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Figure 1: Our method automatically derives a network of tensioned cables to relieve tension from the structure. Thanks to this cable net we
can safely deploy a new type of grid shell that uses its glass panels as a proper structural element.

Abstract

We propose an optimization algorithm for the design of post-tensioned architectural shell structures, composed of triangular
glass panels, in which glass has a load-bearing function. Due to its brittle nature, glass can fail when it is subject to tensile
forces. Hence, we enrich the structure with a cable net, which is specifically designed to post-tension the shell, relieving the
underlying glass structure from tension. We automatically derive an optimized cable layout, together with the appropriate
pre-load of each cable. The method is driven by a physically-based static analysis of the shell subject to its service load. We
assess our approach by applying non-linear FEM analysis to several real scale application scenarios. Such a method of cable
tensioning produces glass shells that are optimized from the material usage viewpoint since they exploit the high compression
strength of glass. As a result, they are lightweight and robust. Both aesthetic and static qualities are improved with respect to
grid shell competitors.

CCS Concepts
• Computing methodologies → Computer graphics; Mesh geometry models;

1. Introduction

Architectural geometry is an active discipline that is transforming
architecture and art: it allows a designer to focus more on the aes-
thetics relieving him from all other practical considerations and

† These authors contributed equally to this work.

constraints regarding physical realization, such as feasibility, sta-
bility, assembly sequence or material usage, which are instead man-
aged by an algorithm in the background.

Architectural design takes advantage of the availability of phys-
ical and mathematical foundations to simulate, anticipate and fi-
nally optimize the physical behavior of structures. In recent years,
a lot of efforts have been focused on automating the design pro-
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cess of complex architectures, such as free-form vaults, roofs,
and envelopes. While most of the attention has been focused on
structures that use steel or bricks as structural elements (like grid
shells [EKS∗10,FLHCO10,SS10,ZCBK12] or masonry structures
[DPW∗14, PBSH13, dGAOD13, WOD09, WSW∗12]), little or no
attention has been dedicated to structures that employ glass as load-
bearing material.

The constant architectural quest for transparency and dematerial-
ization of primary structures and building skins provided a route to
appointing glass as a structural material in contemporary buildings.
Glass-based constructions could be considered optimal for material
usage because they simultaneously offer transparency and excellent
structural performances (see Figure 2). However, design and real-
ization involving structural glass are intrinsically challenging due
to the fragility of the material, which implies low tensile resistance
and sensitivity to peak stress, i.e. due to impacts.

To ensure an adequate safety level, it is necessary to prevent
structural glass from carrying tensions or any transverse or tor-
sional loads. While steel can efficiently support both compression
and tension, glass structures offer a very high compressive resis-
tance but a limited tensile resistance. Tension favors cracks prop-
agation within the glass and, as a consequence, any small surface
defects can quickly degenerate into a severe fracture. Hence, only
compressive structures can exploit the structural performance of
glass.

Additionally, in the conceptual design phase, we cannot exclude
accidental events that could provoke brittle failure of the glass. As
a consequence, the structure must be designed to be safe for both
the occupants and the overall stability of the structure.

We propose a novel method to design grid shells that use glass
panels as main structural elements and a very slender network of
rods located at their edges for safety reasons. Our method exploits a
net of post-tensioned steel cables to superimpose a beneficial com-
pressive stress and mitigate the amount of tension acting on the
glass panels.

Using a cable net to reduce tension is a common choice in struc-
tural engineering [SS96, RqBJ13, FZG15]. However, the cable lay-
out is usually designed by hand, and the pre-loads are tuned for a
specific shape. Instead, we propose the first method for automatic
design and optimized tensioning of a cable net. Our framework
works on generic single-layer structures and is capable to comply
with mechanics and fabrication constraints, such as minimal side
length of glass panels and maximum allowable stress. We formu-
lated the problem of deriving an optimized set of cables and their
tension as a mixed-integer quadratic problem. Finally, we also val-
idated our results using non-linear Finite Element Analysis.

Our Glass Shells exhibit high transparency and apparent imma-
teriality. However, despite their lightness, our structures excel also
in static performances.

2. Related Work

2.1. Structural Optimization of Grid Shells

Grid shells are the discrete version of continuous shell structures,
with beams along the edges and panels in place of the faces. Their

load-bearing structure is made of beams connected at joints, while
cladding panels only act as a dead load. In the literature, this kind of
structures are usually called compressive structures, i.e., the prin-
cipal stress comes mainly from axial compression forces or com-
pression stresses on a continuous shell.

