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Abstract 

During their operation, modern aircraft engine components are subjected to increasingly demanding operating conditions, 
especially the high pressure turbine (HPT) blades. Such conditions cause these parts to undergo different types of time-dependent 
degradation, one of which is creep. A model using the finite element method (FEM) was developed, in order to be able to predict 
the creep behaviour of HPT blades. Flight data records (FDR) for a specific aircraft, provided by a commercial aviation 
company, were used to obtain thermal and mechanical data for three different flight cycles. In order to create the 3D model 
needed for the FEM analysis, a HPT blade scrap was scanned, and its chemical composition and material properties were 
obtained. The data that was gathered was fed into the FEM model and different simulations were run, first with a simplified 3D 
rectangular block shape, in order to better establish the model, and then with the real 3D mesh obtained from the blade scrap. The 
overall expected behaviour in terms of displacement was observed, in particular at the trailing edge of the blade. Therefore such a 
model can be useful in the goal of predicting turbine blade life, given a set of FDR data. 
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Abstract 

Finite element modeling has become common practice for assessing the structural health of historic constructions. However, 
because of the uncertainties typically affecting our knowledge of the geometrical dimensions, material properties and boundary 
conditions, numerical models can fail to predict the static and dynamic behavior of such structures. In order to achieve more 
reliable predictions, important information can be obtained measuring the structural response under ambient vibrations. This 
wholly non-destructive technique allows obtaining very accurate information on the structure’s dynamic properties (Brincker and 
Ventura (2015)). Moreover, when experimental data is coupled with a finite element model, an estimate of the boundary 
conditions and the mechanical properties of the constituent materials can also be obtained via model updating procedures. 
This work presents two different model updating procedures. The first relies on construction of local parametric reduced-order 
models embedded in a trust region scheme to minimize the distance between the natural frequencies experimentally determined 
and the corresponding numerically evaluated ones (Girardi et al. (2018)). The second has been developed within a Bayesian 
statistical framework and uses both frequencies and mode shapes (Yuen (2015)). Both algorithms are used in conjunction with 
the NOSA-ITACA code for calculation of the eigenfrequencies and eigenvectors. These procedures are illustrated in the case 
study of the medieval Maddalena Bridge in Borgo a Mozzano (Italy). Experimental data, frequencies and mode shapes, acquired 
in 2015 (Azzara et al. (2017)) have enabled calibration of the bridge’s constituent materials and boundary conditions. 
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1. Introduction 

Finite element model updating aims to estimate some unknown system properties on the basis of the system’s 
behaviour observed during experimental tests. First developed for aerospace and mechanical engineering during the 
eighties (see Friswell and Mottershead (2013), Marwala, (2010) for a review), this procedure has been widely 
exploited in civil engineering, where it is generally applied to existing structures to obtain estimates of unknown 
material mechanical properties (Douglas and Reid (1982)) or for damage detection purposes (Rytter (1993)). It 
makes use of the results of vibration measurement campaigns. Applications to architectural heritage are more recent  
(see Gentile and Saisi, (2007), Ramos et al. (2011), Altunişik et al. (2018)) and rely on the recent extraordinary 
advancement of both sensor and computational technologies, which allow measuring very low-amplitude vibrations 
– such as the ambient vibrations of massive masonry structures - and managing very large numerical models. In this 
field, finite element model updating represents an important non-destructive tool which enables researchers and 
professionals to improve their knowledge of structures and provide estimates of their structural health.  

In the present paper, two model updating procedures, the former using a deterministic approach, the latter 
developed in a Bayesian framework, are applied to the Maddalena Bridge in Borgo a Mozzano (Italy). For 
calculation of the eigenfrequencies and eigenvectors both procedures rely on the NOSA-ITACA code 
(www.nositaca.it), a free finite element solver specifically developed for the structural analysis of ancient masonry 
buildings. In Azzara et al. (2017) a first attempt to update some parameters of the finite element model of the 
Maddalena Bridge was performed via the NOSA-ITACA code by matching experimental frequencies and mode 
shapes. In this work the two procedures have been applied to the Maddalena Bridge using the same experimental 
data processed in Azzara et al. (2016), Azzara et al. (2017). 

