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Abstract—In this paper, we consider a scenario with one
unmanned aerial vehicle (UAV) equipped with a uniform linear
array (ULA), which sends combined information and sensing
signals to communicate with multiple ground base stations
(GBSs) and, at the same time, senses potential targets placed
within an interested area on the ground. We aim to jointly
design the transmit beamforming with the GBSs association to
optimize communication performance while ensuring high sens-
ing accuracy. We propose a predictive beamforming framework
based on a dual deep neural network (DNN) solution to solve
the formulated nonconvex optimization problem. A first DNN
is trained to produce the required beamforming matrix for any
point of the UAV flying area in a reduced time compared to state-
of-the-art beamforming optimizers. A second DNN is trained to
learn the optimal mapping from the input features, power, and
effective isotropic radiated power (EIRP) constraints to the GBSs
association decision. Finally, we provide an extensive simulation
analysis to corroborate the proposed approach and show the
benefits of EIRP, Signal-to-Noise-plus-Interference Ratio (SINR)
performance and computational speed.

Index Terms—Unmanned aerial vehicle, ISAC, neural network,
cellular network

I. INTRODUCTION

W IRELESS communications and radio sensing are
evolving towards the same technological solutions in-

volving high frequencies, large antenna arrays, and miniatur-
ized devices [1], [2]. Thereby, integrating sensing capabilities
in wireless infrastructures offers new exciting opportunities for
the next sixth generation (6G) cellular systems and beyond
[3], [4]. However, sensing and communications have different
roles: sensing collects and extracts information from noisy
data, whereas communications are devoted to transmitting
information through ad-hoc signaling schemes and recovering
it from a noisy environment. The Integrated Sensing and Com-
munication (ISAC) paradigm integrates both functionalities
(e.g., by using the same hardware) to find a tradeoff between
competing needs and mutual performance gains [5], [6].
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Several works have recently proposed different waveform
designs to find the best sensing and communication tradeoffs.
In [7], the authors consider the tradeoff between the detection
probability and achievable rate for a joint communication
and passive radar system. Then, [8] accounts for the tradeoff
between estimation and communication and the design of
a waveform favorable for target estimation and information
delivery. Finally, in [9], the authors investigate the tradeoff
arising in ISAC systems due to the different treatment of
spatial degrees of freedoms (DOFs).

Waveform design is key in attaining integration gain and can
be conceived either in a non-overlapping resource allocation
scheme or in a fully unified framework [4]. In the first case,
sensing and communications are split over orthogonal (non-
overlapping) wireless resources [4], [10]. Differently, fully
unified waveform design can follow two approaches: (1) a
sensing-centric scheme when a typical sensing waveform (e.g.,
chirp signals) incorporates a communication functionality, e.g.,
[11], [12]; (2) a communication-centric scheme when a com-
munication waveform (e.g., OFDM) is also used for sensing
[13], and a joint design approach based on optimization [14].
New beamforming methods based on SF-RDA, FDA-MIMO
have been proposed in [15], [16] to mitigate the problem of
jammer.

Such a joint design is particularly appealing for networks
of low-complexity devices, such as unmanned aerial vehicles
(UAVs), as it allows the design of highly flexible and ef-
ficient systems overcoming the size, weight, and endurance
constraints of autonomous agents [17], [18]. Indeed, towards
the realization of 6G, UAVs have attracted significant interest
thanks to their low cost and their flexibility, which let them be
a suitable solution for both communication and sensing [19]–
[22]. UAVs are emerging sensing technologies that, thanks
to their flexibility and their possibility of keeping a privi-
leged line-of-sight (LoS) point of view, are often used for
localization and sensing in time-critical applications [23]–[26].
The advantages of using UAVs with ISAC are many, but at
the extreme, one can find two significant aspects. On the
one hand, the UAVs’ 3D mobility allows dual function radar
communication (DFRC) tasks to be performed in an optimized
manner: an optimized UAVs trajectory can further increase the
performance of the ISAC system. On the other hand, ISAC is
an integrated solution that supports easy and low-complexity
hardware deployment of onboard battery constraint agents
that requires determining the best beamforming and waveform
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design. ISAC enables sharing wireless infrastructure and RF
hardware and constructing compact and lightweight wireless
devices with both communications and sensing capabilities.
This is particularly promising as power and battery-constrained
UAVs could be deployed as airborne nodes to provide wireless
sensing support from the sky in 5G and beyond cellular
networks [18]. Potential applications range from law enforce-
ment, precision agriculture, and 3D environmental mapping
to search, rescue, and military operations. In this perspective,
high-frequency technology, such as Terahertz (THz) and mm-
Wave, has emerged as a promising solution for sensing [27],
for UAV integration thanks to their ease of miniaturization
[28], and for all the solutions that entail the convergence of
communication, localization and sensing capabilities [29].

