·
Izhikevich neuron · generalized learning

1 Introduction

The firing rate has long been considered the primary mode by which neurons
convey information. This framework has been translated into the way in which
artificial neural networks (ANNs) in artificial intelligence and machine learning
applications encode information: in classic ANNs, downstream neurons receive
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inputs as a weighted sum of the activity from upstream neurons and output a
continuous value representing their activation level.

However, the rise of spiking neural networks (SNNs) in artificial intelligence
[1] has brought into focus the importance of spike times and their use in encoding
information [2]. Information can be encoded in spike times with much greater
efficiency than in firing rates and endows networks with a greater computational
capacity than coding with firing rates alone [2–4]. A toy example of a network
reliant on a temporal code is shown in Fig. 1 [5]. As shown in Fig. 1(a), each
connection between a pair of neurons is defined by a transmission delay, and the
delays are not uniform in the network. The effect of this is that the pre-synaptic
neurons must fire in a precise time-locked sequence in order for either of the
post-synaptic neurons to activate (Fig. 1(b)).

Fig. 1. Exmaple of polychrony in a toy feedforward spiking network. Pre-synaptic neu-
rons activate a different post-synaptic neuron depending on the pre-synaptic activation
order. (a) Pre-synaptic neurons B, C, and D are connected to post-synaptic neurons
A and E with spike transmission delays as defined in the schematic. (b) Only certain
time-locked sequences of neurons B, C, and D firing elicit spikes from neuron A or E.
Figure adapted from Izhikevich [5].

Expanding this effect of temporal spike alignment to a larger network of
neurons gives rise to the phenomenon of polychrony. As defined by Izhikevich
[5], a polychronous group is an ensemble of neurons that can produce multiple
“reproducible time-locked but not synchronous firing patterns” depending on
how they are activated. In our simple toy example, the two patterns of activity
shown in Fig. 1(b) are two such time-locked patterns; hereafter, we refer to
these patterns as polychronous group patterns (PGPs). These patterns may be
associated with memories stored in the neural network: a particular input elicits
a particular PGP, and the greater the number of PGPs to be supported by a
network, the larger the set of inputs the network responds to. However, it is not



Local Delay Plasticity for Generalized Learning 243

trivial to select transmission delays in a network to optimize the patterns the
network can support, and so a method of training the delays in an SNN would
promote their efficient use in artificial intelligence applications.

Classically, the most widely discussed mechanism associated with learning
in the brain is Hebbian plasticity [6,7]. This theory on neural learning states
that when one neuron causes repeated excitation of another, the efficiency with
which the first cell excites the second is increased. In other words, the weights
of connections change in a local, activity-dependent manner. Local plasticity
rules, such as spike-timing-dependent plasticity (STDP) [8], that change synaptic
weights in an activity-dependent manner are of great interest in the context of
unsupervised deep learning in deep spiking neural networks (SNNs) [9]. But
why should plasticity in SNNs be confined to synaptic weights, when we are
aware of a much richer repertoire of plastic changes that occur in the brain
[10,11]? In particular, there is evidence that neurons may change the speed of
spike transmission in an activity-dependent manner [12,13]. This type of delay
plasticity would allow networks to encode information and learn using spike
times, and a similar type of learning could be translated to neuromorphic event-
based hardware [14,15].

Delay plasticity has been explored in SNNs, but the majority of studies
have used supervised methods, with most combining weight and delay training
[16–21]. Since Taherkhani et al. [18] introduced the idea of training delays to
reduce the need for weight adjustments, a number of other studies have sim-
ilarly shown improved performance, greater sparsity, and reduced burden on
weight training when delay training is introduced into the network [16–19]. One
study has shown that training delays using backpropagation in a network with
fixed weights can yield performance comparable to conventional weight training
[22].

Supervised methods come with many drawbacks, including high requirements
for memory and less flexibility for real-time applications. The development of a
local delay learning rule that uses time-based coding would allow the advance-
ment of more robust and flexible neuromorphic computing devices. In one study,
an unsupervised method was used to train spike transmission delays in only the
readout layer of a reservoir [23]. Another particularly relevant and compelling
recent study has considered local, unsupervised delay training in a weightless
SNN, combined with encoding inputs using relative latencies and decoding using
a time-to-first-spike (TTFS) scheme [24]. In this study, the mode of training was
local and activity-dependent, and weights were not involved in the training; this
is very similar to the approach we used in the current study. The main difference
between the present study and the work by Hazan et al. [24] is the method of
decoding outputs; in their TTFS scheme, each output neuron corresponds to a
single input class and the first neuron to spike prevents firing in the remainder of
the output layer, in a winner-take-all fashion. In contrast, we focus on the overall
pattern of activity produced by the output neurons, which has implications for
generalized learning, as will be discussed later.

In this paper, we present a local activity-dependent delay plasticity algorithm
for unsupervised learning with spike times [25]. In this learning rule, the relative
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timing of pre- and post-synaptic spikes locally alters the delay of the connec-
tion, causing any subsequent spike transmission between a pair of neurons to
occur at a different speed; the weights remain fixed at constant uniform values.
The mechanism of our method is to better align all pre-synaptic spikes causally
related to a post-synaptic spike, with the purpose of producing a faster and
stronger response in the post-synaptic neuron, in order to produce PGPs that
reflect the structure of the input data. We applied our developed delay learning
method to the classification of handwritten digits [26] in a proof-of-concept and
demonstrated that training delays in a feedforward SNN is an effective method
for information processing and classification. Our networks consistently outper-
formed their untrained counterparts and were able to generalize their training
to a digit class unseen during training.

It should be noted that the purpose of this study was not to benchmark the
developed method. Rather, we aim here to explore the behavior that arises with
the proposed delay learning framework and understand how delays can be used
to develop efficient coding schemes and advance generalized learning. We hope to
further advance the framework presented here to take advantage of the richness
of activity that we see emerge in response to our delay plasticity algorithm.

2 Delay Learning in Spiking Neural Networks

This section presents the delay learning framework developed in this study [25]1.
Section 2.1 describes the proposed activity-dependent delay plasticity algorithm
we developed. The aim of this algorithm is to cause any pre-synaptic spikes that
elicit post-synaptic activity to better align in their arrival at the post-synaptic
neuron, by adjusting the transmission delays between the pre- and post-synaptic
neurons. Section 2.2 presents the encoding and decoding approaches of latency
coding (LC) and polychronous group pattern (PGP) clustering used in our delay
learning framework. In LC, input values are encoded as relative latencies between
the spike times of input neurons. PGP clustering assigns different output spiking
activity to output labels by comparing the similarity of the activity patterns.

2.1 Activity-Dependent Delay Plasticity

The goal of our proposed learning method is to consolidate the network activity
associated with similar inputs that constitute a distinct input class, so that the
network will produce similar patterns of activity to be read out. With this aim
in mind, the delays of pre-synaptic neurons that together produce activity in a
post-synaptic neuron are adjusted to better align the arrival of their spikes at
the post-synaptic neuron. Our framework was developed using Izhikevich regular
spiking (RS) neurons [27].

Analogous to how STDP potentiates connections between causally related
neurons to enhance the post-synaptic response, our delay plasticity mechanism

1 Code available at https://github.com/DelayLearninginSNN/DelayLearninginSNN.

https://github.com/DelayLearninginSNN/DelayLearninginSNN
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increases the post-synaptic response by better aligning causally related pre-
synaptic spikes. This alignment process is illustrated in Fig. 2 for the case of
four pre-synaptic neurons connected to one post-synaptic neuron. As shown in
this figure, the pre-synaptic spikes (purple lines) that arrive (green lines) before
the post-synaptic spike (blue line) are pushed towards their average arrival time
(yellow line).

Fig. 2. Schematic overview of the delay learning mechanism. Purple vertical lines indi-
cate presynaptic spike initiation times, green lines indicate presynaptic spike arrival
times according to their delays di, and the blue line indicates the post-synaptic spike
time. The learning mechanism works by pushing pre-synaptic spikes that arrive before
the post-synaptic spike towards their average arrival time, indicated by the yellow line.
(Color figure online)

The delay di,j between pre-synaptic neuron i and post-synaptic neuron j
changes according to the following equation:

Δdi,j = − 3 tanh
(

ti + di,j − t̄pre
3

)
,

0 ≤ Δtlag < 10 ms,
(1)

where ti is the spike time of neuron i, t̄pre is the average pre-synaptic arrival time
across all neurons with spikes arriving within 10 ms before the post-synaptic
spike, and Δtlag = tj − ti + di,j is the time lag between when the pre-synaptic
spike arrives at the post-synaptic neuron and when the post-synaptic neuron
fires. The time window of 10 ms was selected because this is the window in
which a pre-synaptic spike elicits a post-synaptic response.

2.2 Encoding and Decoding with Spike Times

To evaluate our learning rule in isolation, we consider here connections with
static homogeneous weights; only the delay of the connections is allowed to
change. Thus, encoding and decoding strategies must take advantage of spike
timing. Here we describe the approaches of latency coding (LC) and poly-
chronous group pattern (PGP) clustering used in our framework (Fig. 3).
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In LC, inputs are encoded in the relative spike times of the input neurons.
That is, input channels with a value of 0 will fire first, followed by other channels
in order of increasing input value. Through experimentation, we determined that
rescaling the dynamic range to relative latencies of [0, 40 ms] produced good
results; details on this experimentation can be found in the thesis that serves as
the basis for this study [25].

Fig. 3. Illustration of the encoding and decoding methods. Input values are encoded
as spike latencies, as shown on the left side of the network. PGPs are defined as sets
of sequential activity in the output layers triggered by inputs, and they are clustered
in a hierarchical manner by checking the ratio of matching spikes with other PGPs.

We confirmed that LC is an appropriate method of encoding to accompany
our delay learning algorithm by evaluating the behavior of small networks in
response to different inputs. We considered networks with two or three input
neurons and one output neuron and classified the trajectories of the connection
delays as they changed over time according to the delay learning algorithm. The
connections between the neurons were initialized with delays ranging from 18–22
ms. Under inputs encoded as firing rates, the majority of networks showed diverg-
ing delay trajectories. Convergence was only achieved when the firing rates of the
input neurons were equal or multiples of each other, and cyclic delays emerged
when the initialized delays were aligned with the offsets produced by the differ-
ent input rates. Under alternating sets of LC inputs, however, the network delays
generally either converged or followed cyclic patterns along with the alternating
inputs, indicating a more stable response to this type of input.

Our decoding approach of PGP clustering is based on the concept of polychro-
nization, where an ensemble of neurons can produce many time-locked patterns
of activity, as described in the introduction [5]. This decoding concept is compat-
ible with encoding by LC, as PGPs can be considered analogous to the patterns
of spikes produced when encoding an input by LC. Thus, a PGP is one such
time-locked pattern in the output layers of a network, consistently produced in
response to the same input.
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Because different inputs from the same class do not activate precisely the
same input neurons, we also introduced an unsupervised method of clustering
PGPs into output classes. A given PGP is described as a nested set in our frame-
work. Each neuron that fires in a given layer is appended to the corresponding
level of the set. Presynaptic spikes from an earlier layer are connected to post-
synaptic spikes they participate in eliciting. The resulting PGP describes how
activity flows through the network, retaining the ordinal relationships of the
spikes without explicitly including time.

We cluster these output PGPs using hierarchical clustering. First, a pair
of PGPs is given the same label if the number of intersecting elements in the
set is greater than 95% of the mean number of spikes in the two PGPs. Each
cluster obtained by this pairwise comparison is then described by the pattern
averaged over all PGPs in the cluster. Thus, the number of labels does not
necessarily match the number of classes, and may range from 1 to the total
number of training input instances. This is repeated while iteratively dropping
the matching threshold by 5% until the target threshold θ is reached. In our
proof-of-concept, we considered θ = 80% and 90%.

3 Proof-of-concept: Classification of Handwritten Digits

To demonstrate the utility of our proposed delay learning method, we applied it
to the classification of handwritten digits from the Modified National Institute
of Standards and Technology (MNIST) database [26]. In this preliminary proof-
of-concept, we trained networks on only two digit classes and then tested its
performance on classifying a third digit class in addition to the two trained
classes to evaluate the networks’ ability to generalize their training.

3.1 Experimental Setup

The MNIST dataset consists of images of 28×28 pixels [26]. We first scaled these
images down to a size of 10 × 10 and assigned an input neuron to each pixel.
The details of our experimental setup are given in Table 1. We used feedforward
networks with three layers, including the input layer, and fixed homogeneous
connection weights. Each neuron is connected with a neuron in the next layer
with a probability of 0.1.

Table 1. Network architecture and experimental parameters

Layer
size

Number
of layers

Connection
probability

Weight Digits
(unseen)

Train
instances

Test
instances

PGP
match
threshold

100 3 0.1 6 0, 1, (2) 20 25 80%, 90%

In each iteration of the experiment, a feedforward network was generated with
connectivity between layers according to the connection probability, and each con-
nection was assigned an initial delay randomly drawn from the set of integers
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between 0 and 40 ms. We then provided inputs from the selected digit classes to
this untrained network with local plasticity switched off to give a performance
baseline for random delays. In the training phase, different inputs of the same digit
classes were fed into the network with local delay plasticity switched on. Follow-
ing training, we again switched off local plasticity and provided the same set of
inputs as given in the baseline test phase to assess the performance of the trained
network. One digit class was selected as an “unseen” class, i.e., a class presented
during testing but not training, to evaluate the network’s ability to generalize.

3.2 Delay Training Improves Classification Accuracy

As described in Sect. 2.2, outputs are decoded in our framework by clustering
the PGPs produced by the network. In our proof-of-concept, this means taking
the firing patterns from the final two layers (i.e., excluding the input layer) in
response to each of the inputs and assigning each a label based on how similar
it is to the other output patterns. Because the clustering is dependent on a
similarity threshold, the number of labels is not predetermined. To evaluate the
accuracy of the network, the correct label is considered to be the label most
commonly applied to outputs from a given input class, and the accuracy is then
the ratio of the number of instances assigned that label to the total number of
instances presented to the network. In cases where all outputs have the same
label regardless of input class, the accuracy is 0% because the network has failed
to separate the input classes.

Figure 4 shows the accuracy after training plotted against the accuracy before
training. Each data point represents a network, and points above the dashed line
are networks whose performance was improved by training. Figure 4(a) shows
the test results for the two training digit classes (0 and 1), which were presented
to the network during the training phase. In nearly all cases where the network
could separate the digit classes (accuracy > 0%), the trained network performed
better than the corresponding untrained network. However, some networks were
unable to separate the classes (2.4% and 45% of networks for PGP thresholds
θ = 90% and 80%, respectively).

3.3 Networks with Plastic Delays Generalized Training
to an Unseen Input Class

As stated previously, the test phases before and after training consisted of pre-
senting the network with three digit classes (0, 1, and 2) despite only training
with two of these classes (0 and 1). Figure 4(b) shows the test results for the
third “unseen” digit class (2). These results demonstrate that some networks
were able to generalize their learning to a digit class not input to the network
during training. Here, the accuracy remained low for the more stringent match-
ing threshold of θ = 90% but reached up to 64% for θ = 80% (mean accuracy
32% in 38 networks able to separate the unseen class). Flexibility with the PGP
threshold can thus allow a network to generalize its training to unseen classes
while maintaining good performance on trained classes.
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Fig. 4. Accuracy of classifying handwritten digits before and after training using delay
learning. (a) Two training digit classes (0,1), N = 500 networks. (b) One unseen digit
class (2), N = 100 networks. Results are plotted with jitter for the sake of visualization.
Histograms show the accuracy distribution after training. Accuracy of 0 indicates non-
separable classes.

3.4 Output Activity Patterns Before and After Training

Examples of the activity in the output layers before and after training are shown
in Fig. 5, with correct trials colored different shades of blue according to trial
number and incorrect trials colored orange (here, labels were determined with
a PGP matching threshold of θ = 80%). The neurons are ordered according to
their mean spike time across all trials with inputs in digit class 0; note that the
top and bottom rows have different neuron orders.

These raster plots demonstrate the way the delay learning pushes the network
to produce similar patterns (PGPs) when presented with inputs from the same
class, as evidenced by the greater overlap of activity patterns after training. Prior
to training, the network activity is less structured overall and sparser in the final



250 J. J. Farner et al.

layer (neurons 101–200), whereas after training, the final layer is more active,
and consistent spiking patterns can be observed across many inputs from the
same class. In particular, inputs in digit class 1 produce very similar patterns,
with very few spikes deviating from the main pattern.

Fig. 5. Raster plots of activity in layers 2 and 3 (neurons 1–100 and 101–200, respec-
tively) before and after training for an example network. Digit classes 0 and 1 were
used for training, and 2 is an unseen third class presented only during testing. Neu-
rons are sorted according to the mean spike time for all trials in digit class 0. Colors
represent whether the class was correctly or incorrectly identified, for a PGP matching
threshold of θ = 80%, with the blue color scale for the correct label showing different
trials. Accuracies at PGP thresholds of 80% and 90% are reported in the lower right
corner of each plot.

To more clearly demonstrate the distinct representations that emerge in the
network as a result of training, Fig. 6 shows the mean activity patterns during
correctly labeled trials, sorted according to the mean spike time of the neurons
during each digit presentation. In these plots, only a single time is plotted for
each active neuron, with this time representing the average time over all of its
spikes during correct trials. These figures highlight the effect of the training:
more neurons are active, especially in the second layer, and a representational
structure in the activity forms.

Although our method yields networks with fair classification performance,
the spiking patterns shown here indicate one drawback that will be addressed in
future work: the representations of each digit class are quite similar, which can
cause erroneous class assignment. This may be solved by introducing competi-
tion in the network to encourage more diverse representations and thus greater
separability among output patterns.
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Fig. 6. Raster plots showing the mean spike time in layers 2 and 3 (neurons 1–100
and 101–200, respectively) before and after training for the same example network as
in Fig. 5. Digit classes 0 and 1 were used for training, and 2 is an unseen third class
presented only during testing. Neurons are sorted according to the mean spike time for
all correct trials in digit classes (a) 0, (b) 1, and (c) 2.
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4 Discussion

Neural networks with carefully designed spike time delays can support many
time-locked patterns of activity, expanding the coding capacity when compared
with traditional rate models [5]. Delay learning enables such polychronization in
populations of spiking neurons, and our results show that we can take advantage
of this richness of activity to train networks that can generalize their training
to new inputs. Our results demonstrate that feed-forward SNNs trained with
our proposed local delay plasticity rule produce similar activity patterns in their
output layers that can be well classified in some networks with a strict PGP
matching threshold of 90%. Furthermore, lowering the threshold to 80% yielded
some networks able to generalize their training to novel inputs unseen during
the training period.

4.1 SNNs Can Be Trained with Local Delay Plasticity

Our proof-of-concept shows the great potential for this local delay learning
method; even with only a short training period of 20 digit presentations, PGPs
emerge in the network activity that allow for improved classification accuracy. As
shown in Fig. 4(a), the majority of the 500 networks showed improved accuracy
after training, particularly with a PGP matching threshold of θ = 90%.

What this increased accuracy entails is illustrated in the example raster
plots in Fig. 5. Our delay learning method encourages reproducible time-locked
sequences of activity to propagate through the network, which leads to earlier
and stronger activation in the final layer and more consistent spike timing across
trials. This has two effects that improve the classification accuracy. First, the
reproducibility means that the output PGPs match each other more closely,
making it easier for our clustering algorithm to identify similar patterns. Sec-
ond, the enhanced activation of the final layer supports a richer repertoire of
activity, meaning a greater number of representations can be supported.

4.2 Delay Plasticity Enables Generalized Learning

The richer repertoire of activity attained by delay plasticity is what endows the
network with the ability to generalize. Crucially, our output decoding method
is not constrained in the number of labels it can assign to a PGP. This means
that the network is not confined to labeling outputs as corresponding to only
the input classes on which it is trained. With our local delay plasticity algorithm
encouraging stronger responses in later layers, we hypothesize that the trained
network is able to support a range of activity patterns that extends beyond those
produced in response to the training inputs. The network may thus support
representations of untrained input classes that our output clustering algorithm
can recognize as distinct from those of the training classes.
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4.3 Competition in the Output Layers to Improve Separability

Although our results are promising, there are some limitations to our current
approach. Figure 4 shows that not all networks perform well after training. In
most of these cases, the poor performance is largely due to non-separability of
input classes, frequently accompanied by a fairly high accuracy prior to training
(see Fig. 4(a) with threshold 80%). These networks are likely being over-trained
and producing a homogeneous PGP that represents multiple input classes; this
is further evidenced by the similarity of the representations evident even in the
relatively high-performing network shown in Figs. 5 and 6.

To counteract this and improve separability, it would be beneficial to intro-
duce a mechanism to produce stimulus-specific competition among the neurons
in the population; this would make the resultant representations of each digit
class sparser and avoid the similarity evident in Figs. 5 and 6. Such stimulus-
specific competition could be introduced by, for example, lateral inhibition in
early layers [28]. This would encourage stimulus specificity among neurons in
the same layer and give preference to neurons that fire earlier in response to a
given input, leading to sparser and more distinct representations of the different
input classes.

4.4 Future Work: Mixed-Mode Learning and Neuromorphics

In future work, plastic weights and diverse neuron types can be combined with
our delay learning approach to expand the computational capacity and enable
mixed learning strategies. Our delay learning approach does not yield accura-
cies comparable with state-of-the-art weight training methods; however, training
with delays in combination with conventional weight training has been shown
to improve efficiency and accuracy [11]. As such, our future work will similarly
combine weight and delay training as a means to evaluate how delay learning can
improve conventional weight-based approaches, rather than act as a substitute
for weight training.

We also expect that approach to delay learning will prove useful in the train-
ing of neuromorphic event-based hardware [15]. Although SNNs are computa-
tionally demanding to implement in conventional hardware, novel unconven-
tional hardwares can enable a more energetically efficient implementation, and
as such, compatible training algorithms will be needed for these new compu-
tational systems. Using event-based computing in this way is expected to be
particularly beneficial in time-based tasks, such as forecasting, and we hope to
test our delay learning method on such tasks in the future.
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Abstract. Premature ventricular contractions (PVCs) are abnormal
ventricle heartbeats that disrupt the normal QRS rhythm. Classification
of PVCs is crucial for the diagnosis and management of cardiac condi-
tions. Detecting anomalies in an electrocardiogram (ECG) is straightfor-
ward, but determining the specific number of anomaly classes related to
PVCs remains challenging despite Holter monitoring. This work explores
the potential of Recurrent Neural Networks (RNNs), specifically Long
Short-Term Memory (LSTM) and bidirectional LSTM (BLSTM) mod-
els, to learn and reproduce the wave patterns present in ECGs without
abnormalities. The working hypothesis is that these trained RNNs can
accurately analyze new ECGs with normal QRS complexes by minimiz-
ing the root mean square error (RMSE) between their predictions and the
actual ECG values. Applying the trained RNNs to ECGs with anoma-
lies aims to identify intervals where the RMSE is high, indicating the
presence of PVC pattern classes. Only regular ECG data in the dataset
is used for training and evaluation. At the same time, both classes are
included in the testing phase to assess the ability of the network to dis-
criminate between the two ECG classes. Also, we used trained models on
another dataset composed of PVCs to extract the interval with the high-
est RMSE. The results obtained from this study suggest the promising
performance of LSTM-based approaches in PVC pattern classification.

Keywords: Premature Ventricular Contractions · Recurrent Neural
Network · Long Short-Term Memory

1 Introduction

Heart and blood vessel diseases are collectively called cardiovascular diseases
(CVDs) and encompass a wide range of conditions that can impact the structure
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and function of the cardiovascular system: coronary artery disease, hypertension,
stroke, heart failure, and arrhythmias account for millions of fatalities annually.
Unfortunately, according to World Health Organization (WHO)1, Center for
Disease Control (CDC)2, American Heart Association (AHA)3 and European
Society of Cardiology (ESC)4, CVDs are rapidly increasing worldwide. CVDs
are the primary cause of death throughout the world. The cardiovascular sys-
tem (CVS) comprises the heart and circulatory system. It has a central role
in maintaining in life the human body. The heart is the core of CVS: for the
scope of this contribution, it is viewed as composed only of three components:
pericardium, endocardium, and sinoatrial node (SA). The SA node can generate
electrical impulses, which lead to contractions of atria and ventricles and regu-
late the frequency of the contraction of the heart [2]. In a healthy heart, the rate
related to rest status is called sinus rhythm.

The heartbeat can be recorded and digitalized by Electrocardiogram (ECG).
The ECG is a noninvasive diagnostic tool that measures the electrical activity of
the heart, typically using multiple electrodes (usually 12) on different body parts.
This procedure is generally called ECG or EKG. The electrical signals generated
from the SA are recorded and can be displayed as waveforms on a monitor,
printout [22], or the same signal can be digitized and recorded in digital format.
In particular, a healthy heartbeat can be split into seven parts identified by the
letters P, P-R, Q-R-S, T, ST, QT, and optionally U. Each part is characterized
by a particular shape and typical value interval, as shown by Fig. 1.

Fig. 1. Signal component in ECGs

The P wave portion appears small, typically rounded, and upright. It lasts
on average 0.08 s (but can vary from 0.05 s to 0.12). The P-R portion (formally
1 https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).
2 https://www.cdc.gov/heartdisease/index.htm.
3 https://www.heart.org/en/health-topics/consumer-healthcare/what-is-cardiovascu
lar-disease.

4 https://www.escardio.org.

https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
https://www.cdc.gov/heartdisease/index.htm
https://www.heart.org/en/health-topics/consumer-healthcare/what-is-cardiovascular-disease
https://www.heart.org/en/health-topics/consumer-healthcare/what-is-cardiovascular-disease
https://www.escardio.org
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P-R interval) is a low electrical signal portion that ends in correspondence with
the start of the Q-R-S portion. The P-R interval has a duration that varies
between 0.16 s and 0.2 s. The Q-R-S portion comprises the Q, R, and S portion
and follows the P-R interval. Together, Q-R-S waves form the QRS complex.
Typically, it lasts 0.12 s. The T portion is usually a smooth, rounded wave. The
ST period follows the T wave and is a horizontal segment that ends at the start
of the subsequent P period. QT portion reflects the entire time for ventricular
depolarization and repolarization. It is determined from the start of the QRS
complex to the end of the T-wave. Finally, the U portion may be present: if
present, the U period is a minor and typically faint wave that follows the T
period. Its precise relevance is unknown [14]. It is important to note that in
a healthy heart, electrical signals go through a specific path during a typical
cardiac cycle (P-PR-QRS-T-QT-ST), starting contractions in the chambers one
at a time [15]. The ECG wave related to the cardiac cycle is very similar for
every healthy heart heartbeat. By analyzing the ECG, cardiologists can detect
abnormal heart rhythms, identify changes in electrical activity, diagnose acute
myocardial infarction, assist in analyzing heart failure, and identify abnormalities
in the heart structure.

The method and results reported in this work are related to a specific CVD in
the arrhythmia class, Premature Ventricular Contractions (PVCs), which origi-
nates in the ventricles and is characterized by an aberrant signal that can result
in early or excess heartbeat, disrupting the normal sinus rhytm [1].

For the scope of this work, PVCs are considered to disrupt part of the cardiac
cycle, particularly the QRS complex. Therefore, PVCs are considered benign and
do not require medical intervention when detected in individuals without under-
lying structural heart disease. However, PVCs have a double nature (benign and
malignant). They can be associated with various heart diseases [1]: arrhythmias
and cardiomyopathy risk can increase significantly if the PVCs become recurrent
or are related to specific behaviors or in concomitance with heart failure [3].

Due to the analogic nature of the heartbeat, which can be abstract as a simple
time-related electric signal, this work relies on the following working hypotheses
(WHs):

– different classes of PVC are related to different patterns in the electrical signal
(WH1);

– if multiple classes of PVC exist, it is possible to partition an ECG dataset
composed of PVC and non-PVC ECG acquisition in multiple clusters, each
related to a possible outcome (WH2).

This study investigates the validity of working assumptions using the
Extended Genetic Algorithms (EGA) approach proposed in [5] in conjunction
with an RNN. The EGA and RNN are employed to analyze QRS complexes
from the MIT-BIH Arrhythmia Database, containing non-PVC and PVC data,
to learn the characteristics of standard QRS signals. Furthermore, the trained
RNN is used to identify abnormal segments within PVC ECG signals. EGA is
utilized to design the RNN architecture, predicting critical EEG signal portions
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on which these classes rely, with RMSE as the scoring metric. The main objec-
tive was to determine whether this hybrid strategy could yield a more resilient
classifier, even using a relatively straightforward neural network architecture.

The paper is organized as follows: Sect. 2 reports a literature overview focus-
ing on works that try to address similar issues; Sect. 3 define the data collection,
pre-processing, and method proposed in the work. Section 4 presents the obtained
results, and Sect. 5 summarizes the main findings and contributions of the paper
and suggests future directions.

2 Related Works

Due to the double nature of the PVC and following the results reported in
the literature, it is possible to discriminate between benign, dangerous, and
deadly outcomes [10]. The life-threatening nature of the dangerous and fatal
PVC classes make clear that early diagnosis in PVC case, particularly the correct
identification of the PVC class, might be life-saving. Nowadays, an extensive
evaluation is required to diagnose PVCs, including a review of the medical history
of the patient, a physical exam, and an ECG to detect irregular heartbeats,
which is a noninvasive way to identify different arrhythmias [16]. In [4], the
reported results suggested the difficulties in correctly identifying the PVC class
and the importance of allowing healthcare providers to determine the frequency,
pattern, class, and severity of the PVCs. Also, the results reported in the previous
work showed that detecting arrhythmias through an ECG is a problem with a
simple solution. Still, the PVC classification remains an open problem due to
the difficulties in obtaining labeled ECG data.

Deep Learning models, such as Convolutional Neural Networks (CNNs) or
RNNs like LSTM, have emerged as powerful tools for efficiently and effectively
addressing the detection problem [7]. Typically, neural network design relies on
the expertise of the user, involving critical decisions like determining hidden lay-
ers, configuring neuron connections, adjusting learning rates, managing momen-
tum, and fine-tuning weights and biases. These factors significantly impact net-
work performance. To address this complexity, some studies explore a hybrid
approach merging Genetic Algorithms (GAs) with conventional neural network
training methods. Most research in the literature utilizes GAs primarily to refine
neural network parameters rather than create entirely new neural network archi-
tectures [19]. In fact, GAs excel in seeking diverse solutions and adapting to find
optimal configurations, making them ideal for enhancing the robustness and
adaptability of CNNs. The use of genetic algorithms for building the architec-
ture design of a neural network is becoming increasingly important. In particu-
lar, GAs optimize complex AI model architectures, reducing the manual tuning
of hyperparameters, which can be time-consuming and suboptimal. GAs auto-
mate this process, freeing researchers from the need for extensive trial-and-error
adjustments. The dynamic nature of GAs allows AI models to adapt to evolving
data or changing clinical conditions. Adaptability is vital in healthcare, including
PVC detection, where data might change over time.
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In [25], GA is used to dynamically shape the architecture of a multilayer
perceptron to address the challenge of fixed network structures, thereby offer-
ing an adaptable and optimal model configuration. This entails automatically
determining hidden layer quantities, the number of nodes within each layer, and
the synaptic connection weights. The training process unfolds in stages, com-
prising a searching phase and a cleanup phase, during which the ideal number of
neurons in each layer is ascertained through a combination of crossover, muta-
tion operators, and cloning techniques. This GA-driven approach specifically
focuses on distinguishing premature ventricular beats from regular beats within
the MIT-BIH arrhythmia database. The maximum number of nodes in each layer
is constrained to three. The collective findings reveal an average recognition rate
of 96.96% across all records.

The study [23] introduced a neuro-genetic approach wherein a neural classifier
was combined with GA to determine the optimal interconnections between neu-
rons, thereby enhancing the identification of PVCs within the MIT-BIH arrhyth-
mia database. The architecture of the neural network was initially established
through a trial-and-error method. Subsequently, careful attention was given to
the design of genetic operators to fine-tune its structure. This approach was
refined to maximize the recognition of true positives, thus reducing the occur-
rence of false negatives. The best-performing classifier, denoted as AG-CLS2,
demonstrated impressive results with a correct classification rate of 98.86%, with
a sensitivity of 99.09% and a specificity of 98.66% and for an optimal neural net-
work structure consisting of only eight connections.

3 Methods

3.1 Dataset

This work uses a subset extracted from the MIT-BIH Arrhythmia Database
dataset, which is created through cooperation between Boston, Massachusetts’
Beth Israel Hospital (BIH) and the Massachusetts Institute of Technology (MIT),
and it contains several forms of arrhythmias, such as PVCs. MIT-BIH is well-
known and frequently utilized for research and development in arrhythmia detec-
tion and classification [17]. In particular, the subset contains 14000 samples that
belong to two different classes: PVC and NON-PVC [4]. The recording came
from 47 distinct patients. The average record length is approximately 169 mil-
liseconds.

For our experimentation, we generated three subsets:

– training set that contains 70% of total NON-PVC samples;
– validation set that contains 30% of NON-PVC samples and 50% of PVC

samples;
– test set that contains only PVC samples.

The training set comprises only NON-PVC samples. The training set and
the validation set did not contain overlapped data.
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Consequently, in our training, we exclusively use NON-PVC data, in the
evaluation process, we utilize NON-PVC and PVC data in the dataset. However,
during the testing phase, we deliberately used only PVC data. This inclusion
evaluates the proficiency of the network in distinguishing between these two
distinct classes.

3.2 Residual Neural Network

RNN architectures such as LSTM are used to analyze sequential data [18], thanks
to the presence of a memory cell and gating mechanisms that allow them to
store and forget information over lengthy sequences, modelling both short-term
and long-term dependencies in sequential data. LSTM uses the input, forget,
and output gates to regulate information flow. The input gate chooses which
input information to store, and the forget gate chooses what to discard from
the memory cell. In contrast, the output gate controls the output by selectively
exposing or suppressing memory cell information [8].

Bidirectional LSTM (BLSTM) combines the properties of both LSTM and
bidirectional models. BLSTM processes input sequences in forward and back-
ward directions, capturing past and future context information. This bidirec-
tional nature enables BLSTMs to understand temporal dependencies in the data
better, making them suitable for tasks such as ECG classification [21].

3.3 EGA

GA are optimization methods influenced by the biological principles of evolu-
tionary theory [11]. It permits discovering an optimal solution to an optimization
problem by simulating natural Selection. Therefore, it uses a population of indi-
viduals, each with n chromosomes. These individuals continue to change from
generation to generation by mechanisms analogous to the natural process of evo-
lution. Chromosomes almost always take the form of binary strings when they
are stored. Each locus (a particular location on a chromosome) is composed of
two alleles (various versions of genes) represented by the numbers 0 and 1 [12].

A GA aims to build a population of candidate solutions to a problem by
evaluating each candidate solution using a fitness function (scoring function).
Also, GA selects the best solutions to generate a new population. This process
continues in an iterative way, which ultimately results in the enhancement of
solutions through time. Each GA performs at least the same basic operations:

– initialization, which randomly populates the population of potential solutions;
– selection, where the GA selects the most suitable parents from the present

population;
– crossover, where the GA recombines current population genetic material to

produce new solutions;
– mutation, where random changes to the genetic material arise, helping prevent

the GA from becoming locked in a local optimum [9] by introducing new
genetic variations into the population;
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– evaluation, where the fitness of each solution in the population compared to
target Optimus; The criteria could be based on the number of generations,
the best solution’s fitness, or other factors [13];

– replacement, where GA replaces the current population with a new generation
of solutions. This process is repeated until a satisfactory solution is found or
for several generations.