2. The Maddalena Bridge 

Also known as the Devil’s Bridge, this famous, fascinating structure dating back to around the 11th century is the 
only one now remaining of the numerous bridges which once spanned the Serchio River (Fig. 1(a)). The total length 
of the bridge is about one hundred meter. The main arch of 38 m in span is just one meter high at the key, with a 
perfectly circular intrados profile and springs from the rock which forms the riverbed. The transverse section of the 
bridge ranges between 3.5 m and 3.7 m. The three piers in the riverbed have a peculiar raking form on the upstream 
side, while on the downstream side the pier between the second and third arches has been reinforced with a 
trapezoidal buttress. Currently several lines of communication run close by the bridge: in addition to the railway, 
two heavily trafficked thoroughfares stretch along both sides of the banks of the Serchio River and transmit road 
vibrations to the old bridge’s structure.  

 

        

Fig. 1. (a) The Maddalena Bridge from the nearby railway; (b) Finite element model of the Maddalena Bridge. 

In June 2015 an experimental campaign was conducted to measure the ambient vibrations acting on the bridge. 
To this purpose four SARA three-axial seismic stations were used, arranged in different layouts over the bridge 
during five tests (Azzara et al. (2017)). Table 1 reports the values of the first six natural frequencies of the bridge 
obtained from the experimental data via the Stochastic Subspace Identification method (implemented in Reynders et 
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Fig. 1. (a) The Maddalena Bridge from the nearby railway; (b) Finite element model of the Maddalena Bridge. 

In June 2015 an experimental campaign was conducted to measure the ambient vibrations acting on the bridge. 
To this purpose four SARA three-axial seismic stations were used, arranged in different layouts over the bridge 
during five tests (Azzara et al. (2017)). Table 1 reports the values of the first six natural frequencies of the bridge 
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al. (2014)) and averaged over the five tests. The corresponding experimental mode shapes were also extracted from 
the data and are reported in Azzara et al. (2017). 

     Table 1. Experimental values of the natural frequencies of the Maddalena bridge from Azzara et al. (2016). 

 Exp. freq. [Hz] 
 

Mode shape 1 3.37 

Mode shape 2 5.06  

Mode shape 3 5.40 

Mode shape 4 7.06 

Mode shape 5 8.80 

Mode shape 6 9.19 

3. Model parameter estimation through optimization: a deterministic approach  

The model calibration procedure reported in Azzara et al. 2017 was performed by running the code for different 
values of the mechanical properties of the constituent materials and the soil supporting the bridge’s piers to achieve a 
matching between numerical and experimental values of the bridge’s dynamic characteristics. In the present paper a 
new algorithm is instead presented; it relies on construction of local parametric reduced-order models embedded in a 
trust region scheme to minimize the discrepancy between numerical and experimental frequencies. The algorithm 
has been coupled with the NOSA-ITACA code to calculate the eigenfrequencies of the finite-element model. The 
resulting procedure, which is completely automatic, turns out to be very efficient and reduces both the total 
computation time of the numerical process and user effort. The following provides a brief description of the 
proposed algorithm, which is described in detail in Girardi et al. (2018). 

The model updating problem can be reformulated as an optimization problem by assuming that the stiffness and 
mass matrices K and M are functions of a parameter vector 1 lx x=x ( , ..., )  containing the geometrical data and 
material properties values. We use the notation 

=K K(x),         =M M(x),         lx , , nxnK M ,  (1) 

where n  is the number of degrees of freedom of the FE model. The set of valid choices for the parameters is 
denoted by  . Within this framework, we assume that the set  is an l -dimensional box, that is 

1 1 2 2[ , ] [ , ] ... [ , ],l la b a b a b=       (2) 

for certain values i ia b , 1...i l= .  
Our ultimate aim is to determine the optimal value of x that minimizes a certain cost functional (x)  within the 

box  : 

x
min ( )


x    (3) 

The choice of the objective function (x) is related to the frequencies that we wish to match. If we need to match 
s  frequencies of the model, we choose a suitable weight vector w 1[ ,..., ]sw w= , with 0iw  , and define the 
functional (x)  as follows: 

(x)
2

w,2

( , )
2

s


= −

Λ K M
f ,   (4) 
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where f  is the vector of the measured frequencies and s ( , )Λ KM  the one containing the smallest s  eigenvalues of 
the system, ordered according to their magnitude; the norm is defined as w,2

diag( )T=y y w y .

