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ABSTRACT

In this paper we explore the use of Continuation Methods and Cur-
riculum Learning techniques in the area of Learning to Rank. The
basic idea is to design the training process as a learning path across
increasingly complex training instances and objective functions.
We propose to instantiate continuation methods in Learning to
Rank by changing the IR measure to optimize during training, and
we present two different curriculum learning strategies to identify
easy training examples. Experimental results show that simple con-
tinuation methods are more promising than curriculum learning
ones since they allow for slightly improving the performance of
state-of-the-art -MART models and provide a faster convergence
speed.
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1 INTRODUCTION

Many proposals investigated curriculum learning as a general frame-
work for several machine learning tasks, including training of deep
neural networks [2]. Learning through a curriculum is a fascinating
idea, borrowed from cognitive sciences, according to which a com-
plex training task is designed as a multi-step training path. Initially,
the learning algorithm is trained over simple training examples,
and then it is progressively fine-tuned so as to deal with tasks of
increasing complexity.
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This is achieved by two main strategies. We call Continuation
Methods (CM) [1, 7] those approaches that instead of optimizing
difficult objective functions, i.e., objective functions with many local
minima, transform the original function into a class of smoother or
easier to minimize functions. The intuition behind this approach is
that a smooth version of the target objective function can quickly
and effectively drive the learning algorithm to a promising area of
the search space that possibly includes the global optimum.

We call instead Curriculum Learning (CL) [2] those approaches
where training examples of increasing complexity are gradually
considered. The rationale is that the training algorithm can learn
more effectively difficult examples if it was already trained on the
simpler ones. In this work we explore the possibility of exploit-
ing CM and CL approaches in the area of Learning to Rank (LtR),
the challenging task of training effective ranking functions from
datasets of query-document pairs associated with graded relevance
judgments. At the best of our knowledge this is the first attempt
to investigate this research direction. Indeed, LtR is a complex task
characterized by large and noisy training datasets and non-smooth
objective functions. How to best fit CM and CL techniques within
the LtR training process is not known. In this paper we propose and
test several approaches and discuss their up- and down-sides. We
show that designing a curriculum of objective functions of increas-
ing complexity is a promising research direction since preliminary
results based on CM show improved models and faster convergence
of the training process. On the other hand, the same does not ap-
ply to the results achieved experimenting CL methods, which did
not improve over the state-of-the-art LtR solution. Nevertheless,
we believe that Curriculum Learning also may open up to new
research directions in the design of effective learning algorithms,
where increasingly larger sets of training examples and increasingly
complex objective functions can be used dynamically to improve
ranking models and minimize the overall computational cost of the
training phase.

The paper is organized as follows: Section 2 discusses some
related works; Section 3 provides a description of the proposed ap-
proach; Section 4 reports the evaluation of the proposed approach;
finally, Section 5 draws some conclusions and outlooks possible
future works.

2 BACKGROUND

Continuation Methods (CM) approaches have shown to be effective
in the optimization of complex objective functions [1, 7]. When
the target objective function has many local minima, its direct
optimization may lead to a “bad” sub-optimal result. In Continuation
Methods, a multi-step optimization process is thus followed. At
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each step a different smooth function is optimized, i.e. a function
easy to minimize that approximates the desired target function.
The complexity and difficulty of the optimization function chosen
is increased until the original target function is finally used. The
intuition behind this approach is that the smooth versions of the
original target function can provide a global representation of the
search space which highlights the regions where the best local
optima and the global one are located.

Applying a Continuation Method to a cost function C means to
define a sequence of cost functions C) with y € [0, 1], such that by
increasing y, the complexity of the function increases. Therefore, Cy
represents a highly smoothed version of the original cost function
corresponding to Cj.

Curriculum Learning (CL) can be seen as a particular instanti-
ation of Continuation Methods [2]. The basic idea is to organize
the training examples in such a way that the easiest training exam-
ples are presented first and the complexity of the following ones
is gradually increased. Thus, Curriculum Learning can be seen as
a process exploiting a sequence of training criteria. Each training
criterion corresponds to a different set of examples that can be differ-
ently weighted based on their complexity. At the subsequent steps,
slightly more difficult examples are assigned with new weights.
This is different from boosting approaches commonly adopted also
in LtR, as in boosting the instance weights are determined dur-
ing the training according to the mis-classification risk, while in
Curriculum Learning weights are predetermined according to a
training schedule.