Specifically, we establish an entity as a vector with m features. Each feature of
a generic entity is referred to as a “gene” of that entity, and the entire collection
of genes constitutes the “genome” of that entity.

This work uses an extended version of classic GA by allowing the merging
operation, which allows two genomes possessed by two entities of the same pop-
ulation to merge.

3.4 Map/Reduce Approach to Run EGA

Although genetic algorithms have been utilized successfully in various fields,
they can be computationally costly due to the training and evaluation of many
candidate solutions over successive generations [24].

To address the computation cost limitation, we used a simple map-reduced
distributed system named GRIMD that relies on a Beowulf5 approach. We anno-
tated the Matlab script using GRIMD Explode Point definition (EP) to allow
each entity (genome variation) to be evaluated on different grid nodes with differ-
ent parameters. For more information regarding the explode point, it is possible
to refer to [20].

To clarify the EP utilization, this work reports the EGA configuration regard-
ing GRIMD distribution packages. Please note that each EP comprises a keyword
surrounded by “at” (@) character.

The population genome can comprise one or more of the following gene types:

– 0 = sequenceInputLayer(@c = INT RANGE(1,10)@, Normalization =
“zscore”)

– 1 = softmaxLayer
– 2 = regressionLayer
– 3 = fullyConnectedLayer
– 4 = dropoutLayer [0.5]
– 5 = sequenceInputLayer(14, Normalization = “zerocenter”)
– 6 = sequenceInputLayer(14, Normalization = “rescale-simmetric”)
– 7 = dropoutLayer [0.2]
– 8 = lstmLayer(@c@, ‘OutputMode’, ‘last’)
– 9 = bilstmLayer(@c@, ‘OutputMode’, ‘last’)
– 10 = reluLayer
– 11 = lstmLayer(@c@, ‘OutputMode’, ‘sequence’)
– 12 = bilstmLayer(@c@, ‘OutputMode’, ‘sequence’)

5 https://en.wikipedia.org/wiki/Beowulf cluster.

https://en.wikipedia.org/wiki/Beowulf_cluster
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The initial size of the population was 24, while the initial genome length
was 12. The EP @c = INT RANGE(1, 10)@ forces the distribution of 10 copies
of the same genome in the first evolution step, each able to perform regression
using a different sequenceLayer with input length = @c@.

It is important to note that simple heuristics were implemented to reduce
the death ratio [6]. In particular, each entity will have a sequenceLayer as the
first gene and a fullyConnectedLayer and regressionLayer in the tail. These
heuristics guarantee that each entity will be a valid network Matlab structure,
avoiding startup failure.

EGA Generated LSTM Architecture. In this preliminary study, the EGA
execution discovered two simple RNN network architectures able to reach a
RMSE of 15. In particular, the GA produced four different LSTM and BLSTM
network structures.

1 LSTM1.N = [

2 sequenceInputLayer(N)

3 lstmLayer (1500)

4 fullyConnectedLayer (N)

5 regressionLayer ];

6 BLSTM1.N = [

7 sequenceInputLayer(N)

8 lstmLayer (1500)

9 bilstmLayer (1000)

10 fullyConnectedLayer (N)

11 regressionLayer ];

12

Best performances were archived for the sequence length N with 1 and 10.
LSTM1.N comprises 9M learnable and a BLSTM1.N comprises 29M learnable.

3.5 Anomalies Detection

To identify anomalies and locate the segments of waves that may contain PVC
classes, we employed the trained network on the TEST dataset. In particular,
it is possible to consider a generic PVCx as an ECG wave that undoubtedly
contains a PVC pattern because an expert cardiologist annotated it.

Therefore, PVCx can be considered a sequence of samples, as described
below:

PV Cx = s1, ..., sn (1)

Then, for each chunk of data {si, ..., sj} ∈ PVCx with this conditions:{
si ≥ 1
sj ≤ n

it is possible to use the trained networks to predict the expected value [pi,
..., pj ].
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Due to the training dataset, the network will predict the value following the
learned data based only on natural QRS.

Therefore, for each PVCx, it is possible to compute the expected prediction
(EPVCx ) containing the predicted waveforms that would appear if the ECG
were regular:

(EPV Cx) = {p1, ..., pn} (2)

Finally, it is possible to calculate the difference between the expected value
between EPVCx and the real PVC waveforms contained in PVCx.

This information can then be used to construct a table (TABLE), where
each row corresponds to an element from the TEST set (comprising all PVCs).
Within each column, the RMSE is computed, representing the difference between
the expected value of a typical QRS and the actual values present in the PVC
signals.

4 Results

In this preliminary study, the application of the EGA approach identifies two
straightforward RNN architectures. These architectures demonstrated the capa-
bility to achieve a Root Mean Square Error (RMSE) of 15. For this preliminary
work, the sum of columns in the TABLE was used to estimate which part of the
ECG wave could contain a PVC pattern.

The graph in Fig. 2 reports the sum and suggests that a pattern that could
imply the presence of PVC classes being concentrated in the central segment
of the ECG. This observation may have significant implications for understand-
ing the distribution and characteristics of PVCs within the cardiac waveform.
In this specific ECG signal segment, the RMSE exhibits variability, underscor-
ing distinctions between the expected QRS complex attributes and the actual
characteristics found in PVC signals.

These findings suggest that specific anomalies linked with PVCs emerge in
this specific signal region. Also, these preliminary findings suggest that WH2
might be demonstrated.

Following these results, we could conclude that these arrhythmias could indi-
cate underlying physiological or electrical disruptions in the ventricles, leading to
the generation of PVCs, which have a distinct pattern in contrast to the normal
rhythm observed in the ECG normal waveforms.
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Fig. 2. Estimated ECG signal zones related to PVC with higher RMSE variability
compared to normal QRS complexes

5 Conclusions

This study investigates the effectiveness of recurrent neural networks, particu-
larly LSTM and BLSTM, in detecting PVC patterns inside an ECG waveform.
The preliminary findings indicate that the PVC patterns are likely to be situated
in the central segments of the ECG signals. This observation is supported by
the RSME values detected in these specific portions, suggesting the significance
of this region for accurate PVC pattern detection. This result could be investi-
gated deeply, particularly by extracting these ECG portions, plotting them in
graphical form, and submitting them to expert cardiologists for more accurate
human and specialist validation. In the future, these results can also be used
to explore Explainable Artificial Intelligence (XAI) to develop more transparent
and interpretable AI models.
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Abstract. Diabetic kidney disease (DKD) is a serious complication
of type-2 diabetes, defined prominently by a reduction in estimated
glomerular filtration rate (eGFR), a measure of renal waste excretion
capacity. However DKD patients present high heterogeneity in disease
trajectory and response to treatment, making the one-model-fits-all pro-
tocol for estimating prognosis and expected response to therapy as
proposed by guidelines obsolete. As a solution, precision or stratified
medicine aims to define subgroups of patients with similar pathophysi-
ology and response to the therapy, allowing to select the best drug com-
binations for each subgroup. We focus on eGFR when aiming to identify
eGFR decline trends by clustering patients according to their eGFR tra-
jectory shape-similarity.

The study involved 256 DKD patients observed annually for four
years. Using the Fréchet distance, we built clusters of patients according
to the similarity of their eGFR trajectories to identify distinct clusters.
We formalized the trajectory-clustering approach through category the-
ory. Characteristics of patients within different progression clusters were
compared at the baseline and over time.

We identified five clusters of eGFR progression over time. We noticed
a bifurcation of eGFR mean trajectories and a switch between two other
mean trajectories. This particular clustering approach identified different
mean eGFR trajectories. Our findings suggest the existence of distinct
dynamical behaviors in the disease progression.

Keywords: clustering · trajectory · precision medicine · category

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-57430-6 21.

c© The Author(s) 2024
M. Villani et al. (Eds.): WIVACE 2023, CCIS 1977, pp. 271–283, 2024.
https://doi.org/10.1007/978-3-031-57430-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57430-6_21&domain=pdf
http://orcid.org/0000-0001-7592-5583
http://orcid.org/0000-0003-3606-3436
http://orcid.org/0000-0001-7828-2480
http://orcid.org/0000-0003-4605-1789
https://doi.org/10.1007/978-3-031-57430-6_21
https://doi.org/10.1007/978-3-031-57430-6_21


272 V. Distefano et al.

1 Introduction

Precision medicine [1,2] is a flourishing research area, which aims to find the best
individualized treatment for patients according to their characteristics. In fact,
the formula “one-model-fits-all” is unsatisfying when it comes to many diseases
as far as progression and response to therapy is concerned. To find subgroups
of similar patients, cluster analysis approach is a useful and informative tool, as
witnessed by several studies [3–9].

Defining sub-groups of such an evolving population can help shed light on
underlying common features in each sub-group, allowing physicians, if linked to
pathophysiology and drug mode of action, to foster a more appropriate targeted
treatment. This approach to medical research paves the way toward effective
personalized or at least better stratified treatment. This approach to medical
research paves the way toward effective individualized treatments. Of particular
relevance is, for instance, the differentiation at the baseline, regarding different
parameters. We focus on clusters of patients sharing the same disease-behavior
across time, as instances of longitudinal studies. Longitudinal studies have been
used also to address more general quality of life issues [10] and depression pat-
terns across time [11], with statistical approaches such as growth mixture models.

In this article, we focus on patients with type-2 diabetes mellitus (T2DM) and
its associated diabetic kidney disease (DKD) from the DC-ren dataset.1 DKD
is a serious public health problem and the main cause of end-stage renal disease
(ESRD) in developed countries [26]. Longitudinal changes of renal function help
inform on patients’ clinical courses and if, identified by pathophysiologically rel-
evant characteristics, help select individualized treatment according to patients’
specific characteristics.

In this article, we will build clusters of patients’ trajectories. This information
can constitute a first step toward the development of a decision system to foster
individualized strategies for DKD treatment [4,12]. We analyze trajectories of
patients with respect to the dependent variable eGFR. The variation of eGFR
provides an estimate of the severity of the disease and the response to treatment
[8,16]. We build clusters of trajectories based on shape similarity and on eGFR
range-similarity.

To group trajectories according to their shape similarity, we use the Fréchet
distance, first proposed in the domain of calculus [13], and recently applied to
medicine with the kmlShape clustering technique [14]. The Fréchet distance is
evaluated upon the comparison between pairs of points following the profiles of
the curves they belong to.

The approach to trajectory clustering is formalized within the framework of
Category Theory [17,18]. It is an abstract branch of mathematics, initially devel-
oped to formalize the transformations between transformations, and to connect

1 The project Drug combinations for rewriting trajectories of renal pathologies in type
II diabetes (DC-ren), https://dc-ren.eu/, is funded by the Horizon 2020 research and
innovation programme, Action RIA Research and Innovation action Call: H2020-
SC1-BHC-2018-2020; Topic: SC1-BHC-02-2019.

https://dc-ren.eu/
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different areas of mathematics between them. Applied category theory includes
research in physics [19], chemistry [20], neuroscience [21]. A few applications also
concern cluster analysis [22], with the formalization of a clustering method as a
functor. A functor is a morphism between categories. A category is constituted
by objects (points) and morphisms between them (arrows), whose composition
is associative and has the identity element.

We aim to find subgroups of similar patients and build clusters of mean
trajectories. We find cases of bifurcations and switch of trajectory clusters. To
understand the possible pathophysiological reasons underlying patients exhibit-
ing such a behavior, we analyze their medical and demographical variables. Cou-
pled with drug mode of action, our results can be fed into a decision system,
to find the best individualized treatments for future DKD patients. This article
is the development of a first study where the Fréchet distance was applied to
real data [23]. Here, we consider an extended dataset and a more refined com-
putational approach. The novelty of our work is the use of categorical formalism
for a medical real case study, and the application of a relatively-new statistical
method, kmlShape, to a real data for a non-public dataset.

The article is organized as follows. After a review of some concepts of longi-
tudinal cluster analysis and category theory (Sect. 2), we present a case of study
with patients affected by DKD (Sect. 3), and we discuss our findings (Sect. 4).

2 Methodology

In this section, we present our trajectory, clustering approach using some formal
tools of category theory; we then describe the kmlShape method, to investigate
trajectory shape-similarity according to the Fréchet distance.

2.1 A Shape-Similarity Clustering of Longitudinal Data

Longitudinal data are measured repeatedly over time for the same individual. In
this paper, we are interested in the evolution regarding the individual variation
of estimated glomerular filtration rate (eGFR) in a small group of patients with
type 2 diabetes and chronic kidney disease (DKD) at different stages. We used
the kmlShape approach, that creates clusters of trajectories according to their
evolution [14]. This approach is a variation of the longitudinal k-means [24] using
a “shape-respecting distance” and a “shape-respecting mean.”

The Fréchet distance [27] computes the shape similarity of two curves P1 and
P2, based on the smallest of the maximum pairwise distances obtained with two
respective reparametrizations, α : [0, 1] → [0, 1] and β : [0, 1] → [0, 1], as follows:

F (P1, P2) = inf
α,β∈R

max
t∈[0,1]

{dist(P1(α(t)), P2(β(t)))} .

The approach of kmlShape considers the discrete version of the Fréchet distance,
based on a sequence of pairs of points belonging to the two curves (represented
as polylines). Since the two curves need not to have the same length, we have to
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“walk through them” at different speeds. The ratio between the different speeds
to move along the curves is the time scale λ, discussed later.

Since we are interested in assessing the trend of the disease rather than ver-
ifying its presence, we focused on this method. The same approach has recently
been followed in another application of kmlShape to a medical dataset [27]. In
fact, kmlShape quantifies the differences of trend between the eGFR trajectories.
In addition, the kmlShape method presents a highest ARI index when compared
with Traj and GMM method [28].

The Fréchet distance measures the longest link between the trajectories [14].
Its computation between two trajectories does not require the same number of
time-points in each trajectory.

We consider a generalization of the Fréchet mean to n curves. To this aim,
we implement the kmlShape with the RandomAll technique [14], with n patients
randomly scattered through the leaves of a binary tree.

Genolini and co-authors [14] provided a generalized definition of the Fréchet
distance including a time scale λ. Indeed, in the context of real data, there can
be an issue of relative scale, because the variable of interest and the time variable
are measured according to different unities. The change of time scale impacts the
partitioning, and thus the resulting clusters. The meaning of the scale variation
is the change of “travel speed” to go through a curve. The value of λ = 0.5 is
empirically determined for each research problem. We run different tests before
choosing this value. More details including the precise definition of the Fréchet’s
mean can be found in the article by Genolini and co-authors [14].

2.2 Category Theory for Trajectory Clustering

Patients with similar characteristics over time can be computationally and
graphically grouped together in the same cluster [15]. The comparison between
processes over time can be contextualized in the framework of category the-
ory [25]. Here, we use its diagrammatic language to describe patients’ grouping
according to their trajectory similarity. We also discuss the transition from a
patient-based representation to a state-based representation. First, we briefly
summarize the basic definitions of category theory.

A category is constituted by objects (points) and morphisms (arrows) between
them. The composition of morphisms must be associative, and there should exist
the identity morphism. A functor is a generalization of a function. More precisely,
it is a mapping between categories (mapping objects and morphisms of a category
into objects and morphisms of another category, preserving structures), and a
natural transformation is a mapping between functors.

According to Spivak [20], category theory constitutes a powerful (i.e., precise)
communication tool of ideas tool between different fields of mathematics. It can
be used to compare structures and methods of different disciplines. Category the-
ory starts being applied to several domains of science to acquire an abstract and
thus general overview [20]. According to [29], category theory can also be used for
medical dataset. Here, we use category theory as a bridge between clinical prac-
tice as defined by physicians, real data of patients, and information theory. We
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use this formalism to make more precise the comparison between each patient at
different time-points, and between different patients at the same time-point. In
addition, connecting the case study with the categorical framework allows one to
recover all theorems and methods defined in abstract mathematics, which have
the potential to make possible further applications and developments.

Let us consider a dataset composed of n patients characterized by p observ-
able variables at four time points t0, t1, t2, t3. Each patient is characterized
as a triplet (xi(tk), D(tk), yi(tk+1)), where i is the individual (the patient); tk
is the time point k = 0, 1, 2, 3; xi(tk) = x1

i (tk), ..., xp
i (tk) is a set of values of

variables, characterizing the individual; D(tk) = D1(tk),D2(tk),D3(tk),D4(tk)
stands for the given drug combination; yi(tk+1) is the value of the response
variable Y at tk+1, measured after one year of treatment. The response vari-
able is evaluated as the variation of the dependent variable, that is, the esti-
mated glomerular filtration rate (eGFR); we thus indicate it as E in the fol-
lowing. The trajectory over time of the i-th patient (pi) with respect to the
eGFR (E) is: pE

i (t0) → pE
i (t1) → pE

i (t2). For the i’-th patient we have:
pE

i′ (t0) → pE
i′ (t1) → pE

i′ (t2). We can evaluate the distance of a patient with
respect of herself/himself through time, or the distance between different patients
at the same time. We indicate the distance between patients i, i′ with respect to
the variable E and time tk as dE

i,i′(tk), and the distance between values observed
at times tk, tk′ of the variable E for the same patient i as dE

i (tk, tk′), see dia-
gram (1). In such a patient-based representation, each point is a patient at a
time-point. This representation is dual to the state-based representation, which
will be useful to create the state map (Fig. 1).

pE
i (t0)

dE
ii′(t0, t0) � pE

i′ (t0)

pE
i (t1)

dE
ii(t0, t1)

�
dE

ii′(t1, t1) � pE
i′ (t1)

dE
i′i′(t0, t1)

�

pE
i (t2)

dE
ii(t1, t2)

�
dE

ii′(t2, t2) � pE
i′ (t2)

dE
i′i′(t1, t2)

�

(1)

In the language of categories, the construction of diagram (1), with observa-
tions and distances, can be described as an enriched double category with metrics
in R [18], whose objects are the values of variable E, and whose morphisms are
vertical and horizontal distances dE

i,i′(tk), dE
i (tk, tk′). The comparison between

trajectories of different patients involves both of these distances.
Similar trajectories can be grouped within the same cluster of trajectories.

The clustering is described as a functor [22] from the category of dataset to
the category of the partitioned dataset. This concept can be applied to the
trajectory-clustering, from the category of trajectories to the category of clus-
ters of trajectories (Fig. 2). In the language of categories, the comparison between
similar clustering methods corresponds to an arrow between arrows, that is, a
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Fig. 1. Patient-based representation and state-based representation. The representa-
tion on the left is typical of categories. pi(t) indicates the clinical characteristics of
the i-th patient at time t, and pi′(t) refers to the i′-th patient. Time flows vertically.
The representation on the right neglects the detail on single-patient and time, in favor
of a description of the clinical states where one or more patients can stay or return
(loop arrow). The second representation can be built from the overall analysis of single-
patients longitudinal data.

natural transformation. The comparison between the clusters that are obtained
with slightly different methods is formalized as an arrow (morphism) in the
category of clusters of trajectories. Thus, one can shift the attention from the
natural transformation (comparison between clustering methods) to a morphism
(comparison of clusters obtained with slightly different methods). Natural trans-
formations (arrows between arrows) formalize the comparison between different
transformations. Trajectory clustering processes, despite their differences, can
be seen as processes from trajectories to clusters of trajectories, and thus we can
use the language of categories to compare them.

2.3 Study Population

We considered 256 DKD patients observed during annual visits in a time span
of four years. 48.4% were male, the mean age was 67 years. The characteristics
of patients at the baseline are presented in Table 1.

The variability in eGFR decline was analyzed with cluster analysis. The
eGFR is defined in the Appendix. In clinical routine the eGFR trajectory is
used to judge the response to the therapeutic treatment: the controlled disease
corresponds to an increase of eGFR or a decrease not exceeding 5% of the base-
line value (the value at t0), while the uncontrolled disease corresponds to an
eGFR decrease higher than 10% of the baseline value [30].

The mean eGFR at t0 ranges from 31 and 90 ml/min/1.73 m2; at t3 it is
comprised between 19 and 120 ml/min/1.73 m2, denoting an overall decrease of
kidney efficiency through time. The descriptive statistics of eGFR, with mean
and standard deviation at each time-point, are presented in Table 2. The mean
value of eGFR decreases with time, indicating an overall worsening of the disease
in the group.
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Fig. 2. Clustering as a functor from the category of trajectories to the category of
clusters of trajectories. In category theory, a functor is a generalization of a function,
mapping point and arrows from a category to another one. Here, we consider a mapping
from the category of trajectories to the category of clusters of trajectories. The points
are the patients at given time points, and the arrows are the comparisons of their
clinical values. Trajectories are given by the comparisons of patients with themselves
over time. In the second category, we group patients presenting similar trajectories
inside the same cluster.

We derive the profile of patients of this population considering a set of the
most relevant variables describing their characteristics. The variables are mea-
sured at the baseline (time t0) and at three follow-ups (t1, t2, t3). At t0 (Table 1),
the 256 patients have a mean eGFR of 64 ± 16. Their mean values of systolic
blood pressure and diastolic blood pressure are, respectively, 138±16 and 78±10
mmHg, and serum triglycerides (172 ± 106 mg/dl); these values are moderately
high. The mean values of blood glucose (144±46 mg/dl) and HbA1c (7.2±1.2%)
are also elevated. The mean values of total cholesterol (181 ± 44 mg/dl) and
serum potassium (4.5± 0.5 mmol/l) are in the normal range. The mean value of
UACR is moderately elevated (78.94±283.85 mg/g Creatinine). The large stan-
dard deviation takes into account the great variability of UACR values across
patients. In the following, we examine trajectory clusters obtained with the kml-
Shape method.
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Table 1. The mean values and their standard deviations for the 256 patients at the
baseline. SBP is the systolic blood pressure, DBP diastolic blood pressure, SCR the
serum creatinine, TOTCHOL is the total cholesterol, BG the blood glucose, STRIG is
the serum triglycerides, SPOT the serum potassium, HB the hemoglobin, UACR the
ratio of albumine to serum creatinine.

unit N mean std min max

eGFR ml/min/1.73m2 256 64 16 31 90

SBP mm Hg 256 138 16 100 180

DBP mm Hg 256 78 10 44 101

BG mg/dl 256 144 46 47 326

HbA1c % 256 7.2 1.2 4.9 11.8

SCR mg/dl 256 1.08 0.30 0.66 2.12

TOTCHOL mg/dl 256 181 44 85 363

STRIG mg/dl 256 172 106 44 859

SPOT mmol/l 256 4.5 0.5 3.2 6.1

HB g/dl 256 13.5 1.5 9.7 17.6

UACR mg/g 256 78.94 283.85 0.0 2777.14

Table 2. Values of the mean eGFR for the 256 patients at each time-point.

time min max mean std

baseline (t0) 31 90 64.0 16.3

follow-up 1 (t1) 23 122 63.3 18.9

follow-up 2 (t2) 15 105 60.6 18.3

follow-up 3 (t3) 19 120 58.6 18.2

3 Results of the Longitudinal Clustering

In this section, we present the clusters of longitudinal data obtained with the
kmlShape method (Fig. 3). We chose 5 as the number of clusters following clinical
practice to analyze heterogeneity in eGFR patients’ trends, taking into account
that the eGFR is computed from different variables [30]. Such a choice is also
motivated by the analysis of eGFR trajectories in different follow-ups, whose
mean presents a slow decline. The choice of 5 classes allowed us to highlight
behaviors such as crossing and bifurcations2 having a medical interest.

2 Each cluster of trajectories contains the same patients. However, we noticed that
there are crossings, that we called “switches”, between the mean values of eGFR of
specific clusters. It means that, for instance, the patients in a specific cluster had
an improvement over time, while the patients belonging to a cluster of initial good
values of eGFR, had later a worsening of their condition. Or, in another case, we
notice that two initially-close clusters of trajectories are then moving apart (the
bifurcation). This is interesting from a medical point of view, because the patients
who are initially quite close, then can have a different disease behavior.
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Fig. 3. Patients’ eGFR trajectories (left), and mean eGFR trajectories obtained with
kmlShape (right).

Table 3. Characteristics of patients in each of the five clusters of trajectories.

unit cluster 1 (N = 160) cluster 2 (N = 292) cluster 3 (N = 152) cluster 4 (N = 216) cluster 5 (N = 204) p-value

mean std mean std mean std mean std mean std

eGFR mg/dl 84 11 72 10 57 9 57 11 38 9 0.000

age years 62 10 66 7 69 8 69 8 73 9 0.000

BMI kg 30.90 5.18 30.54 4.65 31.53 4.97 31.38 4.65 30.31 5.16 0.050

BG mg/dl 148 50 149 48 144 56 152 54 155 74 0.363

HbA1c % 7.4 1.1 7.2 1.2 7.3 1.3 7.4 1.2 7.3 1.4 0.182

TOTCHOL mg/dl 176 41 184 44 186 49 178 53 172 39 0.020

STRIG mg/dl 159 88 169 102 169 117 203 150 194 131 0.000

SPOT mmol/l 4.5 0.5 4.4 0.5 4.4 0.5 4.5 0.5 4.9 0.6 0.000

HB g/dl 14.3 1.4 14.0 1.3 13.5 1.5 13.2 1.4 12.7 1.5 0.000

CRP mg/l 0.68 2.13 0.49 1.46 0.56 1.15 0.49 0.99 0.86 2.32 0.035

UACR mg/g 34.91 102.07 43.53 157.58 54.68 153.43 88.09 281.23 122.91 324.18 0.000

Examining the resulting mean trajectories, we notice a bifurcation between
cluster 1 and cluster 2, and a switch between cluster 3 and cluster 4. In the
following, we analyze how the relevant variables describe the profile of patients,
trying to understand the pattern of their dynamic behavior.

The mean values of the selected variables for patients in each cluster are
shown in Table 3. They are clusters of patients, grouped according to the shape
similarity of their eGFR trajectories. Patients are distributed along five different
levels of eGFR, ranging from a mean value of 84 ± 11 in Cluster 1, and 30 ± 9
in Cluster 5. For the patients in each cluster, we also computed the mean values
of the variables which presented a statistical significance (with the p-value test):
age, body-mass index, blood glucose, HbA1c, total cholesterol, serum triglyc-
erides, serum potassium, hemoglobin, and UACR. The information provided by
these other variables can shed light on unexpected behaviors of eGFR mean
trajectories.

Observing Fig. 3, we notice that the eGFR trajectories for patients in Clusters
1 and 2 start from close values of mean eGFR around 80 mg/dl, then have a
different trend. Both Clusters 1 and 2 present higher eGFR values (84 ± 11 and
72 ± 10, respectively), UACR under control (34.91 ± 102.07 and 43.04 ± 87.38),
but mean values of STRIG higher for patients in Cluster 2 (169 ± 102 against
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159 ± 88 of Cluster 1). The mean age of patients in Cluster 2 is also higher than
the mean age of patients in Cluster 1 (66 ± 7 against 62 ± 10 of Cluster 1). We
then notice that eGFR trajectories of patients in Clusters 3 and 4 present a
switch after the second time-point, that is, the first follow-up (t1). Patients in
Clusters 3 and 4 present trajectories of eGFR slightly lower, that is, 57 ± 9 and
57 ± 11, respectively. The main difference with respect to the other variables is
constituted by the mean values of CRP, that is, the C-reactive protein: 0.56±1.15
in Cluster 3, and 0.49 ± 0.99 in Cluster 4. Moreover, we notice the difference of
the mean value of STRIG (169 ± 117 in Cluster 3, 203 ± 150 in Cluster 4)
and of UACR (54.68 ± 153.43 in Cluster 3, 88.09 ± 281.23 in Cluster 4). The
improvement of mean eGFR across time for patients in Cluster 4 can be due to
the effect of drug treatment, more effective for patients belonging to this specific
subgroup. Patients in Cluster 5 present the lowest values of mean eGFR (38±9),
and they are characterized by critical values of HB and SPOT (12.7 ± 1.5 and
4.9 ± 0.6, respectively).

4 Discussion

Diabetic kidney disease is a devastating complication of type-2 diabetes mellitus
that reduces quality and quantity of life of affected patients and puts an enor-
mous burden on healthcare budget. In addition to the optimization of lifestyle,
the selection of the optimum drug combination for therapy is crucial to prevent
the incidence and progression of DKD. Once thought to be a uniform disease,
it is now evident that there is massive inter-individual and longitudinal intra-
individual heterogeneity in disease pathophysiology, clinical presentation, and
response to therapy. Linking the characteristics of each patient with the features
of a specific subgroup of patients can give hints about the possible effective drug
combination.

This is why, starting from a DKD dataset, we built subgroups of similar
patients. In particular, we noticed indeed the bifurcation and a switch between
mean trajectories. From a theoretical point of view related with basic definitions
of category theory, we connected the comparison between clustering methods
with the comparison between their results as clusters. A clustering method can
be seen as a transformation, and the comparison between clusters is a natural
transformation. Here, we estimated similarities and differences of the two meth-
ods (and thus, the natural transformation between them) in terms of their effect
on a given dataset.

From our analysis of the results, we emphasize that patients with similar
levels of eGFR at the baseline can then present a different disease evolution.
This fact can be explained with different characteristics of the other variables
at each time-point. This result is found using a shape-similarity method, the
kmlShape, using the Fréchet distance.

The considered patients were given, at each time-point, one of four possible
combinations of drugs, described in the Appendix: RASI + GLP1a, RASi +
SGLT2i, RASi + MCRa, and RASi only. Analyzing the eGFR mean trajectories
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shown in Fig. 3, and comparing them with the respective treatment received by
the patients, we notice that the patients in Cluster 1 mostly received RASi only;
patients in Clusters 2 and 3 were given RASi + MCRa; patients in Cluster 4
mostly received SGLT2i. On the other hand, patients in Clusters 3 and 5 did
not receive GLP1a, independently by the level of eGFR.

The information achieved with trajectory clustering can be fed into a decision
system, to predict the disease evolution of patient, according to their baseline
clinical overview. Thus, our study can lead to a machine-learning application
to help physicians deal with new cases of DKD disease. We highlighted here a
connection between abstract mathematics, medical practice, and patients’ real
data, with a potential for further technological applications.

This research may help foster new strategies to improve DKD patients’ lives.
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21. Ehresmann, A., Góomez-Ramirez, E.: Conciliating neuroscience and phenomenol-

ogy via Category Theory. Progr. Biophys. Mol. Biol. (PBMB) 119, 347–359 (2015)
22. Carlsson, G., Mémoli, F.: Classifying clustering schemes. Found. Comput. Math.

13, 221–252 (2013)
23. Mannone, M., Distefano, V., Silvestri, C., Poli, I.: Clustering longitudinal data with

category theory for diabetic kidney disease. In: CLADAG 2021, Book of Abstract
(2021, to appear)

24. Genolini, C., Falissard, B.: KmL: K-means for longitudinal data. Comput. Stat.
25(2), 1–34 (2010)

https://doi.org/10.1007/s11482-020-09884-5
https://doi.org/10.1007/s11482-018-9703-3
https://doi.org/10.1007/s11482-018-9703-3
https://doi.org/10.1177/14604582211033020
https://doi.org/10.1177/14604582211033020


Clustering Trajectories to Study Diabetic Kidney Disease 283

25. Tran, C.S., Nicolau, D., Nayak, R., Verhoeven, P.: Modeling credit risk: a category
theory perspective. J. Risk Financ. Manage. 14(298), 1–21 (2021)

26. Alicic, R.Z., Rooney, M.T., Tuttle, K.R.: Diabetic kidney disease: challenges,
progress, and possibilities. Clin. J. Am. Soc. Nephrolol. 12, 2032–2045 (2017)

27. Pinaire, J., Aze, J., Bringay, S., Poncelet, P., Genolini, C., Landais, P.: Hospital
healthcare flows: a longitudinal clustering approach of acute coronary syndrome in
women over 45 years. Health Inform. J. 27(3) (2021)

28. Verboon, P., Pat-El, R.: Clustering longitudinal data using R: A Monte Carlo
study. Eur. J. Res. Methods Behav. Soc. Sci. 18, 144–163 (2022)

29. Varoutas, P.-C., Rizand, P., Livartowski, A.: Using category theory as a basis
for a heterogeneous data source search meta-engine: the Prométhée framework.
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Abstract. This paper presents a two-phase hierarchical classifier for
determining the different states in Alzheimer’s disease (AD). In the first
phase, an evolutionary system is developed to determine the most rele-
vant slices (in both X-axis and Y-axis) of the magnetic resonance imaging
(MRI) for the construction of a classifier. To obtain the image features,
the biorthogonal wavelet transform 3.3 was used at level 2. Due to the
high number of coefficients, a dimensionality reduction is performed using
minimum Redundancy - Maximum Relevance algorithm (mRMR) and
Principal Component Analysis (PCA). An evolutionary algorithm on a
high-performance computer with GPU was used to optimize the slides.
Support vector machine (SVM) was used in the fitness function to esti-
mate the features of the classifier in a computationally simple way. In the
second phase, using the different solutions of the Pareto front obtained by
the evolutionary algorithm, a multiple deep learning system was devel-
oped, each of the systems having as input one of the selected slices of
the analyzed solution. The solution with three slices (trade-off between
complexity and accuracy) was used as the solution. The obtained hierar-
chical deep learning system fused the information from each system and
analyzed the probabilities obtained for each class. As a final result, an
accuracy of 92% was obtained for the six classes. A total of 1,200 patients
from the Alzheimer’s disease neuroimaging initiative (ADNI) database
were used, corresponding to six different classes of patients (with varying
degrees of dementia).

Keywords: Alzheimer’s Disease · Multiclass Classification ·
Multi-objective Genetic Algorithm · Hierarchical System · Deep
Learning · Ensemble System

1 Introduction

Alzheimer’s disease (AD) is one of the most common dementias of our century
and has a major impact on elderly patients [1]. The World Health Organization
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estimates that one person in the United States of America develops Alzheimer’s
disease every 66 s. It is estimated that by 2050 there will be a high number
of patients over the age of 65 in the U.S. (an estimated 14 million people),
which is why scientific and technological advances that can help combat the
disease are so important [2]. An estimated 46.8 million people worldwide are
living with Alzheimer’s disease or other dementias. By 2030, barring any new
findings, the number of people affected is expected to rise to nearly 74.7 million
[3]. By 2050, the number of people suffering from Alzheimer’s disease could rise
to 131.5 million. Every 3.2 s, a new case of dementia occurs somewhere in the
world. Early diagnosis is crucial to enable patients suffering from Alzheimer’s
to live longer [4,5]. Early diagnosis (even before obvious physical symptoms of
the disease appear) allows other non-pharmacological therapies, such as cogni-
tive stimulation, to be started at an early stage [6]. Early diagnosis has been
shown to improve the quality of life of patients and their families, increase or
maintain their personal autonomy and preserve their cognitive abilities [7]. A
great deal of research has been and is being done on the part of the scientific
community, and the number of publications on Alzheimer’s disease is high and
growing. Alzheimer’s disease has been shown to have intermediate stages before
the severity of dementia becomes moderate or serious [8]. It is important to note
that the development of Alzheimer’s disease can be perceptible and that patients
themselves occasionally suffer from the knowledge that their cognitive abilities
are progressively deteriorating and worsening. However, in the early stages of
the disease, when there are hardly any external symptoms, the disease goes
unnoticed until the symptoms increase in an advanced stage [9]. It is therefore
extremely important to have the right tools to diagnose the disease at an early
stage, so that treatment and prognosis can be started as soon as possible, which
will have a positive impact on the patient’s health and quality of life.