 The vector w encodes the weight that should be given to each frequency in the optimization scheme. If the goal is to 
minimize the distance between the vectors of the measured and the computed frequencies in the usual Euclidean 
norm, then s=w 1 , and the vector of all ones should be chosen. If, instead, relative accuracy on the frequencies is 
desired, 1

i iw f −= is a natural choice. If some frequencies need to be ignored, we can set the corresponding 

component of w to zero. To avoid scaling issues, the weight vector is always normalized in order to have 
2

1=w . 

When the FE model is very large, model reduction techniques have to be used in order to decrease its size to a 
more manageable order. If, as in equation (1), the model depends on the parameters x, obtaining an accurate reduced 
parametric model that reflects the behavior of the original one for all possible parameter values is not a trivial 
matter. To this end, an efficient Lanczos-based projection strategy tailored to the needs of the FE analysis of 
engineering structures has been implemented (Girardi et al, 2018). By modifying the Lanczos projection used to 
compute the structure’s first eigenvalues (and corresponding eigenvectors), we obtain local parametric reduced-
order models that, embedded in a trust region scheme, are the basis for an efficient algorithm that minimizes the 
objective function (4). 

The new procedure is applied here to the finite element model of the Maddalena Bridge (Fig. 1(b)). We update 
three parameters, the Young’s modulus E and the mass density   of the material constituting the bridge’s structure 
(assumed to be homogeneous), and the stiffness sk of the soil under the right abutment of the main arch. The 
remaining piers are assumed to be instead restrained from any displacements. As revealed by the numerical tests, the 
model seems to be quite insensitive to changes in the material Poisson’s ratio, which was then set at 0.16. With 
regard to the masonry constituting the bridge’s parapets, changes in its mechanical properties do not significantly 
affect the first natural frequencies (mode shapes involving the parapets’ movements have been detected at about 17 
Hz), which have therefore been fixed at 3800MPaE =  and 32000kg/m = , as per Azzara et al (2017).  

The parameters are allowed to vary within the intervals 

4000MPa 7200MPaE  , 3 31600kg/m 2200kg/m ,   
9 3 11 31.9 10 N /m 2.9 10 N /msk     

and the objective function built with 1
i iw f −= . 

The total computation time was 534 s, including the time for assembly of the parametric model as well as the 
optimization steps. The experiments have been performed on a server with an i7-920 CPU running at 2.67 GHz and 
18GB of RAM. The starting components used for the parameters vector are 5000MPaE = , 32100kg/m , = and 

10 32.1 10 N /msk =  , which represent the mean values of the prior distributions utilized for the Bayesian updating 
(Table 2). 

Moreover, as the frequencies remain almost unchanged when the ratio E/ is kept constant, the Jacobian in the 
optimization method might be badly conditioned. In order to overcome this problem, standard regularization 
procedures have been employed (Wright and Nocedal, 1999). This made the method robust to the presence of noise 
in the data. The optimal parameters found through this approach are 

6889MPaE = , 31845 kg/ m , =   10 31.929 10 N/msk =   

These values of the parameters substantially coincide with those found in Azzara et al. (2017), which pointed out 
that the high resulting value of the homogenized Young’s modulus can be regarded as an initial, dynamic value of 
the high quality masonry making up the Maddalena bridge. The value of sk  corresponds to a very compact cohesive 
soil or a very dense sand, while the remaining part of the bridge lies on rock.  

Fig. 2a shows the objective function ( ) x  versus E and sk , evaluated for 1
i iw f −= . The chosen solution, which 

is plotted in the figure, represents the absolute minimum of ( ) x  in  . Fig. 2b instead shows a section of ( ) x  
passing through the function’s minimum point. Finally, Fig. 3 shows, on the left, the convergence of the objective 
function to the minimum for each iteration corresponding to a new reduced model (dashed line is the tolerance), and 
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diag( )T=y y w y .
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i iw f −= is a natural choice. If some frequencies need to be ignored, we can set the corresponding 

component of w to zero. To avoid scaling issues, the weight vector is always normalized in order to have 
2

1=w . 