A. Related Works and Contributions

The ISAC theoretical framework has been recently applied
to UAVs [30]–[38], which can be classified according to the
UAV’s trajectory constraints and goals. More specifically, [33],
[35], [36] consider the energy consumption of the UAV during
the trajectory while achieving the sensing performance gains.
In [33], a rotatory-wing UAV transmits the ISAC signal during
its flight to simultaneously provide downlink communication
service to a ground user and sense a target. The trajectory
design problem aims to determine the subsequent UAV way-
points, hover points, and flight speeds to maximize the average
communication rate while minimizing the Cramer-Rao lower
bound (CRLB) of the target location estimate. In [35], a
ground base station (GBS) is deployed to deliver downlink
wireless services to cellular users. A cellular-connected UAV
equipped with a side-looking synthetic-aperture radar (SAR)
flies and collects the echoes of communication signals orig-
inating from the GBS to sense objects and gain situational
awareness. The UAV minimizes the overall propulsion energy
consumption during the time horizon while maintaining ac-
ceptable sensing resolution by reusing cellular communication
signals. In [36], the considered UAV is required to execute
multiple sensing tasks in sequence within the cell coverage.
Nevertheless, in [36], it has not been considered that, due
to its high altitude, the UAV might associate with several
candidates GBSs at different distances. Thus, the UAV-GBS
association should be carefully considered when designing the
UAV trajectory.

Other works as [30], [37], [39]–[42] focus on the UAV
beamforming problem considering antenna arrays deployed on
the UAV. The authors in [37], [39] consider a UAV equipped
with a uniform linear array (ULA) to serve ground users and,
simultaneously, to perform radar sensing towards potential
ground targets. The objective is to maximize the average
weighted sum-rate throughput by jointly optimizing the UAV
trajectory, as well as the transmit information and sensing
beamforming subject to the sensing requirements and transmit
power constraints over different time slots.

In [30], the authors consider a UAV-ISAC system integrated
with a ULA, to maximize the achievable rate, subject to the
beam-pattern gain constraint and the maximum transmit power
constraint. Works [40], [41] minimize a beampattern matching

error by jointly optimizing the sensing and communication
beamforming design subject to the transmit power constraints
and secrecy rate [41] or transmit power and rate constraints
[40]. The antenna pattern in these papers is the result of
optimization solutions. However, these approaches make it
difficult to simultaneously satisfy SLL, beamwidth, nulling,
and EIRP constraints. This becomes even more complicated
when a realistic high-gain sub-array is considered during the
beam steering process.

In addition, the rotation of the antenna radiation pattern
suffered by small/medium UAVs due to environmental factors
has not yet been considered when considering the effectiveness
of the proposed beamforming patterns.

These joint challenges introduce a high level of complexity.
First, a realistic pattern synthesizer is complicated for the
formed 3D beam based on a ULA in real-time ISAC appli-
cation scenarios, especially in UAV-enabled ISAC networks
where wireless links have diverse and varying elevation and
azimuth angles. The complexity is even increased because
the azimuth and elevation angles are not influenced for each
trajectory point but are made from the rotation of the UAV
and the applied GBS association policy.