In [10] an interesting contribution is presented, which takes into account that
with the current progress in personalized medicine and the obtaining of omics
data (genetics, proteomics, transcriptomics), together with the information pro-
vided by medical images, new opportunities to study, analyze and deal with
Alzheimer’s disease can be developed. In addition, the hybridization of machine
learning (ML) methods is available to deal with high-dimensional data, integrate
data from different sources and discover new biomarkers. [10] provides a compre-
hensive review of various ML methods that have been applied to the study of AD
using single or multimodal platform data. An analysis of ML applications for five
different topics in AD is provided: Disease classification, drug repurposing, sub-
typing, progression prediction, and biomarker discovery. In this context, several
attempts have already been made to detect and diagnose Alzheimer’s disease
using artificial intelligence (machine learning) systems and brain imaging (usu-
ally MRI) [11]. An example of this approach can be found in [12], in which the
authors investigated whether optimization using evolutionary algorithms (EA)
can be a precision tool for diagnosing early mild cognitive impairment (EMCI)
patients compared to control participants (CN). To carry out this study, using
the alzheimer neuroimaging initiative (ADNI) database, a total of 54 patients in
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the EMCI study and 56 controls were used. Three different types of brain seg-
mentation were analyzed, extracting volumetric features that served as input to
the optimization algorithm. Thus, we obtained a classification with an accuracy
of 93% for this bi-class problem.

The use of classifiers, such as SVM, has been widely used in the determina-
tion of Alzheimer’s patients, versus control patients, using MRI [13] and fluo-
rodeoxyglucose (FDG)-positron emission tomography (PET), denoted as FDG-
PET, images [14]. For example, in [15], T1-weighted brain MRI for 100 AD
patients and 100 normal elderly subjects were used. For these analyses, various
structures consisting of the thickness of the entorhinal cortex of both hemi-
spheres and the total grey matter volume, hippocampal volume, and amygdala
volume were examined. WEKA and SVM-light were used for training the SVM,
obtaining the area under the curve (AUC) values of 0.913 and 0.918 for WEKA
and SVM-light respectively.

Currently, deep learning algorithms are a very fruitful and powerful alter-
native for the automatic analysis of medical images, and for the detection of
pathologies based on thousands of previous cases and the experience accumu-
lated by hundreds of professionals [16,17]. In fact, the training of these systems
is a complex process [18], where it is necessary to either use previously trained
neural structures in other problems and carry out transfer learning, or carry out
learning from scratch, which implies having a very large set of images (due to the
large number of synaptic connections that need to be optimized). For example,
in [19], transfer learning is used to take advantage of the pre-trained models for
medical image classifications, such as the VGG19 model.

In this paper, a novel methodology is proposed using multiple classifiers
and machine learning tools (SVM, Multi-Objective Genetic Algorithms, mRMR,
PCA, and Deep Learning) in different phases, and developing a classifier that
uses the most relevant MRI slices for multiple classification of the patient sets
used (cognitively normal, significant memory problems, early mild cognitive
impairment, mild cognitive impairment, late mild cognitive impairment, and
Alzheimer’s disease). The first objective proposed in this project is to deter-
mine, for a problem with multiple classes (disease states), which are the best
slices and in what matter (white matter or gray matter) for the construction of
a good classifier. By using all the slices we could be able to give a more precise
prediction of the status of the patient. The problem of this approach is the huge
amount of data to process: to train a model we need to store the information
of many images together in RAM memory which is not feasible for a regular
machine. Despite this problem, it is possible to develop intelligent algorithms
and extraction methods to efficiently identify the most important features, as
well as single-slice models where all results are merged to create a multicriteria
classifier.

Since this process is performed by an evolutionary multi-objective optimi-
sation system (NSGA-II), it is necessary that the fitness function has a low
computation time, otherwise, when performing thousands of evaluations of this
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function, the computation time could make the proposed methodology inacces-
sible.

The dilemma of choosing between neural networks, more specifically con-
volutional neural network (CNN) and support vector machines for biomedical
image processing is solved in the proposed methodology, which SVM is using in
the training phase. In the second phase, with the best slices selected, a Deep
Learning Neural Network is training and tested (tested with test patients, not
used in no other phase). The final Deep Learning Neural Network is an ensemble
of different network with different slices of the MRI as input.

2 Cohort Used. ADNI Database

ADNI stands for Alzheimer’s Disease NeuroImaging Initiative. It is an interna-
tional project that collects information regarding AD in an open database for
the study of Alzheimer’s disease, in order to unite the efforts of researchers and
health professionals in the research work of this neurodegenerative disorder, it
also integrates a open database. It is an initiative created by the Laboratory of
Neuro Imaging (LONI) of the University of Southern California, which began
in 2004 and collects data from various types of medical tests of patients of dif-
ferent origin: images (MRI and PET) taken in different centers with different
machines, clinical and genetic tests, and biological samples. ADNI joins the goal
of detecting AD at the earliest possible stage, before signs of dementia. The
database, included in what they call IDA (Image & Data Archive), stores tests
of adult patients between 55 and 90 years old, with Alzheimer’s (AD), with mild
cognitive impairment (MCI) and cognitively normal (NC). It is divided into 4
subprojects that have had different durations: ADNI, ADNI GO, ADNI 2, ADNI
3. The latter is the one that is currently being carried out. For this project, 1.5T
and 3T MRI images have been obtained for six different kind of patients:

The set of patients used in this paper are classified in six groups:

– CN (Cognitively Normal, class 1): corresponds to healthy individuals (con-
trol).

– SMC (Significant Memory Concern, class 2): Patients diagnosed with SMR,
when performing the various tests and measures stipulated, may have a score
within the normal range of cognition, whereby, the informant does not equate
the expressed concern with progressive memory impairment.

– MCI (Mild Cognitive Impairment, class 3): Patients who have been classi-
fied in this category, when tested for cognitive abilities, already indicate the
existence of a slight but perceptible impairment, which is reflected in the
measurements obtained.

– EMCI (Early Mild Cognitive Impairment, class 4): patients classified in this
stage suffer milder episodic memory impairment.

– LMCI (Late Mild Cognitive Impairment, class 5): patients diagnosed in this
group already have a more advanced stage of MCI, which may be a stage
prior to AD.
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– AD (Alzheimer Disease, class 6): this final group are patients who are diag-
nosed and suffering the severe consequences of Alzheimer’s disease.

In order to make a balanced system, a total of 200 MRI images have been
used for each of the six classes, thus having a total of 1200 MRI images.

3 Methodology

3.1 Phase 1: Selecting the Best Slices in the X and Y Plane

Magnetic resonance imaging (MRI) of the head uses a powerful magnetic field,
radio waves and a computer to produce detailed images of the brain in 3 dimen-
sions (there are therefore 3 axes, the X, Y and Z axis in space). On each axis
there are a certain number of slices, where a two-dimensional image can there-
fore be obtained. Every subject in the experiments run in this paper, has been
spatially normalized to a bounding box of 157× 189× 136 voxels in the X, Y,
and Z directions respectively and voxels (remind that one voxel is a three dimen-
sional pixel) reshaped so that each one measures 1 mm × 1 mm × 1 mm (this
normalisation is the standard one made for ADNI images in the bibliography,
using the SPM toolbox for Matlab by [20]). Brain images have also been seg-
mented so that whole matter (also called W images), gray matter (C1 images)
and white matter (C2 images) are available in different files. The effect of this
segmentation is shown in Fig. 1 using “Tools for NIfTI and ANALYZE image”
by Jimmy Shen [21].

There is no unanimous agreement to determine which are the most relevant
slices to carry out an accurate classifier. To the best of our knowledge, there
are also no contributions in the bibliography that try to determine which are
the most relevant X-axis and Y-axis planes for a six-class problem like the one
presented here. Therefore, we are going to use an evolutionary multi-objective
algorithm such as the NSGA-II.

The X-axis slices we are going to use will be in the range [15:140]. For the Y
axis, the slices of the range [15:170] will be used. This results in a total search
space of 126 slices for the X-axis and 156 for the Y-axis. For each image, both
the grey and white matter are examined, so that the total number of slices is 564
(282 for the grey matter and 282 for the white matter), with the evolutionary
algorithm being responsible for selecting the best slices (optimising the fitness
function of various defined targets).

First, it is necessary to characterize each of the images or slices extracted
from the MRI for each subject. To do this, the wavelet transform will be used
[22].

Wavelet for Feature Extraction. Wavelets can be thought of as kind of a
supercharged Fourier transform. Using a Fourier transform, you can decompose
a signal into a sum of sines and cosines where these sines and cosines form and
orthogonal basis for the space of functions that we want to represent [23].
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Fig. 1. MRI of the brain using NIfTI. Whole matter image (top left), gray matter
image (top right), white matter image (bottom) (Color figure online)

This idea of sines and cosines can be generalized using wavelets to other
orthogonal functions that might provide a better representation of certain types
of signals [24]. Today, we can affirm that wavelets has changed the way we
compress and represent signals in the digital era.

In this article, the Wavelet-2D transform has been used, with the mother
function bior3.3 at level 2 [25].

As there is a total of 564 slices, and for each of the images, the Wavelet
transform obtains a total of 1924 coefficients, there is therefore a large matrix of
coefficients, of size 1085136. This number is enormously high for each of the 1200
MRI images corresponding to the different individuals (patients) analysed in this
paper and should therefore be minimised using feature selection algorithms (both
mRMR and PCA).

Minimum Redundancy Maximum Relevance (mRMR) and PCA for
Feature Reduction. Minimum Redundancy Maximum Relevance (mRMR) is
a feature selection approach that tends to select features with a high correlation
with the class (output) and low correlation between themselves.

Given a selected feature set S and assuming there are m features (|S| < m),
the feature importance of Xi, i ∈ {1, 2, ...,m} based on the mRMR criterion
can be expressed as:
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fmRMR(Xi) = I(Y,Xi) − 1
|S|

∑

Xs∈S

I(Xs,Xi) (1)

where Xi denotes a feature currently not selected (Xi /∈ S) and Y is the
response variable, and I(Y, (Xi)) is the mutual information [26,27]. The maxi-
mum relevance criterion of the features with respect to the class variable should
be supplemented by the use of a minimum redundancy among features. There
is a high likelihood that the dependency between features could be increased in
case that only relevance is implemented. This way, minimum redundancy should
be implemented without disturbing its relevance. To get minimum redundancy
between features the following formula is used:

WI(S) =
1

|S|2
∑

Xi,Xj∈S

I(Xi,Xj) (2)

This criterion combining minimum redundancy and the correlation with the
output class is what we call mRMR. The simplest form of optimising relevance
and redundancy to obtain a good subset of features is:

max{φ(VI(S),WI(S))} (3)

where φ = (VI(S) − WI(S)) and:

VI(S) =
1

|S|
∑

Xi∈S

I(Y,Xi)

Practically speaking, the implementation of the mRMR algorithm is high
resource consuming. For the research that concerns us, this method will be
applied recursively on different subsets of features instead of the full feature
set directly. We will discuss its details in upcoming sections.

SVM for the Fitness Function of NSGA-II. Support Vector Machines
[28], constitute a learning-based method for solving classification and regression
problems.

It is a supervised machine learning algorithm that can be used for classifica-
tion or regression problems. But it is usually used to classify. Given 2 or more
labeled data classes, it acts as a discriminative classifier, formally defined by
an optimal hyperplane separating all classes. The new examples that are then
mapped onto that same space can be classified according to which side of the
gap they are on.

Support vectors are the data points closest to the hyperplane, the points in
a data set that, if removed, would alter the position of the split hyperplane. The
reason for using SVM in the learning phase of the evolutionary algorithm is its
fast computation for the fitness function [29].

The block diagram for this initial phase of selecting the best slides for MRI
image classification, using and merging various machine learning concepts (SVM,
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mRMR, PCA, NSGA-II, etc.) is presented in Fig. 2. There is a binary represen-
tation for the coding of the individuals of the evolutionary algorithm, where each
possible solution has a length of 564 bits and a bit value of 1 would mean that this
slice is selected, and a value of 0 means that this slice is not selected. The fitness
function of the evolutionary algorithm takes into account both the complexity
of the system (measured by the number of selected slices) and the accuracy of
the system (measured by the classification accuracy using the confusion matrix).
This leads to a Pareto front.

As can be seen in Fig. 2, all MRI images come from the ADNI base, and there
are three different sets: training and validation sets, which are used to optimize
the selected slices, and the test set, which is used to perform the test and deter-
mine the confusion matrix of the system. In Fig. 2, during slices optimisation,
feature extraction and selection is first performed for the different slices, and
NSGA-II is used to optimize which of the slices are most suitable for classifying
the system (using an SVM as classifier). The lower part of Fig. 2 shows the test
phase. Since there are different solutions of the NSGA-II algorithm (there is a
Pareto front with solutions with different number of slices and different accu-
racy), different solutions can be selected and their accuracy can be analysed with
test images.

Fig. 2. The block diagram for this initial phase of selecting the best slides

3.2 Phase 2: Fusion Several Deep Learning System with Different
Slices Selected

Deep Learning is defined as a structured or hierarchical automatic algorithm
that emulates human learning in order to obtain certain knowledge [30,31]. It
stands out because it does not require previously programmed rules, but rather
the system itself is capable of “learning” by itself to carry out a task through
a previous training phase. In turn, it is also characterized by being composed
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of intertwined artificial neural networks for information processing. It is mainly
used for the automation of predictive analysis.

Deep Learning systems are a fundamental tool in artificial intelligence and
are being widely used in biomedical image recognition problems [32].

In this paper, we are going to use transfer learning with the structure of
VGG16, which is widely used CNN architecture trained with ImageNet (which
is big database project used in visual object recognition) [33].

In the NSAGA-II algorithm used, as mentioned above, several slices were
obtained that can be used to build an SVM-type classification system. To build
the SVM classifier, the most relevant features must be extracted and selected
(using the wavelet transform of the image). Once the best slices have been
obtained, we can have a Pareto front in which there are several solution config-
urations (with different complexity, measured by the number of slices used) for
the resolution of the system. The next step we will perform is to use the most
representative slices, but now as input to a deep learning system, where it is
therefore not necessary to perform the feature extraction phase. We will use the
solution where there are 3 slices and therefore three images. Since each image
produces a classifier, the information from the three deep learning classifiers is
fused taking into account the probability given to each of the output classes.
This structure is therefore a weighted union (according to the probabilities of
belonging to the individual classes) of the three deep learning classifiers for the
six output classes analysed (CN, SMC, EMCI, MCI, LMCI and AD).

In this paper, we are going to use transfer learning with the structure of
VGG16, which is widely used CNN architecture trained with ImageNet (which
is big database project used in visual object recognition) [33]. As a summary,
in the present methodology, the outputs of different Deep Learning system used
with the structure VGG16, which have as inputs the slices of the volumetric MRI
image, slices that have been selected in phase 1, will be merged. Therefore, the
different probabilities of belonging to each of the six classes of patients proposed
in this paper, must be combined for each of the trained Deep Learning models,
so that finally six final probabilities are available, the highest being the one that
dictates the class in which the patient is classified.

4 Results

Because the Pareto Front offers different solutions (Fig. 3a), a configuration with
few slices is used in this paper, as is the solution with three slices. In this solution,
the Slice of the cut in the X plane with value 81 for gray matter is used, together
with the cut in the Y plane number 134 for white matter and the cut in Y plane
146 for gray matter.

The Pareto Front Genome (which would be the slices used and their impact
on the accuracy of the classifier) are presented in Fig. 3b, together with the
frequency of appearance in Fig. 4

Since three slices are selected, a complex deep learning system must be built
with three deep learning systems based on the VGG16 structure, but each of
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Fig. 3. Pareto Front used to classify the six classes and Pareto Front Genome

Fig. 4. Frequency of appearance of the slices in the solutions found by the evolutionary
algorithm.

them receiving a different image of the slice and matter selected by our genetic
algorithm solution (remember that it is X = 81 for gray matter, Y = 134 for
white matter and finally Y = 146 for gray matter). The structure is presented
in Fig. 5.

The probabilities of belonging to each of the six classes analyzed, for each of
the three systems, are computed jointly, to obtain, by multiplying them, final
probabilities of belonging to each of the six classes. This will be the final output
of the system, the class that gets the highest probability. Using a set of test
patients, not used in previous phases, the confusion table is constructed. This
table is represented in Fig. 6.

As can be seen, for the hierarchical system presented in this contribution, a
classification accuracy greater than 92% is obtained.
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Fig. 5. Unification of the information of three slices (initially selected by an evolution-
ary algorithm), for the construction of three Deep Learning structures and the fusion
of the probabilities of each of the systems to obtain a final vector of probabilities (used
as merge operator the product)

Fig. 6. Confusion table for the six classes used and the accuracy values obtained during
the training phase.
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5 Conclusion

Researchers are still working on new diagnostic tools that could help doctors
diagnose Alzheimer’s dementia earlier in the course of the disease, when symp-
toms are very mild or even before they appear. For people with Alzheimer’s
dementia, doctors can offer drug and non-drug interventions that can ease the
burden of the disease. Doctors often prescribe medications that slow the deteri-
oration of memory and other cognitive abilities.

In this sense, the construction of intelligent and automatic classifiers, which
can discern and identify the different stages and stages of Alzheimer’s disease
through MRI images, is of great relevance for neurological experts. In this paper,
a novel contribution is presented, which analyzes the most relevant slices for
classification and presents a fusion system of neural systems (based on Deep
Learning) for the construction of a classifier that obtains an accuracy of 92%.
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Abstract. Diabetic kidney disease is a serious complication of diabetes
and one of the leading causes of chronic and end-stage kidney disease
worldwide. The clinical course and response to therapy is complex and
heterogeneous both between and over time within individuals. There-
fore it is extremely important to derive even more in-depth informa-
tion on what characterizes its pathophysiology and pattern of disease
progression. Statistical models can help in this task by understanding
the interconnections among variables clinically considered to character-
ize the disease. In this work we propose to use Bayesian networks, a
class of probabilistic graphical models, able to identify robust relation-
ships among a set of variables. Furthermore, Bayesian networks are able
to include expert knowledge in the modeling phase to reduce the uncer-
tainty on the phenomenon under study. We provide some evidence that
the synergy between data and expert prior information is a great source
of valuable help in gaining new knowledge about Diabetic Kidney Dis-
ease.

Keywords: Diabetic Kidney Disease · Bayesian networks · Expert
knowledge · Network of relations

1 Introduction

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized
by high levels of blood sugar (glucose) resulting from the body’s resistance to
insulin or its reduced secretion. The number of adults suffering from T2DM
in Europe varies between countries but it is expected to increase overall from
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52.8 in 2011 to 69 million by 2045 (www.heartstats.org, accessed June 2023).
About 30–40% of affected individuals develop diabetic kidney disease (DKD),
a devastating complication that reduces quality as well as duration of life and
imposes an enormous burden on health care budget. In developed countries DKD
is the leading cause of end stage renal disease [1].

For many years kidney disease in type 2 diabetes was considered to mimic
kidney disease in type 1 diabetes, a somewhat “homogenous” disorder primar-
ily driven (at least in early stage) by genetic predisposition and quality of
metabolic control. However recently it became evident that it is much more
complex and multifactorial due to different comorbidities more prevalent in this
elderly population (like hypertension) and deregulations in a large number of dif-
ferent biological pathways including metabolic, hemodynamic, and inflammatory
processes have been described [2]. A consequence of this complexity is massive
inter-individual and longitudinal intra-individual heterogeneity of pathophysi-
ology on the molecular level the phenotype (i.e. clinical presentation) and the
response to specific therapy is observed. Understanding these mechanisms and
their interactions cross sectionally and over time is crucial for improving clinical
care and developing targeted therapies and interventions to prevent or delay the
onset and slow the progression of DKD. With better profiling of patients there
is an increasing need of a new understanding on the framework of relationships
involving some of the variables and their interactions used to judge the state of
a patient with DKD and support selection of appropriate therapy.

In this work we propose a probabilistic graphical model, namely the Bayesian
network, to identify the network of relationships among the selected variables of
the disease pathophysiology of DKD. Ideally the results should give a consensus
to the theoretical path of pathophysiology, and when combined with expert
knowledge or per se, should improve the information on the actual relationships
among the different considered factors. Specifically, by estimating a Bayesian
network model we can contribute in

– evaluating the strength of the well-known relationships on DKD;
– proving new insights on new relationships emerged from the data on patients;
– identifying differences that could be imputed to the specific therapy.

The paper is structured as follow: in Sect. 2 we introduce the study conducted
to derive the data used in the analyses and the statistical approach developed
to address the proposed objectives, in particular how to include prior knowledge
available from the literature and experts to produce more informative models;
then in Sect. 3 we present the main results achieved in the content of DKD.
Finally, in Sect. 4 we propose some concluding remarks about issues requiring
further researches.

2 Materials and Methods

2.1 The PROVALID Study

The data used in this work were provided by the PROVALID study (“PROspec-
tive cohort study in patients with type 2 diabetes mellitus for VALIDation

www.heartstats.org
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of biomarkers”), a prospective observational study that recruited over 4.000
patients with T2DM in five European countries with normal, mild or moder-
ately reduced kidney function. Patients were followed for at last 4 years and
variables holding information on clinical data, laboratory values and medication
were collected on an annual basis. For a more complete description of the study
and the available data we refer to [3,4]. The disease trajectories (as assessed by
changes in eGFR, a measure of renal excretory capacity) were highly variable in
the PROVALID participants even under stable therapy [5]. Next to drug adher-
ence and environmental factors, heterogeneity in pathophysiology is a very likely
explanation for this finding. In order to systematically approach this problem
we defined two populations of patients:

– RASi only, population 1: a population of patients that was continuously
treated with agents that block the renin angiotensin system, the current stan-
dard of care for at least 4 years.

– Drop-in, population 2: a selection of patients to whom other agents were
added on top of RASi therapy by their clinicians in order to improve metabolic
control and/or DKD (sodium glucose transporter 2 inhibitors, i.e. SGLT2is,
glucagon like peptide 1 receptor agonists, i.e. GLP1as, or the mineralocorti-
coid receptor antagonists, i.e. MCRAs.

The definition of these two different populations can help in addressing the aim
of identifying differences that could be attributed to the specific therapy.

Among the over one hundred variables collected within the PROVALID data,
thirteen available from routine clinical care visits and considered important by
physicians were selected. After a preprocessing of the data to remove incom-
plete cases and to adjust skewed distribution by means of log transformation
if appropriated, the selected variables in the two populations are described in
Table 1. We point out that the data which we analyzed are datapoints, i.e. we
did not consider the longitudinal component of the data. From the Table we
can highlight that differences on the mean value of some variables emerge when
comparing the two populations, meaning that therapy seems to have an effect
to those variables.

After the selection of the relevant variables, clinical expertise was used to
construct an interaction network based on pathophysiology understanding. This
network, considered a theoretical framework is presented in Fig. 1. Then, the
interaction network and the suspected strength of the interactions between vari-
ables was considered as a benchmark, and compared with a purely data driven
approach to determine if the latter could improve our understanding of the DKD
complex interactions. However confounding of this network by changing in treat-
ment that affects target variables with or without altering disease pathology is
an obvious weakness.

2.2 The Bayesian Networks

To derive the network of relationships among the selected variables of the disease
pathophysiology of DKD, we propose to build Bayesian networks (BNs) [6,7].
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Table 1. Comparison of main selected variables between the two populations. Mean
± standard deviation are reported. p-value refers to a t-student test to evaluate the
statistical difference between the two populations.

Variable Overall n = 1288 RASi only n = 798 Drop-in n = 490 p-value

SBP - Systolic Blood Pressure 135.52 ± 14.93 136.84 ± 15.28 133.37 ± 14.08 0.000

DBP - Diastolic Blood Pressure 77.61 ± 9.35 77.70 ± 9.76 77.46 ± 8.65 0.636

BG - Blood Glucose 154.00 ± 56.96 154.00 ± 59.30 153.99 ± 52.99 0.996

HBA1C - Triglycerides HbA1c 7.50 ± 1.30 7.43 ± 1.34 7.61 ± 1.24 0.016

TOTCHOL - Total Cholesterol 178.86 ± 47.73 181.83 ± 49.20 174.03 ± 44.88 0.004

HDLCHOL - HDL Cholesterol 48.29 ± 13.69 49.76 ± 14.45 45.89 ± 11.98 0.000

STRIG - Serum triglycerides 184.61 ± 121.89 178.07 ± 122.52 195.26 ± 120.23 0.014

SPOT - Serum Potassium 4.51 ± 0.51 4.53 ± 0.51 4.49 ± 0.52 0.204

HB - Hemoglobin 13.76 ± 1.56 13.46 ± 1.50 14.23 ± 1.54 0.000

SALB - Serum Albumin 4.49 ± 0.42 4.42 ± 0.41 4.60 ± 0.41 0.000

CRP - C reactive protein (log) −1.23 ± 1.14 −1.22 ± 1.17 −1.24 ± 1.10 0.666

BMI - Body Mass Index 31.92 ± 5.59 31.12 ± 5.09 33.23 ± 6.11 0.000

UACR - Urinary albumin/creatinine ratio (log) 2.53 ± 1.75 2.65 ± 1.69 2.35 ± 1.83 0.003

Bayesian networks provide a method for the representation and reasoning of
uncertainty and have been widely used in the medical field [8–10]. Specifically,
a BN for a set of random variables X = {X1, . . . , Xp} (in this case p = 13) is
identified by

– a network structure G, a directed acyclic graph (DAG) where nodes represent
the variables X of the system and the directed arcs between nodes represent
the probability dependences between them,

– a set of parameters, representing conditional probability distributions
P (Xi|Pa(Xi)) associated to each variable Xi, i = 1, . . . , p, where Pa(Xi)
are the variables that correspond to the parents of Xi in the DAG (i.e. the
nodes with an arc pointing towards Xi).

The global distribution of the variables X is decomposed into the local distribu-
tions of the individual variables Xi as

P (X) =
p∏

n=1

P (Xi|Pa(Xi)) (1)

The process of estimating a BN is called learning and typically involves two
main steps: (1) the structure learning to identify the topological structure, i.e.
which arcs are present in the graph and therefore which probabilistic relation-
ships are supported by the data, and (2) the parameter learning to learn the
conditional probability distributions that regulate the strength of the relation-
ships.

There are many approaches in literature to estimate BNs from the data [11]:
in this work we will focus on a Search & Score strategy which uses a score
function in order to compare the structures of the network and then selects the
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Fig. 1. Theoretical framework. Red arcs reflect quite known relationships between the
associated variables whereas blue arcs reflect relationships which are less clear from
clinical point of view. Signs indicate the direction of the associations.

structure which better fits the data. Specifically, we develop structure learning
by means of hill-climbing search procedure and a BDe score [6]. Furthermore,
to reduce the impact of the noise present in the data, model averaging learning
techniques can be used to improve the reliability of structure learning [12]. The
process consists in:

– perform bootstrap resampling, i.e. re-sample the data k times using bootstrap
and perform structure learning separately on each of the resulting samples,
thus collecting k DAGs;

– calculate arc strength, i.e. compute the frequency with which each arc appears
in those k graphs deriving an “average” consensus DAG by selecting those
arcs that have a frequency above a certain threshold t.

In this work we fix the number of bootstrap replications to k = 200 and threshold
to t = 0.5 (selection of only arcs with strength > 0.5). The average BN model
built within this process should be less sensitive to noisy data and typically
should produce more accurate predictions for new observations [8].

One more characteristic on structure learning is that BN can include prior
knowledge available from the literature and the practice of the discipline to
produce more informative models and to overcome the inherent noisiness and
variability of data. This is possible by means of whitelisted arcs: they represent
well-known dependencies which should be forced to be present in the graph. In
this work we estimate several BNs by including and excluding prior knowledge
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Table 2. Measures of graphical differences. Expert refers to BN where the structure
represents the expert knowledge, Data only refers to BN learned using data only, Data
+ Prior refers to BN learned by using both data and expert knowledge.

Overall population

Num. arcs Av. MB size Av. neighb. size Missing priors (FN) TP TN BIC

Expert 32 6.15 4.92 - - - −51504.84

Data only 28 7.23 4.31 25 7 21 −50990.75

Data + Prior 49 10 7.54 0 32 17 −51044.46

representing the theoretical framework of interconnections among the selected
variables in DKD. The prior information was delivered by study physicians in the
form of 32 prior relationships (whitelisted arcs) derived from the pathophysiology
theoretical framework in Fig. 1.

Last, BNs are derived both considering the whole dataset (Overall popu-
lation) to improve the experts understanding of the pathophysiology complex
interactions, and the therapy-specific populations (Rasi and Drop-in popula-
tions) to identify if any difference can be imputed to added agents.

3 Results

To evaluate the strength of the well-known relationships on DKD and how data
can provide insights on new relationships in patients on therapy, we introduce
some measure of graphical differences. In Table 2 we provide the number of
arcs (Num. arcs), the average Markov Blanket size (Av. MB size), the average
neighborhood size (Av. neighb. size), the number of missing priors (FN), the
number of confirmed priors (TP) and the number of new arcs emerging from data
(TN) with respect to the “Expert” network built with only the 32 whitelisted
arcs suggested by expert clinicians. Last, a BIC measure was provided for each
BN in order to compare the fit to the data. BNs in Table 2 are learned using
data referred to the whole dataset (Overall population).

From the results we can see that the “Data only” BN have a less number
of arcs, meaning that data provide relationships that should be considered as
robust. By comparing them with the expert prior whitelisted arcs, we highlight
that the 7 TP arcs detected by a purely data driven approach have a strength
ranging from 1 to 0.910 meaning that the associated prior relationships are
highly confirmed also from an empirical point of view (some examples are: SBP
→ DBP, DBP → HB and BG → HBA1C, all with associated strength equal to
1). Furthermore, 21 new emerging arcs are achieved: some of them describe prior
relationships but with a reversed directions (for example, HDLCHOL → BMI
with strength equals to 1 or HBA1C → BMI with strength equals to 0.975), but
many others can provide new insights on the DKD pathophysiology network as,
for example SALB → HB (strength = 1), SALB → UACR (strength = 1) or
CPR → BMI (strength = 1).
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When looking at the results of the BN learned by using prior expert infor-
mation, we see that the number of emerged new relationships is 17 and most of
them are the same as in the network built using only data.

To understand if therapies affect the results, the same procedure was sepa-
rately developed in the Rasi only and Drop-in populations. Results are presented
in Table 3. The BNs built without prior information within the Drop-in popu-
lation seems to present less arcs with respect to Rasi only population. Only 3
prior relationships are confirmed in both populations (SBP → DBP, DBP → HB
and BG → HBA1C, all with strength equals to 1) but what emerges is that the
new relationships found in Rasi only population are mainly different compared
to Drop-in population. In Fig. 2 the arcs which can be attributed to therapy are
shown. Specifically, black solid lines represent relationships which are present in
both Rasi only and Drop-in populations, blue dashed lines represent relationships
which are present in Rasi only population but not in Drop-in population and red
solid lines represent relationships which are present in Drop-in population but
not in Rasi only population. When introducing prior information, despite the
high number of common whitelisted arcs which can also put constraints in the
search approach, there are again differences that can be attributed to the ther-
apies as shown in Fig. 3. Most of them confirm the results obtained by a purely
data-driven approach, but some new relationships also emerge. This suggest that
expert prior information can guide and contribute to a better understand on the
interconnection network among the variables involved in the disease.

To evaluate how expert knowledge merged with information directly
extracted from the data is able to better identify the pattern of pathophysi-
ology, we calculate the predictive accuracy of the BNs estimated from data with
and without prior information in the different populations in terms of correla-
tion between the observed and the predicted value for all the variables. This
predictive accuracy is achieved by using 10-fold cross-validation [13]. 10-fold
cross-validation is a model validation technique that assesses how well a statisti-
cal model accurately predict the behavior of new observations; for each variable
we compute the correlation between the observed and predicted pairs and this
quantity is called predictive correlation. The predictive correlations for all the
variables are reported in Table 4. Both Data and Data + Prior BNs predic-
tions for all the considered variables outperform the predictive correlations in
the Expert network for all the populations, meaning that data can provide a
very valuable source of additional information to better understand unknown
mechanisms in the DKD. Furthermore, in differentiating by therapies we can
also achieved specific directions of intervention: for example, the value of the
predictive correlation of CRP is about 0.2 for Rasi only population and about
0.4 for Drop-in population meaning that the interconnections found in this last
BN are able to better describe what influences the value of CRP.
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Table 3. Measures of graphical differences among populations. Expert refers to BN
where the structure represents the expert knowledge, Data only refers to BN learned
using data only, Data + Prior refers to BN learned by using both data and expert
knowledge.

RASi only population

Num. arcs Av. MB size Av. neighb. size Missing priors (FN) TP TN BIC

Expert 32 6.15 4.92 - - - −31963.79

Data only 23 5.69 3.54 27 5 18 −31640.04

Data + Prior 44 8.77 6.77 0 32 12 −31693.48

Drop-in population

Num. arcs Av. MB size Av. neighb. size Missing priors (FN) TP TN BIC

Expert 32 6.15 4.92 - - - 19505.76

Data only 19 4.15 2.92 26 6 13 −19285.05

Data + Prior 44 9.54 6.77 0 32 12 −19335.19

Fig. 2. Structural differences imputed to therapy - Data only

Fig. 3. Structural differences imputed to therapy - Data + Prior
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Table 4. Measures of prediction performance. Data only refers to BNs learned using
data only, Data + Prior refers to BNs learned by using both data and expert knowledge,
and Expert refers to BNs where the structure represents the expert knowledge and only
the parameters of the BN are estimated from data.