Curriculum Learning methods can be formalized as follows: let z
be a random variable representing a point of the dataset, that is z =
(x,y), where x represents the features vector and y represents the
value to predict. We denote with P(z) the target training distribution,
which represents the distribution that the Machine Learning (ML)
algorithm aims to learn. Consider a multi-step optimization, where a
parameter y € [0, 1] refers to the iteration. At each step we assign a
different weight W to each example z, 0 < Wy (z) < 1, therefore the
target distribution will be proportional to the original distribution
Qy (z) o« Wy (2)P(2).

The sequence of distributions {Qy }, ¢[o,1] is called a Curricu-
lum Learning (CL) strategy if the entropy of these distributions
increases:

H(Qy) < H(Qy+e) VYe>0,
and the sequence of weights {W) (z)}, ¢[o,1] is monotonically in-
creasing:
Wyte(z) 2 Wy(z) Vz, Ve>0.

As an example, let Wy (z) # 0 just on a finite set of easy examples,
then Q) will concentrate on the same finite set. Increasing y means
adding some new and more complex examples, and the multi-step
training corresponds to training the algorithm on an increasing
sequence of subsamples of the training set, until the whole training
set is considered.

Both approaches have been used successfully in several fields.
Continuation Methods are applied in fields where the function to
optimize is not convex, as for example non linear optimization
problems [5] in computational chemistry [7, 9], computational
physics [13] and automatic control [10]. In ML continuation meth-
ods are used with semi-supervised Support Vector Machine (SVM),
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showing that this approach leads to lower test errors [4]. In [2],
Curriculum Learning is exploited to train a language model (not
used for ranking) with a deep neural network. In [12] a Curriculum
Learning approach is applied to sort the training data to ease the
learning of node representation in a heterogeneous star network.

In this paper we investigate how to apply CM and CL to LtR.
To the best of our knowledge, neither CM nor CL have been ever
exploited in combination with LtR algorithms. We will see that the
integration of these methodologies is challenging and opens several
questions, which we will discuss in the following.

3 CONTINUATION METHODS AND
CURRICULUM LEARNING FOR LEARNING
TO RANK

Learning to Rank (LtR) comprises those methods that use ML tech-
niques to produce a ranking model [8]. As training set, LtR algo-
rithms take a set of queries and a set of relevant and non relevant
documents for these queries. Given the feature-based represen-
tation of each query-document pair and its relevance label, the
goal is to learn a scoring function that induces the “ideal” ranking
established by the relevance labels.

Information Retrieval (IR) measures are typically exploited to
optimize LtR algorithms. However, these measures are not differen-
tiable and thus difficult to optimize. One of the most effective algo-
rithm addressing this challenge is A-MART [3]. The loss function
of A-MART is based on A-RANK gradient approximation, which
considers the variation in the effectiveness after swapping two
documents of a ranked list. It is defined as a product of two main
components, A; j = AM;j-(1+e%7% )1, where the first term is the
variation in the measure score when the documents at ranks i and j
are swapped, and the second term is the derivative of the RankNet
cost [3], which minimizes the number of misplaced documents.
Finally, the lambda gradient of a document d; is computed as the
sum of all the pairwise gradients: 4; = }}; A;,j. Notice that A-MART
usually optimizes Normalized Discounted Cumulated Gain (nDCG)
as effectiveness measure M, even if it is possible to choose any
other IR measure. We investigate two different strategies to evalu-
ate Continuation Methods and Curriculum Learning in LtR. Both
of them are based on a two step training, i.e. first the algorithm is
trained with an easy criterion, then it is trained with the original
and more complex criterion.

Continuation Methods. Recall that continuation methods ex-
ploit increasingly complex objective functions. In order to apply
a CM to A-MART we need to smooth the A-MART loss function.
Smoother variants of nDCG have been previously proposed, e.g. Soft-
NDCG [14], however their performance did not prove to be signifi-
cantly better than the original A-MART loss function. Therefore, we
adopted a different cost function for the first step of the proposed
continuation method. We train a regression forest where the first ¢
trees are built by minimizing Mean Square Error (MSE), while the
remaining are generated by optimizing nDCG, as with the standard
A-MART. Indeed, the last part of the forest trained with the A-MART
algorithm uses the previously built ¢ regression trees as a starting
point of the search space. This process allows to start the A-MART
strategy from a point in the search space that it is closer to a good
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solution, thanks to the preceding MSE optimization, rather than
starting from scratch. We refer to this strategy as MSE-t.

Curriculum Learning. While continuation methods produce
different versions of the original loss function, CL performs a sam-
pling of the training data in order to present to the algorithm the
easiest examples first. Since the concept of easiness of an example is
not well defined and depends on the specific task and algorithm, we
tried several possible approaches, named 1_HRel, q_NRel, q_BM25,
and q_PageRank.