This work aims to propose a deep neural network (DNN)
solution that, together with the conventional challenges of
ISAC, takes into account the UAV-GBS association problem
described above, a realistic antenna beam pattern synthesizer
and the possible rotation of the radiation pattern. To more
efficiently exploit the benefits of beamforming in UAV-enabled
ISAC networks, a more flexible antenna array, e.g., an ULA,
is considered to form dedicated beams.

Thus, the main contributions of this manuscript can be
summarized as follows:

• We consider a THz cellular-connected UAV system,
required to communicate with surrounding GBSs and
perform target sensing operation. Unlike previous works,
we consider a realistic onboard UAV antenna design and
beamforming, controlling the beam’s position, the side
lobe levels, and the nulling. In addition, we consider the
rotation of the ULA antenna during the UAV trajectory.

• We formulate a novel UAV trajectory problem based on
joint beamforming design and GBS association policy.
The complexity of the proposed real-time antenna synthe-
sizer, coupled with the nonconvex association constraints
and UAV antenna rotation, makes the formulated problem
nonconvex and high-dimensional. Consequently, conven-
tional antenna synthesizers and mathematical approaches
are inapplicable.

• We propose a double DNN based approach to approx-
imate the non-linear mapping from the UAV position
to the optimal beamforming weights selection and the
optimal GBS selection. The labeled radio data for the
first DNN is generated using an antenna pattern optimizer,
which can synthesize a radiation pattern considering the
beamwidth, pointing direction, and nulling as input data.

• With the advantage of reducing the time to generate the
required beam, our DNN solution learns the directional
beamforming weights for each UAV ’s position in the
flight area, including any effect on elevation and azimuth
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Fig. 1: Considered scenario, where the DFRC UAV needs to au-
tonomously navigate the environment while guaranteeing reliable
communication and sensing performance.

angle due to UAV rotation. In addition, a second DNN
reduces the signaling overhead for the GBS-UAV asso-
ciation, indicating the best GBS association in terms of
rate and minimum EIRP.

• We provide an extensive simulation analysis to corrobo-
rate the proposed framework and show its effectiveness
in accuracy and speed compared to the antenna optimizer.

The rest of the paper is organized as follows: Sec. II intro-
duces the system model of the DFRC UAV system. In Sec. III,
we formulate the connectivity-constrained beam-pattern gain
minimization problem, while Sec. IV details the proposed
Neural Network (NN)-aided approach. Numerical results are
reported in Sec. V, while Sec. VI provides concluding remarks.

A complete list of recent works on ISAC systems applied
to UAV technology is reported in Table I.

II. SYSTEM MODEL

We consider a cellular system, schematically depicted in
Fig. 1, populated by a terrestrial network of GBSs and a UAV.
More specifically, the UAV is required to act as a mobile
DFRC system that simultaneously probes its surrounding envi-
ronment through a monostatic radar while communicating with
its associated GBS. We aim to facilitate the operation of such
networks by adequately selecting the GBS and the choice of
the suitable orientation and beam-pattern configuration for the
UAV through an ad-hoc beam-pattern optimization technique
to satisfy communication and sensing requirements.

Next, we first discuss the GBS association rule. After
providing a brief overview of the considered geometry, we
present the transmitted signal model and describe how we
consider the signaling for sensing and communication, the
ground-to-air channel, and finally, the received signal model.

A. GBS Association Policies

Selecting the best GBS to associate with is not trivial due
to blockages, Non-Line of Sight (NLoS) links, or communi-
cation/sensing pointing angles that make the radiation pattern
optimization unsuitable.

In particular, one can consider one of the following associ-
ation approaches, defined also as policy in the results:

1) A possible association rule is represented by choosing the
closest GBS. However, if the nearest-neighbor association
is adopted, performance might degrade due to blockages.
In addition, the communication and sensing angle might
be very different.