Overall population Rasi population Drop-in population

Data only Data + Prior Expert Data only Data + Prior Expert Data only Data + Prior Expert

SBP 0.424 0.424 0.385 0.419 0.416 0.390 0.417 0.415 0.337

DBP 0.416 0.422 0.416 0.430 0.426 0.425 0.369 0.422 0.381

BG 0.569 0.569 0.559 0.579 0.573 0.563 0.553 0.546 0.542

HBA1C 0.614 0.613 0.595 0.628 0.628 0.607 0.567 0.563 0.566

TOTCHOL 0.583 0.575 0.133 0.598 0.586 0.116 0.567 0.550 0.268

HDLCHOL 0.595 0.596 0.215 0.625 0.622 0.277 0.510 0.500 0.091

STRIG 0.578 0.574 0.291 0.577 0.572 0.294 0.544 0.555 0.278

SPOT 0.324 0.319 0.057 0.329 0.332 0.098 0.301 0.280 -0.040

HB 0.404 0.396 0.193 0.368 0.365 0.213 0.426 0.421 0.120

SALB 0.272 0.280 0.110 0.208 0.200 0.091 0.270 0.311 0.135

CRP 0.325 0.321 0.228 0.231 0.248 0.179 0.469 0.480 0.328

BMI 0.356 0.354 0.262 0.359 0.347 0.321 0.379 0.378 0.104

UACR 0.253 0.248 0.082 0.282 0.289 0.098 0.072 0.146 0.021

4 Concluding Remarks

In this work we provide evidence on how BNs are effective and efficient models
for the identification and the quantification of complex structures in medical
practice and research. Specifically, by using average Bayesian network models
for therapy-specific data we can provide an intuitive qualitative and quanti-
tative description (in the form of a DAG) of the relationships that link the
variables of the theoretical framework. Furthermore, this methodological strat-
egy has the advantage of allowing the integration of prior expert knowledge into
model estimation, which is quite common in clinical settings. From the results of
the analysis, we can highlight how the data can provide a source of information
able to increase the knowledge of experts in finding complex relationships in the
path of pathophysiology for the disease. In this sense, data and experts are both
complementary and collaborative: experts can corroborate what emerges from
data and data can help experts find new insights. Moreover, by digging inside
the estimated structure in the two populations we should be able to identify
differences that could be imputed to the specific therapy in order to support
the selection of appropriate interventions for patients treated with that therapy.
Further researches can be developed to improve the efficiency of the estimated
models by adding new set of variables (not strictly related to the pathophysiology
perspective such as the set of risk factor medications, the clinical readout fea-
tures, family history information, etc.) or move to a BN classifier (or a BN-based
predictive model) with the main emergent relationships to derive a personalized
probabilistic outcome.
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Abstract. Alzheimer’s disease (AD) is one of the most common forms of
neurodegenerative impairment. It is a progressive brain disorder affecting
memory, thinking, and behaviour, ultimately leading to severe impair-
ment and loss of independence. In predicting Alzheimer’s disease, it is
widely recognized that handwriting is one of the first abilities affected
by the onset of the disease. Most existing prediction systems focus on
analyzing the dynamics of the handwriting process using online hand-
writing samples. However, these systems often fail to capture changes in
handwritten characteristics’ shape, size, and thickness, which can indi-
cate motor control alterations caused by neurodegenerative disorders.
A previous study introduced a novel approach by combining shape and
dynamic information to address this limitation. Synthetic colour images
were generated from online handwriting samples, where each elementary
trait’s colour encoded the associated dynamic information in the three
RGB channels. Such a dataset was then used for classification through
Deep Learning (DL). Moving from what was done, our study introduces
a hybrid method, where Deep and Machine Learning (ML) techniques
are used to implement a more powerful classification system to support
the experts in diagnosing AD. Among the ML techniques considered,
we performed two feature selections, one based on a recursive method
and another on a genetic algorithm. Promising preliminary experimental
results have confirmed the effectiveness of this proposed approach.

1 Introduction

Neurodegenerative disorders (NDs) are debilitating conditions characterized by
the progressive degeneration of nerve cells. These diseases can have a profound
impact on both physical movements and mental abilities, with Alzheimer’s dis-
ease (AD) and Parkinson’s disease (PD) being the most commonly known types.

A gradual and progressive decline in cognitive functions, including memory,
thinking, judgment, and learning abilities characterizes AD. During the early
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Villani et al. (Eds.): WIVACE 2023, CCIS 1977, pp. 309–323, 2024.
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57430-6_24&domain=pdf
https://doi.org/10.1007/978-3-031-57430-6_24


310 T. D’Alessandro et al.

stages of AD, individuals often exhibit impairment in episodic memory, which
indicates dysfunction in the ventromedial temporal lobe [1]. As the disease pro-
gresses, there is typically a subsequent development of progressive amnesia and
deterioration in other cognitive domains, indicating the involvement of more
widespread neural systems.

Currently, there is no definitive cure for Alzheimer’s disease, emphasizing the
urgent need for effective treatments. However, early diagnosis plays a crucial role
in managing the condition. Detecting Alzheimer’s in its initial stages allows for
timely interventions, access to available treatments, and the opportunity to par-
ticipate in clinical trials. Early diagnosis enables individuals and their families to
plan and implement strategies to maximize the quality of life, optimize care, and
provide the necessary support. Early detection promotes a better understanding
of the disease and facilitates ongoing research efforts to develop breakthrough
therapies for effective management and potential future prevention.

In this context, the analysis of handwriting can be very useful since hand-
writing is the result of complex interactions between bio-mechanical parts (arm,
wrist, hand, etc.) and brain areas devoted to the control and memorization of the
elementary motor sequences used to produce handwritten traces [7]. For exam-
ple, in the clinical course of AD, dysgraphia occurs both during the initial phase
and in the progression of the disease [12]. It follows that handwriting alterations
can be used as further evidence of the onset of AD, helping physicians make an
early diagnosis, which remains a challenging task.

In many machine learning problems, there is often a large set of available
features, but not all of them contribute equally to the predictive power of a
model. Some features may be noisy, irrelevant, or redundant, leading to increased
computational complexity and drawbacks like overfitting or underfitting. Fea-
ture selection methods address these issues by identifying the most informative
features in the whole set of available features. The benefits of feature selec-
tion include improved model performance, reduced overfitting, increased inter-
pretability, and reduced computational complexity. By selecting only the most
informative features, models can better generalize unseen data and avoid the
curse of dimensionality. Feature selection algorithms usually need to define an
evaluation function and a search procedure. Evaluation functions can be divided
into two broad classes, namely filter and wrapper. Filter methods evaluate the
relevance of features based on statistical measures or scores. They evaluate a fea-
ture subset without considering the machine learning algorithm used. Common
filter methods include correlation-based feature selection, mutual information,
and chi-square tests. Wrapper methods, on the other hand, assess the perfor-
mance of a machine learning model with different subsets of features. They
involve training and evaluating the model using different combinations of fea-
tures and selecting the subset that achieves the best performance. Wrapper
methods can be computationally expensive but typically provide more accu-
rate results. Given an evaluation function, the optimal subset can be obtained
by exhaustively evaluating all possible solutions. However, this exhaustive search
is often impracticable due to the exponential increase in the number of solutions
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(2N , where N is the number of available features). Therefore, to address this
challenge, various search techniques have been developed for feature selection,
including complete search, greedy search, and heuristic search. However, since
these algorithms do not effectively consider complex interactions among features,
they often encounter problems such as being trapped in local optima or incurring
high computational costs. Evolutionary Computation (EC) techniques have been
widely used in this context as they are well-known for their global search abil-
ity [2,8,9]. Furthermore, EC techniques do not need domain knowledge and do
not make any assumptions about the evaluation function, such as, for example,
linearity or differentiability.

Our study presents a novel hybrid method that combines the strengths of
Deep Learning and Machine Learning techniques to develop a robust classifica-
tion system for assisting experts in Alzheimer’s disease (AD) diagnosis. In our
investigation, we explored various ML techniques and specifically focused on two
feature selection methods: a recursive approach and a genetic algorithm. We are
pleased to report that our preliminary experimental results have demonstrated
promising outcomes, providing confirmation of the effectiveness of this proposed
approach. This hybrid method holds significant potential in enhancing the accu-
racy and reliability of AD diagnosis, empowering medical professionals with a
more powerful toolset for their diagnostic endeavours.

The remainder of the paper is organized as follows: Sect. 2 provides an expla-
nation of the data acquisition process and the methodology employed for gener-
ating the images; Sect. 3 introduces the workflow of the proposed system, outlin-
ing the individual components and providing a detailed description of each; and
Sect. 4 offers a comprehensive discussion on the best performances achieved by
the system. Finally, Sect. 5 concludes the paper, summarizing the findings and
presenting the overall conclusions.

2 Data Acquisition

The data for this study were collected through the execution of a protocol [6]
consisting of various types of handwriting tasks. A total of 174 individuals par-
ticipated in the data acquisition phase, with 89 patients (PT) at the early stages
of Alzheimer’s disease (AD) and a healthy control group (HC) of 85 individu-
als. The recruitment process involved collaboration with the geriatrics depart-
ment and Alzheimer’s unit of the “Federico II” hospital in Naples. Participants
were selected based on standard clinical tests, including the Mini-Mental State
Examination (MMSE), the Frontal Assessment Battery (FAB), and the Montreal
Cognitive Assessment (MoCA), which served as criteria for eligibility.

The following subsections describe the tasks of the dataset and the generation
of images.

2.1 The Tasks

The protocol used for the data collection consists of 25 tasks and is thoroughly
described in [6], whereas preliminary results were presented in [5]. The selection
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of these tasks was based on existing literature and aimed to analyze various
aspects of handwriting and the potential deterioration of the skills required for
their execution. It is important to note that Alzheimer’s disease (AD) can com-
promise different abilities, such as cognitive, kinesthetic, and perceptive-motor
functions [16], encompassing language comprehension, muscle control, spatial
organization, and coordination. The protocol can be categorized into four dis-
tinct groups of tasks, each serving a specific objective:

– Graphic tasks: assess the patient’s proficiency in writing elementary strokes,
connecting points, and drawing figures of varying complexity and dimensions;

– Copy and Reverse Copy tasks: evaluate the patient’s ability to replicate com-
plex graphic gestures with semantic meaning, such as letters, words, and
numbers of different lengths and spatial arrangements;

– Memory tasks: aim to test the patient’s capacity to reproduce a specific
graphic element, retain a word or letter in memory, or maintain a motor
plan;

– Dictation: investigate how writing is influenced when working memory is
required, involving phrases or numbers.

The choice of each subgroup of tasks is driven by a rationale based on the
study of Alzheimer’s symptoms [6]. It is well-established that the effects of the
disease can vary from person to person, with some individuals experiencing more
impairment in mental functions, others in motor functions, and some finding
compensatory mechanisms, particularly for physical impairments. By including
25 tasks, this protocol aims to investigate whether handwriting is altered in indi-
viduals with Alzheimer’s, considering the diverse range of symptoms associated
with the disease. During the data processing phase, some tasks were partitioned,
so 34 handwriting samples were collected for each person who executed the pro-
tocol.

2.2 Image Generation

The tasks mentioned in the previous subsection were performed using the Wacom
Bamboo Folio tablet, which allowed the recording of spatial coordinates (x− y)
and pressure (z) for each point at a sampling rate of 200 Hz. The acquisition
tool can detect on-paper and in-air points within a maximum distance of three
centimeters from the tablet. This information was stored in a .csv file for every
task performed. We used the provided files to create artificial images by recon-
structing the initial handwritten characteristics, considering only the on-paper
points. This involved interpolating between successive points and incorporating
kinematic data, such as pressure, velocity, and jerk, represented by the RGB
channels. Further information can be found in the reference [3] and [4].

To generate these synthetic images, we followed a specific procedure. First,
each trait is represented by a triplet of values (zi, vi, ji), corresponding to the
RGB colour components. These values are associated with the points (xi, yi)
and (xi+1, yi+1) that define the trait. In detail, we computed the triplet values
as follows:
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Fig. 1. Experimental workflow

– zi represents the pressure value at point (xi, yi) and remains constant along
the trait;

– vi denotes the velocity of the trait, calculated as the ratio of the trait’s length
to the acquisition interval time of 5 ms (the tablet’s sampling period);

– ji represents the jerk of the trait, which is defined as the second derivative of
vi.

To ensure consistency with the standard 0–255 colour scale, the triplet values
(zi, vi, ji) are normalized within the range [0, 255]. This normalization is done
by considering the training set’s minimum and maximum values for these three
quantities. All the images have been resized to the same dimensions of 299× 299
pixels; this measure was set to conform to the specific format required by the
Neural networks described in the following sections.

3 The Proposed Workflow

In this research, we proposed a hybrid approach, where DL and ML techniques
are used to implement a robust and efficient support system for diagnosing AD.
The following sections detail how each part of the system works and connects to
the others. We suggest referring to Fig. 1, which illustrates the entire workflow.
We decided to consider more options for each part of our system to compare
them and find the best one according to the performance achieved.

3.1 Deep Feature Extraction

The first step of the workflow is the deep feature extraction, applied to the RGB
images described in Sect. 2.2, for one task at a time. The term deep comes from
the fact that we used different models of Convolutional Neural Networks (CNNs)
to extract features from our images: VGG19 [13], ResNet50 [11], InceptionV3
[15], InceptionResNetV2 [14]. They are layered structures, different from each
other in several architectural and functional aspects. The input RGB handwrit-
ing images were adjusted in size to conform to the specific format required by the
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Fig. 2. Feature Extraction Procedure

CNN used in the analysis. Every CNN architecture comprises a feature extractor
(FE) and a classifier (C). For our research, we removed the classifier from the
architectures to use them as feature extractors; in this way, we obtained a feature
vector, also denoted as the bottleneck, whose size depends on the CNN for every
image. Figure 2 shows an example of this procedure for the i-th task and reports
the output feature vector size for each model (right box). To obtain valuable
features, we pre-trained the FE part of the CNN on ImageNet [10], following the
popular technique of Transfer Learning. We adopted a 5-fold cross-validation
strategy and saved the feature vectors when images were in the test set. In this
manner, we extracted the features for all the images in our dataset, obtaining a
new representation of our original data. In particular, initially, we had a set of
174 images for every task; this set was used to feed four different CNN models,
so we obtained four sets of features for each task.

3.2 Feature Selection

Feature selection is a typical ML process to choose a subset of relevant fea-
tures from a larger set of available features in a dataset. It aims to identify the
most informative and discriminative features that contribute significantly to the
predictive power of a model while discarding irrelevant or redundant features.
Its goal is to improve model performance, reduce overfitting, enhance inter-
pretability, and decrease computational complexity. Selecting a smaller set of
features reduces the dimensionality of the data and eliminates noise and irrele-
vant information that may negatively impact the model’s accuracy and efficiency.
As shown in Fig. 1, we used two different ways to implement this process: the
Recursive Feature Elimination (RFE) and the Genetic Algorithm.

In detail, RFE is a feature selection method that iteratively selects subsets
of features and evaluates their importance by training an ML algorithm with
cross-validation. We used XGBoost as an estimator. RFE offers the advantage of
considering the inherent relationships between features, as it eliminates features
recursively. It provides a feature importance ranking and identifies the optimal
subset that generalizes well, preventing overfitting and maximizing the model’s
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performance. It is beneficial when dealing with high-dimensional datasets as it
automatically reduces the dimensionality of the data and improves the model’s
interpretability and efficiency.

The second method used for feature selection is the genetic algorithm (GA),
which offers many advantages. First, it guarantees a comprehensive search by
efficiently exploring vast search spaces. It can evaluate possible feature combi-
nations, considering various feature interactions and dependencies. One of the
main characteristics of this family of algorithms is their adaptability, as they
can adapt and evolve, dynamically adjusting the population of feature subsets
based on their fitness, allowing them to converge toward optimal solutions. GAs
can handle non-linearity and complex relationships between features. This is an
important advantage in our case as we don’t know the meaning of the relations
among features in our dataset since a CNN extracts them. By combining and
mutating features, the algorithm can identify synergistic effects and discover
valuable feature combinations. Overall, genetic algorithms for feature selection
provide a powerful and flexible approach to identifying relevant features and con-
structing optimal feature subsets. They excel in handling complex relationships,
exploring large search spaces, and automating the feature selection process, ulti-
mately improving model performance, interpretability, and efficiency. Following
is a description of how this algorithm works:

1. Initialization: The algorithm creates an initial population of potential feature
subsets. Each one represents a potential solution or chromosome;

2. Evaluation: The algorithm evaluates the fitness of each chromosome in the
population. Fitness is typically based on a performance metric like accuracy
or error rate, which indicates how well a given subset of features performs
when used by the provided estimator (a machine learning model);

3. Selection: The algorithm selects chromosomes from the population for the
next generation based on their fitness. Chromosomes with higher fitness have
a higher probability of being selected, mimicking the natural selection process;

4. Crossover: Selected chromosomes undergo a crossover operation. This oper-
ation involves exchanging genetic information between two parent chromo-
somes to create offspring chromosomes. The crossover probability parameter
determines the likelihood of crossover occurring;

5. Mutation: Mutation introduces small random changes in the offspring chro-
mosomes. This process helps explore new regions of the feature space that
may lead to better solutions. The mutation probability parameter controls
the likelihood of mutation occurring;

6. Elitism: The algorithm incorporates elitism by carrying over a certain number
of the best-performing chromosomes from the previous generation to the next
without any changes. This ensures that the best features discovered so far are
preserved;

7. Repeat: Steps 2 to 6 are repeated for a fixed number of generations or until
a termination criterion is met (e.g., no improvement in fitness over a certain
number of generations);

8. Output: The algorithm outputs the best-performing chromosome or feature
subset found during the evolutionary process.
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Table 1. GA paramaters

Parameter Value

Population size 100

Max #features 8

Crossover probability 0.5

Mutation probability 0.2

#generations 50

Crossover independent probability 0.5

Mutation independent probability 0.04

Tournament size 3

Estimator XGB

#folds cross-validation 5

Scoring accuracy

To set the values of the GA parameters, we performed a set of preliminary trials.
Table 1) shows the values used in the experiments reported in the next Section.
The last part of the table refers to parameters chosen to evaluate the feature set
selected from the GA. The chosen estimator is XGBoost with cross-validation
to estimate the fitness of each chromosome based on the accuracy evaluation
metric.

The genetic algorithm iteratively explores and refines feature subsets, favour-
ing those that yield higher performance based on the provided estimator and
fitness evaluation. By the end, it identifies a subset of features that optimizes
the machine learning model’s performance.

3.3 Grid Search and Classification

To evaluate the effectiveness of the sets of extracted features, detailed in Sect. 3.1,
we employed a machine learning (ML) approach by implementing five well-known
classification algorithms: XGBoost (XGB), Random Forest (RF), Decision Tree
(DT), Support Vector Machine (SVM), and Multi-Layer Perceptron (MLP). We
performed a five-fold cross-validated grid search to identify the best combina-
tion of hyperparameters to ensure optimal performance for each classifier. Grid
search is a systematic approach used in machine learning to tune the hyperpa-
rameters of a model. This technique exhaustively searches through a specified
set of hyperparameter combinations to determine the optimal configuration that
produces the best model performance. Table 2 shows the tested hyperparameter
ranges.

Once we obtained the best hyperparameters configuration, we proceeded
with the classification step with the previously cited classification algorithms.
To ensure statistically significant results, we repeated the process 30 times for
each set of features and each classifier. The dataset was randomly shuffled at
each run and divided into a training and test set.
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Table 2. ML classifiers and the sets of hyperparameters selected by the Grid search
process

Classifier Hyperparameters constraints

XGB min child weight 1, 5, 10

gamma 0.5, 1, 1.5, 2

subsample 0.6, 0.8, 1

colsample bytree 0.6, 0.8, 1

max depth 3, 5, 7

n estimators 100, 300, 500

learning rate 0.1, 0.01, 0.001

RF bootstrap True, False

max depth 10, 20, 50

max features auto, sqrt, log2

min samples leaf 1, 2, 4

min samples split 2, 5, 10

n estimators 100, 200, 300

DT criterion gini, entropy

min samples split 2, 5, 10

max depth 2, 5, 10

min samples leaf 1, 2, 5, 10

max leaf nodes 2, 5, 10

max features sqrt, log2

SVM C 0.1, 1, 10, 100

gamma scale, auto

kernel linear, rbf

MLP hidden layer sizes 30, 50, 100

activation tanh, relu

solver lbfgs, adam, sgd

alpha 0.0001, 0.001, 0.01

learning rate constant, adaptive

3.4 Majority Vote

The majority vote rule (MV) is a decision-making strategy commonly used in
ensemble learning and classification tasks. It focuses on the principle of aggregat-
ing predictions from multiple individual classifiers to make a final prediction, so
it’s particularly useful in our case, where we have the classification results from
different tasks for every chosen CNN and ML classifier. In the majority vote
rule, each classifier in the ensemble independently predicts the class label for a
given input. The final prediction is determined by selecting the class label that
receives the majority of votes from the classifiers. This rule aims to improve the
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Table 3. Majority Vote results, achieved by combining the predictions over the 34
tasks.

Model XGB RF DT SVM MLP

RFE GA RFE GA RFE GA RFE GA RFE GA

VGG19 74.59 85.43 73.83 82.95 74.09 76.82 67.98 74.9 73.71 76.11

ResNet50 81.13 86.68 81.38 86.08 81.57 76.41 66.86 71.93 81.89 73.61

Inc.V3 84.41 89.07 83.83 88.1 84.65 80.91 72.52 81.09 85.03 79.62

Inc.Res.V2 77.11 83.34 76.78 81.75 78.06 76.69 65.91 73.92 76.8 75.93

overall accuracy and robustness of the system. It leverages the diversity of indi-
vidual classifiers to collectively make more accurate predictions, benefiting from
different perspectives and patterns observed by each classifier. In this research,
we combined the answers obtained over the 34 tasks from each classifier on the
feature extracted from every CNN, considering both the feature selection meth-
ods.

4 Experimental Results

The experimental part of this research involved multiple processes, and hence,
only the most relevant ones will be showcased in this paper.

The final step of the workflow in Fig. 1 is the application of the majority vote
combining rule. Table 3 shows the accuracy values (in percentage) obtained by
combining the predictions over the 34 tasks. In particular, each row refers to
the CNN model used as a feature extractor, whereas the column refers to the
ML classifier tested. Every column is divided into two subcolumns, highlight-
ing the performance differences between GA and RFE. The best majority vote
performance (in bold) is an accuracy of 89.07%, reached by combining the pre-
dictions of the XGB ML classifier on the 34 tasks for features extracted through
the CNN InceptionV3 and selected using the GA. The table shows that features
extracted with the InceptionV3 model always performed better than the others.
Also, most of the time, the GA seems to be the most valuable feature selection
method, and XGB is one of the best ML classifiers.

Given the MV outcome in Table 3, we decided to show and discuss only
the results related to the configuration, which allowed us to reach the best MV
performance. Figure 3 illustrates two bar plots, showing the average accuracy
(y-axis, in percentage) obtained by every classifier (legend) over thirty runs. For
every task (x-axis), we considered features extracted with InceptionV3 from the
RGB on paper images, while the feature selection method was the GA. Due to
the excessive number of tasks, we split the figure into two images: (a) shows the
results for tasks from 1 to 17, while (b) from 18 to 34. Looking at this Figure, it
is possible to discuss many aspects. First, the best classification algorithms are
XGB and RF. Only in a few cases SVM outperforms these two; instead, DT and
MLP are the worst classifiers. Accuracies vary in a range that goes from 53%,
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Fig. 3. Average accuracy achieved by the classifiers over the 30 runs, for features
extracted from On Paper RGB images with the CNN model InceptionV3, where the
feature selection method is the GA.
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Fig. 4. Boxplots showing the accuracy achieved by the classifiers over the 30 runs
for features extracted from On Paper RGB images with the CNN model InceptionV3,
where the feature selection method is the GA. Only best-performing tasks are reported.

obtained by MLP on the 12th task, to 75%, reached by SVM on the 21st task.
These results are not good enough for a diagnosis problem in the medical field,
but the power of the proposed approach lies in the chance to aggregate results
with a simple combining rule, as the used dataset comprises 34 different tasks.
The application of MV allowed us to improve these accuracy results beyond 10%.

Figure 4 allows a closer look at the results given by the best-performing tasks,
achieved by extracting features with InceptionV3 from on-paper images, with GA
as the feature selection method. Figure 4(a) refers to the 9th task, while (b) to
the 21st. In this case, we chose the boxplot representation to display the variation
of accuracy over 30 runs for each tested classifier. It is worth noticing that task
9 shows more variability; on the contrary, task 21 is more stable, though there
are some outlier values. Moreover, task 21 outperforms task 9 in almost every
case, except for the XGB classifier.

Another point of view to analyze the experimental results is in Table 4, which
refers to the experimental setting that allowed us to reach the best results with
the Majority Vote, that is InceptionV3 as feature extractor, the Genetic Algo-
rithm to select the features and XGB as a classifier. The Table shows a set of
evaluation metrics for every task in the first column, which will allow us to better
comprehend the results achieved. The metrics computed are accuracy (ACC),
precision (PRE), sensitivity (SEN), specificity (SPE), F-score (F-SC), False Neg-
ative Rate (FNR), and Area Under the Curve (AUC). These values are averaged
over the 30 runs and expressed in percentage, except for the AUC, which is a
measure that varies from 0 to 1.0. Looking at this table, the best performance is
achieved by the 9th task, where the person is asked to write the bigram ’le’ four
times continuously. It is a task that requires good spatial organization, motion
control and coordination, and cognitive skills.



A Genetic Algorithm for Feature Selection for Alzheimer’s Disease Detection 321

Table 4. Metrics evaluation for the performance of XGB classifier on InceptionV3
extracted features, selected with the GA

Task # ACC PRE SEN SPE F-SC FNR AUC

1 61.29 63.87 63.79 59.22 63.36 36.21 0.66

2 67.82 70.41 69.66 66.38 69.41 30.34 0.74

3 64.24 66.52 65.98 63.22 65.59 34.02 0.71

4 65.72 68.59 67.00 65.36 67.04 33.01 0.72

5 68.73 72.22 67.21 71.18 68.94 32.79 0.75

6 66.36 67.61 73.16 60.17 69.39 26.84 0.72

7 67.64 70.64 67.85 67.41 68.63 32.15 0.73

8 68.71 70.15 73.81 63.33 71.34 26.19 0.74

9 72.88 74.84 73.29 72.92 73.62 26.71 0.79

10 66.23 69.96 64.06 69.52 66.39 35.94 0.71

11 69.99 73.29 68.41 72.07 70.21 31.61 0.76

12 58.66 62.71 57.56 60.73 59.15 42.44 0.63

13 60.46 62.61 61.34 60.21 61.31 38.66 0.64

14 68.44 70.82 68.51 69.55 68.92 31.51 0.75

15 58.74 61.39 58.96 59.55 59.34 41.04 0.62

16 61.05 63.63 62.73 60.21 62.45 37.27 0.66

17 62.46 65.49 65.04 61.42 64.02 34.96 0.67

18 72.31 74.68 73.03 72.27 73.27 26.97 0.82

19 69.51 69.79 59.67 78.39 63.41 40.33 0.77

20 62.25 64.02 60.48 64.78 61.35 39.52 0.68

21 71.64 73.88 67.34 76.32 69.97 32.66 0.79

22 62.59 64.36 60.54 65.81 61.45 39.46 0.66

23 61.78 62.95 63.11 61.01 62.33 36.91 0.61

24 60.23 61.48 59.38 61.95 59.58 40.62 0.65

25 66.48 69.39 61.65 72.23 64.16 38.35 0.75

26 60.33 60.38 59.68 61.57 58.94 40.32 0.61

27 63.34 65.11 62.36 65.21 62.84 37.64 0.68

28 64.42 66.45 56.03 73.05 59.99 43.97 0.72

29 59.03 61.44 64.33 54.78 61.89 35.67 0.63

30 69.39 72.71 68.55 71.38 69.66 31.45 0.77

31 70.78 73.06 71.84 70.31 71.69 28.16 0.74

32 58.27 61.27 59.93 57.61 59.82 40.07 0.63

33 62.33 65.84 59.46 65.68 61.81 40.54 0.66

34 65.95 68.01 68.55 64.06 67.55 31.45 0.72
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5 Conclusions and Future Work

The objective of this study was to validate the proposed workflow and under-
stand which variant, in terms of components, guarantees the best performance
in distinguishing people affected by AD and healthy controls. The input of our
system is composed of synthetic RGB on-paper images for 34 different handwrit-
ing tasks. These images are used to feed four models of CNN to extract features
automatically. Once the features were identified, two feature selection methods
were considered, RFE and a GA, so the selected features were forwarded to
five ML algorithms whose parameters were tuned through a grid search proce-
dure. Finally, since the workflow is iterated over the 34 tasks, combining the
predictions with a majority vote rule was possible. We evaluated many configu-
rations of our system by varying the CNN model employed as a feature extrac-
tor, the feature selection method, and the final classifier. The best performance
was achieved using InceptionV3 as the CNN model, the Genetic Algorithm to
select features, and the XGB classifier. Regarding feature selection, RFE is a
simpler and computationally efficient approach suitable for many scenarios. It
is a popular choice when the dataset has a moderate number of features and
the relationship between features, and the target variable is reasonably linear.
On the other hand, GA can be a more powerful but computationally expensive
approach, suitable for more complex feature selection problems with larger fea-
ture spaces or non-linear relationships. As expected, the GA guaranteed a more
valuable set of features that allowed our system to obtain better results with
respect to RFE.

Future work will involve new experiments with new input images, which will
be built by using both the in-air and on-paper movement coordinates. Such
images contain more information about handwriting traits and also in-air move-
ment, which are used in many research studies related to neurodegenerative
diseases. Other improvements will see the refinement of our proposed workflow,
deleting the processes that obtained the worst performance and implementing
new ones.
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Abstract. Can traders in a financial market learn whether to be
informed and which information to use in their demand for risky assets?
We describe in this paper an agent-based model where heterogeneous
traders seek short-term profits and differ in their choices to use or dis-
card some signals. In the model, a vector of fresh news/signals is available
at every period and some (but not all) the signals affect the stochastic
payoff of the stock.

Under an evolutionary dynamics favouring higher myopic returns we
find that, in equilibrium, traders mostly end up in either discarding all
signals or being (perfectly) informed using all the relevant signals (pay-
ing the related costs). Moreover, the rate of use of information strongly
depends on the “complexity” of the market: an excessively large abun-
dance of signals to be screened or a high volatility of the market, result
in large shares of passive agents who overestimate the market’s risk; con-
versely, low market complexity is associated with a more intense use of
information and aggressiveness of informed traders.

Keywords: Evolutionary models · Agent-based models · Information
in financial markets

1 Introduction

Many investors acquire information on their investments and try to make some
sense of the markets’ situations and prospects. We refer, in what follows, espe-
cially to “fundamental” information regarding what is typically believed in eco-
nomic textbooks to be relevant to explain to some extent the movements of
equity prices such as, say, interest rates, inflation, GDP growth in developed end
emerging markets, geopolitical events, international imbalances and breaking
news on firms or events of (potential) broad impact1.

As an example, on April 29th 2023 the most common Italian financial news-
paper, “Il Sole 24 ore” printed that:
1 We discard “technical” information, mostly derived from time-series and historical

data. Many traders may use such “information” but the model has little to say in
this respect as no past observation is used, see [4] for an evergreen examination of
technical trading.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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– Wall Street “bets” on (forthcoming) interest rates cuts of 300 basis points
(first page);

– Taipei has denounced the intrusion of 38 Chinese military airplanes in its
space. Chinese authorities pleaded that they were “monitoring” one US mili-
tary fighter flying in the area (first page);

– Jerome Powell, chairman of the FED, declared “We will not reduce the interest
rates in 2023” (page 7);

The previous news (or signals) have the capability to provide valuable invest-
ment insights and, yet, it is hard to pick the most significant or decide whether
to use them all. It is even more difficult to unambiguously interpret the news.
There are basically opposite statements on the trend of US interest rates: an
hypothetical personification of Wall Street expects a drop of 3%, but Powell
stated this is not going to happen. Well, at least in 2023! In principle, exploit-
ing the lack of a clear timeline, both news could be correct as rates’ cuts may
come in 2024. Indeed, there is a good joke stating that wise forecasters should
never provide a number and a date... Geopolitical strained relations involving
China, Taipei and USA are hinted at, with no clear implications on asset prices.
Whether and how to use such information is an interesting, as well as far from
trivial, issue.

Many analogous examples can be drawn, virtually any day, from other finan-
cial newspapers or websites, official and informal reports by public and private
institutions, central banks’ statements, and various intelligence from advisory
firms and respected professionals or gurus. We present in this model a stylised
depiction of investors who are similarly flooded with information and have little
guidance on how to use such body of insights. They try to use and interpret a
stream of signals in order to decipher how to behave, most of them attempt to
select relevant information, weight it properly and discard irrelevant news, are
aware there is no easy recipes and are willing to imitate strategies or practices
put in place by others.

We assume that traders are boundedly rational and learn to change their
investment strategy by imitating other agents who had better (i.e., higher)
returns. In other words, they copy the pattern of use of information made by
more successful peers. A strategy is a vector of bits (bit-string) where 1 means
that the news is used and 0 means that it is discarded. We include mutation
allowing a small fraction of agents to occasionally flip one of their bits at ran-
dom. In our simple setup, given their strategies, all agents have to decide in
every period is how much to buy of a risky asset (while the rest of their endow-
ments will be put in a safe bond paying a constant interest rate). In this sense,
there is a one-to-one correspondence between a strategy (a bit-string listing sig-
nals to be used or discarded) and a demand function for the risky asset (as the
demand depends on the used information/signals).2 Broadly speaking, demands
2 Admittedly, the agents in our model learn in a very basic way, as they have no

memory or expectations and update their behaviour based on a single random
match. A discussion of more sophisticated reinforcement learning approaches (with
an extended bibliography) is in [3], where a form of collective intelligence is built to
maximise returns. In contrast, we assume agents are selfish and myopic.
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are based on perceived mean and variance of returns (the demand of equity is
directly/inversely proportional to the mean/variance). Once all agents submit
their demands, a noisy clearing price can be computed in this market and all
transactions will occur at this local-in-time equilibrium price, realising gains and
losses. Actual returns are also used to assess the quality of the strategies and fuel
learning through a very simple mechanism: couples of agents will be matched,
they compare the realised returns and the worst performer copies the strategy
(or demand function, if you wish) of the best performer, beginning to use it in
the following period when everyone’s endowment is replenished3.

Having defined a population of agents, a game that is repeatedly played by
traders and a process to revise old strategy (or learn better ones), our agent-
based model can be interpreted as a canonical evolutionary model. Such models
were first introduced in biology, where genotypes are inherited and not chosen by
individuals, [10], but were increasingly applied to social and economic environ-
ments where strategies are selected consciously in such a way that the ones with
greater payoff tend to prevail, see the classic [8], or [6] where recent applications
are surveyed. We aim at identifying the set of strategies that will thrive in the
long-run, simulating the market for many periods and examining the final shares
resulting from this evolutionary dynamics.

In brief, our evolutionary model robustly show two main results: first,
most traders end up either in being passive (i.e., discard all signals) or being
(wholly) informed (i.e., acquire all the relevant signals); second, information
usage depends on the “complexity” of the market, as measured by its volatility
or by the quantity of the information that traders have to screen and process.
Overall, the combination of the above outcomes explains why only some of the
relevant information is used by the agents in the market, with the informed
traders holding notably riskier positions than passive ones. Several of these find-
ings, driven by short-term evolutionary pressure and inability to deal with the
overwhelming complexity of the market, appear to have a realistic flavour that
is somewhat difficult to get in standard rational expectation equilibrium models
where, for instance, it is difficult to justify why relevant information should be
discarded.

The paper is organised as follows. The next section describes the model of
the market. An example is used to illustrate the flow of decisions/actions, from
strategies/demands to prices/profits and evolution through learning, that are
executed in every period. In Sect. 3, the main results are presented and some
conclusive reflections are given in Sect. 4.

3 It is useful to add to the description of what our agents do, a list of things they
do not do: they do not explicitly maximise any utility function, they do not have
memory, they do not search in a set of possible alternative strategies or, if they do
so, they may need several periods in which they compare the outcomes with a single
strategy, they do not try to anticipate the equilibrium price based on the shares of
strategies in the population, they do not save or accumulate wealth strategically. In
a nutshell, they keep a strategy till they stumble on concrete evidence that someone
else makes higher returns and occasionally flips some bits.
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2 The Model

Consider M agents in a market with two assets, a risk-less bond with unit cost
and payoff R > 1 and a risky stock that for a price p∗

t , to be endogenously
determined based on the demands of the traders, will pay a random payoff D̃t.
Agents are endowed with a constant periodic endowment w0t ≡ w0, care about
return and variance of their portfolio, and have to decide how many units of the
stock to buy or sell in any period (what is not spent in stocks will be invested
in the bond).