Geometry plays a fundamental role in the static performance of
grid shell structures. A purely compressive grid-shell can be ob-
tained only through a form-finding process aimed at finding the
funicular surface (a surface whose equilibrium is guaranteed by
compression-only stresses) that fits with the boundary constraints
[BK01,OKF08,OR96]. In this case, an initial form, as designed by
an architect, is taken just as a guide to obtain the final structure.

An example of form-finding process designed for masonry is
the Thrust Network Analysis [Blo09, PBSH13]. This method has
also been extended to the computation of triangular grids in static
equilibrium [VHWP12, LPS∗13]. Another generation of methods
[TSG∗14, PTP∗15, KPWP17] optimize the static performance of
a grid shell by solely changing the tessellation of the target shape.
The idea is to increase the overall rigidity [TPP∗16] through a more
efficient loads distribution over the beam network. A few recent
works address also the realization of torsion-free grid shells struc-
tures [PLW∗07, PJH∗15, TSG∗14, JTSW17],

However, most of the methods for grid shell optimization treats
axial stress regardless if it is tension or compression. This assump-
tion is generally correct for steel structures, as steel can support
any axial load. On the other hand, other materials such as glass can
break when subject to significant tensions.

2.2. Tension Based Structures

One peculiar class of structures that extremize the idea of han-
dling tension forces by relying on cables are Tensegrities [TP03].
Tensegrity structures usually consist of just a set of disjoint struts,
tied together by cables connecting their endpoints. In tensegrities,
since the design phase, there is a clear separation between elements
supporting compression (trusses) and the ones supporting tensions
(cables). These structures are mostly known for their desirable aes-
thetic qualities which have been explored in architecture and art.
They can be modeled manually, by assembling precomputed com-
ponents [GCMT14], or automatically [Tac13, PTV∗17].

Similarly to tensegrity, we strive for structures capable of car-
rying compression and tension in separate elements. However, our
setup is significantly different. First, while tensegrities rely on lin-
ear elements only (beams), our structures are composed by piece-
wise triangular structural elements. Moreover, in our setup all com-
pressive elements (glass panels) are connected through a network
of nodes; as opposite, in tensegrities, each node can connect only
one compressive element. Finally, we have no clear separation be-
tween compressions and tensions, as we also accept solutions with
low tension on panels.

2.3. Glass Structures

In the last century glass was extensively employed in architec-
ture; nonetheless, the quest for lightness and immateriality is far
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(a) (b)

Figure 2: (a) Mock-ups of structures with structural glass [FL18]; (b) arches with structural glass [Sob07].

from exhausted, and the desire to use glass in even more challeng-
ing contexts is growing. This tendency is quite evident with many
challenging recent constructions like e.g., the Zhangjiajie Glass
Bridge [Dot16], a 385 meters glass-bottomed suspended bridge on
the namesake Grand Canyon in China.

A significant advance in this context has been the introduction
of large glass panels in architecture that opened the way for their
usage as a structural element. From the mechanical point of view,
glass is endowed with excellent stiffness and very high compressive
strength. It can rely on the absence of viscous, plastic and fatigue
phenomena. However, the real behavior is governed by fragility,
which makes it highly risky for challenging purposes, in particular
for structural ones.

For structural intents, the design of glass follows principles com-
ing from aircraft engineering, included in the approach known as
Fail-Safe design [HLO08]. Steel elements (bonded or unbonded
steel bars) or post-tensioning devices (steel cables or fibers) are
usually included as reinforcement to avoid a sudden collapse of
cracked glass components. This approach follows the same intu-
ition of reinforced and post-tensioned concrete [Lou11, MCB15,
MCB16, EW16].

There are several built structures and real-scale experimen-
tal tests in the structural engineering panorama, such as beams,
columns, and façades. Shells and membranes have attracted less
attention so far. We can split Glass Shells among two categories:
those that rely on plate behavior, where quad or polygonal pan-
els are usually edge-to-edge glued; and those that rely on strut-
and-tie behavior, where the panels vertices are clamped into nodes
[BVH10]. The 37m x 14m barrel-vault roof of the Maximilianmu-
seum (Augsburg, Germany) is probably the most ambitious built
example of these glass membranes [LW00] that uses a dense ca-
ble network and cable spokes. In the conceptual phase of this roof,
each panel edge is modeled as a truss (strut if compressed or tie if
tensioned), obtaining a structural behavior akin to a grid shell.

The optimization of the post-tensioned glass structure is a new
problem in architectural geometry and is centered around two inde-
terminacies: the optimal cable layout and the optimal pre-loads. In
our approach, we considered long sliding cables in order to benefit
from simple post-tensioning operations and to obtain small inter-
mediate nodes, and so more transparency (see Figure 3). The cables
run along the edges of the glass panels; Each cable has uniform ten-
sion and can be either anchored to the ground or form a closed loop
on the surface.