2) A second possibility is to select the GBS with an azimuth
angle close to the UAV-target azimuth angle to maximize
the sensing performance.

3) A third possibility is to select the GBS experiencing the
highest Signal-to-Noise-plus-Interference Ratio (SINR).
This requires a complete scan of the environment to
receive the GBS pilot information and, thus, higher
overhead and latency. In addition, it might happen that
the GBS with the highest SINR is not the one that
allows optimizing the beam pattern for joint sensing and
communication purposes.

As noted above, each approach has its challenges and limita-
tions. Thus, we will investigate the performance of the three
approaches for the system’s joint sensing and communication
performance.

B. System Geometry

The UAV mission period, namely T = [0, T ] is discretized
into N time slots, each with duration δt = T/N . Here, δt is
chosen to be sufficiently small so that the UAV location can
be assumed to be approximately unchanged within each slot to
facilitate the trajectory and beamforming design. In addition,
we consider that the UAV aims to sense U = 1 target of
interest at a known location u0 = (x0, y0, z0). At any time
slot during the UAV trajectory, the UAV can associate only
with one of the GBS.

We consider a 3D Cartesian system, represented in Fig. 2,
where

• The location of the GBSs are fixed at uk =
(xk, yk, zk), k = 1, ...,K with K being the number
of deployed GBSs, (xk, yk) denoting the location of the
kth GBS and zk = hBS, ∀k;

• The time-varying location of the UAV at time slot n ∈ N
is q(n) = (x(n), y(n), z(n)). Then, consider the set of
UAV trajectories as

Q = {q1, . . . , qℓ, . . . , qNT}, (1)

where each trajectory can be expressed as a sequence of
UAV positions

qℓ = {qℓ(1), . . . ,qℓ(n), . . . ,qℓ(N)}, (2)

and NT is the total number of flights performed by the
UAV. We consider the initial and final positions being
fixed, that is, qℓ(1) = qI, qℓ(N) = qF, ∀ ℓ.

• The UAV speed is fixed and upper limited by ∥q(n+1)−
q(n)∥ ≤ δt Vmax with Vmax being the maximum speed.

The UAV is equipped with an array of M antennas whose
coordinates are

pm = q(n) + (xm, ym, zm) = q(n) +R(α,β, γ)p(0)
m , (3)
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Ref. ISAC UAV Role Optimization Goal Constraints Opt. Technique
[33] No UAV-BS Communication Rate, CRB Energy, UAV mobility Iterative Algorithm
[35] Yes UAV-UE Tx Power, Range Resolution Overall propulsion energy consumption BCD
[37] Yes UAV-BS Comm. Rate Sensing Beam-Pattern Gain, UAV TX

Power
SCA, SDR

[36] No UAV-UE Tx Power, UAV speed Velocity, acceleration, UAV Coverage,
Sensing Rate

Problem decomposition

[39] Yes UAV-BS Comm. Rate Sensing Beam-Pattern Gain, UAV TX
Power

CVX

[30] Yes UAV-BS Communication Rate Beam-Pattern Gain, max Transmit
Power

SDR, eigenvalue decomposition

[40] Yes / Beampattern error Transmit Power, Rate SDR
[41] Yes / Beampattern error Transmit Power, Secrecy Rate SDR

This work Yes UAV-BS/UE Beampattern error Transmit Power, GBS Connectivity DNN

TABLE I: Related works on UAV-ISAC systems.

UAV array

Target X

Y

Z

uk

i⃗

τm

τ

τ

p
(0)
m

q(n)

θk(n)

φk(n) αβ

γ

Fig. 2: System scenario and geometry.

where q(n) are the coordinates of the reference antenna and
m ∈ {0, 1, . . . ,M − 1}, and where

R(α,β, γ) = Rx(α)Ry(β)Rz(γ) (4)

is a generic 3D rotation matrix with (α,β, γ) being the
rotational angles around the x, y, and z axis respectively,

and p
(0)
m is the antenna array position before the rotation.