When the FE model is very large, model reduction techniques have to be used in order to decrease its size to a 
more manageable order. If, as in equation (1), the model depends on the parameters x, obtaining an accurate reduced 
parametric model that reflects the behavior of the original one for all possible parameter values is not a trivial 
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and the objective function built with 1
i iw f −= . 
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is plotted in the figure, represents the absolute minimum of ( ) x  in  . Fig. 2b instead shows a section of ( ) x  
passing through the function’s minimum point. Finally, Fig. 3 shows, on the left, the convergence of the objective 
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on the right, the convergence of the model’s frequencies to the experimental values. 

a)  b) 

Fig. 2. (a) The objective function   vs. the Young’s modulus E [N/m2] and the stiffness sk  [N/m3] of the soil. (b) A section of the objective 
function   passing through the minimum point. Young’s modulus in [N/m2]. 

 

Fig. 3. Convergence history of the algorithm. 

4. Bayesian approach for model parameter estimation 

The proposed procedure, developed in a Bayesian framework, aims at identifying the material parameters of the 
Maddalena Bridge, the material elastic moduli and density, and the soil stiffness ks under the right abutment of the 
main arch. Parameters updating is carried out by matching the experimental natural frequencies with the 
corresponding model output related to the same mode shape. 

Bayes' rule in statistical analysis (Box and Tiao, 1992) describes the probability of an event based on prior 
knowledge of the conditions that might be related to the event. Bayes’ theorem is expressed as follows 

( ) ( ) ( )
( )

/
/

P B A P A
P A B

P B
=

,
   (5) 

where P(A|B) expresses the conditional probability of event A, when event B has occurred, P(A) and P(B) are the 
probabilities of events A and B, respectively, and P(B|A) is the conditional probability of event B, when event A has 
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occurred. By interpreting event A as the parameters vector to be updated and B as one of the available data 
measurements, P(A) is the initial state of knowledge of the parameters and P(A|B) is the updated state of the 
knowledge. The term P(B|A)/P(B), which summarizes the available information on the structure, transforms the 
knowledge of the system and can be expressed in the form given by Fisher (1922) as the product of a normalization 
factor   and the likelihood function. 

By substituting A and B with x and y, where x is the vector of the l random variables, y the vector of the q 
measurements, the updating rule is expressed by 

p(x|y)=   L(x|y)p(x).   (6) 

p(x|y) represents the posterior distribution that denotes the updated state of knowledge about the random variable x, 
and L(x|y) is the likelihood function, which transforms the prior distribution into the posterior distribution by 
updating the model parameters once the new q data collected in y are gathered. Finally, p(x) is the prior distribution, 
which represents the state of knowledge before introduction of new data y, and   is the normalizing factor 

( ) ( )
1

|L p d
−

 =   x y x x
.   (7) 

Considering an additive probabilistic model and normally distributed model error, the likelihood function in the q-
variate form can be written as (Gardoni, 2002), (Box and Tiao, 1992) 

( ) ( )
1

L , r 1,...,
=

 = =  x x
q

k k ki ki
i

P k s  
  (8) 

where ki is a normal random variable having zero mean value and unit standard deviation, k is the k-th component 
of the covariance matrix  of the error, and rki(x) is the i-th residual, which represents the discrepancy between the 
measurement and the prediction of the k-th experimental frequency. The following expression thus holds 

( ) ( )ˆr C cki ki ki= −x x ,   (9) 

where Cki  is the term related to the measurements and ( )ĉki x  is the term related to the model output. 