Figure 3: Scheme of post-tensioned steel cable running over the
edges of the glass panels.

3. Overview

Given an initial surface, we aim to obtain a shell composed of trian-
gular glass panels and a net of cables with their optimized pre-load.
When we deploy these cables, they compress the nodes of the struc-
ture to minimize the residual tension on the glass panels and, as a
consequence, they also increase the shell’s overall robustness. Our
processing pipeline can be summarized as follows:

• we take as input a triangular mesh, with a set of boundary ver-
tices marked as support (Figure 4.a);

• we compute a uniform triangular re-meshing using the method
of Jakob et al. [JTPSH15] (Figure 4.b);

• we approximate our shell using a linear truss model, and we
compute the stress acting on each truss element when a uni-
formly distributed load is applied to the structure nodes (Fig-
ure 4.c);

• we trace a large set of candidate cables: each cable is constrained
to follow a sequence of edges of the re-meshed model (Fig-
ure 4.d);

• we select a small optimized subset of cables and derive appro-
priate tensions values to reduce the overall tensile stress (Fig-
ure 4.e);

The final post-tensioned solution has a lower level of tension and
improves the static performance of the structure (Figure 4.f). We
dimensioned every experiment to match with real-world scenarios.
This includes the structure overall dimension, the size of glass pan-
els, loads applied, and material properties.

submitted to COMPUTER GRAPHICS Forum (6/2019).



4 F. Laccone et al. / Automatic Design of Cable-Tensioned Glass Shells
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Figure 4: Our processing pipeline shown for the Simplilium case study of Figure 1: (a) the input mesh; (b) the regular remeshing computed
using [JTPSH15]; (c) the stress on the linear truss model subject to an external load (blue is compression, red is tension); (d) the candidate
cables; (e) the chosen cables and their pre-load; (f) the final stress.

We assessed our results by using a professional Finite Element
Software [G+D05] to verify the quality and the feasibility of the
derived solutions.

4. Statics of our Glass Shells

Our shells consist of an assembly of triangular glass panels, which
are both reinforced and post-tensioned in order to provide for an ad-
equate fail-safe behavior. Thus, if a single panel cracks the structure
is still stable. A set of slender steel rods located at each edge rein-
forces the overall structure. The role of post-tensioning is played
by cables sliding along the edges of the panels [FL18].

From the mechanical point of view, our Glass Shells can be clas-
sified among the class of strut-and-tie structures because they rely
on a load transfer mechanism similar to [LW00]. Consequently, we
could adopt a simplification in which a piecewise shell is modelled
as a truss, whose elements are the edges of the mesh (Section 4.1).

Therefore, in this reduced model, trusses are equipped with an
equivalent linear stiffness to mimic the behavior of the adjacent
glass panel edges and its safety steel rod (Section 4.2).

In order to fully capture the mechanical behavior of our glass
shell, we need a complex non-linear FEM where panels are de-
composed into several finite elements and contact forces between
components are modelled explicitly. Due to its high computational
requirements, it is not practical to use this approach inside an op-
timization process that searches for the best cable net layout. In-
stead, we use a more straightforward and faster linear analysis (Sec-

tion 4.3). The fully non-linear FEM (including geometry, contact
and material nonlinearities) is used for a final verification step.

4.1. Reduced model generation and settings

The proposed framework is based on thin shell theory and is de-
signed for meshes that have prevailing membrane behavior, as most
of the grid shells in architecture. Commonly, grid shells use a
beam model with 6-degrees-of-freedom rigid end-nodes, which au-
tomatically provide both in-plane and out-of-plane resistance. In
our case we adopted a linear truss model, which provides only in-
plane resistance. To include the out-of-plane resistance for bend-
ing/twisting forces, we added a secondary layer of virtual trusses
(crossed blue trusses in Figure 5).

In details, we simulate our glass shell G as a set of nodes ni ∈
N , which are interconnected by a net of linear trusses ti ∈ T . The
stiffness of each truss ki = EA/li, where li is the length of the i-
th truss, E is the Young’s modulus and A the cross-section area, is
computed from the equivalent stiffness (see Section 4.2).

For each node of the main truss ni, we create a dummy node
n′i placed at a short distance along its normal. Each dummy node
n′i is attached both to the original node ni and to the neighbours
of ni through a set of additional trusses (see Figure 5). Thus, for
each edge of the original mesh, there is a single main truss and two
crossed additional trusses.

The stiffness of the additional trusses is a small fraction of the
one used in the main trusses (0.001%), while the truss along the
normal connecting ni with n′i has a 106 times the stiffness of the
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Figure 5: The truss structures (yellow) and the additional trusses
(blue) we used to account for non-membrane force components.

main trusses, so that their relative distance is kept constant dur-
ing the analysis. Due to their low in-plane stiffness, the additional
trusses result almost unloaded under membrane loading, inducing
a negligible effect on the accuracy of the simulation. On the other
hand, they are essential to avoid local snap of nodes and therefore
to satisfy the equilibrium in the presence of out-of-plane loading.