In the first case, referred as 1_HRel, we define the easy examples
as the documents that are either highly relevant or not relevant. As
discussed in Sec. 4, documents in the training set are labeled on a dis-
crete five-steps relevance scale from not-relevant to highly relevant.
The rationale is that removing fairly or partially relevant docu-
ments should simplify the discrimination between highly relevant
and not relevant documents. Therefore we performed a sampling
on the document labels and we initially train A-MART on a dataset
containing only highly relevant and not relevant documents.

In all the other cases, we worked at query level and we test several
ways to select easy and difficult queries. The q_NRel approach
considers a query easy if it has many relevant documents, while
hard queries are those with just a few or none relevant documents.
Thus, to perform the sampling, we sorted the query by their number
of relevant documents and we selected the first 25% of them, i.e.,
the quarter with the greatest number of relevant documents. This
subset was used as initial training set for A-MART.

Analogously, q_BM25 and q_PageRank defines queries’ easiness
by considering their BM25 or PageRank score. This means that the
documents were ranked with respect to their BM25 or PageRank
feature and then nDCG was computed to determine the query score.
Finally, the queries were sorted by their nDCG score and the first
25% of them was selected as initial training set.

After sampling the training set, with one of the afore mentioned
approaches, we instantiate a two step curriculum strategy, with the
first step producing t trained trees and the second step T —t. For the
first step, A-MART is trained on one of the obtained training subsets
with nDCG as effectiveness measure in the objective function, and
during the second step, the training is conducted on the whole
dataset, again with nDCG as effectiveness measures in the objective
function.

4 EXPERIMENTS

4.1 Experimental Setting

The accuracy of the different CL strategies is evaluated on the MSLR-
WEB30K dataset [11]. The dataset encompasses 31,531 queries from
the Microsoft Bing search engine for a total of 3,771,125 query-
document pairs represented by 136 features, where each document
is labeled with a relevance label in the set {0, 1, 2, 3,4} (from not-
relevant to highly relevant). The dataset is provided as a 5-fold
split. We use the state-of-the-art A-MART as the reference LtR
algorithm. Its parameters were swiped with cross-validation so as
to maximize the average performance over the validation folds.
Learning rate v was evaluated in the set {0.01,0.05,0.1,0.5} and
the maximum number of leaves L in the set {8, 16, 32, 64}, with best
results observed with the setting v = 0.05 and L = 64. Notice that in
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the following sections, whenever we refer to the baseline we mean A-
MART trained on the whole dataset with nDCG@10 as effectiveness
measure and the above settings. Due to space constraints we limit
our investigation to models composed of T = 500 trees.

4.2 Curriculum Learning - Data Sampling

Table 1 shows the performance of A-MART models with all the
tested CL approaches together with the proposed CM approach.
The performances of the different CL instantiation are compared
against the baseline (top line in the table). Each row of the table
reports the nDCG@10 scores of the proposed models averaged
across the 5 different folds. Moreover, in each plot we report the
results achieved when training a first set of ¢ trees on a sample of
the dataset and the remaining T —t by exploiting the whole training
set. We explored different switching points of the cost functions at
t equals to 100, 200, 300, 400 trees, while the total number of trees
T is always equal to 500.

Table 1 shows that, for any approach and for any possible switch-
ing point ¢, the CL strategy underperforms and never reaches the
baseline. Among all the tested approaches, 1_Hrel is the worst
performing approach. This might be due to the sampling strategy
which is too aggressive. Indeed, keeping only the highly relevant
documents removes too many documents from the training set and
the algorithm does not have enough positive examples.

Similarly for the q_NRel, q_BM25, and q_PageRank CL strate-
gies, the sampling conducted over the training set affect the per-
formances instead of boosting them. Recall that in this case the
sampling is carried out with respect to the query and not the docu-
ments, this means that for those queries that are considered easy
we keep all the documents. Although these latter CL approaches
are not achieving better results than the baseline, they do perform
better than the 1_Hrel approach and their performances are much
closer to the baseline score. This suggests the sampling strategy
based on the queries is less aggressive than the strategy based on
the labels.

Finally, as a general trend all the CL approaches perform more
and more worse when the number of trees trained on the subset
increases, further suggesting that removing training instances ir-
redeemable damages the performances. However, we do not draw
definitive conclusions on the effectiveness of the data sampling
strategies experimented, but we highlight that the instance weight-
ing approach might partially interfere with the A-MART boosting
framework.