Determination of the likelihood, and hence of the posterior distribution of random variables cannot generally be 
solved in closed form, so numerical techniques are needed. The Markov Chain Monte Carlo (MCMC) method is one 
of the most commonly adopted techniques (Medova, (2007)) when stochastic FE are involved. 
In the present case, the reference measure is represented by natural frequencies. Unfortunately, when parameters 
vary within the confidence interval, the order of the mode shapes in the model may also vary, so the procedure must 
be able to recognize these changes and correctly link the numerical frequencies to the corresponding experimental 
ones. In order to compare numerical and experimental mode shapes, the Metropolis-Hastings version of the Monte 
Carlo Markov Chain (MCMC) algorithm has been modified by introducing the Modal Assurance Criterion (MAC), 
to associate frequencies with mode shapes. More specifically, at each step of the algorithm, when sampling is 
carried out, the numerical model's mode shapes are compared with the experimental ones, and the MAC matrix 
calculated, thereby allowing us to identify the correspondence between experimental and numerical mode shapes. 
Moreover, in order to reduce the computational load, the finite element model response in terms of frequencies and 
mode shapes is reproduced through a proxy model (Marwala, 2010). The technique used for this purpose is the 
General Polynomial Chaos Expansion (GPCE), (Xiu, 2010), which allows creating a response surface that depends 
on the parameters and makes the uncertainties propagation computationally simple. It also enables assessing the 
influence of each parameter on the results of the FE model through synthetic indices. Finally, this model provides an 
estimate of the covariance matrix of the error distribution containing the error variance for each frequency. 
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Moreover, in order to reduce the computational load, the finite element model response in terms of frequencies and 
mode shapes is reproduced through a proxy model (Marwala, 2010). The technique used for this purpose is the 
General Polynomial Chaos Expansion (GPCE), (Xiu, 2010), which allows creating a response surface that depends 
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estimate of the covariance matrix of the error distribution containing the error variance for each frequency. 
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The procedure described above has been implemented for the case study based on the same experimental results 
(Azzara et al. (2017)), using the NOSA-ITACA FE code for eigenfrequencies and eigenvectors calculation (Fig. 1b). 

The material parameters to be identified are the two elastic moduli (bulk modulus K and shear modulus G) and 
the density  and the constant ks of the elastic supports under the right abutment to model the soil stiffness. 

Construction of the proxy model through the GPCE technique has been performed using Hermitian Polynomials 
of grade up to 4, whose coefficients have been calculated through a regression of 625 FE analyses. The number of 
analyses was determined via the full tensor grid method (Xiu, 2010). The updating procedure required about 43000 
runs of the proxy model. As a first result stemming from use of the GPCE technique, it can be deduced that the most 
significant parameters are G,  and ks. 

Six mode shapes have been identified: the first strongly influenced by G , the second involving vertical 
displacements of the main arcade, and the third regarding its out-of plane displacements. Some results obtained are 
shown in Fig. 4 in the form of probability density functions of the three parameters mentioned above (4a, 4b) and of 
comparison between the experimental and the numerical values of the bridge’s natural frequencies (4c). Table 2 
reports the results in terms of mean values and standard deviations of the parameters after updating. 

 

  

Fig. 4. (a) probability density functions of G; (b) probability density functions of soil stiffness ks; (c) Comparison between experimental and 
numerical frequencies - Bayesian approach. 

Table 2. Parameters identified through the Bayesian approach 

 G [MPa]  [kg/m3] K  [MPa] sk [N/m3] 

Prior mean 2083 2100 2777 2.1 1010 

Prior standard deviation 625 300 833 6.30 109 

Posterior mean 2922 1976 3308 2.1731 1010 

Posterior standard deviation 172.81 8.3539 320 4.0721 107 

5. Conclusion 

The paper has presented two model updating procedures, one developed within a deterministic framework and 
the other following a Bayesian probabilistic approach. These procedures have been applied to the finite element 
model of the Maddalena Bridge in Borgo a Mozzano and furnish an estimate of the mechanical properties of the 
bridge’s constituent materials and foundation soil stiffness. The finite element model has been calibrated using some 
experimental results, natural frequencies and mode shapes of the bridge obtained via Operational Modal Analysis 
(Azzara et al, 2017). Tables 3 and 4 compare the procedures in terms of identified parameters and relative errors 
between numerical and experimental frequency values. The two methods give very similar results in terms of the 
numerical frequencies and the parameter values – the most significant difference arising in the evaluation of the 
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bridge’s homogenized mass density. In both cases, the greatest error with respect to experimental data is found in 
the evaluation of the fundamental frequency, whose value is underestimated by both algorithms. The reason for this 
probably lies in the lack of knowledge on the real distribution of mass and stiffness throughout the bridge. 