In our shells, the weight of each glass panel is proportional to its
area since they all have a constant thickness. We consider a uniform
load of 0.4 kN/m2 for 17.52 mm thick glass panels (laminated heat-
strengthened glass pane 8+ 8 mm with 1.52 mm PVB interlayer),
0.1 kN/m2 as reinforcement steel load, and an uniformly dis-
tributed 1.0 kN/m2 load as a vertical service load (e.g., simulating
the effect of a real-life environmental loading such as snow load-
ing). The vertical load finally results in 1.5 kN/m2 and is distributed
among nodes proportionally to their Voronoi area [MDSB03]. The
supports are pin joints located on each boundary vertex.

Concerning cables, the post-tensioning force is practically gen-
erated by a traction force acting on their extremities (i.e. induced
by jacks pushing on the extreme anchoring points). As usually done
for post-tensioned concrete [Naw00], the pre-load is simulated as
an external load: a component acting on extremities and deviation
forces. In our model, the former is neglected because it acts on the
boundary. Deviation forces are due to change of direction of the
cable and are applied at the nodes (Figure 6). In the case of closed
loops, only deviation forces occur.
Since the cable pre-stress x j is constant in each cable segment, the
node pre-load q j,n is only function of the angle between cable seg-
ments: the larger is this angle, the larger is the pre-load magnitude.
This node pre-load has components both normal and tangential to
the ideal surface, depending on the specific cable path.

4.2. Stiffness calibration of the truss elements

To find the parameters of the trusses employed in our reduced
model, we built a local non-linear model and examine the response
of a single edge shared among two glass panels. The setup includes

Figure 6: Schematic view of deviation force q j,n acting on the n-th
node due to the j-th cable (with a constant pre-load of x j).

five steel reinforcement bars which surround two equilateral trian-
gular panels (Figure 7.a).

We loaded the central element with either tension or compres-
sion forces. The resulting load-displacement curve represents the
real interaction between steel and glass with all the expected non-
linearities. Then, since the length of the edge l is given, we ex-
tracted an equivalent linear stiffness behaviour E · A (where E is
the Young’s modulus and A the cross-section area) that we used
in our linear analyses. The full non-linear response and the equiv-
alent linear truss response are compared in Figure 7.b. We evalu-
ated the stiffness from the exact regression, then, for the sake of
safety we adopted a reduced stiffness so that the actual forecast
displacement for given load of our equivalent truss is smaller than
the simulated one in the range of interest, which is on compression
side. The adopted value is obtained through the reduction by 20%
of the linear regression stiffness achieved in the non-linear model
for the reference equilateral panel. The adopted stiffness results on
the safe side even if the aspect ratio of the panels is varied at least
in the range of interest.

Details on model calibration are included in Appendix A.

4.3. Linear finite element analysis

Following the displacement method we formulated the global equi-
librium equations in terms of nodal displacements, that represent
the solution of the problem. Once displacement is known, we eval-
uate the stress of each beam and its axial force by integration. We
implemented this linear FEM in MATLAB [MAT18].

We compared the response of our linear FEM with a non-linear
model developed within a professional software [G+D05]. Figure 8
shows the distribution of displacement error for the Simplilium case
study (Figure 1) using the linear model with respect to the non-
linear FEM when the structure is subject to service load.

Due to the linearity assumption, we evaluate the axial forces re-
sulting from the service load and from each cable load indepen-
dently. Then, we combined the results following the principle of su-
perimposition of effects. Since displacement are infinitesimal, the
superimposition of equilibrium states yields an equilibrium solu-
tion. We included details on the linear FEM model formulation in
Appendix B.

5. Derivation of the cable net

Our approach for optimized cable net derivation operates in a dis-
crete setting: in a first step we build a sufficiently large and well
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Figure 7: Equivalent truss model: (a) setup used to compute the equivalent truss material properties; (b) comparison of the displacement
obtained by applying axial load on our linear truss with respect to one obtained with the accurate non-linear FEM in the same setup.
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Figure 8: The distribution of the error introduced by our model.
This error is measured in terms of difference between normalized
displacement computed by our linear FEM pLA and by non-linear
model pNLA. The displacements have been normalized with respect
to their maximum values. Mean of the distribution is 0.0898, stan-
dard deviation is 0.1375. Maximum (non-normalized) displace-
ments are pLA = 0.0031 m and pNLA = 0.0026 m

.

distributed set of candidate cables C lying on the surface of the
shell, then we choose the best subset of cables by exploiting the su-
perimposition principle and using a direct constrained optimization
solver.