4.3 Continuations Method - Cost Functions

Fig. 1 shows the performance of the proposed CM against the base-
line. We report the results achieved when training a first set of ¢
trees by optimizing MSE and the remaining by optimizing the target
measure nDCG@10 averaged over the five folds of MSLR-WEB30K.
An interesting behavior can be observed for the initial trees of the
forest. Optimizing MSE provides significantly better models up to
200 tree. Instead, optimizing MSE alone leads to worse results as
shown by the test when the switching point occur at t = 400 trees.
On average, the best results were achieved with a switching point
at t = 200 trees providing consistently better results than A-MART.
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Table 1: CL and CM nDCG @10 scores
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Continuation Method MSE

averaged across the 5 folds.
0.52
‘ LambdaMart ‘ 0.5159 ‘
switch point ¢

Curriculum Learning | 100 200 300 400 051
1_HRel 05098 0.5080 0.5016 0.4856 )
q_Nrel 05152 0.5145 0.5133 0.5105 1
q_BM25 05130 0.5105 0.5070 0.4988 @
q_PageRank 0.5147 0.5137 0.5114 0.5048 2050
‘Continuation Methods‘ =
[MSE-t [0.5171 0.5187 0.5187 0.5179]

Table 2: Comparison of MSE ¢ = 0.49

200 versus LambdaMart baseline

when achieving at least the same 0.48

NDCG@10.

MSE t = 200 LambdaMart size

# trees NDCG@10 | # trees NDCG@10 |ratio
100 0.5003 170 0.5010 1.7
200 0.5080 255 0.5082 13
300 0.5144 400 0.5145 13
400 0.5174 500 - -
500 0.5187 500 - -

of the ensemble.

In Tab. 2 we compare the MSE ¢ = 200 models with the A-MART
baseline. In particular we show the NDCG@10 achieved by the
MSE t = 200 model at different model sizes, and we compare it with
the smallest -MART model providing at least the same NDCG@10.
Results show two important behaviors. First, the baseline algorithm
A-MART is never able to provide the same accuracy as the largest
MSE t = 200 model with 500 trees. This was already clear in Fig. 1.
Second, the A-MART creates effective-equivalent models that are
larger in size with 1.3 to 1.7 times more trees. This means that
A-MART reaches the same effectiveness of MSE t = 200 with mod-
els that are much larger and therefore more expensive to apply at
scoring time. We recall that the use of larger models can be too ex-
pensive for real-world production systems, and therefore, reducing
the size of the model proportionally reduces its run-time cost, thus
making accurate models feasible in practice.

We further investigated the benefit provided by the CM by com-
paring the discriminative power of the A-MART baseline and of
MSE t = 200 when considering only the first 100 trees. In Fig. 2 we
report the predicted score distribution only for documents with the
smallest and the largest training label (note that distributions are
normalized per label). Even if there is not an optimal separation, the
plot highlights how the MSE allows to better discriminate between
irrelevant (label=0) and highly relevant (label=4) documents, with
a Kullback-Leibler divergence almost twice as big when optimizing
MSE (0.078 vs. 0.042). This initial discriminative power is probably
a beneficial starting point for the LtR optimization.

We conclude that optimizing MSE during the first part of the
training improved the convergence speed of the learning process
driving the algorithm to the most promising areas of the search
space, which eventually lead to a more effective model.

5 CONCLUSION AND FUTURE WORK

The paper presented different approaches to instantiate CM and
CL with A-MART. In the context of continuation methods we train
first the algorithm with MSE and then with nDCG@10. Moreover,
we tested two different CL strategies to sample the training data.

100 200
Number of trees

Figure 1: Continuation method by op-
timizing MSE during the first ¢ trees

0.005 Predicted Scores Distribution
0,004 LambdaMart
—— Label = 0.0
7 0003 Label = 4.0
T 0.002
0.001 KL =0.042
0.000
0.005
MSE t =200
0.00.
LambdaMart 4 —— Label = 0.0
MSE t=100 & 0.003 Label = 4.0
—— MSE t=200 T 0.002
—— MSE t=300 0.001 KL=0.078
—— MSE t=400 0000 N
-1 0 1 2 3 4
300 400 500 Predicted Score s

Figure 2: Discriminative power after
100 trees. Predicted score for docu-
ments with largest and smallest label.

Even if CL is known to be an effective approach in other areas
of ML, it turned out that its application to the LtR case does not
produce the same type of benefits, at least using straightforward
ways of creating the curriculum. This calls for a deeper future
investigation to better understand what differentiates the LtR from
other ML applications in terms of CL and for the experimentation
of more complex curriculum building strategies.

The results achieved by experimenting CM on increasingly diffi-
cult objective functions looks promising. As future work, we aim
at investigating more complex curricula dynamically exploiting
multiple objective functions and curricula with both continuation
methods and data sampling.
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