For both approaches, special attention has been devoted to the computational efficiency of the methods proposed 
by using simplified models to approximate the dynamic properties of the original finite element model. With regard 
to the Bayesian approach, the use of a proxy model seems to be convenient in order to reduce the computational 
burden of the MCMC technique, also in view of performing sensitivity analyses that can direct the choice of the 
most significant parameters. 

     Table 3. Bayesian vs. deterministic approach: identified parameters 

 G [MPa]  [kg/m3] K  [MPa] sk  [N/m3] 

Bayesian approach 2922  173 1976  8 3308  320 2.17 1010  4.07 107 

Deterministic approach 2969 1845 3377 1.93 1010 

     Table 4. Bayesian and deterministic approaches: matching of the experimental frequencies 

Experimental 
frequencies [Hz] 

Bayesian 
approach [Hz] 

Rel. errors 

[%] 

Deterministic 
approach 

Rel. errors 

[%] 

3.37 3.098 8.08 3.108 7.79 

5.06  5.170 2.18 5.179 2.35 

5.40 5.503 1.91 5.391 0.17 

7.06 7.159 1.40 7.223 2.31 

8.80 8.391 4.64 8.507 3.33 

9.19 9.550 3.91 9.596 4.42 

References 

Altunişik, A.C., Okur, F.Y., Genç, A.F., Günaydin, M., Adanur, S., 2018. Automated Model Updating of Historical Masonry Structures Based on 
Ambient Vibration Measurements. Journal of Performance of Constructed Facilities, 32(1): 04017126. 

Azzara, R.M., De Falco, A., Girardi, M., Pellegrini, D., 2017. Ambient vibration recording on the Maddalena Bridge in Borgo a Mozzano: data 
analysis. Annals of Geophysics, 60(4), art. N. S0441, Istituto Nazionale di Geofisica e Vulcanologia. 

Azzara, R.M., De Falco, A., Girardi, M., Pellegrini, D., 2016. Measurement of the vibration response of the medieval Maddalena Bridge (Italy), 
Proceedings of the Tenth International Conference on Structural Analysis of Historical Constructions, Leuven, 13-15 September 2016. 

Box GEP, Tiao GC., 1992. Bayesian Inference in Statistical Analysis. 
Brincker, R., Ventura, C., 2015. Introduction to Operational Modal Analysis. John Wiley and Sons, Ltd. 
Douglas ,B.M., Reid W.H., 1982. Dynamic tests and system identification of bridges, Journal of Structural Division, 108, ASCE. 
Fisher RA., 1922. On the Mathematical Foundations of Theoretical Statistics. Philos Trans R Soc A Math Phys Eng Sci;222:309–68. 
Friswell, M., Motthershead, J.E., 2013. Finite element model updating in structural dynamics., vol. 38, Springer Science & Business. 
Gardoni P., 2002. Probabilistic Models and Fragility Estimates for Bridge Components and Systems. Environ. Eng.; 57:66. 
Gentile, C., Saisi, A., 2007. Ambient vibration testing of historic masonry towers for structural identification and damage assessment, 
Construction and Building Materials, 21, 1311-1321. 
Girardi, M., Padovani, C., Pellegrini, D., Porcelli, M., Robol, L., 2018. Finite element model updating for structural applications, 
arXiv:1801.09122. 
Yuen, K., 2015. Bayesian Methods for Structural Dynamics and Civil Engineering. John Wiley and Sons, Ltd. 
Marwala, T., 2010. Finite-element model updating using computational intelligence techniques. Applications to Structural Dynamics. Springer-
Verlag, London. 
Medova, E., 2007. Bayesian Analysis and Markov Chain Monte Carlo simulation. 
Rytter, A., 1993. Vibration based inspection of civil engineering structures (Ph.D. thesis), Aalborg University. 
Ramos, L.F., Alaboz, M., Aguilar, R., Lourenco, P.B., 2011. Dynamic identification and FE updating of S. Torcato Church, Portugal, in Dynamics 

of Civil Structures, Volume 4, Springer, 71-80. 
Xiu, D., 2010. Numerical Methods for Stochastic Computations- a spectral method approach. Princeton University Press, Princeton, New Jersey. 
Wright, S. and Nocedal, J., 1999. Numerical optimization. Springer Science 35. 67-68: 7. 
Reynders E, Schevenels M, De Roeck G. 2014. Macec 3.3. A Matlab toolbox for experimental and operational modal analysis. 