Cables are aligned with other opaque components (e.g. safety
bars, glass edges and seals) for aesthetic reasons, to reduce their
visual impact, and for structural reasons. Indeed, if a cable crosses
panels, it might introduce undesired bending loads.

Because of this alignement, the cables and the triangular panels
layout are then strictly related, both geometrically and structurally.
Hence, our first step is computing a good, regular, appropriately-
sized, triangular meshing of the initial surface using the method
in [JTPSH15]. For all the examples shown in this paper, we used a
target edge length of 1 meter.

Cable paths are then generated by iteratively joining adjacent
edges having closest directions (Figure 9), until all edges of the
mesh are explored. A cable can either terminate at the border or
create a loop.

Figure 9: Left: the remeshed shell with an edge to be traced; cen-
ter: a traced candidate cable; right: a cable that has been dis-
carded because of an abrupt change of direction.

Each resulting polyline corresponds to a candidate cable c j. Each
candidate cable should be as smooth as possible for efficiency (see
Section 4.1), so we discard from the candidate cables C the ones
that include kinks with a deviation angle larger than 40◦.
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5.1. Selection of the optimized subset of cables

Given a glass shell G and a service load that the structure must
withstand, we seek an optimal subset of cables C with their cor-
responding pre-loads x j that minimize overall positive tension. In
particular, we minimize the strain energy of tensile-stressed trusses
only, U+.
Given the strain energy of the i-th truss U ,

U =
1
2
· (A ·σ) · (ε · l)

=
1
2
·σ2 A

E
· l

=
1
2
· N2

EA
· l

where A is the truss cross-section, σ and ε are stresses and strains
respectively, l is the truss length, E is the Young’s modulus, and N
is the axial force. We want to minimize the amount of strain energy
relating to tensile-stressed trusses only,

U+ = ∑
i+

1
2

N2
i

EA
· li

where i+ is the subset of trusses in which the axial force N > 0 (i.e.
σ > 0, ε > 0).

Using our linear FEM, for each truss ti, we define as gi its axial
force resulting from the service load on G. We derive the stresses
by using the displacement method as shown in Appendix B.

We characterize the glass structure response when we apply a
tension on each cable independently. More precisely, we define as
si j the axial force arising on truss ti when we deploy a unitary pre-
load on the cable c j, i.e. 1 kN. Note that in this setup, apart from
the cable loading, neither gravity nor other external loads occur.

Due to linearity assumption, the si j term will be linearly related
to the pre-load, x j ≥ 0, applied on its respective cable c j. Thus, the
resulting axial force will be x j · si j.

For the superimposition principle, the effect of each cable is in-
dependent and it can be linearly summed, together with forces gi
induced by the given load. The resulting axial force of ti yields:

Ni = gi +∑
j

x j si j

Since the equilibrium is guaranteed in each solution, by summing
each force contribution we preserve the static equilibrium of G. The
optimization can be written as:

min∑
i+

1
2

N2
i

EA
· li (1)

In order to select the cables and optimizing their pre-loads x j, we
model the minimization in Equation 1 as a mixed-integer quadratic
formulation using Gurobi [GO18]. In particular, we solve:

argmin
x

∑
i

1
2

m2
i

EA
· li (2)

s. t.

0≤ x j ≤ γ ∀c j

0≤ mi ∀ti
ω≤ gi +∑

j
x j si j ≤ mi ∀ti

where mi is an additional variable that represents the positive axial
force acting on ti. In particular, since we minimize over ∑m2

i , we
have mi = max(Ni,0).

The value γ is a constant parameter that defines the maximum
pre-load of cables; ω is a constant parameter defining the maximum
axial compression that each truss can withstand.

Additionally, to accommodate aesthetic, mechanical and assem-
bling needs, we generate a set of conflicting cable pairs K. When
two cables are conflicting they cannot be selected contemporarily
in the final solution. To account for conflicts, in our mixed-integer
formulation we add a boolean variable b j for each cable c j to indi-
cate whether a candidate cable is selected in the final solution, i.e.
we force x j to be zero when also b j is zero. Then, for each conflict
pair, {c j1 ,c j2} ∈ K, we add a linear constraint b j1 +b j2 ≤ 1.

As explained, the minimization objective models the total strain
energy relative to positive axial forces only. The truss properties
E · A, Young’s modulus and cross-section area, are constant and
can be neglected. Thus, our formulation becomes:

argmin
x

∑
i

m2
i · li (3)

s. t.