A stream of N news θt = (θ1, θ2, ..., θN )t ∈ RN is available to traders in
any period t = 1, ..., T . We assume that each of the N signals is identically
and independently distributed as N(0, vθ). The careful reader should notice the
lapse between texts, such as the ones listed in the introduction, and a vector
θt of numeric values. For simplicity, we just suppose that some judgemental or
mechanic procedure translates news (sentences, comments...) into a vector of
estimates.

As it will be made clear below, only S ≤ N individual signals θj will truly
affect D̃t. With no loss of generality, we will assume in this treatment that the
first signals θ1, ..., θS are relevant. This simplifies the exposition but is unknown
to agents who must decide by trial-and-error whether to use signals at all and
which ones to use. To keep track of this learning process, each traders has a
strategy bit = (b1, b2, ..., bN )it, where each bit bj , j = 1, ..., N ∈ {0, 1} denotes
if the j-th signal is used: a value of 1/0 means the signal is used/discarded.
Equipped with the strategy bit at time t, the demand schedule of the i-th agent
is

xit(p) =
d + bitθ

′
t − pR

avit
, (1)

where d > R, vit is an individual assessment of the variance of Dt, and a can
be thought as a risk-aversion coefficient. For tractability, we assume that the
deterministic component d of the payoff is exogenous and known to agents and
a is constant across them. Given the price p, the demand (1) is, essentially, a
ratio of expected excess return of one unit of stock (in excess of pR that could
be gained with the bond) over perceived risk. Hence, the expected D̃

(i)
t for agent

i is given by

d + bitθ
′
t = d +

N∑

j=1

bijtθjt,

and depends on which bits are switched-on in the strategy bit. The individual
demand function xit(p) is then readily obtained.

A unique transaction price p∗
t is determined matching the demand functions

of all the agents and solving

M∑

i=1

xit(p) = 0. (2)
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Equation (2) is linear in p and the solution p∗
t can be numerically computed to

allow the agents to determine the realised purchases/sales of the stock, x∗
it =

xit(p∗
t |bit, vit), where we stress that the quantity (plainly) depends also on the

individual strategy bit and on vit.
Let the realised stock’s payoff be determined “by nature” as

D̃t = d + b∗θ′
t + εt, (3)

where εt ∼ N(0, vε) and, as said before, b∗ has the first S bits set to one,
(1, ..., 1︸ ︷︷ ︸

S bits

, 0, ..., 0︸ ︷︷ ︸
N−S bits

), so that only S bits out of N affects the payoff.

The profits of agents can now be computed and used to evolve a new pop-
ulation of strategies, or demand functions, moving from Pt = {b1t, ..., bMt} to
Pt+1 that differs from the old one because some agents are offered the chance to
imitate and mutate their strategy. In detail, denote the profit of i-th agent at t
as:

wit = x∗
itDt + (w0 − x∗

itp
∗
t )R − cost · bit1′,

where cost is the cost of acquiring or processing one signal, 1 is the vector
with N ones, (1, ..., 1), and bit1′ is the number of used bits. The amount wit

is consumed or spent elsewhere (and, therefore, agents start afresh, in terms of
wealth, in the next period). Evolution and competition in the market occurs
matching h couples of agents, comparing the profits and changing the strategic
profile (bi, vi). When, say, traders r and s are matched:

If wrt ≥ wst then
{

bs,t+1 = brt,

vs,t+1 = vrtŨ(1 − q, 1 + q),
(4)

where q > 0 is a small number and U(a, b) is a uniform random variable in ]a, b[.
Formula (4) describes how, if agent r outperformed agent s, the latter copies the
strategy of the former and replaces his vs with a random multiplicatively shocked
vr. Observe that each pair (r, s) of agents is randomly formed and, hence, there
is no deliberate attempt to imitate or cherry-pick successful traders. Moreover,
the straight comparison of revenues in (4) is entirely justified by the constant
risk-aversion parameters. In each period, we also allow a single mutation, flipping
a random bit of a random trader’s strategy.

Among the 2N strategies that can be evolved, two turn out to be prominent
in the following: we will refer to agents with bi = b∗ as informed, in that they
come to know and use in their demand all the relevant bits in Eqs. (1, 3); we call
passive the agents with bi = (0, 0, ..., 0) as they do not use any signal and resort
to a very simple constant expected value for D, namely d.

The following example will clarify the mechanics: at (the beginning of) a given
time t (omitted in the sequel), with N = 5, cost = 0.01, d = 1.1, R = 1.01, a = 2
and b∗ = (1, 1, 1, 0, 0), the first and second agents have v1 = 0.025, b1 =
(1, 1, 1, 0, 0), v2 = 0.055 and b2 = (0, 0, 0, 0, 0). The first agent is informed,
employing all relevant bits and paying a total cost of 0.03 per period, whereas
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the second agent does not use any information (and has null cost). If the vec-
tor of signals is θt = (0.03,−0.05, 0.07, 0.01,−0.05) and, based on the demand
schedule of all agents, p∗

t = 1.11, accordingly the realised demands are

x∗
1 =

d + b1θ
′
t − p∗

t R

av1
=

1.1 + 0.05 − 1.11 · 1.01
2 · 0.02 = 0.578,

x∗
2 =

d + b2θ
′
t − p∗

t R

av2
=

1.1 + 0 − 1.11 · 1.01
2 · 0.055 = −0.192,

meaning that, at the equilibrium price 1.11 prevailing at time t, the informed
trader buys 0.578 units of the stock and the passive one sells 0.192 units. Now,
εt is drawn and payoffs can be computed: let the random value be, for instance,
εt = −0.1 so that

Dt = d + b∗θ′
t + εt = 1.1 + 0.05 − 0.1 = 1.05.

Observe that the payoff is smaller than the price and, as a consequence, net
buyers/sellers will experience a loss/gain. Indeed,

w1t = x1tDt + (w0 − x1tp
∗
t )R − 3 · cost

= 0.578 · 1.05 + (1 − 0.578 · 1.11) · 1.01 − 0.03 = 0.939,
w2t = x2tDt + (w0 − x2tp

∗
t )R − 0 · cost

= −0.192 · 1.05 + (1 + 0.192 · 1.11) · 1.01 = 1.024.

Hence, due to the (relatively large) negative ε and to other “unlucky” events, the
first agent happens to record a loss and the second agent a gain. We stress that
this outcome holds at time t, due to the values taken by the random variables
involved in this period (i.e., θt, εt) and to the shares of different strategies in the
population that ultimately contribute to determine the current p∗

t = 1.11. Other
realisations would obviously have produced different w1t and w2t for the two
agents in our example. Assume now that in the learning phase the previous two
agents are randomly matched: the first trader (painfully) realises that the second
trader outperformed him by about 8% in period t and, therefore, he imitates the
other strategy and variance, so that b1,t+1 = (0, 0, 0, 0, 0) and his variance will
move to v1,t+1 = v2tŨ , for a random Ũ . The second trader does not change in
any way his strategy/parameters and is ready to begin period t + 1.

In a standard application of evolutionary game theory, we are interested in
looking at the features of the stationary population Pt, for t → ∞.

3 Results

We run 100 simulations for each N = 5, 10, 15, using T = 10000 periods and
setting the other parameters as in Table 1.

Both N and vε can, to some extent, quantify the complexity of informational
extraction in a market: a large N corresponds to situations where agents are
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Table 1. Values and description of the parameters.

Param Value Description Param Value Description

vε { 2
100

, 3
100

, 4
100

} Variance of ε vθ 0.01 Variance of θ

R 1.01 Bond yield d 1.10 Stock yield
a 2 Risk aversion q 0.1 Variance adjustment
S {1, ..., 5} # of bits M 1000 # of agents
w0i ≡ w0 1 Endowment cost 0.01 Cost of information
bi Initialised with random bits, then subject to learning and mutation
vi Initialised at vε, then subject to random shocks

exposed to many signals and, especially for small values of S, this means that
relatively few relevant signals must be carefully picked (out of the possible N).
Besides being a direct measure of the volatility of the payoff, vε affects the signal-
to-noise ratio that is proxied by vθ

vε
or, in other words, ceteris paribus, signals

are expected to be more valuable when vε is smaller and, in such sense, vε can
be thought as an “adjusted price” of information.

Table 2. Number of agents using the most common strategies (All figures are averages
over 100 simulations).

N = 5 N = 10 N = 15

Top 1 strat 387.20 375.53 373.19
Top 2 strat 574.74 563.17 577.09
Top 5 strat 765.86 694.56 691.06
Inf + Pas 549.64 554.37 561.34

Generally speaking, the strategies surviving at equilibrium (i.e., in PT that
proxies P∞)) are only a tiny fraction of the possible ones and this is a robust
finding holding in all parametrizations. Table 2 shows the number of agents using
the most common, the two and the five most common strategies. For instance,
when N = 5, the two most frequent strategies are used on average by 575 agents
(out of 1000). In other words, a fraction of 2/32 ≈ 6% of the strategies account
for 57.5% of agents in equilibrium. Usually, the most used 5 strategies are taken
by about 70% of agents or more. The concentration into very few strategies is
striking if one thinks that there are 210 = 1024 and 215 = 32768 strategies when
N = 10 and 15.

The last row of Table 2 shows the average number of agents who selected
either the informed (bi = b∗) or the passive strategy (bi = 0). A comparison of
the second and the ’Inf + Pas’ row reveals that, essentially, the two most used
strategies are precisely the informed and the passive one. Hence, evolution drives
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most of the agents to pick exactly one between these two strategies, despite the
availability of tens (or hundreds or thousands) of alternatives.

Not only agents concentrate on 2 (or very few) strategies but use less infor-
mation than may be naively expected. From the seminal work in [2] we know
that enough informed traders should in principle allow the others to deduce
or “smell” what is needed even with no direct access to the information itself.
However, the extent to which this happens is probably surprising.

Table 3. Use of information: shares of relevant bits set and overall share (All figures
are averages over 100 simulations.

N = 5 N = 10 N = 15

Overall Relevant Overall Relevant Overall Relevant
0.02 0.241 0.225 0.251 0.216 0.256 0.214

vε 0.03 0.165 0.149 0.187 0.156 0.189 0.152
0.04 0.154 0.141 0.166 0.141 0.165 0.133

Table 3 shows the fraction of bits set to 1 by the whole population of traders
and the fraction of relevant bits4, as a function of N and vε. The number of used
bits does not depend much on N but it is quite sensitive to the variance (price of
information): regardless of N , the fraction of 1-bits drops, say, from one-quarter
to about 16% as vε varies from 0.02 to 0.04.

Put differently, the model points to a low use of information that is discarded
by many traders in our noisy setup where strategies compete on short-term
profits. Table 4, showing the fraction of informed and passive agents, provides
additional details.

Table 4. Percentage of informed and passive traders. All figures are averages over 100
simulations.

N = 5 N = 10 N = 15

Informed Passive Informed Passive Informed Passive
0.02 0.440 0.067 0.402 0.101 0.369 0.111

vε 0.03 0.346 0.232 0.299 0.272 0.291 0.291
0.04 0.253 0.325 0.221 0.391 0.245 0.380

First, scanning the table horizontally, it can be seen that the fraction of
informed traders decreases with increasing complexity, as measured by N (for
any level of vε). The effect is more pronounced when vε is low or medium.
4 The “overall” number of set bits is (# of set bit)/NM and the number of “relevant”

bits is (# of set bits/SM).
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Second, the fraction of informed agents sharply decreases with vε. For
instance, when N = 10, doubling vε roughly halves the fraction of informed
traders (from 40.2% to 22.1%). This hints at the fact that (the same) informa-
tion is less useful when embedded in noisier markets or, if you wish, when it is
more expensive in relative terms.

Third, a similar portrait surfaces looking at the number of passive traders, the
ones who decide not to use any signal at equilibrium. Their number is inversely
proportional to that of informed traders and, hence, in general there are more
such agents for large N and vε. The intuition is that passive agents are better
equipped to survive in more volatile markets, flooded with plenty of information.
Simply put, in such “difficult” environments, discarding all signals and avoiding
any cost is often the most commonly evolved strategy (picked in equilibrium
by nearly 40% of agents in some cases). Interestingly, there are several values of
the parameters (depicting somewhat realistic markets) where the passive traders
outnumber the informed one, a finding that goes against the conventional wisdom
that using (good) information should be better than discarding it.

Fig. 1. Number of passive (on the x-axis) and informed traders (on the y-axis) in
three different markets: low informational complexity on the top-left corner, for N =
5, vε = 0.02, and high informational complexity moving down to the bottom-right
corner, where N = 15, vε = 0.04. The dashed diagonal line is where the two numbers
are the same.

Figure 1 depicts the number of passive and informed agents (out of 1000)
and visually reinforces the previous claims: on the top left corner there is one
green triangle for each simulation, with N = 5, vε = 0.02 (low complexity),
and few passive agents are outnumbered by many informed ones. At the other
extreme, red circles show that the situation reverses when N = 15, vε = 0.04
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Fig. 2. Distributions of individual risk for different N and levels of vε = 0.02, 0.03, 0.04
in red, green and black, respectively. (Color figure online)

(high complexity). Black squares depict simulations with N = 10, vε = 0.03 in
which members of the two subpopulations are roughly equal in number. This is
in good accordance with the fractions exhibited in the central cell of Table 4.

The equilibrium shares of strategies are characterised by bit-strings bi, i =
1, ..., 1000, but also by the individual risk assessments vi that appear in the
denominator of Eq. (1). Figure 2 represents through box-plots the distributions of
the set of vi, i = 1, ..., 1000, for markets with N = 5, 10, 15 (from left to right) and
vε = 0.02 (green), vε = 0.03 (grey) and vε = 0.04 (red). For instance, the median
vi when N = 10, vε = 0.03 is about 0.035, as shown by the black line in the central
grey box-plot, and most values are in an interval whose lower/upper extremes
are slightly smaller/bigger than 0.03/0.04, respectively. The figure shows that
the risk perceived by agents is mildly increasing with N , for whatever vε.

More importantly, it is worth noticing that when vε = 0.02 the perceived
risk is, on average, smaller than 0.02, whereas for higher vε agents on average
evolve a much higher assessment. This is particularly true for (large) vε such
as 0.04, as the red box-plots show substantially large medians about 0.05. In
other words, when the volatility of the markets is low, agents learn to slightly
underestimate the noise level in the market; conversely, when the volatility is
higher, and especially for vε = 0.04, they learn to overestimate the riskiness of
the stock. As a consequence, because the vi are in the denominator of the demand
function, they take larger equity positions (than would perhaps be expected)
when the volatility of the market is low, and reduce the risky component of their
investments when the volatility is high. This behaviour, aggressive as well as
cautious in different cases, appears to curb the probability of financial extinction
of agents’ current strategy in our setup where sustained evolutionary competition
is present.
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As seen before, the number of passive traders is relatively large in markets
with high vε and, consistently with this fact, passive traders evolve higher vi.
Hence, they not only discard information in building their portfolio but demand
less units of the risky stock (other things being fixed) in an attempt to take into
account the residual risk of not being informed. Symmetrically, informed agents
use all the relevant information and boost their demand through lower vis5.

4 Conclusion

The model described in this paper depicts a market where only S pieces of news
out of N affects the stochastic payoff of a risky stock. News/information are
available at a cost in any period t and boundedly rational agents must figure
out (or learn through evolution) which signal to use in forming their demand for
the risky asset. Agents’ demands (phenotypes) are driven by strategies (geno-
types) prescribing the signal to use/discard and by an adjustable assessment of
risk. Updates occur through pairwise comparisons (or tournaments) aiming at
favouring the strategies yielding the highest payoffs. A small rate of mutation
ensures that adequate diversity is preserved in learning.

We have examined which strategy prevail in the long run and their shares
in the population Pt, t → ∞ of heterogeneous agents. This can be thought as
a canonical evolutionary model where fitter strategies are determined by sharp
pairwise comparison of profits, and tend to grow along time.

We found that most traders evolve (or learn) either a passive strategy discard-
ing all signals or a fully informed strategy, where all relevant signals are incor-
porated in the estimation of the future payoffs (sustaining the costs). Whether
the passive or informed strategy takes the lion’s share mostly depends on the
“complexity” of the market: if the exogenous volatility or the number of news
N are large, most traders will be passive and use no information whatsoever;
if, instead, the volatility is low and the informational landscape has manageable
size and costs, then a majority of agents will develop informed strategies. This
polarity between full usage and full disregard of information fits well with mod-
els in the spirit of [9], where it is shown that returns are U-shaped in terms of
information and, hence, being entirely uninformed (passive in our setup) or fully
informed is more profitable than being half-way on either side.

Overall, the model is demonstrating that it may impossible for boundedly
rational agents to exploit all the information or disentangle relevant from irrel-
evant news in volatile market setups or when too much information is provided
and must be screened. The model shows that fact-based learning by trial-and-
error and imitation (plus mutation), does not allow full exploitation of relevant
information. It is left to future research to investigate whether the same results
5 Another interpretation leads to overconfidence on the part of informed traders: in

principle, once all relevant component of θt are used, there is no intrinsic noise other
than ε and super-rational agents should set vi = vε. The model shows that there is
evolutionary pressure to adjust downwards the individual risk assessment, or, that
it pays off for the informed to be overconfident at equilibrium.
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hold for other learning schemes (or using other ways to spread fitter strategies).
For example, the probability to adopt a better strategy in a pair may be pro-
portional to the returns, instead of being 100%. While our switching rule may
appear dummy, agents have a nice way to rationalise their behaviour as, in equi-
librium, all strategies have the same median returns and, say, passive agents
have a 50% chance to over-perform informed trader, i.e. they would fare first
one time out of two in a race.

A byproduct of the model possibly hints at a novel way to explain why many
investors appear to hold an excessively small share of equity6, see [7] for an
explanation based on biological evolution. In our model, for many values of the
parameters, the passive traders, who demand little equity due to their large vi’s,
are the majority share and this leads in aggregate to a limited (relative) share
of risky holdings with respect to risk-less investments, in line with the historical
simulation in [1].
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versity London and AAU Klagenfurt for their comments and remarks. Luca Gerotto
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Abstract. Humans and animals often choose between options with dif-
ferent qualities. When the decisions are not determined by one or a few
individuals leading a group, a collective can achieve a consensus through
repeated interactions among the individuals. Collective decision-making
is widely studied in the context of opinion dynamics, showing that indi-
vidual mechanisms of option selection and the underlying social network
affect the outcome. Mathematical techniques, such as the heterogeneous
mean-field (HMF) theory, have been developed to systematically analyse
the collective behaviour of interconnected agents. Based on the HMF the-
ory, we propose a mathematical model that looks at the combined effects
of multiple elements bearing upon the collective decision dynamics, such
as the individuals’ cognitive load, the difference in the quality of the
options, the network topology, and the location of the zealots in the net-
work. The results of this study show that, in scale-free networks, when
individuals employ specific opinion selection mechanisms, characterised
by a low cognitive load, the zealots have the ability to steer the con-
sensus towards the option with the lowest quality or to group indecision.
This result is reversed when the interaction network is sparsely connected
and quite homogeneous – that is, most nodes have few neighbours – and
cognitively simple individuals make accurate collective decisions, mostly
unaffected by zealots voting for the option with the lowest quality.

Keywords: Opinion dynamics · Best-of-n Problem · Zealots ·
Heterogeneous mean-field

1 Introduction

Human beings are every day faced with the problem of choosing among different
options. Limited information or noisy conditions can make such decisions even
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more difficult; a possible way to overcome the issue is to exploit social interaction.
Collective decision-making (CDM) is hence characterised by the fact that once
the decision is made it is no longer attributable to any individual of the group.
Achieving a consensus is the result of multiple interactions in which individuals
choose an option according to some opinion formation mechanisms that can be
relatively simple. For example, a general agreement can be reached using social
feedback, by which consensus emerges among individuals that select an option
by copying the preferences of one or more group mates.

CDM is not exclusive to humans but is also observed in other social
species [6]. For example, groups of baboons collectively decide in which direction
to move [27]; flocks of birds collectively decide their motion direction [3]; and
swarms of bees collectively decide where to build a new nest site [21,25]. Inves-
tigating CDM is important for understanding the behaviour of many biological
systems, and for enabling autonomy in artificial systems such as robots [20].
For example, swarms of robots are programmed with collective decision-making
algorithms to cooperatively perform a variety of tasks [13,24,28,30]. Therefore
we can conclude that different scientific disciplines are interested in investigating
CDM and unveiling the elements that influence and contribute to determining
the outcome of various decision-making processes.

CDM problems have been studied with different methods such as experi-
mental methods [6,7], computational modelling and simulation methods [12],
and social network analysis [4,18]. These studies have focused on different issues
such as: i) the effect of different individual opinion selection mechanisms, each
of which is associated with different cognitive costs (e.g., linked to memory, per-
ception, attention) [10,22]; ii) the effect of the homogeneity/heterogeneity in the
group behaviour (i.e. individuals have equal/different behaviours) [8,23]); iii) the
effects of different topologies of the interaction network between the individu-
als [14,26]; iv) the effects of the cost/benefit trade-off associated to the selection
of each option (e.g., the quality of the chosen option and the time spent selecting
it) [17,19].

The objective of this study is to develop a mathematical model to analyse the
combined effects of multiple factors (i.e., the cognitive load, the option qualities,
the network topology, and the location in the network of zealots voting for the
inferior option) bearing upon the opinion dynamics. More precisely, we model
an asymmetrical binary collective decision-making process in which both options
have equal costs, but one option has better quality than the other. Moreover, we
model the exchange of information among agents as happening on a finite-size
network composed of N nodes and L undirected edges, i.e., each node repre-
sents an agent and an edge the interaction existing among two agents. We also
consider that certain individuals use conformism rules through which they agree
with the opinion of their peers (which we call susceptible agents), and the rest
never change their opinion and are normally called zealots [8,23] or stubborn
agents [17]. In our study, we only consider zealots with an opinion in favour of
the inferior option, with the lower quality. Finally, we study different behaviours
of the susceptible agents with respect to their cognitive load, that in our model
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translates into different pooling errors when an agent processes the opinions of
her neighbours. The cognitive load is considered relatively low when an indi-
vidual simply copies the preference of a randomly selected neighbour among
the agents within her first connections, this behaviour corresponds to the voter
model [26]. The cognitive load progressively increases for social feedback mecha-
nisms in which each agent has to sample a progressively higher number of peers
within her network of connections in order to select an option, e.g., to apply the
local majority rule [11].

The original contribution of this study is to illustrate how the interactions
between i) the agents’ cognitive load, ii) the interaction network topology, and
iii) the location of zealots in the network, influence the decision-making process,
i.e., consensus, or not, for the opinion with the best quality. Given the asymmetry
in quality (i.e., one option is better than the other and therefore is shared more
often [29]), we study under which conditions, the zealots (who only share opin-
ions for the inferior option) manage to counterbalance the difference in qualities
and drive the population toward a consensus on the lowest quality option. Our
study shows that when the susceptible agents follow a simple behaviour with
relatively high pooling errors, the zealots voting for the inferior option lead the
population into either an indecision state or a consensus for the inferior option.
However, our results also show that this result can be reversed when connectivity
and heterogeneity of the interaction (social) network reduce (i.e., the network
becomes more homogeneous with most nodes with few neighbours).

2 Method and Methodology

The aim of this section is to introduce the basic rules upon which the agents
possibly update their opinion and then to build a mathematical model based
on the heterogeneous mean-field assumption to unravel the role of some main
model parameters, namely the fraction of zealots present in the population, their
location in the network and the network topology.

2.1 Model Description

Let us thus consider a group of N agents interacting in an undirected scale-free
network [1,16], where the probability for an agent to have k neighbours is given
by pk ∼ 1/kγ , with γ > 2. Let us recall that the closer γ is to 2 the more hetero-
geneous the degree distribution is, indeed nodes with a very large degree can be
present because 〈k2〉 is unbounded; on the other hand, if γ � 3 very high degree
nodes are very rare and the degree spread is well described by finite variance
of the degree distribution. Assume also the network to be connected, to avoid
to consider the trivial case of a population split into several non-communicating
groups, and simple, namely among every couple of agents there is at most one
communication channel. The network topology is thus encoded by the N × N
adjacency matrix, M, whose entries satisfy Mij = Mji = 1 if and only if agents
i and j can exchange opinion, and 0 otherwise.
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We classify agents, i.e., the nodes of the network into susceptible and zealots,
the former change their opinion over time in response to social interactions while
the latter are inflexible and never change their initial choice. In this work, we
consider the scenario of the best-of-2 problem where each node holds an opinion
that can take one of two different values, A or B, modelling the choice between
two beliefs on a particular issue or topic. We also associate to each opinion the
corresponding quality, i.e., QA > 0 and QB > 0. The quality defines the strength
or the probability that the option is communicated to the neighbours [8,23,29].
Without lack of generality, for the rest of the work, we assume QA = 1, QB ≤ QA

and hence Q = QB/QA ≤ 1. We only consider the scenario where zealots hold an
opinion in favour of the opinion with the lower quality (i.e., opinion B). In fact,
it is less interesting to introduce zealots voting for the option with the highest
quality (option A) because the group already votes more frequently for options
with better quality and its is more frequently selected by the group. Here, we
study the ability of the group to select the best option despite the presence of
zealots voting for the inferior option.

To specify how a susceptible individual updates her belief based on the
weighted opinions of her neighbours, we consider the model (1) from [22] which
we display in Fig. 1 for some representative values of the parameter α ∈ [0, 1.5].

Pα(x) =

{
1
2 − 1

2 (1 − 2x)α if 0 ≤ x ≤ 1
2

1
2 + 1

2 (2x − 1)α if 1
2 < x ≤ 1.

(1)

Let us observe that α is negatively correlated to the cognitive load: as α
increases the agents makes more pooling error. More precisely, for α = 0, the
function P0 models agents that make no errors and change their opinion based
on the weighted average of all their neighbours, i.e., agents adopt a majority
rule. This requires a larger cognitive load than when α > 0 in which case agents
make errors. In the case of α = 1, the function P1 models agents that update
their opinion by copying the one of a randomly selected neighbour, namely this
behaviour is the (weighted) voter model. Our model generalises thus two promi-
nent models of opinion dynamics, the (weighted) voter model [26,29] and the
(weighted) majority model [2,11,12]. For generic values of α > 0 and α �= 1,
the proposed model allows us to explore behaviours with intermediate levels of
cognitive cost and pooling error.

The system evolves asynchronously: each time step an agent i is randomly
selected with a uniform probability and makes a social interaction. If the agent
is a zealot nothing happens; otherwise if the selected agent is susceptible, she
updates her opinion as a function of the weighted fractions of local opinions

n#
i,A =

QAni,A

QAni,A + QBni,B
and n#

i,B =
QBni,B

QAni,A + QBni,B
, (2)

which are based on the number of i’s neighbours ni,A and ni,B , with opinion A
and B, respectively, and the options qualities QA and QB . Note that we trivially
have n#

i,A + n#
i,B = 1, ∀i.
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Fig. 1. The function Pα(x) for several values of α.

Let ki be the degree of node i, namely the number of agent i’s neighbours,
thus ni,A + ni,B = ki. Then by recalling Q = QB/QA we can rewrite Eq. (2) as

n#
i,A =

ni,A/ki

(1 − Q)ni,A/ki + Q
and n#

i,B = 1 − n#
i,A . (3)

Assume the selected i-th agent holds opinion A (resp. opinion B), then with
probability Pα(n

#
i,B) (resp. Pα(n

#
i,A)), she can change her opinion to B (resp.

A). Let us also observe that because of the functional form of (1) and because
n#

i,A + n#
i,B = 1, we can conclude that Pα(n

#
i,A) + Pα(n

#
i,B) = 1. The process

continues by iteratively selecting one agent at a time and by updating its opinion;
eventually the system reaches a stationary state.

2.2 A Mathematical Model with Option’s Quality and Zealots

The objective of this subsection is to propose a simple mathematical model
defined by an ordinary differential equation (ODE) allowing us to study the evo-
lution of group opinion, but also to unravel the role of the involved parameters,
the cognitive load, the ratio of the opinion qualities Q = QB/QA, the fraction
of zealots, and the network topology γ.

To make some analytical progress we rely on the heterogeneous mean-field
assumption (HMF) [5,15], namely we hypothesise that nodes with the same
degree are dynamically equivalent and their evolution can be described by using
the degree conditional probability p(k′|k), namely the probability that a node
with degree k is connected to another node of degree k′. Therefore, nodes are
grouped into degree classes, more precisely we define Ak (resp. Bk), as the num-
ber of nodes with degree k and opinion A (resp. opinion B). To distinguish
between susceptible agents with opinion B and zealots, let us introduce Zk to
denote the number of zealots with opinion B and degree k. Therefore, letting
Nk to denote the total number of nodes with degree k, we have:

Ak + Zk + Sk = Nk, (4)
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where Sk denotes the number of susceptible agents having opinion B and degree
k. Eventually we introduce the fraction of agents having opinion A and degree
k, ak = Ak/Nk, and similarly the fraction of susceptible having opinion B with
degree k by bk = Sk/Nk and by ζk = Zk/Nk the fraction of zealots with degree
k. Therefore, for all k,

ak + bk + ζk = 1. (5)

The goal of the HMF is to derive an ODE ruling the evolution of ak and
bk. By starting from an idea recently developed in [22], we improve it with the
addition of zealots to eventually obtain

d〈a〉
dt

= −〈a〉 +
∑

k

qk(1 − ζk+1)

k+1∑

�=0

(
k + 1

�

)
〈a〉k+1−� (1 − 〈a〉)� Pα

(
k + 1 − �

k + 1 − � + �Q

)
,

(6)
where we defined 〈a〉 = ∑

k qkak+1, being qk the probability for a node to have
an excess degree k, namely

qk =
(k + 1) pk+1

〈k〉 ∀k ≥ 0,

with 〈k〉 =
∑

k kpk the average node degree. Equation (6) contains the rele-
vant parameters of the model, the zealots (ζk), the model of opinion dynamics
(Pα), the opinion quality (Q) and the network topology (qk). The aim of the
next section is to determine the equilibria of such equation and determine their
stability, hence the system fate. Before to do this let us observe that knowing
〈a〉(t) from (6) one can obtain the evolution of ak for all k by using the following
equation [22]:

dak

dt
= −ak + (1 − ζk)

k−1∑
l=0

(
k
l

)
〈a〉k−l (1 − 〈a〉)l Pα

(
k − l

k − l + lQ

)
.

2.3 Equilibria and Stability of the Analytical Model

The equilibria of the system are obtained by setting to zero the right hand side
of (6). Let us thus define the function

fα(x) := −x+
∑

k

qk(1−ζk+1)

k+1∑

�=0

(
k + 1

�

)
xk+1−� (1 − x)� Pα

(
k + 1 − �

k + 1 − � + �Q

)
, (7)

hence by denoting 〈a∗〉 a system equilibrium, we have by definition

fα(〈a∗〉) = 0.

A direct inspection of (7) allows to prove that fα(0) = 0, hence 〈a∗〉 = 0, i.e.,
absence of agents with opinion A, is an equilibrium of the system. On the other
hand, fα(1) = −∑

k qkζk+1 �= 0, hence the presence of zealots (with opinion B)
prevents the system from converging to a population where only agents A will
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exist. Finally the existence of nontrivial solution 0 < 〈a∗〉 < 1 to the equation
f(〈a∗〉) = 0 will determine a coexistence of opinions A and B in the network.

The stability of the above-mentioned equilibria can be determined by looking
at the derivative of the function fα evaluated on the same equilibria. Such anal-
ysis will be presented in the following section where we also discuss the impact
of the main model parameters.

3 Results

In this section, we present the results obtained for the analytical model described
in Sect. 2.2. As already mentioned, we focus on the impact of the parameter α,
the network topology, hereby summarised into the exponent γ of the power
law, and the social influence of the zealots. More precisely, regarding the zealot
analysis, we are interested in both their relative abundance and their position in
the network, namely if they sit onto high-degree (hubs) or small-degree (leaves)
nodes. To place zealots in hubs, we set ζk = 1 for all k ≥ kM , for some sufficiently
large kM , this accounts to add into the model an average number of zealots equal
to Ztot =

∑
k≥kM

Nk ∼ ∑
k≥kM

Ncγ/kγ , where cγ is a normalisation constant
such that

∑
k pk = 1 and N is the total number of nodes in the network. When

we assume zealots to lie on leaves nodes and to fair compare this condition with
the previous one, we consider the same number of zealots, that we set into the
hubs by assuming ζkmin

= Ztot/Nkmin
, where kmin is a small enough degree;

more precisely:

ζkmin
=

Ztot

Nkmin

∼ Ztot

Npkmin

= kγ
min

∑
k≥kM

1
kγ

∼ kM

γ − 1

(
kmin

kM

)γ

.

Note that the above strategy does not imply adding an infinite number of zealots,
indeed in any network realisation, e.g., by using the configuration model, there
is a finite number of nodes with a degree larger than kM and thus Ztot is also a
finite quantity. These finite-size effects can be studied in future research.

Figure 2 summarises our main results. We fix the values of Q = QB/QA =
0.9, the power law exponent γ, and the zealot location in the network, and we
numerically compute the zeros of the function fα for values of α ∈ [0, 2] to obtain
the equilibria of the system. Once the equilibria have been found, we evaluate the
derivative of fα and we determine its sign, if f ′

α(〈a∗〉) > 0 then the equilibrium
〈a∗〉 is unstable and marked with a red points in Fig. 2, on the other hand if
f ′

α(〈a∗〉) < 0 then the equilibrium 〈a∗〉 is stable and we represent it in green.
The three top panels refer to the strategy consisting of setting the zealots in
the leaves (here kmin = 1), and the three bottom panels refer to the opposite
strategy with the zealots in the hubs, kM = 100. Moving from left to right we
increase γ, passing from γ = 2.5 (left panels a) and d)), γ = 3.0 (middle panels
b) and e)) and γ = 3.5 (right panels c) and f)).

Several conclusions can be drawn from those results. For large enough α, the
system always sets into a state where opinions A and B coexist, the closer to
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Fig. 2. Bifurcation diagrams of the HMF model. We report the equilibria 〈a∗〉 of Eq. (6)
as a function of α; stable equilibria, i.e., associated to f ′

α(〈a∗〉) < 0, are coloured in
green while unstable ones, i.e., associated to f ′

α(〈a∗〉) > 0, in drawn red. The top panels
correspond to zealots set into leaves nodes while the bottom panels to the strategy of
placing the zealots into the hubs. Panels a) and d) correspond to γ = 2.5, panels b)
and e) γ = 3.0, panels c) and f) to γ = 3.5. The remaining parameters have been fixed
to kmin = 1, kM = 100 and Q = 0.9.

0.5 the larger α; this behaviour is independent of where the zealots are placed
in the network or the network topology, i.e., γ. Hence a too-large pooling error
α by the agents (which corresponds to a very small cognitive load) prevents the
group from choosing the opinion with the highest quality.