<http://bwk.kuleuven.be/bwm/macec/>;. 



	 A. De Falco  et al. / Procedia Structural Integrity 11 (2018) 210–217� 217
 Author name / Structural Integrity Procedia 00 (2018) 000–000  7 

The procedure described above has been implemented for the case study based on the same experimental results 
(Azzara et al. (2017)), using the NOSA-ITACA FE code for eigenfrequencies and eigenvectors calculation (Fig. 1b). 

The material parameters to be identified are the two elastic moduli (bulk modulus K and shear modulus G) and 
the density  and the constant ks of the elastic supports under the right abutment to model the soil stiffness. 

Construction of the proxy model through the GPCE technique has been performed using Hermitian Polynomials 
of grade up to 4, whose coefficients have been calculated through a regression of 625 FE analyses. The number of 
analyses was determined via the full tensor grid method (Xiu, 2010). The updating procedure required about 43000 
runs of the proxy model. As a first result stemming from use of the GPCE technique, it can be deduced that the most 
significant parameters are G,  and ks. 

Six mode shapes have been identified: the first strongly influenced by G , the second involving vertical 
displacements of the main arcade, and the third regarding its out-of plane displacements. Some results obtained are 
shown in Fig. 4 in the form of probability density functions of the three parameters mentioned above (4a, 4b) and of 
comparison between the experimental and the numerical values of the bridge’s natural frequencies (4c). Table 2 
reports the results in terms of mean values and standard deviations of the parameters after updating. 

 

  

Fig. 4. (a) probability density functions of G; (b) probability density functions of soil stiffness ks; (c) Comparison between experimental and 
numerical frequencies - Bayesian approach. 

Table 2. Parameters identified through the Bayesian approach 

 G [MPa]  [kg/m3] K  [MPa] sk [N/m3] 

Prior mean 2083 2100 2777 2.1 1010 

Prior standard deviation 625 300 833 6.30 109 

Posterior mean 2922 1976 3308 2.1731 1010 

Posterior standard deviation 172.81 8.3539 320 4.0721 107 

5. Conclusion 

The paper has presented two model updating procedures, one developed within a deterministic framework and 
the other following a Bayesian probabilistic approach. These procedures have been applied to the finite element 
model of the Maddalena Bridge in Borgo a Mozzano and furnish an estimate of the mechanical properties of the 
bridge’s constituent materials and foundation soil stiffness. The finite element model has been calibrated using some 
experimental results, natural frequencies and mode shapes of the bridge obtained via Operational Modal Analysis 
(Azzara et al, 2017). Tables 3 and 4 compare the procedures in terms of identified parameters and relative errors 
between numerical and experimental frequency values. The two methods give very similar results in terms of the 
numerical frequencies and the parameter values – the most significant difference arising in the evaluation of the 

8 A. De Falco et al. / Structural Integrity Procedia  00 (2018) 000–000 

bridge’s homogenized mass density. In both cases, the greatest error with respect to experimental data is found in 
the evaluation of the fundamental frequency, whose value is underestimated by both algorithms. The reason for this 
probably lies in the lack of knowledge on the real distribution of mass and stiffness throughout the bridge. 

For both approaches, special attention has been devoted to the computational efficiency of the methods proposed 
by using simplified models to approximate the dynamic properties of the original finite element model. With regard 
to the Bayesian approach, the use of a proxy model seems to be convenient in order to reduce the computational 
burden of the MCMC technique, also in view of performing sensitivity analyses that can direct the choice of the 
most significant parameters. 