0≤ x j ≤ γ ∀c j

b j = 0 ⇒ x j = 0 ∀c j

0≤ mi ∀ti
ω≤ gi +∑

j
x j si j ≤ mi ∀ti

b j1 +b j2 ≤ 1 ∀{c j1 ,c j2} ∈ K

Boolean variables enable the user to include a variety of addi-
tional constraints, e.g., setting up a maximum number Cm of em-
ployed cables (∑bi ≤ Cm); matching global constraints such as
symmetry in the selection of cables or a minimal distance between
them (see Figure 10). In our setup, since it is possible for two dif-
ferent candidate cables to share some edges (see Section 5), we
adopted conflict pairs to avoid overlapping cables.

6. Results and discussion

We tested our algorithm on several datasets (see Figure 11). We
dedicated special attention to fit our experiments to real-world sce-
narios. Size, weight and applied load of each structure are dimen-
sioned to match a plausible glass shell that can be safely deployed.

For all our experiments we employed glass panels with 17.52mm
of thickness (laminated heat-strengthened glass pane 8+8mm with
1.52mm PVB interlayer) and safety steel bar (reinforcement) with a
hollow profile with 33.7 mm of diameter and 4 mm of thickness. To
avoid local buckling failures we limited the maximum compression
for the truss in the reduced linear model to ω =−30 kN. For post-
tensioning we employed steel cables with 15mm of diameter and
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|V| |F| Size w×d×h (m) Load (tons) T0 Topt Cut λ0 λopt Time (s)
Simplilium 582 1090 25.7×24.2×6.3 75.6 7443.75 477.45 94% 9.74 15.22 6.41
Vault 506 931 19.1×20.3×6.9 56.4 6485.41 56.44 99% 9.11 14.69 24.90
Bean 429 796 21.7×16.7×5.7 52.8 187.86 23.49 87% 11.72 19.12 7.64
Calla 557 1036 20.8×16×8.6 58.8 1354.57 27.49 98% 10.57 17.91 9.47
Snake 456 829 26.8×14.6×6.4 53.3 1359.29 0.00 100% 10.16 15.85 8.92
Hole 489 909 19.4×17.3×3.6 52.7 1675.75 22.40 99% 19.62 32.12 10.82
Triangle 614 1155 25.9×20.9×8 75.7 681.33 0.00 100% 8.90 13.97 8.47

Table 1: Results of our optimization on different models: the name of the model (see Figure 11); number of vertices |V|; number of faces
|F|; the size of the axis aligned bounding box in meters; the total load comprehending structure weight and applied load (in tons); the total
positive strain energy before the optimization T0 and after Topt; the total reduction; the linear buckling multiplier before λ0 and after the
optimization λopt; the time required by the optimization process.

0% 3.8%

Figure 10: A set of linear constraints can be used to impose a min-
imum distance between cables. Distances are expressed as % of the
diagonal of the Axis Aligned Bounding Box.

set their maximum tension to γ = 40 kN. Apart from collaborating
with glass in structural terms, the rods assembly forms a skeleton
that facilitates the assembly phases and prevents the structure from
collapsing in the unfortunate case of damage to a glass panel.

The test results are collected in Table 1. The derivation of the op-
timized cables layout uses Gurobi [GO18] for constrained energy
minimization, and it took up to 25 seconds to run on a i7-6920HQ
2.9Ghz Mac. Our method can achieve an impressive reduction of
the overall tension energy on the glass shell (from 87% to 100%).
We increased the overall robustness of the structure as demon-
strated by the gain in linear buckling multiplier λ. The buckling
multiplier measures the ability of a structure to bear the applied
load (equal to a uniformly distributed load in this case) before col-
lapsing for instability. In Structural Engineering the buckling multi-
plier is universally considered as a measure of the robustness, espe-
cially in the case of compressive structures, and therefore it should
be ideally maximized.

We validated our results using a professional software [G+D05]
by performing non-linear FEM analysis of the accurate model plug-
ging in the pre-loads obtained from the optimization (Figure 12
middle). As a proof of the accuracy of the selected pre-loads, we
increased their values artificially in the non-linear model. We might
think that, once we found the cables and their pre-loads, an increase
in cable pre-loads will induce an additional beneficial reduction of
the overall tension in the structure. We demonstrated in Figure 12

that this intuition is instead wrong and the pre-loads found by the
algorithm represent an optimized solution.

The non-linear analyses consider large displacements and con-
tact nonlinearities, however materials adopt linear behaviour with
characteristic values according to the the global modelling ap-
proach of [FLM17], which basically is akin to that adopted for the
stiffness calibration (section 4.2). Major differences are the nodes,
which are simplified as dimensionless elements, and the contact be-
tween nodes and panels corner, which is simulated through a cali-
brated Cut-off element. Mesh quality analysis and convergence of
the non-linear analysis are shown in Figure 13.