For intermediate values of the pooling error, e.g., close to α = 1, the impact
that zealots have on the opinion dynamics depends on the interaction network
topology. For scale-free networks with strong degree heterogeneity, e.g., γ = 2.5,
the location where zealots are placed has a strong impact on the system fate.
Putting the zealots into the leaves does not prevent the groups from selecting
the best option (Fig. 2a), instead when zealots sit in the hubs, the susceptible
agents are unable to make consensus decisions and remain polarised between the
two options (in Fig. 2d the system for α ≈ 1 converges to the stable equilibrium
〈a∗〉 ∼ 0.5). The situation changes when the network heterogeneity decreases
(i.e. for higher γ). Here, regardless of the location of the zealots in the network
(leaves or hubs), the stable equilibrium is 〈a∗〉 ∼ 1, representing a consensus
decision for the best option. This can be further appreciated by comparing the
grey rectangles in the top and bottom panels of Fig. 2, which have the same
horizontal size. The cause of this effect – to be investigated in future research –
can be due to the rare presence of hubs in networks with large γ.
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We also observe a strong impact of γ on the system outcome for small pool-
ing error α, however having zealots in different locations (leaves or hubs) does
not impact the system’s equilibria. Indeed for α ≈ 0 we can observe that the
unstable equilibrium branch (red dots) is below 0.5, this means that an initial
population with few A agents, e.g., 40% of A and 60% of B, is capable to con-
verge to a consensus toward A, and this result holds true despite the presence
of zealots and their placement. This effect amplifies with increasing γ, e.g., for
γ = 3.0 the faction of A can be as small as ∼30%, and for large enough γ, i.e.,
scale-free networks with a relatively homogeneous degree distribution, any initial
arbitrarily small fraction of agents with opinion A will be able to prevail and
spread in the whole population (see the tiny dashed rectangles in panels c and f
associated to γ = 3.5, where the equilibrium 〈a∗〉 = 0 is unstable and thus the
system converges to the only remaining possible equilibrium 〈a∗〉 ∼ 1).

To obtain a more global view of the complex interplay of the parameters,
we studied the equilibrium 〈a∗〉 as a function of α and γ for a fixed value of
Q = 0.9 (see Fig. 3). Moreover in each considered case we studied the impact of
the strategy of placing the zealots on the leaves nodes (top panels) or on the hubs
(bottom panels). In the two panels on the left, we colour-code the equilibrium
reached by the system (yellow high values of 〈a∗〉 close to 1 and blue 〈a∗〉 close to
0), starting from an initial population with half agents holding opinion A and half
opinion B. One can observe a striking difference between the top panel Fig. 3a),
where zealots sit into leaves, and the bottom panel Fig. 3b), where zealots sit
into hubs. In the first case, the equilibrium 〈a∗〉 is almost independent of γ and
the system exhibits two main behaviours: for α � 1 the whole group converges
to a consensus to A, while for α � 1 the population is deadlocked at indecision
with two similar-sized groups of agents with opinion A and B that coexist. In
the second case, when zealots are placed into the hubs (Fig. 3c): the population
converges to a consensus for the opinion with the lower quality when α ∼ 1
and γ � γ∗, where γ∗ ∼ 2.33. To better visualise this qualitative difference in
the dynamics, we report on the right panels the bifurcation diagram with the
three equilibria 〈a∗〉 as a function of the cognitive load for γ = 2.2, which is
lower than the critical γ∗ ∼ 2.33. In the top panel, Fig. 3b), with zealots set into
the leaves, the population converges to an almost consensus (large majority) for
option A for α � 1.1. On the other hand, in the bottom panel, Fig. 3d), with
zealots set into hubs, for α ∼ 1 the group chooses the opinion with the lower
quality. These results show that a population of agents using the (weighted)
voter model as decision-making behaviour can be driven to adopt the opinion
with the lower quality by zealots placed into hubs of a sufficiently heterogeneous
scale-free network, i.e., γ < γ∗.
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Fig. 3. Bifurcation diagrams of the HMF. We report the equilibrium 〈a∗〉 given by (6)
as a function of (α, γ) for a fixed value of Q = 0.9 (left panels), and the same equilibrium
where we also fix γ = 2.2 < γ∗ (right panels). Top panels correspond to zealots set
into leaves nodes while the bottom panels to the strategy of placing the zealots into
the hubs. The remaining parameters have been fixed to kmin = 1 and kM = 100.

4 Conclusion

In this paper, we presented the results of a study focused on a best-of-n col-
lective decision-making problem, with n = 2 options of different quality, and a
heterogeneous population comprising a majority of the agents that have a con-
formist behaviour and change their opinion based on the social feedback and a
minority of agents – referred to as zealots – who never change their opinion. The
interactions among the agents happen over a social network whose nodes are the
agents and the edges are the possible interaction links. We analyse the opinion
dynamics for populations of agents with voter-like behaviours. We consider a
continuum of behaviours characterised by the pooling error α that agents make
when processing social information; making more errors reduces the agent’s cog-
nitive load. Our model extends [22] and generalises through a single function a
number of known voter-like models, such as the (weighted) voter model [26,29]
and the majority model [9,11,12].

We build our mathematical model of the collective decision process using the
heterogeneous mean-field (HMF) theory. The determination of the system equi-
libria and their stability allowed us to study the combined effect of the model
parameters, characterised by the cognitive load, the opinion quality, the net-
work topology, and the location of zealots in the network. In particular, we have
studied populations of agents with a given cognitive load (pooling error α) that
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interact on a scale-free network. In our analysis, we varied both the network
topology and the location (leaves or hubs) where zealots—all holding the lowest
quality opinion—are placed. The results have shown that the combined effect
of these factors generated an articulated landscape characterised by different
outcomes of the collective decision process. In case agents employ a high level
of cognitive load, the collective decision follows the one of the majority (i.e.,
democratic decisions) with a bias for the best alternative that grows as the net-
work degree distribution becomes more homogeneous (i.e., high γ). When the
cognitive load is minimal, the group is unable to make a decision due to high
pooling errors. The most interesting outcomes are obtained when the parameter
α ∼ 1, corresponding to populations of agents employing decision-making mech-
anisms requiring a medium level of cognitive load, similar to the (weighted) voter
model. In this case, zealots placed in the hubs, i.e., nodes with a large degree,
are able to drive the entire population away from the consensus for the best
quality option and lock it into indecision or to consensus for the inferior option.
When zealots are placed in the leaves (i.e., nodes with a small degree) rather
than in hubs, the population shows different decision dynamics and zealots are
not able to interfere with the selection of the best option. This phenomenon
is amplified by the parameter γ, i.e., the one ruling the heterogeneity of the
scale-free network, in terms of node degree distribution. Large enough γ allows
the better quality opinion to spread in the whole population even if initially a
relatively small minority of agents has such opinion (Fig. 2). In the future, we
aim to generalise these results by exploring a larger range of parameters and
finding unifying patterns. In particular, we intend to study, in addition to the
location in the network, how the quantity of the zealots and the option qualities
influence the decision-making dynamics and how all these parameters interplay
with each other in determining the opinion dynamics of the population.
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Abstract. Multiple systems that can be represented in network terms
usually present areas where the nodes are densely connected among
themselves. Community detection analysis is precisely pointing at reveal-
ing these areas, thus providing a partition of the network under investi-
gation. Usually, the results of such analysis are discussed in descriptive
terms, either with the aid of some statistics, or by listing and discussing
the nodes that belong to the different communities. Thus, a statistical
evaluation of the detected community structure still missing in literature.
In this work, we design a series of tests to assess if the community detec-
tion results are compatible with random processes of tie formation, or
if what emerges from such analysis cannot be ascribable to randomness.
As community detection naturally points at uncovering the presence of
meso-structures within a system, what needed is a statistical tool to test
if these are just areas that have randomly formed or if, behind what is
detected, there is a real emerging phenomenon. In order to provide an
example, we run the tests on the network of UK Faculty and discuss the
results.

Keywords: data science · networks · community detection ·
within-community connections · configuration model ·
Kolmogorov-Smirnov test

1 Introduction

Community detection is one of the most frequently used techniques for analyzing
social networks and complex networks [1,3,4,11]. It makes it possible to split
networks into internally densely connected sub-parts (i.e., the ‘communities’),
while connections between the detected sub-parts are more scarce. Depending on
the nature of the network, this technique can be used to achieve different goals. In
the study of social systems, community detection is implemented to unveil groups
of agents that are socially tied and bounded (e.g., groups of friends within a
class). In other types of systems, typically more associated with complexity, such
as economic, biological and physical networks, community detection makes it
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possible to identify sub-parts that, even if not necessarily detached from the rest,
can reveal some natural divisions of the whole system. In any case, independently
from the nature of the network that is considered, community detection allows
grouping nodes based on their closeness and the density of the ties that are
connecting them. Therefore, it can be said that community detection naturally
points at investigating the meso-level structures that can occur in a system.

Several algorithms are available to perform such analysis [3]. Typically the
evaluation of the output is based either on a punctual investigation of the mean-
ingfulness of the detected communities (in terms of the agents that are involved),
or on considering of some statistics describing the cohesiveness of the commu-
nities (e.g., the density of the communities1). However, instead of immediately
trying to characterize and describe the detected groups, the first questions to
be explored should rather be: do the detected communities really exist? Do they
reveal some emergent and non-random cohesiveness? Or these just groups have
to be considered as nothing more than the output of an algorithm that in what-
ever circumstances will always provide a complete network partition? Are the
detected communities real meso-level structures characterizing the system under
investigation, or are just denser areas randomly happening?

Community detection algorithms are exhaustive. So, for any type of network,
they will always provide a complete partition of it. However, in the investiga-
tion of real systems, we should first ask ourselves if the structures detected (at
the micro, macro, or meso level, like in this case) are something more than the
consequences of some mere random process. If they are not, then they become
interesting to be investigated: their formation and emergence are determined by
some underlying principles yet to be discovered. Therefore, we ask ourselves if
‘communities are real ’ in the sense of investigating if their presence and structure
are somehow related to something non-random that has occurred in the process
of formation of the network. To address this point, we outline a methodology
that, apart from community detection analysis, is based on generating random
networks, on non-parametric goodness-of-fit test and, eventually, on cluster anal-
ysis. The aim is to statistically investigate if the detected communities appear as
emerging meso-structures of the system under investigation or if they have just
to be considered as random denser areas with no further meaning in real terms.
In other words, we want to assess whether the unveiled communities reveal some
significant property in terms of structure and cohesiveness, or if the obtained
network partition is just the result of some random process of tie formation.

2 The Methodology

As a starting point, we need a network G = {N,E}, where N is the set of nodes
present in the network, and E = {ωi,j : Gi,j > 0} is the set of existing weighted
connections between the nodes of the network, being i, j two nodes of network

1 Number of ties detected among the nodes belonging to the community, divided by
the number of all possible ties that can exist among those nodes.
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G that are connected (if Gi,j > 0), and with ωi,j indicating the weight of the
connection between them. We also indicate with ΩG the sum of all ωi,j ∈ G.2

2.1 Focus on Within-Community Connections

At first stage, we perform a community detection of G, so to get its structure
of communities, i.e., information on which nodes belong to which community. A
discussion about assessing community detection algorithm to consider is not part
of this work, as our objective is not to evaluate community detection algorithms.
The only crucial element for the proposed methodology is to select one algorithm
and keep using it from the beginning of the process until its end, as multiple
community detections must to be performed.3

Once the community detection is run, we are then able to split the set of
connections E into EW and EB , where EW are all the connections between
nodes of the same community (namely, within-community connections), and EB

are all the connections between nodes of different communities (namely, between-
community connections).4 This is done by simply checking if the two nodes
involved in the connection belong (or not) to the same community. By focusing
on EW , we can compute the statistic ηW (G), as follows:

ηW (G) =
∑

ωi,j

ΩG
∀ i ∈ cλ ∧ j ∈ cλ (1)

where cλ indicates any of the communities that are detected in G. In qualitative
terms, ηW (G) describes the sum of weights of the within-community connections,
i.e., EW , in fractional terms with respect to the sum of all the connections
belonging to the network G.5

2.2 Clarifications on ηW (G)

First, it has to be clarified that with this work we are not debating on the opti-
mality of statistic ηW (G) for testing communities. Indeed, the statistic ηW (G) is
just one possible statistic to be considered. Nonetheless, it has been formalized
in this work—where we propose it as an initial starting point for testing com-
munity structure’ adscription to randomness—for its straightforwardness and
its simplicity. As network communities are (by definition) characterized by their
dense internal connectivity, one of the first things to be checked is exactly the

2 If the network is unweighted, it just means that ωi,j = {1}, i.e., in absence of weights
any existing connection is considered to have value 1.

3 There are several contributions explaining, discussing and comparing the perfor-
mances of community detection algorithms, e.g., [3], but our work does not directly
point at proposing a new method to evaluate them.

4 EW ∪ EB = E and EW ∩ EB = ∅.
5 By definition, 0 ≤ ηW (G) ≤ 1.
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observed level of within-community connections. Thus, from this point of view
ηW (G) is very focused, as it expresses the percentage of the sum of the weights
of the within-community connections over the sum of the weights of all the con-
nections belonging to G. At the same time, ηW (G) is also very simple as it does
not require much information and computational effort to be calculated.

Second, we anticipate that in the rest of the work we will not study or
propose any reference value for ηW (G), as the scope of this work is not to assess
when ηW (G) has to be considered large or small. Indeed, for the way network
communities are defined—and consequently investigated and detected—, the
majority of network connections will always be within-community connections.
Then ηW (G) is always expected to be relatively large.6 Also, it seems complicated
to think of some specific theoretical threshold values for ηW (G), as its magnitude
may depend on various characteristics of the system under analysis. Rather,
this work aims to develop a methodology to assess whether the observed value
of ηW (G) is somehow resulting from a random process, or not. We focus on
investigating whether the observed level of communities’ internal cohesiveness
has to be considered as expected, or if the level of ηW (G) is significantly different
from what it should be likely to be. To do so, we propose comparing the statistic
ηW for the observed network G, with the same statistic but computed in many
null networks serving as terms of comparison.

2.3 Generation of Null Networks as Term of Comparison

In order to get a term of comparison for ηW (G), we generate a set, namely G∗,
made of a large number of random networks (any of which we generically indi-
cate as G∗) by means of the ‘configuration model’ by Molloy and Reed [7]. This
is a method that, based on the random re-wiring of the connections observed
in the original network G, allows the generation of a null network having (i)
the same nodes of G, (ii) the same density of G, i.e., the same percentage
of number of edges over number of possible edges, and (ii) the same degree
sequence of G, i.e., each node maintains the same number of connections as it
has in the original network G. In addition, if the network is weighted, but if and
only if the connections’ weight values ∈ N

+, the ‘configuration model’ makes
it possible to preserve the same strength sequence, i.e., any node preserves the
same strength as in the original network, instead of preserving the same degree

6 Community detection algorithms identify areas of the networks, i.e., groups of nodes,
within any of which the connections are many, so making that part of the network
dense. On the opposite, connections between nodes of different communities are
scarcer.
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sequence.7 For any G∗, we calculate ηW (G∗) repeating the same process devel-
oped to compute ηW (G). Therefore, for any G∗:

– a new and independent (from what is done in G) community detection is
performed,

– within-community connections are then separated from between-community
connections,

– ηW (G∗) is calculated.

After generating many networks G∗, we are able to compute multiple ηW (G∗),
i.e., one for each random network, allowing us to have a distribution of values.
As we calculate this distribution, we can finally test whether ηW (G) fits it well.
Since the objective of the methodology is to provide statistical evidences to dis-
cuss whether the community structure detected in G is ascribable to randomness
or not, we want to compare it with other community structures emerging from
networks that: (i) on the one hand, maintain some characteristics of the origi-
nal one (i.e., nodes and degree sequence, which also implies same density and
same degree distribution), and (ii) on the other hand, have random connective
structure (edges are established randomly according to previous condition).

It is important to highlight that in any of the generated null networks, a new
community detection analysis is run. Since what we want to test precisely the
community structure of the original network G, we need to compare it with other
community structures. In the proposed methodology, we do not constrain in any
sense the community detection analyses that are performed in the networks
of G∗. The point is exactly to compute the same exact statistic in networks
that, being similar but different from the original one, will reveal a community
structure that is also supposed to have different characteristics from the one
7 If the network is weighted with connections’ weight values ∈ N

+, it is only necessary
to repeat any connection for a number of times equal to its weight, and to assign
to all resulting connection a weight equal to 1. The network will be no longer a
simple network, i.e., one and only one connection between any couple of node, but
this is irrelevant. We can randomize the peers involved in the connections (included
those repeated because of a weight larger than 1), and still the network will result
having the same strength sequence, i.e., any node will have the same strength as in
the original network. Clearly, since connections are repeated based on their weights
and then randomized, this does not make it possible to preserve the same degree
sequence as in the original network.

If the original network’s weights /∈ N
+, then connections can be directly random-

ized (i.e., no repetition of them) and their weight can just be sampled (or probabilis-
tically inputed) based on the weights of the original network. The resulting random
network will preserve the degree sequence and the sum of connections’ weight, but
not the strength sequence.

Finally, in case connections’ weight /∈ N
+ and the network is bipartite, at least

the strength sequence can be preserve for one type of node, but not for the other:
connections’ weights can be randomly sampled from those displayed by the node
in the original network. However, when this is done for one type of node, then it
cannot be done also for the other type. Nonetheless, in this case the degree sequence
is preserved for all nodes.
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observed in G. Then, the scope of the next and last step will be to check whether
these differences have to be considered statistically significant. In any way, the
only constraints that our methodology imposes are related to the definition of the
level of ‘randomness’ that we want to include in the null systems of G∗. These
constraints, which in our work are essentially related to the degree sequence
of the nodes, may be further specified, thus leading to the generation of null
systems that can be even more similar to the original network G, and hence to
stronger statistical tests.

Finally, it is also important to remark that the selection of the ‘configuration
model’ by Molloy and Reed [7] as method for generating null systems answers to
two needs. First, to have random networks that can have more similarities with
the original network than just the edge density. This would be the case of random
networks generated with the Erdős-Rényi model [2,9], a benchmark in the field.
However, this model most relevant limitation is that it is not able to replicate
the degree sequence, i.e., distribution of number of connections per node. This
is a feature that cannot be considered as secondary, especially in a context of
generation of null systems to be used as a term of comparison for the study of
real system properties. For this reason, the ‘configuration model’ has received
attention [8]. Second, from a computational point of view, the configuration
model is not based on probabilities but only on the re-wiring of the connections
observed. So, in other terms, the generation of a null network with this method
is relatively simple, as it requires to randomly sample combinations of two nodes
at a time (without replacement), from a set made of the nodes of G (those with
at least one connection8), and with any of these nodes repeated as many times
as number of connections it has in G. To conclude, alternative ways to generate
null networks may be considered as more pertinent depending on the type of
system under analysis. Still, at the same time the ‘configuration model’ includes
enough sophistication to be pertinently considered as a fair starting point for
the methodology.

2.4 Test of Within-Community Connections

Finally, in the last stage of the methodology, we implement a goodness-of-fit
(GoF) test between ηW (G) and the distribution of ηW (G∗). Since we have no
prior hypothesis regarding the shape and the parameters of this distribution,
we consider the Kolmogorov-Smirnov (KS) two-sided GoF test [5,6].9 This is a
non-parametric test that allows us to determine whether the value observed in

8 A node can be part of a network even if not displaying any connections in it.
9 The test is based on the computation of the empirical cumulative distribution func-

tion (eCDF) of the values ηW (G∗), and it calculates the percentile in which ηW (G)
falls with respect of the mentioned eCDF.
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the original network, i.e., ηW (G), is compatible with ηW (G∗). Hence, we can
finally determine whether ηW (G) is ascribable to randomness.10

Suppose the test reveals that the within-community connections observed in
G are compatible with what observable in the null systems G∗. In that case,
should surmise that the communities of G arise as a consequence of the basics
assumptions considered to build the random networks, i.e., same density and
same degree sequence. This would mean that the agglomeration and the cohe-
siveness that is observed in certain parts of G (i.e., where the communities
are detected) could have occurred in other parts of it. Thus, no emerging phe-
nomenon is really taking place at the level of the network structure, and we
would have to conclude that what is observed in terms of community structure
simply is the result of a random process. On the opposite, if the test is negative,
i.e., ηW (G) is not compatible with the distribution of ηW (G∗), it means that
the cohesiveness detected within the communities of G is significantly larger (or
lower) than what would have been if ties were formed randomly. In this case, it
would be confirmed that some emergent phenomenon is really happening.

2.5 A Further Development: Controlling Random Tie Formation
Based on Nodes’ Heterogeneity

In network theory, there are several concepts, distinct but similar, all pointing
to the fact that nodes are typically more (or less) prone to develop connections
with other nodes depending on some category/type to which they belong. For
instance, network assortativity and homophily, are theoretical aspects describing
different ways in which the heterogeneity of nodes can have a role in the network
formation process [10]. The point is that this can also have an effect in the
process of emergence of communities. Therefore, in order to control for nodes’
heterogeneity, we propose a further development of the designed methodology.

A stronger test can be developed by considering nodes’ categorization. This
categorization can already be present in the data (e.g., a categorical variable,
like gender or ethnic group), or it can be created by implementing a cluster
analysis.11 In both cases, what matters is that we have to classify all nodes
N in K non-overlapping sub-sets.12 We label any of these sub-sets with the
letter k, followed by a subscript indicating its specific identity. In other words,
information is needed on how to split N in {k1, k2, k3, ..., kN}, where any k
includes at least one node of N and with all nodes N belonging to a specific k.
We use this information to divide G in all its possible Gkα,kβ

sub-graphs, where

10 It is important to highlight that the described test allows us also to assess if ηW (G),
in case it is statistically significant, has a value which is larger (or smaller) than
expected. This would reveal the existence of a non-random community structure
characterized by within-community connections that are enhanced (or inhibited),
respectively.

11 It is not scope of this work to discuss how to implement a cluster analysis and which
kind of variables to consider.

12 K ∈ N
+ ∧ K < N .
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the combination (kα, kβ) indicates the categories of the nodes to be considered
at a time.13

Then, we proceed by implementing the ‘configuration model’ method for any
sub-graph Gkα,kβ

, exactly as described above for the generation of an entire null
network G∗. We indicate with G†

kα,kβ
the random sub-graphs that are generated

by this part of the process. Once all the combinations of (kα, kβ) are taken
into account, then all the newly generated G†

kα,kβ
are put back together in a

single new random network G†, which presents the following characteristics with
respect to the original network G: (i) same density, (ii) same degree sequence, (iii)
same ‘preferential matching’ in terms of the considered nodes’ categorization.
Indeed, the most important point is the last. We listed ‘preferential matching’
among the elements that are preserved in the new null systems, because in any
G†, any node not only maintains the same number of connections as in G, but it
also maintains the same number of connections by type of peers. For instance, if
node i has three connections with some nodes of type kα, and two connections
with some nodes of type kβ , then in any G† node i will always have three
connections with some nodes of type kα and two connections with some nodes
of type kβ . Clearly, which specific nodes, among those belonging to type kα and
those belonging to type kβ , will be connected to i in G† will be randomly selected.
Then, the methodology continues as previously described: a large number of G†

is generated and the value of ηW (G) is tested against the final distribution of
ηW (G†) with the non-parametric Kolmogorov-Smirnov GoF test.

Since with this option each node always preserves the same centrality degree,
as well as the same number of connections by type of nodes with which it is con-
nected, this has some implications for the analysis of the statistical significance
of ηW . Given that the null networks are generated with a lower degree of ran-
domness, the test is now stronger. As the new null systems G† are more similar
to G than G∗ null systems are similar to G, the test on communities based on
ηW (G†) is stronger. More specifically, if this last test results negative, i.e., the
ηW (G) is not compatible with the distribution of the ηW (G†), it will reveal
the presence of non-random meso-structures that cannot be attributed to any
connectivity propensities based on nodes’ typology.14 The randomization, but
with fixed amount of connections based on the categories of nodes involved,
allows us to exclude any effect related to specific propensities based on nodes’
heterogeneity from the elements that are significantly characterizing the process
of generation of the communities.

Finally, it is relevant to remark that this last part of the procedure also opens
the room for the computation and the statistical evaluation of ηW (G, kα, kβ), i.e.,
the same statistic ηW but calculated only for what concerning the connections
that are involving one node of type kα and one node of type kβ . Formally,
13 For instance, if K = 3, then G is going to be split in all the possible sub-graphs based

on nodes’ categorization, i.e., Gk1,k1 , Gk2,k2 , Gk3,k3 ,Gk1,k2 , Gk1,k3 , and Gk2,k3 .
14 It is important to observe that with the first test proposed, i.e., ηW (G) vs. distri-

bution of ηW (G∗), this element could not be excluded as a constitutive element for
the communities.
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ηW (G, kα, kβ) =
∑

ωi,j

ΩG,kα,kβ

∀ i ∈ kα ∧ j ∈ kβ ∧ i ∈ cλ ∧ j ∈ cλ (2)

where ΩG,kα,kβ
indicates the sum of the weights of those connections of G that

involve one node belonging to category kα and one node belonging to category kβ .
This makes it possible to explore the presence of significant community cohesive-
ness exclusively for what concerning the nodes belonging to specific categories
of nodes, i.e., kα, kβ , and not for all of them, as it was previously proposed in a
purely systemic perspective.

And clearly, not necessarily ηW (G, kα, kβ) has to be computed with kα �= kβ .
Indeed, the test is suitable also to focus on one and only one specific type of
nodes, e.g., those belonging to kα, and to investigate within-community connec-
tions exclusively among nodes of that category. Formally,

ηW (G, kα) =
∑

ωi,j

ΩG,kα

∀i, j ∈ kα ∧ i ∈ cλ ∧ j ∈ cλ (3)

where ΩG,kα
indicates the sum of the weights of those connections of G that are

involving two nodes both belonging to category kα. This opens the possibility to
test if nodes of a specific category are prone to significantly develop communities
among them.

3 Analysis of UK Faculty Network

We implement the described tests on the UK Faculty network (data included
in the R Package igraph), which we indicate as G. It is a network consisting
of 81 vertices (members of a Faculty Department in the UK) and 817 directed
and weighted connections (ΩG equals to 3,730) describing friendship relation-
ships. The nodes are also characterized for the fact that any of them belongs
to a specific School (there are four of them) of the Faculty Department. We
implement the walktrap.community algorithm (considering connections’ weight),
which is based on random walks and which is included in the R Package igraph.
This allows us to detect 6 communities, as represented in Fig. 1, where within-
community connections are highlighted with a bolder color.

First of all, 5,000 G∗ null systems are computed. Since G is a weighted net-
work and the weights ∈ N

+, we constrain the generation of null systems in order
to preserve the strength sequence, i.e., any node preserves the same strength
as in the original network G.15 The result of the Kolmogorov-Smirnov GoF
test between ηW (G) and the empirical cumulative distribution function (eCDF)
of the values ηW (G∗) is negative, with a p-value equal to 0.072 (significance

15 What needed is to repeat any connection for a number of times equal to its weight,
and then to assign to all resulting connections a weight equal to 1, and then connec-
tions can be randomized according to the ‘configuration model’. By doing so, each
node maintains its strength, even if its degrees may vary.
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Fig. 1. The UK Faculty network. Color of the nodes represents the communities
detected with the walktrap.community algorithm (considering connections’ weight).
Connections’ width represents friendship intensity. Connections’ color is darker for
within-community connections.

smaller than 10%), and with positive sign (ηW (G) equals 0.850, while the aver-
age of ηW (G∗) equals 0.512). This means that the level of within-community
connections that is observed is significantly larger from what we should expect
assuming the hypothesis that the network ties have formed randomly under the
only condition of keeping as fixed the strength of each node. In other words,
as expected in most of cases, the community structure that is observed is not
ascribable to randomness.

Second, we consider information about the School of the Faculty Department
to which the members belong (there are four Schools, #1 with 33 members, #2
with 27, #3 with 19, and #4 with 2 members). This is a categorical variable
(attribute “Group” in the data) which is represented by nodes’ colors in Fig. 2.
5,000 G† null systems are computed based on the subnetworks determined by
the Schools of the two members involved in the friendship connection. Since
the network is directed, all the possible permutations of the four Schools (made
of two elements and with allowed repetitions) are considered to identify the
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Fig. 2. The UK Faculty network. Color of the nodes represents the School to which
members belong (School #1 in yellow, #2 in orange, #3 in green, and #4 in white).
Connections’ width represents friendship intensity. Connections’ color is darker for
within-community connections (from Fig. 1).

subnetworks of G and to compute any G†.16 The Kolmogorov-Smirnov GoF test
between ηW (G) and the empirical cumulative distribution function (eCDF) of
the values ηW (G†) is run and the result is negative. P-value is equal to 0.028
(significance smaller than 5%) and the sign is negative (ηW (G) equals 0.850,
while the average of ηW (G†) equals 0.9141). This means that the level of within-
community connections that is observed is significantly smaller from what we
should expect assuming the hypothesis that the network ties have formed ran-
domly under the only condition that any node preserves the same number of
connections by School as in G. In other words, the observed community struc-
ture in not random with respect to the number of connections by School. Inter-

16 In other terms, G is split in the 16 subnetworks determined by the permutations
(with repetitions) of the four Schools. These are G1,1, G1,2, G1,3, G1,4, G2,1, G2,2,
G2,3, G2,4, G3,1, G3,2, G3,3, G3,4, G4,1, G4,2, G4,3, and G4,4, where the two subscripts
indicate the School of the member from whom the friendship starts, and the School
of the member that is considered as a friend, respectively. For the creation of a single
G†, then each of these subnetworks is randomized and then all of them are put back
together so to have a null system in which any node preserves the same strength as
in G, as well as the same strength by School as in G.
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Table 1. Results for the test of ηW (G, kα, kβ) vs. the distribution of ηW (G†, kα, kβ).
In each row, a different permutation of the School is considered. For the level of signif-
icance, in the seventh column, we report (***) when p-value < 0.01, (**) when p-value
< 0.05, and (*) when p-value < 0.1. Last column indicates whether the observed value
of ηW (G, kα, kβ) is larger (+) or smaller (–) than expected, or as expected (=).

School from School to Conn. Type ηW (G, kα, kβ) Average of ηW

(G†, kα, kβ)

P-value Signif. Sign

1 1 1 → 1 0.897 0.999 0.016 ** –

1 2 1 → 2 0.177 0.000 0.000 *** +

1 3 1 → 3 0.652 0.683 1.000 –

1 4 1 → 4 0.931 1.000 1.000 -

2 1 2 → 1 0.205 0.000 0.000 *** +

2 2 2 → 2 0.929 1.000 1.000 –

2 3 2 → 3 0.000 0.000 1.000 =

2 4 2 → 4 0.000 0.000 1.000 =

3 1 3 → 1 0.666 0.874 0.380 –

3 2 3 → 2 0.000 0.000 1.000 =

3 3 3 → 3 0.839 0.867 0.619 –

3 4 3 → 4 1.000 0.891 1.000 +

4 1 4 → 1 1.000 1.000 1.000 =

4 2 4 → 2 0.000 0.000 1.000 =

4 3 4 → 3 1.000 0.810 1.000 +

4 4 4 → 4 1.000 1.000 1.000 =

estingly, if nodes had formed random friendships only paying attention to keep a
certain number of connections by School (as in G), we would have got a stronger
community structure than the one we have. This is probably because, as it is
possible to observe by visually comparing Fig. 1 and Fig. 2, the Schools present
a considerable correspondence with the communities, and in some cases a single
School basically includes all the nodes of two (or more) communities: it is like
Schools provide a higher-level partition than communities. Therefore, the level of
within-community connections results smaller than expected because nodes have
not formed friendships exclusively according to certain propensities to interact
with people based on their School of affiliation.

Finally, we run the test for all possible permutations (of size equal to two) of
the Schools, as described in Table 1. This allows us to investigate if the members
of the different Schools have significantly developed within-community connec-
tions with members of their same School and with members of other Schools.
This test makes it possible to understand which Schools are associated with
community-behaviors, and with whom. From these tests, Schools #1 and #2
are revealed to show significant high levels of within-community connections
between them in both directions, i.e., members of School #1 considering friends
members of School #2 (connection type “1 → 2”), as well as members of School
#2 considering friends members of School #1 (connection type “2 → 1”). There-
fore, we can say that these two Schools show some special relationship between
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them, as their members significantly get involved in the same network commu-
nities. Interestingly, while this behavior has no significant effect on the level of
within-community connections of members of School #2 with members of the
same School, we can find that members of School #1 develop significantly less
within-community connections among themselves (connection type “1 → 1”).
Qualitatively speaking, it looks like members of School #1 tend to structure
communities with members of School #2, but to do so they pay a cost in terms
of the cohesiveness of the communities they are able to form among themselves.

4 Conclusions

In the present work we formalize a series of statistical tests to investigate whether
community detection results are compatible with hypotheses of random tie for-
mation. The tests are based on the computation of null systems using the ‘con-
figuration model’, which are used as term of comparison to statistically evaluate
what observed in the original network. We run the tests on a publicly available
dataset, i.e., UK Faculty network, in order to show a possible implementation
and the kind of results they can provide.

To conclude, some considerations on the presented work are recalled. First,
the selection of the algorithm used to perform the community detection is not
relevant to the general development of this methodology. What relevant is to use
the same algorithm for all community detections that are implemented during
the process. Second, it is not relevant if the network is weighted or un-weighted.
We have developed the formalization of the test for a weighted network since this
can be intended as a more detailed specification of a unweighted network. Third,
it is not relevant how many communities are detected and neither which is the
specific allocation of nodes to them. Since any connection is basically a dyad of
nodes i and j, what in the end exclusively matters for the computation of η is
whether i and j are detected to belong to the same community or not. Finally,
for any system considered (the original one, i.e., G, as well as the generated null
systems) a separate community detection is run.
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Abstract. Centrality measures are an essential tool in understanding
complex networks, since they give researcher insights on the role the dif-
ferent nodes/actors play in them. Among them, eigenvector centrality is
a principled approach to these measures, using a mathematical operation
on the connection matrix. This connection matrix includes connections
from an actor to itself (the diagonal); however, as it is the case with most
centrality measures, this fact is seldom used in social studies to compute
the standing or influence of one node over others. In this paper we will
analyze the difference in EV centrality with or without these self connec-
tions or self-loops and how the change depends on the actual number of
these self-loops or the weight of these self-connections. Finally, we will
characterize in which cases, if any, it is effective to drop self-loops and
what kind of information it will give us on the nature and dynamics of
the network.

Keywords: Complex networks · Social networks · Graph Theory ·
Eigenvector centrality

1 Introduction

Eigenvector centrality [1] measures how an actor in a network or graph influ-
ences other actors by computing the eigenvalues of the adjacency or connectivity
matrix, that has as components the weight of the connection of every agent to all
the others, including itself. It is a centrality measure because, along with other
such measures (such as betweenness or degree centrality [17]), it is a micro-level
assessment of the power or influence of a node within a network through the
analysis of its connections. It has been used extensively in social network analy-
sis [5,12,14]; but also in other fields, such as biology [9], economics [15], or even
in the analysis of the spread of opinions in internet forums during the COVID-19
pandemic [11].

In its widespread use for the computation of the value for a single node
it is not very different from other centrality measures; however, unlike them,
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it considers the whole network [2] taking into account all weights (including
negative ones); and, more importantly for the purposes of this paper, all weights
include the connections of a node to itself, or self-loops.