     Table 3. Bayesian vs. deterministic approach: identified parameters 

 G [MPa]  [kg/m3] K  [MPa] sk  [N/m3] 

Bayesian approach 2922  173 1976  8 3308  320 2.17 1010  4.07 107 

Deterministic approach 2969 1845 3377 1.93 1010 

     Table 4. Bayesian and deterministic approaches: matching of the experimental frequencies 

Experimental 
frequencies [Hz] 

Bayesian 
approach [Hz] 

Rel. errors 

[%] 

Deterministic 
approach 

Rel. errors 

[%] 

3.37 3.098 8.08 3.108 7.79 

5.06  5.170 2.18 5.179 2.35 

5.40 5.503 1.91 5.391 0.17 

7.06 7.159 1.40 7.223 2.31 

8.80 8.391 4.64 8.507 3.33 

9.19 9.550 3.91 9.596 4.42 

References 

Altunişik, A.C., Okur, F.Y., Genç, A.F., Günaydin, M., Adanur, S., 2018. Automated Model Updating of Historical Masonry Structures Based on 
Ambient Vibration Measurements. Journal of Performance of Constructed Facilities, 32(1): 04017126. 

Azzara, R.M., De Falco, A., Girardi, M., Pellegrini, D., 2017. Ambient vibration recording on the Maddalena Bridge in Borgo a Mozzano: data 
analysis. Annals of Geophysics, 60(4), art. N. S0441, Istituto Nazionale di Geofisica e Vulcanologia. 

Azzara, R.M., De Falco, A., Girardi, M., Pellegrini, D., 2016. Measurement of the vibration response of the medieval Maddalena Bridge (Italy), 
Proceedings of the Tenth International Conference on Structural Analysis of Historical Constructions, Leuven, 13-15 September 2016. 

Box GEP, Tiao GC., 1992. Bayesian Inference in Statistical Analysis. 
Brincker, R., Ventura, C., 2015. Introduction to Operational Modal Analysis. John Wiley and Sons, Ltd. 
Douglas ,B.M., Reid W.H., 1982. Dynamic tests and system identification of bridges, Journal of Structural Division, 108, ASCE. 
Fisher RA., 1922. On the Mathematical Foundations of Theoretical Statistics. Philos Trans R Soc A Math Phys Eng Sci;222:309–68. 
Friswell, M., Motthershead, J.E., 2013. Finite element model updating in structural dynamics., vol. 38, Springer Science & Business. 
Gardoni P., 2002. Probabilistic Models and Fragility Estimates for Bridge Components and Systems. Environ. Eng.; 57:66. 
Gentile, C., Saisi, A., 2007. Ambient vibration testing of historic masonry towers for structural identification and damage assessment, 
Construction and Building Materials, 21, 1311-1321. 
Girardi, M., Padovani, C., Pellegrini, D., Porcelli, M., Robol, L., 2018. Finite element model updating for structural applications, 
arXiv:1801.09122. 
Yuen, K., 2015. Bayesian Methods for Structural Dynamics and Civil Engineering. John Wiley and Sons, Ltd. 
Marwala, T., 2010. Finite-element model updating using computational intelligence techniques. Applications to Structural Dynamics. Springer-
Verlag, London. 
Medova, E., 2007. Bayesian Analysis and Markov Chain Monte Carlo simulation. 
Rytter, A., 1993. Vibration based inspection of civil engineering structures (Ph.D. thesis), Aalborg University. 
Ramos, L.F., Alaboz, M., Aguilar, R., Lourenco, P.B., 2011. Dynamic identification and FE updating of S. Torcato Church, Portugal, in Dynamics 

of Civil Structures, Volume 4, Springer, 71-80. 
Xiu, D., 2010. Numerical Methods for Stochastic Computations- a spectral method approach. Princeton University Press, Princeton, New Jersey. 
Wright, S. and Nocedal, J., 1999. Numerical optimization. Springer Science 35. 67-68: 7. 
Reynders E, Schevenels M, De Roeck G. 2014. Macec 3.3. A Matlab toolbox for experimental and operational modal analysis. 

<http://bwk.kuleuven.be/bwm/macec/>;. 