We compared our structures with typical grid shells where steel
is the only load-bearing material (see Figure 14). To achieve com-
parable static performance, we tried to match the same buckling
multiplier of our glass shells (λopt) by only relying on structural
steel. Practically, using the same non-linear FEM model, we con-
verted structural glass panels into dead loads applied at the nodes,
and the reinforcement rods forming a skeleton into a more stiff net-
work. We manually match the buckling factor by changing cross-
section properties of the steel network. This is a non-trivial task,
therefore we performed this validation only for a few models.

Using hollow steel beams, we can tune both the outer diameter
and thickness. Usually, we obtained comparable performances if
the diameter is doubled. In this case, the total weight is also roughly
doubled, and the overall transparency of the structure will be in-
evitably affected by the new size of the beam, see Figure 14.

Using solid steel beams, instead, we can benefit from a smaller
cross-section, which is still bigger than ours, and the total weight
of the steel will be roughly quintupled. Our shells, making use of
glass structurally, demonstrate advantages concerning both visual
and structural lightness, thanks to, respectively, the small impact
on transparency and the high ratio between load capacity and own
weight.

On the computational side, the truss model not only constitutes
an acceptable representation of our scenario and is suitable for
the conceptual design of post-tensioned glass shells, but also guar-
antees a fast solution. Indeed, we can easily superimpose forces
and test various loading effects. This procedure leads to structural-
effective cable layouts, as confirmed by the results shown in Fig-
ures 12 and 14, and Table 1.
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+20.0-30.0 0.0 +5.5-30.0 0.0

Vault Bean

+11.0-30.0 0.0 +9.0-30.0 0.0

Calla Snake

+12.0-30.0 0.0 +8.0-30.0 0.0

Hole Triangle

Figure 11: For each model we show the tension before and after the cable net has been deployed with the proper tension (red corresponds
to tensions and blue to compressions).

revWe would like to remark that our method is sensitive to any
changes in the boundary conditions. Changing the shape or the ex-
ternal loads can alter the space of possible equilibrium configura-
tions. As a consequence, the minimization of the total strain energy

can converge to a different solution, and the chosen subset of cables
can change accordingly.
Besides, our method is also dependent on the initial meshing. In-
deed, the initial tessellation uniquely determines both the position
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Figure 12: Non-linear FEM analysis visualising tensions acting
on the safety beams (left legend) and on the glass panels (right leg-
end). Top: performed on glass shell without post-tensioned cables;
middle: including post-tensioned cables; bottom: the final tensions
of the structure when cable tension is artificially multiplied by 1.5.

of the linear structural element and the possible cable paths. Hence,
to keep a tractable formulation of the problem, we choose to pre-
serve both the original shape and the tessellation during the entire
optimization process. The limitation mentioned above, however, al-
lows for a more practical, simple and stable formulation.
To obtain a regular initial tessellation, we initially perform a
remeshing using Instant Meshes [JTPSH15]. However, different re-
meshing algorithms can also be successfully employed.

1 2 3 4 5 6
Iteration
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Figure 13: Mesh quality analysis (top) and convergence plot (bot-
tom) of non-linear FEM (Simplilium case). The service load occurs
at iteration 4.

7. Conclusions

We presented a novel algorithm for the automatic design of archi-
tectural shells composed by structural glass panels. Given an input
surface, our approach generates a feasible panel tessellation of the
surface enriched by an optimized cable layout, which can release
the glass panels from tension and increase the overall robustness
of the shell. As a result, we can safely adopt glass panels as struc-
tural elements to support compression forces. Moreover, limiting
compression with a lower boundary, the material is not only used
for its most suitable and reliable structural characteristics, but it is
optimally employed and more uniformly loaded.

We believe that our method could inspire architects to explore
the power of glass as a structural element for the construction of a
new generation of transparent shells.

We demonstrated the effectiveness of our method with several
application scenarios. We accurately tuned and dimensioned each
experiment to match with real-world architecture so that the sim-
ulation could reflect realistic cases. The main limitation of our
method is that it can only be applied to input surfaces that are funic-
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Figure 14: A comparison between our post-tensioned Glass shell
(top) and a classical grid shell with same tessellation and compara-
ble buckling factor (bottom). Hollow steel beams of 63.5mm outer
diameter and 4mm thickness are used for the grid shell (double
section with respect to our case).

ular or almost-funicular, namely without significant out-of-plane
loads (such as bending or twisting).