As a matter of fact, many complex networks, including social networks,
include links from one actor/agent to itself; we can find them in commuting
networks [8], where self-loops would indicate trips that start and end in the
same city, county or state; in family networks [8], with self-loops indicating mar-
riage between members of the same (extended) family; opinion networks [11],
where they would indicate interaction among members of the same group; sport
teams transfer networks [7], indicating transfers between teams in the same coun-
try; when freight traffic networks [10] are analyzed at a regional level, self-loops
would represent shipments that start and end in different parts of the region;
commercial networks [15] where self-loops indicate a contract between members
of the same family, or even biological networks [9], where self-loops could indicate
auto-trophic (members of a species feeding on other members) or auto-catalytic
(reactive agents catalyzing reactions where they participate).

The main issue and the one we are trying to address in this paper, is
that when centrality analysis is performed on these networks, most centrality
measures cannot work with self-loops; thus, in most cases, they are dropped
[11,14,15]. Even when a specific measure can include self-loops, like the afore-
mentioned eigenvector centrality that works on the connection matrix, self-loops
are usually dropped mainly to work on an uniform set of data, that is, not use
two different connection matrices with diagonal values (for EV centrality) and
other without (for other measures).

In the cases where self-loops do not have a clear interpretation (or at least
a common interpretation with the rest of the connections) there are good rea-
sons to work that way: betweenness centrality [6], for instance, models how one
node is needed to transmit information to other parts of the network; how often
it transmits information to itself cannot easily be accommodated within this
framework, and it can be argued that it could be simply ignored when comput-
ing the geodesics from which this measure is computed. That is not the case for
EV centrality, which does in fact use self-loops to compute the eigenvalues that
are presented as the EV centrality measure. And these intra-links can, however,
give us better insights on the dynamics of a social network, and should probably
be taken into account. So far, however, there has been little analysis on what is
the actual effect of considering these intra-links for computing the eigenvector
centrality [2] in social networks. This paper will try, using well-chosen examples,
what is that effect and how it could help to better understand social systems.

The main research question that we ask, then, is if self-loops should be
included, when available, in the computation of eigenvector centrality. As an
accessory question, we try to investigate what would be the effect of doing so
in EV centrality measurements, and how it affects the value and the ranking of
nodes in the corresponding network.

The rest of the paper is organized as follows: next we will be describing
the state of the art, to proceed to describe the datasets and the experiments
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performed in Sect. 3. We will then discuss the results and conclude with our
conclusions and future lines of work.

2 A Brief Literature Survey

The main motivation behind this paper is to shed a bit of light on the use of
self-loops in social network analysis, mainly because it has been used so rarely in
the past. Some papers acknowledge its importance in the propagation of infor-
mation in social networks [22], with self-loops representing simply re-posts of
some content previously created by the same person; other papers, however [11]
dealing with the same subject, explicitly do not use them, thus missing a good
amount of the dynamics created by these self loops. In other opinion formation
papers [19] self-loops represent the amount of attention a person pays to its own
opinion as opposed to others. In general, even theoretical models of the spread
of information in social networks [3] include self-loops.

In general we can say that while self-loops are sometimes acknowledged and
used in social network models, they are dropped when making centrality analysis
of complex or social networks. This why we have made it the main focus of this
paper.

3 Experiments

We will be using two datasets to perform the experiments. The first one is the
Venetian matrimonial dataset [15], a social network of the noble families of the
Republic of Venice from the XIV to the XIX century1; the second is a dataset of
freight traffic among the states of the United States of America extracted from
the government data portal [20]. These will be examined in turn in the next two
subsections.

3.1 Analyzing the Venetian Matrimonial Dataset

This dataset was published by Puga and Treffler as support for their paper [15]. It
consists of marriages celebrated in the Republic of Venice (and successor polities
during the late XVIII and XIX century) where the groom is a noble2, registered
with the Avvogaria del Comune of the Republic. Families (called casate in the
original Venetian and Italian) were the political and social unit in the republic

1 Some marriages are not dated, but we can assume they took place in the same range
of years.

2 Since the dataset includes some marriages that happened after the fall of the Repub-
lic in 1796, the concept of “noble” in this case corresponds to families that were
considered noble during the existence of the Republic; during French and Austrian
control, as well as during the brief period of the Republic of San Marco, such nobil-
ity titles no longer had any value; however, since they were included in the original
dataset there was no good reason to eliminate them.
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[16,18], which explains the interest this dataset has for insights into the history
of the republic. Nodes in this dataset are, thus, families with nobility titles in
the Republic of Venice; we eliminated from this dataset those marriages where
brides did not belong to any patrician family.3.

This dataset has been chosen because it includes a good number of intra-
family marriages, as well as because it has been studied extensively by Puga and
Treffler in their paper, providing a basis for the comparison of results.

Table 1. Intra-family marriages per century

Century Intra-family marriages Total marriages Percentage

XIV 5 51 9.80
XV 82 2740 2.99
XVI 118 4265 2.77
XVII 104 2770 3.75
XVIII 31 1732 1.79
XIX 3 108 2.78
NA 42 561 7.49

Table 2. Ranking of top ten families according to number of intra-family marriages
(left).

Family #Intra-family marriages

Contarini 65
Morosini 23
Corner 19
Martinengo 16
Querini 15
Balbi 12
Donato 11
Malipiero 10
Zorzi 10
Zancaruol 9

The absolute and relative number of intra-family marriages in each century is
shown in Table 1, including marriages whose date is unknown. These marriages
3 There were many restrictions to this kind of marriage, but they occurred with reg-

ularity, at least until the so-called “Second Serrata” [4], during the XV century; in
this case, however, we eliminate them because they are irrelevant to the main point
of the paper, not having any influence in the EV centrality of a specific node.
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are not evenly distributed per family; the top 10 families according to number of
intra-family marriages is shown in Table 2. This is an example where the number
of self-loops is not excessive, although it is certainly significant, hovering around
a few percentage points per century for an amount of 385 intra-family marriages
(self-loops) over 12227 total.

Table 3. Ranking of top ten families according to EV centrality values, with (right)
or without (left) self-loops.

Family EV Family EV + self-loops

Contarini 1.0000000 Contarini 1.0000000
Morosini 0.8175570 Morosini 0.6827832
Corner 0.6425724 Corner 0.5131463
Querini 0.5045249 Querini 0.3852909
Priuli 0.4286878 Priuli 0.3139764
Dolfin 0.3771834 Giustinian 0.2806501
Giustinian 0.3719008 Dolfin 0.2775836
Michiel 0.3692852 Michiel 0.2743379
Zorzi 0.3629267 Zorzi 0.2723025
Loredan 0.3593036 Pisani 0.2649323

This dataset has been transformed into two different graphs; eliminating self-
loops in one and leaving them in the other. In both cases we use undirected edges
joining the two families of the partners in every marriage; the edge is weighted
with the number of marriages between the families in the nodes; eigenvector
centrality has then been computed for the two resulting graphs. A ranking of
the top families according to their EV centrality is shown in Table 3.

Looking at Table 2 together with the left hand side of Table 3, we can see that
there seems to be some correlation between the number of intra-family marriages
and the EV centrality, even when we do not include it in the computation. Six
out of ten families are the same, and the first five: Contarini, Morosini, Corner,
Querini and Priuli, also appear in the same order. This might indicate either a
common cause for both rankings (size of the family, for instance) or a cause-effect,
or even a combination of the two: a family gets bigger since it is wealthy, and
is wealthy due to its social capital; high EV centrality implies a lot of influence,
and this begets wealth, that literally increases the fitness of the family making it
big enough that intra-family marriages become possible and even common. This
discussion, however, is beside the main point of this paper, although it should
be noted that, in a way, self-loops are factored in in this specific case since
intra-family marriages tend to appear more frequently in families with high EV
centrality.

Including self-loops in the computation we see that there are small, but signif-
icant, variations: The Dolfins and Giustinians change their order in the ranking,
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plus the Loredan family is dropped and substituted by the Pisani family4. It can
also be seen that the difference between the first and second family in the ranking
has doubled, and that, in general, the value of the normalized EV centrality has
also decreased; since the EV values are normalized, this simply indicates that
the difference between Contarini and the other families has increased, a fact in
which, of course, self-loops have had a decisive influence.
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Fig. 1. EV centrality considering self-loops (x axis) or not (y axis). The size of the dot
and color signal the number of intra-family marriages.

To better highlight the impact of self-loops, in Fig. 1 we have analyzed the
differences between the EV values with (x axis) or without self-loops (y axis)
for every node; it plots the values with self-loops (x axis) vs. those without (y
axis) in a log scale. The plot shows that all values are over the x = y line. The
size and color of the dot representing every family is related to the number of
intra-marriages; big, lighter blue dots will have the bigger number of self-loops,
small, darker ones the lowest.

All dots are placed over the x = y line, indicating that normalized EV values
are lower without self-loops. Besides, looking at the colors and sizes, we can see
that the smaller the size (number of marriages), the bigger the increase in value;
that is, more intra-family marriages make the inclusion of self-loops decrease
EV centrality less. However, this is due in this case to the fact that what is
actually increased is the difference between the family with the higher EV (the
Contarinis) and the rest, so we can look at this result from the other side: the

4 The Pisani family is certainly more “central” than the Loredan, at least looking at
the number of nobles in important offices; [15] mentions them as one of the family
with the greatest amount of shares in shipping contracts.
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presence of a family with a high value in the diagonal of the connection matrix
(i.e. self-loops with a high weight) increases its EV centrality much more than
that of the rest of the nodes/families.

Fig. 2. Percent increment in normalized EV centrality when including self loops.

To investigate how the number of intra-family marriages impact on the EV
centrality, in Fig. 2, we plot the number of intra-family weddings and the change
in EV centrality. As this chart reveals, as expected, the value of intra-family
marriages/self-loops in the computation of EV centrality certainly gives us better
insights on the dynamics of the social network.

Finally, Fig. 3 shows the relationship between the family ranking with (y
axis) and without self-loops (x axis). The red line is the x = y line. The plot
shows how changes in rank have a wider span in the mid-ranks, far away from
the beginning and from the end. The more central families (close to (1,1)) barely
move a position up or down; however, beyond rank 150, there are more changes
and they have a bigger impact, with some families moving down several positions,
and others (fewer) moving up a few positions. In general, including self-loops
makes has a bigger impact in the mid-ranks, an interesting fact that proves the
importance of taking then into account when family networks are researched.

The inclusion of self-loops, however, could have other positive and quanti-
tative impacts in social and historical study. We will again refer to [15] as the
baseline study; they show (in their Figure VIII) how EV centrality across a
century is a good predictor for the same measure in the next century, showing
the stability and resilience of the patrician social network in the Republic of
Venice. They mention that there is a “good correlation” in this case. We have
re-rendered the data for this figure in our Fig. 4 (left panel), showing also as a
red line a linear fit to the data.
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Fig. 3. EV centrality rank reached by families with (y axis) or without (x axis) self
loops.

Table 4. Summary of linear fit of EV centrality for families in the XIV and XV century.

RSE R2 adjR2 Fstat intercept.t slope.t

With self-loops 0.056 0.825 0.823 733.504 7.306 27.083
Without self-loops 0.065 0.834 0.833 785.478 6.632 28.026

The influence of using self-loops (shown in the right-hand side panel) is clear,
with points representing families with the highest EV seeming closer to the fit;
it should be noted that these are the families that have a high-number of intra-
family marriages. To quantify numerically the difference in Table 4 we show a
summary of the coefficients of the regression model for the two data sets. The
RSE column shows the difference of residuals between the model and the data;
the top row is smaller, showing a better fit for the EV centrality values if self-
loops are taken into account. This improvement is due mainly, looking at the two
right-most columns, to the improvement in the fit of the intercept with 0 (the t
value is better); the effect of this can be observed in Fig. 4, which shows how the
red line that represents the model seems a bit more centered than the one on the
left. The values of R-squared and its adjusted value, as well as the F-value, are
slightly better for the model without self-loops; however, they are very similar
and very high in both cases, so this difference is not considered significant.
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Fig. 4. Correlation between the EV centrality of Venetian families in the XV century
(x) and XVI century (y). The line indicates the fitted linear model. Left-hand side
chart does not include self-loops, right-hand side does.

At any rate, and to the extent that EV centrality in a century is a predictor
for EV centrality in the next century, including self-loops in its computation
makes it a better fit, even if the two models represent the data very well in both
cases.

3.2 Freight Traffic Network

The freight traffic network is a directed network that includes as nodes different
US states, and as edges the amount of freight traffic between them. The data is
available from the US Bureau of Transportation Statistics on its page “Freight
Flow by State”5. The data is available for the years 2017–2021.

We will be doing some additional processing on this data. All types of traffic
(import, export, domestic) will be added into a single traffic flow; this quantity
will be used as a weight in the transportation network. Also, we will use the
data for the year 2021 only; the resulting processed data set is available from
the GitHub repository for this paper https://github.com/JJ/redes-venecia. The
resulting network is shown in Fig. 5. This network is totally different from the one
analyzed in the previous subsection: all states have internal traffic, so all of them
have self-loops, as the Figure shows. It is a directed network, since traffic between
two states can be asymmetric. The network is very dense, with almost all states
connected with all others. Finally, the network structure is quite different, with
big differences between the most central states and the rest. Using self loops or
not is bound to influence the vision we have of the centrality of the states.

5 https://www.bts.gov/browse-statistical-products-and-data/state-transportation-
statistics/freight-flows-state.

https://github.com/JJ/redes-venecia
https://www.bts.gov/browse-statistical-products-and-data/state-transportation-statistics/freight-flows-state
https://www.bts.gov/browse-statistical-products-and-data/state-transportation-statistics/freight-flows-state
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Fig. 5. US freight traffic network. Weight value is not represented in this graph.

In Table 5 We show the differences in the first positions in the ranking accord-
ing to EV centrality. As was the case for the Venice matrimonial network, the top
3 positions of the top ten states do not change. All others (except for, curiously,
Ohio) do, however, as does the quantitative difference between the first and the
rest of the positions; using self-loops highlights the differences in EV centrality,
and thus influence, between the first and the rest of the states, as well as the
differences among themselves; that is, the measured difference in influence as
measured by EV centrality is much bigger when self-loops are considered.

The stark change in EV centrality values is shown in Fig. 6, where we plot the
EV centrality values with and without self-loops for all states (and the District
of Columbia. Except for the two top values (Texas and California), when self-
loops are considered the value of EV centrality drops below (roughly) 0.05, with
changes whose value is obviously decreasing with the initial value (without self-
loops).

Figure 7 shows the relationship between the decrease in (normalized) EV
centrality when self-loops are considered and the value of intra-state traffic. In
general, the greater intra-state traffic, the bigger the difference in EV centrality.
This occurs in a scale that is totally different to that shown in Fig. 2, although it
is remarkable to note that changes go in the same direction, that is, a decrease in
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Table 5. Ranking of states in the US freight network according to EV centrality values,
with (right) or without (left) self-loops.

State EV State EV + self-loops

Texas 1.0000000 Texas 1.0000000
California 0.9908871 California 0.4624587
Illinois 0.8105954 Illinois 0.0518211
New York 0.7649173 Michigan 0.0508070
New Jersey 0.6937505 Louisiana 0.0472489
Pennsylvania 0.6931582 Florida 0.0350895
Ohio 0.6796268 Ohio 0.0347809
Michigan 0.6607562 New York 0.0340062
Indiana 0.5740545 Tennessee 0.0298025
Tennessee 0.5117970 Georgia 0.0286042

Fig. 6. Relationship between EV centrality with or without self-loops for the US freight
network.

EV centrality, and also in general a higher self-connection weight will imply less
change. This clearly indicates a correlation between the two measures, EV cen-
trality and intra-connection weight, but it is not clear if it is a causal relationship
or not, and discussing it is beyond the point of the paper.
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Fig. 7. Change in EV centrality vs. value of intra-state traffic.

4 Conclusions

The main research question we asked in the introduction was whether it was
worth the while to take into account self-loops whenever possible in the com-
putation of EV centrality. Using real-world networks, we have shown that, in
general, the answer is yes. In the case of the Venetian matrimonial network it
helps EV become a better predictor of the social status of the families involved,
and in the case of the US freight network highlights the differences between the
position in the network of states, boosting the difference between Texas, Cali-
fornia, Illinois and the rest of the states, and boosting Michigan and Louisiana
over New York and New Jersey given the importance of internal freight in these
two states, that is, the weight of self-connections (diagonal values in the connec-
tion matrix). In both cases, the differences are not only quantitative, but also
qualitative, as the ranking of the most important nodes changes when self-loops
are included.

The direction and quantity of those changes is very similar in both networks
examined. Complex networks reach a state that is the consequence of many
different internal and external processes, and in general, the same processes that
make a node in the network reach a high status will produce a high number of
internal connections, that is, self-loops with a high internal weight. This makes
the inclusion of self-loops increase the differences in status between high-ranked
members, but also produce changes in ranking that are more pronounced in the
case of mid-ranking members, as observed in the case of the Venetian marital
network.
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At any rate, the fact that we have observed very similar phenomena in two
very different networks (sparse and dense, directed and undirected, with a low
or high self-connection rate) probably indicates that the inclusion of self-loops
in EV computation has greater importance than it has traditionally been given,
and thus the recommendation to include self-loops in the computation of EV
centrality should hold in general.

A immediate future line of work would of course try to test combinations of
networks, possibly including synthetic ones, with different combinations of the
above mentioned properties to actually characterize when and if the inclusion of
self-loops is essential, merely interesting, or simply irrelevant. It can be argued
that whenever they appear in a dataset they should be used, but to the extent
that the physical interpretation of self-loops and how their data is collected
is fundamentally different from external connections, including them or not is
clearly an issue that should be researched and clarified in a case by case basis.

This probably indicates the need for inclusion of self-loops in other centrality
measures, such as page-rank or betweenness centrality, would help us understand
better social networks where those measurements explain better its dynamics;
however, this will need a modification of the algorithms used to compute them,
which is left as a future line of work. In order to be comprehensive, too, it
would be interesting to see the relationship between the slope of the model
shown in Fig. 1 and the relationship between the number of self-loops for all
actors involved. Finally, investigating other social networks with the same char-
acteristics would help us generalize these results and thus recommend to never
eliminate self-loops in the analysis of social networks where they exist.

The most important line of work, however, is to check against some exter-
nal measurement (number and importance of positions reached by a family, for
instance, in line with [21]) which version of the EV centrality would be a better
match, thus proving that self-loops/diagonal values in the connection matrix go
beyond mere mathematical artifacts to have a precise and grounded interpreta-
tion; once that is proved, it would pave the way to an extension of the employ-
ment of self-loops in some way in other centrality values such as betweenness
centrality.

Finally, we should note that this paper and the data used in it have been
developed following the principles of Agile science [13] and its development can be
observed in the repository https://github.com/JJ/redes-venecia together with
the data used in it, making it fully reproducible using the same software. It is of
course free software, and released under the terms of the GNU General Public
License v3.0.
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Abstract. The process of selecting subsets out of a sequence of events on
the grounds that told together they constitute an interesting narrative–
known as story sifting–has become a topic of interest due to its applica-
bility in video games that automatically develop large scale simulations
of story worlds. Existing approaches to story sifting operate by matching
subsequences of the available events onto patterns of plot considered to
be of interest. The present paper proposes a two stage approach that
combines a process of matching small strings of events connected by
common sense relations–such as asking someone on a date and having
them accept, or developing an attachment to someone who has given us
a present–and an evolutionary search procedure that explores combina-
tions of this type of paired events into longer sequences that constitute
small plot lines about romantic entanglement. This procedure is run over
the log of a multi-agent system that simulates a set of characters that
develop a set of affective affinities between them as a result of social
interactions of a romantic nature.

Keywords: narrative generation · multi-agent simulation · story
sifting · evolutionary procedure

1 Introduction

As the average person goes through their day, they witness a thousand small
events and take part in a further set of events. At any point during that time, if
called upon, they can very easily isolate a very concise subset of those events as
worth telling, and they can build the resulting selection into a story that seems
cohesive, makes sense, and appears to have a connecting thread that makes it
interesting. This is what any of us does when asked about our day, or what we
have been doing, or what is happening back where we came from. In computa-
tional terms, these tasks are far from trivial.
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In practical terms, these tasks involve a number of cognitive operations: (1)
identify relations between the events that have happened (usually of causality or
intention), (2) identify chains of relations between the events, (3) consider which
events in a given chain would be relevant to mention in an interesting story, and
(4) consider which chains of events, included together in a given story, give rise
to an interesting plot.

The specific challenge of identifying what may constitute an interesting plot
ultimately relies on the ability to model the reactions of a reader when reading
the corresponding story. The present paper brings together a number of prior
achievements in the computational modeling for plot and the dynamics of reading
the discourse for a story with an evolutionary algorithm that operates over the
set of events from a log for a simulation about social interactions between a set
of characters. These social interactions basically involve one character proposing
an activity to another character, who decides whether to accept the invitation
or not.

2 Previous Work

For the present paper, we will review previous work on social simulations as pos-
sible sources from which to extract narratives, story sifting solutions to select
story-worthy events from a set of facts, and narrative composition for telling
stories about facts that are already known rather than invented for the purpose.
Finally, efforts to model computationally the reaction of a reader to a given nar-
rative are reviewed in search of solutions that can provide means for quantifying
the relative merit of different candidate narratives.

2.1 Social Simulations as Sources for Narrative Renderings

A multi-agent system (MAS) consists of a set of software entities, the agents,
that are autonomous–they can make their own decisions—and interact with
their environment and among themselves in terms of cooperation, coordination,
negotiation or competition.

The work described in [12] presents a multi-agent planner system that is
capable of generating stories taking into account plot coherence and charac-
ter believability. A similar approach is used in the Sabre system [15] where a
centralized planner is used to generate the story. Comme il Faut (CiF) [7] is
a knowledge-based system that models the complex interplay between social
norms, character desires, cultural background, and social interactions. Based on
this information it can be used to support simulations of agents engaging in
social settings.

Charade [10] is a multi-agent simulation designed to express relations and
interactions between characters in a storyworld based on the existing affinities
between the characters, and to model the evolution of these affinities through
a given period of time. Based on the model of affinities between them, agents
propose activities to other agents, who accept or reject them. The result is a
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log of interactions and evolutions of affinity levels. An example of a fragment of
a log for the Charade system is shown in Table 1. These logs are subsequently
used to generate episodes within a narrative [1].

Table 1. An example of a fragment of the log generated by the Charade multi-agent
simulation system.

Megan PROPOSE friend_have_lunch Meredith
Lester PROPOSE friend_chat Robert
Suzette PROPOSE friend_chat Silvy
Betty PROPOSE friend_weekend_out Clark
Meredith PROPOSE mate_watch_tv Lester
Clark REJECT-PROPOSAL friend_weekend_out Betty
Lester REJECT-PROPOSAL mate_watch_tv Meredith
Meredith ACCEPT-PROPOSAL friend_have_lunch Megan
(...)

2.2 Story Sifting

Early work on computational creativity generated literary texts by selecting a
subset of lines from an extensive source file [11]. A refinement on this technique
that mines sequences of events corresponding to interesting stories from the logs
of agent-based simulations has become a line of research known as story sifting.
James Ryan’s PhD thesis [13] outlines how, rather than automatically inventing
stories, narrative may emerge from the activity of characters set in motion in
a simulated story world, and defines the task of curating such narratives out
of simulation logs as story sifting. The Felt story sifting and simulation engine
[6] introduced the concept of story sifting patterns, which are descriptions of
sequences of events that exhibit high potential to be part of interesting narra-
tives. This line of research lead to the development of Winnow [5], a domain-
specific language for specifying story sifting patterns that can be run on ongoing
simulations to identify event sequences with narrative potential.

2.3 Evolutionary Solutions for Exploring Search Spaces of Plot

Evolutionary solutions rely on fitness functions that measure the quality of the
final output with no consideration of how particular individuals might be con-
structed. This makes them particularly suitable to explore a search space of
narratives based on existing work analysing narrative as a product. Examples of
the use of evolutionary solutions to validate particular narratives in relation to
other candidate drafts are: [14] which relies on an evolutionary approach to iden-
tify optimal candidates from an initial population built using knowledge-based
heuristics, [4] which explores a search space of combination of plot templates
using metrics for story consistency from a semantic point of view, or [8] which
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identifies combinations of partially ordered graphs of events associated with par-
ticular entities to maximise story coherence and story interest.

Of particular relevance for the approach in this paper is the work of [3]
which applies an evolutionary search process to identify optimal combinations
of plot-relevant units of abstraction–called axes of interest–into narratives. The
axes of interest have free variables that need to be instantiated with particular
characters. The procedure involved separate processes for selecting a set of axes
of interest with unbounded variables for the roles of the characters, establishing
a relative ordering between them, and creating instantiations of the unbound
variables with characters for the story. The instantiations of these variables are
chosen to ensure meaningful connections across events in the story, both in terms
of causal relations between events and certain characters being involved in related
events. An adaptation of this process is used in this paper to sift stories from
simulation logs.

3 Evolutionary Story Sifting from the Log of a Simulation

The present paper operates on the log of events generated by the Charade multi-
agent simulation system [10] as described in Sect. 2.1. The set of events in the
log is read into a conceptual representation to allow further processing. For
the current prototype, the following types of events are considered: PROPOSE,
ACCEPT-PROPOSAL and REJECT-PROPOSAL.

3.1 Capturing Plot Relevant Connections in the Representation
Format

The present paper bases its approach to story sifting in the identification of
plot relevant connections between events in the log. To achieve this, a plot is
represented in terms of plot atoms, which are abstract descriptions of an event
(such as a character proposing an activity to another) that specify how the roles
specific to the plot atom (proposer, proposee) are related to the set of characters
in a given story. The causal connections between plot atoms in a story is captured
in our representation by the concept of axes of interest [2]. The axes of interest
being considered for the present prototype are shown in Table 2.

Axes of interest are used to parse the sequence of events in a log of the Cha-
rade system into subsets of events grouped together by virtue of being instantia-
tions of the plot atoms in a given AoI, appearing in the log in the correct relative
order and with the characters involved matching the constraints of the AoI in
terms of roles. Such subsets of events are referred to as plot projections. Each
plot projection shows the plot atoms in the axis of interest that it instantiates,
the set of assignments to the roles corresponding to the AoI, and the position in
the input discourse in which the corresponding plot atoms appear. An example
of the parse of a Charade log into a set of plot projections is shown in Table 3.
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Table 2. The two basic Axes of Interest employed by the system. Each axis of interest
defines the connection between a proposal event and either an acceptance or a rejection
of it, in terms of the co-instantiation of the variables involved (shown in bold in the
table).

Axis of Interest Activities Participating characters

ProposalAccepted ProposeActivity proposer = x, proposee = y
ActivityAccepted proposer = x, proposee = y

ProposalRejected ProposeActivity x, proposee = y
ActivityRejected x, proposee = y

Table 3. A example of a fragment of the parse of a Charade log into a set of plot
projections.

Plot Element Arguments Position

ProposeActivity [Betty, Clark, friend_weekend_out] 4
ProposedActivityRejected [Betty, Clark, friend_weekend_out] 6
(...)
ProposeActivity [Suzette, Silvy, friend_chat] 3
ProposedActivityAccepted [Suzette, Silvy, friend_chat] 11
(...)

3.2 Evolutionary Content Selection Based on Plot Projections

By selecting only events which are part of some plot projection we ensure that
the set of characters appearing is fairly coherent and the relative order in which
things happen makes some sense. To ensure full satisfaction we need to consider
a further filter that guarantees full connectivity between all the events present,
and which establishes some constraint on the relative order in which they appear.
So we need means to identify when a selection of plot projections makes sense
as a story. The present paper proposes the use of an evolutionary solution for
this task.

Our procedure for identifying interesting sub-sequences of events from a log
for the Charade system is defined as an adaptation of the solution by [3] described
in Sect. 2.3. Because our present tasks operates from an input–the log of the Cha-
rade system–that already established the set of events, their relative order, and
the characters that take part in them, most of the procedure needs to be defined
anew. However, we will retain the mechanisms for establishing the relative qual-
ity of a given story draft.

Since logs may run for long periods, the search space of all possible sub-
sequences of events that can be extracted from a log is very large. To focus on
output narratives of an acceptable length, the system takes as input an upper
bound on the number of events that can be selected out of a log to build a
narrative.
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The adapted evolutionary procedure is initialised with a genetic representa-
tion in the form of a numerical vector that encodes the choice of which of the
plot projections obtained from the parsing of the log to include in the story
draft under construction. All the other characteristics of the story come already
decided in the log, namely: relative order of events and assignment of characters
to play the roles in each one of them.

A population of individual drafts is created by random assignment of values
to this genetic representation. Values of 1 indicate the plot projection in the given
position is to be included in the story (gene activated), value of 0 indicates a plot
projection to be ommitted (gene deactivated). To focus on output narratives
of an acceptable length, the system constructs the initial population with a
combination of possible lengths. The upper bound on story size is set to 16. The
number of genes activated in the genetic representation vector must take this
value into account. Because all the axes of interest currently employed connect
a fixed number of two events, the number of activated genes is set to half the
desired story size. The set of story sizes explored is currently set to 6, 8, 10
and 12, which correspond to drafts with 3, 4, 5 and 6 projections. With each
projection involving two characters, three projections is the minimal set that
allows for interactions of at least two different types between two characters or
interactions between more than two characters. The upper bound of 12 is set
empirically to avoid too large drafts.

Mutation operators are defined so that they deactivate some gene in the
representation for every gene that they activate.

Cross-over operators are defined to select at random a point in the genetic
vector, divide the gene vector for two different drafts at that point, and combine
each initial half with the final half of the other draft.

Whereas the size for the story drafts is respected during mutation, cross-over
operators do sometimes result in drafts of different size, either shorter or longer.
For this reason, some restriction on draft size is required as part of the selection
process.

The population is evolved over a desired number of generations. The fitness
function applied is described in the following section.

3.3 Metrics on Story Draft Quality

The fitness function for the evolutionary procedure is based on metrics of three
types:

– metrics that restrict draft size to manageable proportions
– metrics that measure story cohesion
– metrics the measure character variety

Metrics to control draft length assign score of 100 to drafts under 16 events
in length, and 0 otherwise.

The approach in this paper assumes that story drafts will have a higher
quality if constraints of a certain type hold between the projections selected to
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appear in the draft. These constraints specify the relative position in which the
events in the selected plot projections appear in the overall sequence of the story
draft with respect to other events in which the same characters participate. To
provide quantitative measure of these aspects we rely on the measures of correct
sequencing of events, and acceptable occurrence of characters sharing roles across
AoIs proposed in [3]. For completeness, a brief summary is included here.

A given combination of AoIs, such as for instance Betty repeatedly proposing
activities to Clark in spite of his continued rejections, acquires value if the reader
can infer some kind of connections between the two AoIs involved by virtue of
the relative sequencing and the specific instantiation of the characters. In the
example shown, the interest of the particular combination in such a story draft
arises from the perseverance exhibited by Betty.

A set of metrics is defined to capture this type of constraints for each combi-
nation of AoIs for which relevant connections can be established. The metrics we
are considering now are driven by constraints of the type presented in Table 4.
In each case, an informative label has been added in the first column to iden-
tify the feature that justifies the interest. The full set of constraints includes
further types such as: RefugeSomewhereElse, ChangeOfTarget, HappyStreak,
ReturnInvite or CatchOnTheRebound.

Table 4. Example of constraints. For each entry, the first row describes role-sharing
constraints and the second row describes sequencing constraints.

Perseverance ProposalRejected ProposalRejected
proposer = proposer proposee = proposee

SuccessAfterFailure ProposalRejected ProposalAccepted
proposer = proposer proposee = proposee

HappyStreak ProposalAccepted ProposalAccepted
proposer = proposer proposee = proposee

Finally, a metric has been introduced that scores 100 to drafts that have
between 2 and 4 characters, 50 for drafts of 2 characters or characters above 4
but with less characters than the number of events in the draft, and 0 otherwise.
This compensates the tendency of the more demanding metrics on story cohesion
to force the drafts in the population towards stories with only two characters in
them, and focuses the results on stories about specific characters.

A number of combinations of these metrics have been tested to use as fitness
functions. They are discussed in the following section.

4 Discussion

The discussion includes a quantitative comparison with a number of baselines for
the fitness metrics and a qualitative discussion of relations with prior approaches.
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4.1 Comparative Evaluation

Any solutions provided by the system must be tested against some objective
function. Such an objective function should require that the draft tell a story
about a particular set of characters (the same set of characters recur throughout
the draft) and that all events in the draft be tied in to some other event in the
draft by some link of relevance.

These requirements allow us to establish some baselines for our fitness func-
tion. We consider the following alternatives for the fitness functions:

– percentage of projections in the draft that share at least one character with
some other

– percentage of projections in the draft that are connected by consistency con-
straints

– ratio of size of largest subset of projections completely connected together by
consistency constraints to overall number of projections

– ratio of size of largest subset of projections completely connected together
by consistency constraints to overall number of projections weighted with
percentage of applicable constraints that are actually satisfied

These metrics provide a progressive scoring, so that drafts where the sequenc-
ing constraints are not met are scored relative to how far they need to be modified
for the constraints to be met. This allows mutations that modify the sequence
in the right direction to be scored progressively higher, allowing evolution to
converge towards optimal solutions.

Table 5 shows results for different versions of the system, each configured to
run with a different fitness function. For each configuration the averages for a
set of 6 runs are presented. The features shown include: maximum score found
in population, number of generations required to converge to that top score,
minimum score found in population, number of generations required to converge
to that top score, length of draft in number of events, number of distinct char-
acters that appear in the draft, average of the number of times that characters
are mentioned.

The configuration of the evolutionary process was kept the same across the
runs: initial population of 20 individuals, evolution over 20 generations, selection
by accumulated fitness of a population of 20 for the next generation, and the
mutation and cross-over operators described in Sect. 3.2.

Table 5. Results for different metrics.

Metric Max conv Min conv Length Chars Slots/char

every aoi shares variable 100.0 2.0 100.0 10.7 10.0 4.0 5.0

every aoi in constraint 100.0 7.0 100.0 17.0 10.0 3.8 5.2

all aois connected by constraints 100.0 5.5 100.0 15.3 10.0 3.7 5.5

all aois connected by constraints (weighted) 100.0 5.0 100.0 15.8 10.0 3.3 5.7
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Several observations can be made from these results. Although all the fitness
functions produce populations that reach the top score, as the complexity of the
metrics increases, the number of generations required for the scores to converge
increases. The point of convergence for the minimum scores provides an indica-
tion of the relative difficulty involved in reaching the top score for all individuals
in the population. This is relevant because it guarantees a complete population
of quality drafts rather than a single one. The selection procedure guarantees
that all drafts in a population be genetically different, so all individuals with the
same score are valid alternative solutions. There is clearly a preferred size of 10
events per draft that apparently maximises all of these fitness functions. This is
understandable because it allows two pairs of characters, with two projections
connected together for each pair, and at least one additional projection to con-
nect one character from one pair to a character of the other. For larger drafts
it is probably much more difficult to find instances of projections in the simu-
lation that satisfy a sufficient number of constraints. The number of characters
progressively decreases, as the events in the drafts tend to focus on a smaller
set of characters that are the protagonists of the story. The average number of
appearances in the draft per character also increases for the more demanding
metrics.