Our cable placement strategy can be generalized to design ten-
sion layouts for a broader class of structures. Further improvements
of the method can provide more degrees of freedom on cable place-
ment, for example by placing the cable at an arbitrary distance
along the surface’s normal to release it from the bending. Thus,
also shape limitation could be overcome. Another possibility is al-
lowing the cables to cross the panel tessellation under the choice
of different, non-modular, construction materials that still become
critically fragile under tensions.
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Appendix A: Details on stiffness calibration of linear truss

To calibrate the equivalent stiffness of the main trusses, to be used
in our linear FEM, we build a non-linear model using the profes-
sional package Straus7 [G+D05]. This model includes a base unit
of the structural system made of two equilateral triangular pan-
els (laminated heat-strengthened glass pane 8+8mm with 1.52mm
PVB interlayer) surrounded by five reinforcement bars (hollow
steel profile of 33.7mm outer diameter and 4mm thickness), see Fig-
ure 7.a.

To obtain the non-linear force-displacement relation, from which
the equivalent stiffness is calibrated, we subject the inner nodes of
the base unit to increasing tension and compression edge-aligned
in-plane forces (F in y direction of Figure 7.a) up to tensile or buck-
ling failure, respectively.

The non-linear model uses physically-based properties that are
derived from full-scale experimental tests made on glass-steel beam
specimens, which are mechanically akin to the present system. The
detailed modelling level from [FLM17] is adopted. Glass is mod-
elled as eight-nodes quadrilateral FE (Quad8) of approximate size
of 5% of the panel side length. Steel reinforcements are modelled
as two-nodes beams. Steel nodes, where rods and beams merge,
are modelled as thick steel plates. The glass-to-steel contact is con-
sidered in the present case by including the behavior of the spac-
ers through compression-only Cut-off bars, arranged radially to the
rounded glass corners. All materials have linear elastic properties
with characteristic values, except for the Cut-off bars that have
compression-only linear behaviour with brittle failure at 5KN and
the stiffness of the aluminium, which is the material used for spac-
ers. The analysis considers large displacement.

We used the exact regression of the force-displacement plot for
case of the equilateral triangle, then we applied the homogenized
section method to find the equivalent properties of a linear truss
having same stiffness E ·A (the length of the edge l is given). This
value has been reduced by 20% to be on the safe side. Finally,
adopting the Young’s modulus of steel E = 210 GPa, we obtained
an equivalent cross-section area A = 10 cm2. These are the param-
eters that we employed for our main trusses.

Appendix B: Details on linear truss model

The truss model is a linear FEM created using MATLAB [MAT18].
We implemented an explicit solver based on the displacement
method with the hypothesis of infinitesimal displacement, i.e.
where the equilibrium of the structure is formulated in its unde-
formed state.

The final aim is to evaluate displacements, reactions and forces
at elements, which form altogether a three-dimensional truss struc-
ture where all loadings are applied at the nodes. In our setup, each
mesh edge is a two-nodes truss element with 3 translational degrees
of freedom per node (in the global reference system), whose axial
stiffness k = E ·A/l matches the equivalent truss stiffness (dashed
line in Figure 7.b).

The solution of the problem are nodal displacements, which are
evaluated by solving the matrix problem:

Kp = q
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where K is the stiffness matrix that stores known constants and is
function of the geometry and the material properties; p is the vector
of unknown displacement; and q is a vector of known nodal loads.
Several solutions are derived, one for each load vectors, q = q0 for
the service load and q = q j for each j-th cable load.

Once the displacement vector p is known, the stress vector can be
easily computed due to the linear relationship between strains and
stresses E · ε = σ. For each element, the axial forces are derived
from integration of the stress over the cross-section area A. The
vector g derives from the load case q = q0; vectors s j derive from
the load cases q = q j.

The total strain energy (Equation 4) is computed in each load
scenario.

U = ∑
i

N2
i

EA
· li (4)

As hinted in Section 4.1, in our linear FEM we can decouple
the membrane behavior, namely axial forces on the main trusses,
and the out-of-plane behavior (axial forces on additional trusses).
In our setup the energy of the main trusses Umain and the en-
ergy of additional trusses Uadd are evaluated separately and com-
pared. To discard solutions that potentially invalidate the base hy-
potheses (i.e. prevailing membrane behavior), we firstly examined
the obtained displacement field, checking if the truss manifests
snapped nodes, and secondly we measured the strain energy ratio
u = Uadd/Umain. In particular, we verify that u ≤ 1% for a given
load. If so out-of-plane components (additional trusses) are cor-
rectly deemed scarcely used.

The cable load q = q j includes deviation forces applied at nodes
(on which the cable c j is supposed to be installed) generated by a
unitary pre-load of 1 kN. Its effect on the i-th truss is expressed as
si, j. Due to the linearity of the problem, if the pre-load is increased
to x j ·1 kN (where x j ≥ 0), the resulting axial force will be simply
x j · si j with no need for a new analysis.
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