In terms of efficiency, the system has been tested with various configurations
of the evolutionary parameters to identify the choice leading to best perfor-
mance. Table 6 shows best average scores over six runs with different values for
population size and number of generations, while all other parameters were kept
unchanged. These results show that the algorithm is sensitive to increase both
in the size of the population and the number of generations. They also show
that slightly higher gains in performance are obtained by the increase in the size
of the population. As the increase in number of generations carries a significant
overhead in increased execution times, we settle for a configuration of population
size of 20 and 30 generations.

Table 7 shows an example of system output expressed in terms of the inter-
nal representation format, together with the corresponding story rendered as
text automatically by the system using basic templates for each of the actions
involved. The evolutionary solution was run for 30 generations, with a population
size of 20 individuals. The final score for this draft is 100/100.
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Table 6. Best maximum and minimum scores (over 100) and execution times (in
milliseconds) averaged over 6 runs on the same log. Rows show number of generations
and columns show population size.

10 20 50

10 95.0 100.0 98.3
76.7 84.3 74.7
357.3 742.7 1049.7

20 100.0 100.0 100.0
95.0 96.7 100.0
743.8 1174.3 2660.8

30 100.0 100.0
98.3 100.0
984.2 2170.8

Table 7. Example of story draft obtained by story sifting from a Charade log followed
by the automated template-based rendering of the story

PR-0-ProposeActivity-100 friend_play_tennis/Mary/Silvy
PR-0-ProposedActivityRejected-101 friend _play _tennis/Mary/Silvy
PA-0-ProposeActivity-113 friend _go _out/John/Mary
PA-0-ProposedActivityAccepted-117 friend _go _out/John/Mary
PA-1-ProposeActivity-532 friend _play _tennis/Mary/Meredith
PA-1-ProposedActivityAccepted-533 friend _play _tennis/Mary/Meredith
PA-2-ProposeActivity-596 friend _serious _talk/Mary/Meredith
PA-2-ProposedActivityAccepted-597 friend _serious _talk/Mary/Meredith
PR-1-ProposeActivity-691 friend _day _out/Mary/Silvy
PR-1-ProposedActivityRejected-692 friend _day _out/Mary/Silvy
PR-2-ProposeActivity-752 friend _serious _talk/John/Mary
PR-2-ProposedActivityRejected-753 friend _serious _talk/John/Mary
Silvy proposes to Mary to play tennis as friends. Mary rejects Silvy’s invitation
to play tennis as friends. Mary proposes to John to go out as friends. John
accepts Mary’s invitation to go out as friends. Meredith proposes to Mary to play
tennis as friends. Mary accepts Meredith’s invitation to play tennis as friends.
Meredith proposes to Mary to serious talk as friends. Mary accepts Meredith’s
invitation to serious talk as friends. Silvy proposes to Mary to day out as friends.
Mary rejects Silvy’s invitation to day out as friends. Mary proposes to John to
serious talk as friends. John rejects Mary’s invitation to serious talk as friends.

This example has been selected on the basis of the perseverance of Silvy in
the face of Mary’s rejections, the decision of Mary to take refuge from Silvy in
John, the appearance of Meredith to support Mary, and John’s final change of
mind later in rejecting Mary’s proposals.
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In general terms, it is important to point out that the quality of the stories
that can be sifted out of a story log is constrained by the interest of the events
in the log used as input. A possible way of taking this into account would be to
develop an additional set of metrics to measure the interest of the events in the
whole log, and to consider that as a baseline in the sense that stories sifted from
the log cannot add interest other than by intelligent selection.

4.2 Relationship with Prior Work

The original work on the Charade simulation system [10] considered outputs
of the simulation in terms of threads for specific characters. That is, a pair of
related characters would be chosen, and an extract of all the events from the log
in which the two characters were involved would be considered. This provided a
span of events too long to be considered a real story. The original work explored
the possible interest of these spans in terms of the evolution of the affinity value
for relation between the chosen characters.

The Felt story sifting and simulation engine [6] used story sifting patterns
that allowed it to represent combinations of events such as a repetition of betray-
als, and parse a log to identify sequences of actions that matched them. The
patterns used by Felt are expressed in a linear logic programming language that
allows them to represent more complex combinations than those captured in the
constraints used here. These patterns allow the user to perform very detailed
searches. The solution proposed in this paper, combines a simpler set of con-
straints with the power of evolutionary approaches to search.

Now that Large Language Models (LLMs) are starting to be used to perform
tasks that were previously carried out using other techniques, we have also tried
to shed some light on their performance for story sifting [9]. We have tested
ChatGPT using different prompts in order for it to process the original log used
in this contribution and we found several limitations: it cannot use log files as
input and has a restricted capacity for input data during conversations; it tends
to forget instructions quickly, making it challenging to work with large amounts
of data; it also overlooks sequential inputs, focusing more on the latest batch of
information; when summarizing a set of events, ChatGPT’s response is limited
to a concise summary without the ability to select specific subsets based on
narrative qualities; ChatGPT tends to introduce its own content, which can make
it difficult to confine the output to the provided input data; ChatGPT’s criteria
for story sifting operations are unclear, generic, and challenging to influence for
obtaining results aligned with different criteria or specific domains. As a result,
our impression is that there is still room for improvement in relation to LLM-
based story sifting, and consequently there is still need to keep on using and
researching on other techniques for this task.

5 Conclusions

Story sifting has become an area of interest for its potential to automatically
develop narratives emerging from large-scale simulations of story worlds. In this
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paper, we have proposed a two-stage approach that combines matching small
strings of events connected by common sense relations with an evolutionary
search procedure to explore combinations of paired events into longer sequences
that form small plot lines about romantic entanglement. By running this proce-
dure over a multi-agent system that simulates characters and their social interac-
tions of a romantic nature, the resulting set of narrative plots show both coher-
ence and an interesting chaining of events. The order of events is maintained as
it was generated in the original simulation. Refinements on the mutation oper-
ators to allow for drafts of different sizes will be considered as further work.
To improve the set of proposed metrics, potential extensions to cover additional
features of the Charade system will also be explored. The consideration of affini-
ties between characters as a relevant aspect to the perceived quality of stories
will be explicitly examined. Furthermore, the process outlined in this paper for
generating stories can be combined with a method for producing multi-plotline
stories, as described in [4].
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Abstract. Weare investigating an attractionmechanism thatmodels interpersonal
relations such that an individual acts differently, and presumably more cooper-
atively, with those to whom it is attracted than with others. This is a generic
mechanism and the types of relations envisaged can range from regular physical
attraction to attachment of toddlers to caregivers. We have shown in the past that
the introduction of this attraction mechanism in an iterated prisoner’s dilemma
game yields higher average agent scores in tournaments within uniform or mixed
populations. In the present work, we show that this mechanism has an evolution-
ary advantage and that it can evolve in various ways (probability of attraction,
network of attraction). These results show that cooperation and social stability
can be enhanced by psychological mechanisms that are external to the game set-
ting but interfere with it and that these mechanisms may be further selected and
reinforced by evolution and catalyze cooperation. We further show that evolution
of attraction in the context of cooperation is possible in fairly small networks
of homogeneous agents with noise but not in networks of heterogeneous agents
without noise. This remark has interesting implications for the study of the origins
of human cognition.

Keywords: Cooperation · Evolution of cooperation · Tit for tat · Attraction

1 Introduction

Fromour everyday experience, we know that interpersonal relations influence our behav-
ior aswell as our understanding of theworld around us. Psychology has been traditionally
interested in the subject of ‘attraction’, where (dyadic) attraction indicates affect, as well
as its opposite ‘repulsion’ and their effect on attitude, for example whether behavioral
or personality similarity is a cause or an effect of attraction (starting from the pioneering
work of Byrne, for example [6, 7, 17, 25]). Psychology is also interested in the per-
sonality roots of attraction (for example [16]), in the relation of attraction with social
identity [12] and in other assorted issues. We use attraction in a broader sense that may
also include neonatal or toddler attachment [5, 18], friendship [13], habituation [8],
interpersonal commitment [4] and other such phenomena. All these phenomena have
in common that the effect of attraction is beneficial to the social interaction and to the
participating agents. Any mechanism of attraction, whether in the narrow or in the broad
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sense, will by definition be outside the realm of rational decision making, and it will
instead constitute a reactive component capable of responding fast and at low cognitive
cost to conditions of the social environment. This can be a very handy tool for human
behavior in hostile, harsh or stressful natural environments.

We use this idea and study its application to the classic cooperation problemmodeled
as an iterated prisoner’s dilemma (IPD, see next section) and its implications. We want
to show that if the mechanism is beneficial, then it can be selected by evolution. In that
case we start from the hypothesis that this mechanism can evolve in small groups of
mostly kin. This would make sense for the human evolution history of the distant past
and it could also provide an indication that attraction can be developed and reinforced
as a tool for young humans within a more modern family-and-friends environment.

The organization of the paper is as follows: in Sects. 2 and 3 we describe the basic
cooperation problem andwe introduce the attractionmechanism in presence of noise.We
also give indicative reference results in Sect. 4. In Sects. 5 to 7 we describe evolutionary
experiments with the attraction mechanism to show that it is favored by evolution. In
Sect. 8 we perform evolutionary experiments in more general societies but without noise
to simulate non-kin or adult environments and study the differences. We finally sum up
and discuss our findings in the last section.

2 General Cooperation Modeling

A major research theme in both theoretical biology and social science is the emergence
anddomination of cooperative behavior between selfish agents. The cooperation problem
states that each agent has a strong personal incentive to defect, while the joint best
behavior would be to cooperate. This problem is traditionally modeled as a special
two-party game, the Iterated Prisoner’s Dilemma (IPD).

At each cycle of a long interaction process, the agents play the Prisoner’s Dilemma.
Each of the two may either cooperate (C) or defect (D) and is assigned a score defined
as follows.

Agent Opponent Score

C C 3 (= Reward)

C D 0 (= Sucker)

D C 5 (= Temptation)

D D 1 (= Punishment)

The first notable behavior for the IPD designed and studied by Axelrod [1, 2] is the
Tit For Tat behavior (TFT, in short):

Start by cooperating,

From there on return the opponent’s previous move

This behavior has achieved the highest scores in early tournaments and has been
found to be fairly stable in ecological settings. TFT demonstrates three important
properties, shared by most high scoring behaviors in IPD experiments.
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• It is good (it starts by cooperating)
• It is retaliating (it returns the opponent’s defection)
• It is generous (it forgets the past if the defecting opponent cooperates again).

Further strategies include stochastic ones [19], the Pavlov or Win-Stay-Lose-Shift
strategy [20] that cooperates when it has played the same move as its opponent etc. In
the literature we may also find studies in an evolutionary perspective [10], theoretical or
applied biological studies [3, 9] and studies of modified IPD versions [21].

We adopt the noisy version of IPD in which there is a nonzero probability that an
agent’s action will be switched to the opposite, i.e. from COOPERATE to DEFECT
or vice versa. It has been shown that retaliating strategies such as TFT can score quite
badly in the presence of noise, despite their superiority in the non-noisy domain [14,
15]. This happens because even accidental defections may lead to a persistent series of
mutual defections by both players, thus breaking cooperation. The usual approach is to
introduce some degree of explicit generosity to account for opponent’s misbehaviors or
to attempt opponent modeling.

Our approach is based on the observation that an independent psychological or social
factor can allow agents in a society to cooperate fairly well despite noise and without
explicit opponent modeling or other intricate reasoning behavior. In our case, attraction
plays this role.

We are using the benchmark iterated prisoner’s dilemma (IPD) in its noisy version
as a study vehicle with a stronger bias toward defection, where we feel it could make
sense to introduce such an independent external attraction factor. More specifically, we
believe that biological evolution or, equivalently, social experience would spontaneously
exploit any such factor that would induce better agent scores. This is particularly true
for noisy environments where agent scores may degrade abruptly, and especially when
interactions are lengthier.

3 Attraction Modeling

We propose an attraction mechanism that relies on our everyday experience that people
tend to be good and cooperative with other people that attract them and tend to be
“regular” with the rest and reason about them. This translates in our model as:

If (attracted by the opponent) then play ALLC (always cooperate) with a
probability P.

In all other cases play as usual (for example, TFT)

The mechanism thus is defined as directed generosity toward selected others, the
ones that attract the individual in question. We should note that noise can also affect the
outcome of this behavior as well. The agents are interconnected via a “web of attraction”
where each agent carries a Boolean value showing whether it is connected to (attracted
by) a number of others. The normal “reasoned” behavior of an agent, when unaffected
by attraction, is usually one of ALLC, ALLD (always defect), TFT and Adaptive TFT
[22], but we have also experimented occasionally with others. In previous work [23, 24],
we performed tournament or spatial experiments with populations of agents playing a
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noisy IPD.We experimentedwith both uniform ormixed populations, whose agents have
the same or diverse normal strategies. The reason we use mostly ALLC, ALLD, TFT
and Adaptive TFT is that we want to make sure we explore the limits of our attraction
mechanism by studying its effect on the extreme behaviors (ALLC and ALLD that act
without feedback) aswell as on themost intelligent/high-scoringones (TFT that retaliates
immediately and Adaptive TFT that tries to make sense of a situation). Our results have
shown that the attraction mechanism yields higher average agent scores in tournaments
within uniform or mixed populations than if it were not present. Benefits are higher
for higher attraction factors, bigger populations or populations of “irrational” agents
(that do not retaliate or reason, such as ALLD). We have also studied the impact of the
attraction pairing type: reciprocal and exact (one to one) or statistical (and not necessarily
reciprocal). We have found that statistical (random) not necessarily reciprocal pairing
is the best, because even in the absence of reciprocity a rational agent can cooperate
consistently with a cooperating attracted, even if irrational or occasionally misbehaving,
opponent. InSects. 4 to 7weuseTFTagents in a noisy environment,whereas inSect. 8we
address general strategies (exemplified by ALLC, ALLD and TFT) in perfect non-noisy
environments.

Before proceeding to describe the experimental setup and the results obtained, we
should stress the fact that the attraction mechanism described is “irrational” in that it
does not depend on any real feedback of the agent. Our results then suggest that the
coupling of reasoning mechanisms with reactive ones (such as attraction, be it physical,
emotional, social or other) may be advantageous to social behavior and this is in line
with current trends in cognitive and social science.

4 Basic Reference Experiments

The parameters of the attraction mechanism are:

M Number of attracted agents

K Number of agents that an agent is attracted to

P Probability of spontaneous cooperation if attracted

We have run experiments to confirm that the size of the social attraction network
(M attracted agents of degree K, with K not necessarily uniform) and the value of
the probability P (again not necessarily uniform for all agents) have an impact on the
scope of cooperation: bigger network sizes and larger P values are expected to lead to
higher cooperation rates as evidenced by the corresponding scores. For all experiments
presented in this and the following sections, we give results that are averages of 50 runs.
In all cases we give averages and we have checked the standard deviations to make
sure that the differences are significant. One example is given in Table 3. Moreover, all
experiments are performed for three population sizes, 20, 50 and 100, but for presentation
conciseness we present these for size 20 only. In Sect. 8, however, we give comparative
results for the three sizes to assess homogeneous versus heterogeneous populations.
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In the reference experiments shown in Tables 1 and 2, we give average andmaximum
scores in societies of various network sizes and various values of P. Our results confirm
our expectations.

Table 1. Population size N = 20, all TFT, noisy IPD with noise = 0.1, random pairing, P = 1.
Average and maximum agent scores for several values of M and K. The score of an agent is the
sum of scores obtained against all agents including itself in IPD games lasting 200 rounds each.
All results are averages of 50 runs.

M K Avg. (max) score

No attraction 9145.8 (9396.16)

5 2 9250.74 (9594.12)

10 3 9446.04 (9903.46)

10 5 9659.86 (10198.4)

No noise, No attraction 12000

Table 2. Population size N = 20, all TFT, noisy IPD with noise = 0.1, random pairing, M = 10,
K = 5. Average and maximum agent scores for several values of P. All results are averages of 50
runs.

P Avg. (max) score

No attraction 9145.8 (9396.16)

0.1 9289.42 (9563.62)

0.3 9379.12 (9693.22)

0.5 9548.44 (9952.7)

0.7 9596.98 (10057.86)

0.9 9648.42 (10136.34)

1.0 9655.5 (10179.62)

No noise, No attraction 12000

These results suggest that an initial small attraction network and an initial small P
value may be reinforced by evolution, spread in the population and grow larger with
time.

5 Experiment 1: Network Evolution

In our first evolutionary experiment, we start with a small network (5 out of 20 agents
connected to two others each) and allow the society to evolve the network parameters.
Our evolutionary algorithm is very simple and is as follows:
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The half lowest ranking agents (in terms of score) adopt the network values of one of
the half highest ranking agents (randomly chosen): the Boolean value of using attraction
and the K value. Then with 10% probability these values are mutated (the Boolean value
is reversed and K is increased or decreased by a value from 1 to 5). The half highest
ranking agents mutate with 10% probability. This is a rather fast algorithm that can
boost a beneficial feature – attraction, in our case. The goal is not to be realistic but to
be illustrative and unravel the evolutionary tendencies. On the one hand, a mechanism
or feature, found under these conditions to spread and become associated with higher
fitness, is one that has good chances to evolve in realistic conditions. On the other hand,
a mechanism that gives no fitness improvement within this favorable setup is close to
impossible to spread and is thus candidate for extinction.

Table 3. Population size N = 20, all TFT, noisy IPD with noise = 0.1, random pairing, P = 1.
Evolution of network (M,K) for 100 generations. Average and maximum agent K, M and scores
every 10 generations. All results are averages of 50 runs.1

t M Avg. (max) K Avg. (max) score

No attraction 9145.8 (9396.16)

1 5 2 9461.694 (9909.74)

5 14.86 3.058 (5.92) 9622.145 (10090.88)

10 16.76 5.66 (9.18) 10048.459 (10581.88)

20 17.26 10.705 (14.6) 10713.117 (11190.52)

30 16.24 14.299 (17.56) 11001.352 (11392.6)

40 15.64 16.877 (19.3) 11153.94 (11447.64)

50 15.26 17.52 (19.64) 11167.35 (11454.2)

60 15.04 17.9 (19.88) 11176.523 (11474.12)

70 15.0 18.057 (19.9) 11176.599 (11473.26)

80 15.0 17.766 (19.92) 11177.588 (11463.74)

90 15.34 18.165 (19.88) 11226.472 (11501.92)

100 15.2 18.404 (19.92) 11224.075 (11502.64)

No noise, No attraction 12000

The results given in Table 3 show that there is significant improvement in cooperation
scores that are obtained with higher values for M and K, i.e., with larger networks,
despite the expected fluctuations that are due to the presence of noise in the IPD game
implementation.

1 Note that the standard deviations for M, avg. K and avg. Score at generation 100 are 2.66,
1.183 and 210.672, respectively. The averages at generation 100 are therefore many standard
deviations away from the averages at generation 0, therefore the results are significant in the
long term, despite the very common occasional fluctuations inherent in all evolutionary systems.
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For example, in one sample run the number of attraction connections for the 11
connected agents in the 100th generation are { 15 18 19 19 20 20 20 20 20 20 20}, which
means that half the agents are extremely and even fully attracted by others and these
allow cooperation to be reciprocated and persist in the population.

6 Experiment 2: P Evolution

In our second evolutionary experiment, we start with a fair-sized network (10 out of 20
agents connected to five others each, that is a little smaller network than the ones that
evolve in the previous section) and a small uniform P (0.1). Again we allow the society
to evolve its P. Our evolutionary algorithm is analogous to the previous one and is as
follows:

The half lowest ranking agents (in terms of score) adopt the P value of one of the half
highest ranking agents (randomly chosen). Then with 10% probability P is mutated to a
new value from 0.1 to 1. The half highest ranking agents mutate with 10% probability.

Table 4. Population size N = 20, all TFT, noisy IPD with noise = 0.1, random pairing, M = 10,
K = 5. Evolution of P for 100 generations. Average and maximum agent P and scores every 10
generations. All results are averages of 50 runs.

t Avg. (max) P Avg. (max) score

No attraction 9145.8 (9396.16)

1 0.1 9287.824 (9546.58)

5 0.328 (0.798) 9411.715 (9773.4)

10 0.581 (0.889) 9536.594 (9979.6)

20 0.71 (0.918) 9595.705 (10030.54)

30 0.704 (0.919) 9605.668 (10081.46)

40 0.699 (0.911) 9590.619 (10052.16)

50 0.692 (0.914) 9585.341 (10054.66)

60 0.697 (0.91) 9581.958 (10029.76)

70 0.68 (0.917) 9580.692 (10040.9)

80 0.699 (0.906) 9583.98 (10073.88)

90 0.689 (0.914) 9580.329 (10011.82)

100 0.7 (0.901) 9596.035 (10036.86)

No noise, No attraction 12000

The results given in Table 4 show that, as with the network size, there is signif-
icant improvement in cooperation scores that are obtained with higher values for P,
despite the expected fluctuations that are due to the presence of noise in the IPD game
implementation.
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For example, in one sample run the exact values of P differ for each of the 10
connected agents in the 100th generation: {0.884 0.953 0.953 0.953 0.953 0.953 0.953
0.953 0.953 0.953}. Again, all connected agents are extremely generous (all but one
have inherited the same high-functioning P value of 0.953 and the last one has also a
high P value of 0.884), which allows cooperation to be reciprocated and persist in the
population.

7 Experiment 3: Simultaneous Network and P Evolution

In our third evolutionary experiment, we start both with a small network (5 out of 20
agents connected to two others each) and a small uniform P (0.1). We allow the society
to evolve both its the network parameters and the agents’ P. Our evolutionary algorithm
is a combination of the two previous ones:

The half lowest ranking agents adopt the network values and the P value of one of the
half highest ranking agents (randomly chosen). Then with 10% probability these values
are mutated. The half highest ranking agents only mutate with 10% probability.

Table 5. Population size N = 20, all TFT, noisy IPD with noise = 0.1, random pairing, initially
M = 5, K = 2, P = 0.1. Evolution of network (M,K) and P for 100 generations. Average and
maximum agent M, K, P and scores every 10 generations. All results are averages of 50 runs.

t M Avg. K (Max. K) Avg. P (Max. P) Avg. (max) score

No attraction 9145.8 (9396.16)

1 5 2 0.1 9237.501 (9516.02)

5 14.32 2.746 (5.18) 0.289 (0.775) 9332.547 (9696.56)

10 15.94 4.953 (8.84) 0.55 (0.88) 9755.001 (10215.06)

20 16.82 10.524 (14.32) 0.681 (0.897) 10465.772 (10900.72)

30 17.0 14.398 (17.64) 0.638 (0.867) 10798.493 (11150.22)

40 17.18 16.865 (18.66) 0.555 (0.821) 10912.584 (11139.28)

50 16.54 18.001 (19.64) 0.532 (0.815) 10924.817 (11137.96)

60 16.92 18.594 (19.86) 0.489 (0.845) 10934.755 (11138.98)

70 17.48 18.974 (19.92) 0.474 (0.794) 10977.707 (11152.98)

80 16.72 19.105 (20.0) 0.462 (0.782) 10926.982 (11108.38)

90 16.72 19.031 (19.98) 0.492 (0.764) 10971.013 (11162.6)

100 16.78 19.194 (20.0) 0.487 (0.752) 10970.073 (11159.2)

No noise, No attraction 12000

The results given in Table 5 show that, as with network size only, there is significant
improvement in cooperation scores that are obtained with larger networks and higher
(but not overly high) values for P, despite the expected fluctuations that are due to the
presence of noise in the IPD game implementation.
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For example, in a sample evolutionary run, the number of attraction connections and
the values of P for the 17 connected agents in the 100th generation are:

{16 16 17 17 17 18 18 18 18 18 20 20 20 20 20 20 20}.
{0.324 0.471 0.591 0.591 0.82 0.324 0.324 0.471 0.471 0.471 0.471 0.311 0.311

0.471 0.471 0.471 0.471}.
We observe a persistent agent pattern, that is apparently the result of evolutionary

selection. In our example, almost all agents (17 of 20) are highly connected (16 to 20
connections) but moderately generous (with one exception of a single 0.82 all Ps are
from 0.311 to 0.591), which allows cooperation to be reciprocated and persist in the
population. It is noteworthy that when the evolution can act on both network size and
P, different kinds of networks evolve, namely almost fully connected networks with
moderate P values and this allows the total cooperation score to be closer to the level
of the score of evolutionary experiment 1, which evolved slightly fewer numbers of
slightly less connected agents but with full attraction. The solution found by evolution
when all M, K and P coevolve simultaneously is better and more robust for individual
agents because none may be exploited consistently (as is the case of an almost fully
cooperative agent attracted to almost everyone else) and hence abrupt societal changes
may be absorbed without score collapse.

We have also performed experiments with onlyM and P evolving (andK fixed across
generations) as well as with K and P evolving (and M fixed across generations). The
results are given in the following Tables 6 and 7 and confirm our former conclusion,
namely that attraction evolves and gives fitness improvements. They also show that the
connectivity K is a more crucial parameter than either of M and P, because when this is
not allowed to evolve (Table 6), the population achieves lower scores.

Table 6. Population size N = 20, all TFT, noisy IPD with noise = 0.1, random pairing, K = 5.
Evolution of M and P for 100 generations. Average and maximum agent M and P and scores every
10 generations. All results are averages of 50 runs.

t M Avg. (max) P Avg. (max) score

No attraction 9145.8 (9396.16)

1 10 0.1 9375.089 (9658.06)

5 16.42 0.34 (0.827) 9605.445 (10029.78)

10 16.84 0.598 (0.853) 9799.91 (10257.66)

20 16.06 0.67 (0.896) 9821.412 (10284.86)

30 16.24 0.674 (0.905) 9825.571 (10293.98)

40 16.9 0.677 (0.9) 9864.398 (10365.24)

50 16.76 0.682 (0.91) 9853.775 (10333.18)

60 17.04 0.693 (0.918) 9874.357 (10365.34)

70 16.5 0.699 (0.909) 9842.819 (10339.74)

(continued)
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Table 6. (continued)

t M Avg. (max) P Avg. (max) score

80 16.6 0.691 (0.923) 9849.722 (10315.92)

90 16.76 0.69 (0.906) 9851.968 (10310.9)

100 16.78 0.705 (0.912) 9859.323 (10341.28)

No noise, No attraction 12000

Table 7. Population size N = 20, all TFT, noisy IPD with noise = 0.1, random pairing, M =
10. Evolution of P for 100 generations. Average and maximum agent K, P and scores every 10
generations. All results are averages of 50 runs.

t K Avg. (max) P Avg. (max) score

No attraction 9145.8 (9396.16)

1 5 0.1 9279.639 (9536.94)

5 5.426 (8.14) 0.332 (0.782) 9441.607 (9852.0)

10 6.764 (10.78) 0.559 (0.853) 9664.798 (10182.6)

20 11.304 (14.74) 0.652 (0.883) 10054.296 (10573.72)

30 14.132 (17.66) 0.669 (0.927) 10270.617 (10780.88)

40 16.182 (19.02) 0.666 (0.931) 10402.984 (10860.08)

50 17.356 (19.6) 0.647 (0.915) 10457.033 (10901.78)

60 18.112 (19.86) 0.656 (0.937) 10521.699 (10940.48)

70 18.19 (19.96) 0.646 (0.931) 10502.413 (10929.04)

80 18.32 (20.0) 0.637 (0.929) 10512.312 (10926.36)

90 18.342 (20.0) 0.614 (0.929) 10488.661 (10910.0)

100 18.322 (20.0) 0.618 (0.93) 10489.852 (10910.42)

No noise, No attraction 12000

We note that in a social developmental, rather than an evolutionary context, where
subsequent generations correspond to actually the same generation in different points
in life time as the population develops, it might make sense for some people to be
M-P developing, or K-P developing or P-only and so on. This aligns with different
personalities that may be present in the population. For example, a shy individual may
not develop new social trust connections (thus maintain a fixed K) but may enhance
significantly its current connections (thus develop its P).
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8 Experiment 4: General Strategies and Sizes

In our last series of evolutionary experiments, we compare the three above settings
(network MK evolution, P evolution, simultaneous network MK and P evolution) for
TFT agents in presence of noise or for mixes of general strategies in various population
sizes (N = 20,50,100). For each case we compare start performance (at generation-
1) with final performance (at generation-100) for uniform TFT population with noise
and mixed population without noise (Tables 8, 9 and 10). The consistent finding across
population sizes and evolution types is that attraction gives significant performance
advantage in the case of a uniform TFT population but gives minor to no performance
advantage for mixed populations. Also as seen before, P evolution alone is of little
benefit. Attraction evolves easily in the case of a TFT population with noise, as shown
by the final high values for M, K and P in generation-100. But attraction hardly evolves
in the case of mixed populations without noise, as shown by the final values forM, K and
P in generation-100 that are very low compared to their TFT counterparts and sometimes
lower than their initial values (for example, K ends up lower than at start for network
evolution if N= 50 or N= 100). Given that the evolutionary algorithm boosts attraction,
these results show that attraction can evolve for small populations of TFT agents, which
is typical of prehistoric settlements or extended families, but not for high populations of
arbitrary strategies, which is typical of more complex, advanced societies.

Table 8. Comparative results for population sizes N= 20, 50, 100. (Left) All TFT, noisy IPDwith
noise = 0.1, random pairing. (Right) Mixes of ALLC-ALLD-TFT (distributions given), regular
IPD without noise, random pairing. MK evolution. All results are averages of 50 runs.

t M Avg. (max) K Avg. (max)
score

M Avg. (max) K Avg. (max)
score

N = 20, P = 1,
No attraction

9145.8
(9396.16)

N = 20 (5-5-10), P = 1,
No attraction

9265.0
(9990)

1 5 2 9461.694
(9909.74)

5 2 9441.182
(10436.44)

100 15.2 18.404 (19.92) 11224.075
(11502.64)

7.52 2.98 (6.56) 9499.688
(10383.08)

N = 50, P = 1,
No attraction

22849.96
(23344.62)

N = 50 (10-10-30), P = 1,
No attraction

24036.0
(25980)

1 15 5 23654.38
(24467.92)

15 5 24278.716
(26575.08)

(continued)
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Table 8. (continued)

t M Avg. (max) K Avg. (max)
score

M Avg. (max) K Avg. (max)
score

100 38.26 43.904 (49.3) 27992.72
(28548.64)

12.46 3.811 (11.58) 24197.12
(26398.08)

N = 100, P = 1,
No attraction

45705.44
(46443.06)

N = 100 (15-15-70), P = 1,
No attraction

50313.0
(53970)

1 20 5 46651.674
(47792.66)

20 5 50538.419
(54609.48)

100 87.78 63.438 (72.4) 54908.35
(56217.6)

26.62 3.018 (12.08) 50438.813
(54468.48)

Table 9. Comparative results for population sizes N= 20, 50, 100. (Left) All TFT, noisy IPDwith
noise = 0.1, random pairing. (Right) Mixes of ALLC-ALLD-TFT (distributions given), regular
IPD without noise, random pairing. P evolution. All results are averages of 50 runs.

t Avg. (max) P Avg. (max)
score

Avg. (max) P Avg. (max)
score

N = 20, M = 10, K = 5,
No attraction

9145.8
(9396.16)

N = 20 (5-5-10)M = 10 K = 5,
No attraction

9265.0
(9990)

1 0.1 9287.824
(9546.58)

0.1 9336.519
(10096.62)

100 0.7 (0.901) 9596.035
(10036.86)

0.498 (0.845) 9592.444
(10497.04)

N = 50, M = 20, K = 5
No attraction

22849.96
(23344.62)

N = 50 (10-10-30)M = 20, K = 5,
No attraction

24036.0
(25980)

1 0.1 22977.054
(23502.98)

0.1 24084.524
(26092.44)

100 0.698 (0.952) 23218.486
(23926.38)

0.477 (0.913) 24246.936
(26508.82)

N = 100, M = 40, K = 20
No attraction

45705.44
(46443.06)

N = 100 (15-15-70), M = 40, K = 20,
No attraction

50313.0
(53970)

1 0.1 46179.187
(47097.14)

0.1 50468.44
(54180.84)

100 0.672 (0.984) 47163.324
(48691.68)

0.438 (0.952) 50932.75
(54830.76)
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Table 10. Comparative results for population sizes N = 20, 50, 100. (Left) All TFT, noisy IPD
with noise = 0.1, random pairing. (Right) Mixes of ALLC-ALLD-TFT (distributions given),
regular IPD without noise, random pairing. MK and P evolution. All results are averages of 50
runs.

t M Avg.
(max) K

Avg.
(max) P

Avg. (max)
score

M Avg. (max) K Avg.
(max) P

Avg. (max)
score

N = 20,
No attraction

9145.8
(9396.16)

N = 20 (5-5-10)
No attraction

9265.0
(9990)

1 5 2 0.1 9237.501
(9516.02)

5 2 0.1 9289.587
(10054.66)

100 16.78 19.194
(20)

0.487
(0.752)

10970.073
11159.2)

8.98 4.161 (9.02) 0.514
(0.814)

9479.14
(10296.96)

N = 50,
No attraction

22849.96
(23344.62)

N = 50 (10-10-30)
No attraction

24036.0
(25980)

1 15 5 0.1 23108.602
(23613.52)

15 5 0.1 24065.026
(26066.3)

100 43.14 47.046
(49.8)

0.471
(0.891)

27426.004
(27782.26)

12.32 3.039 (9.6) 0.529
(0.887)

24096.846
(26255.54)

N = 100,
No attraction

45779.39
(46466)

N = 100 (15-15-70)
No attraction

50313.0
(53970)

1 20 5 0.1 45970.783
(46782.32)

20 5 0.1 50340.196
(54075.22)

100 88.66 62.492
(71.62)

0.714
(0.977)

53959.469
(55229.7)

27 3.101 (12.48) 0.541
(0.956)

50393.435
(54360.84)

9 Discussion

We have presented a simple attraction mechanism that influences social behavior and
is applied to the Iterated Prisoner’s Dilemma model of cooperative behavior. We show
that this mechanism has an evolutionary advantage and we demonstrate how it can
be selected in societies of agents playing a noisy IPD. Each agent is connected in an
attraction network with other agents. In this setting, evolution favors bigger attraction
networks and bigger attraction influence. Finally, themechanism appears to be evolvable
for societies of TFT agentswith noise, which represent small groups of kin, or for another
reason inter-committed individuals, in harsh environments, that is in presence of noise.
But attraction appears very difficult and even impossible to evolve in groups of general
not necessarily cooperative behaviors, which is more akin to bigger, more complex
societies.
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Further issues may be studied in the future. Firstly, although the advantage is clear,
it is not obvious where attraction originates from. It is possible that it evolves indepen-
dently for some other reason, and it is subsequently exploited and “recruited” during
a cooperative/conflictual exchange. Secondly, attraction may be a serious candidate as
a facilitator of further social evolution, such as for example for evolution of pure gen-
erosity and relevant norms. Another question concerns the relation of attraction (and
other such reactive mechanisms) to reasoning and rationality. One idea is that everyday
reciprocal reasoning could emerge from the interaction of attraction and social imitation.
Thus simple attraction in smaller societies may be a step in the pathway to large-scale
ultra-sociality [11] of human societies. Overall, the potential and repercussions of spon-
taneous, not reasoned, behaviors such as the ones emerging by attraction are significant
for understanding the evolution of human cognition.
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