The definition of the rotation matrices Rx(α)Ry(β)Rz(γ) is
defined in [43], [44, 3.42] and it is reported in (5). Note that
the orientation is affected by the trajectory only and not by
speed variation, which we leave for future work. Consequently,
it is straightforward to find the relationships in (6) between the
coordinates of the antenna elements and the rotational angles.

Note that eq. (3) can specialize in different array geometries.
In this work, we consider the UAV equipped with a squared
Uniform Planar Square Array (UPA) with M antennas, ini-
tially distributed along the XZ-plane, such that it holds

p(0)
m = (xm, ym, zm) =

(

mx
λ

2
, 0, mz

λ

2

)

, (9)

where

mx =

(

1 +

⌊
m√
M

⌋)
λ

2
,

mz =
[

1 + (m mod
√
M)
] λ

2

and we have assumed that the inter-antenna spacing is dant =
λ
2

with λ being the carrier wavelength. In the sequel, we consider
an optimization problem to control the array orientation using
the rotational operation defined by (3).

C. Transmitted Signal Model

As highlighted in Fig. 3, we account for a DFRC system
with separate waveforms for implementation simplicity rather
than methods based on dual-function waveforms. With that
said, let s(n) be a (K+1)×1 vector containing the transmitted
waveforms as

s(n) = [s0(n)
︸ ︷︷ ︸

Sensing

, s1(n), . . . , sk(n), . . . , sK(n)
︸ ︷︷ ︸

Communication

]T , (10)

where sk(n) represents the transmitted signal from the UAV
to the k-th GBS at time slot n, whereas s0(n) represents the
transmitted signal for sensing during the same time slot.

After the GBS selection, the UAV is attached to a single
GBS, and (10) reduces to

s(n) = [s0(n), sk̂n
(n)]T ∈ C2×1, (11)

where k̂n is the chosen GBS at time instant n.
We consider the UAV applying beamforming techniques

for communications and sensing. We denote with W(n) the
beamforming matrix given by

W(n) = [w0(n)
︸ ︷︷ ︸

Sensing

,wk̂n
(n)

︸ ︷︷ ︸

Comm.

] ∈ CM×2 (12)

with wk̂n
(n) ∈ CM×1 representing the corresponding transmit

beamforming vector to the GBS, whereas w0(n) is the beam-
forming vector used for sensing. The generic beamforming
vector, for i ∈ I = {0, k̂n}, is given by

wi(n) = [eȷϕi,0 , . . . , eȷϕi,m , . . . , eȷϕi,M−1 ]T ∈ CM×1, (13)

where ϕi,m is the phase at the m-th antenna of the UAV array
and M is the total number of antennas.

Accordingly, the transmitted signal from the UAV to the ith
destination, GBS or target, is

xi(n) = wi(n)si(n) ∈ CM×1, i ∈ I =
{

0, k̂n
}

, (14)

and the total transmitted signal per antenna is, as for Fig. 3

x(n) = w0(n)s0(n) +wk̂n
(n)sk̂n

(n). (15)
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R(α,β, γ) =

⎡

⎣

cos(α) cos(β) cos(α) sin(β) sin(γ)− sin(α) cos(γ) cos(α) sin(β) cos(γ) + sin(α) sin(γ)
sin(α) cos(β) sin(α) sin(β) sin(γ) + cos(α) cos(γ) sin(α) sin(β) cos(γ)− cos(α) sin(γ)
− sin(β) cos(β) sin(γ) cos(β) cos(γ)

⎤

⎦ , (5)

xm = x(0)
m cos(α) cos(β) + y(0)m [cos(α) sin(β) sin(γ)− sin(α) cos(γ)] + z(0)m [cos(α) sin(β) cos(γ) + sin(α) sin(γ)], (6)

ym = x(0)
m sin(α) cos(β) + y(0)m [sin(α) sin(β) sin(γ) + cos(α) cos(γ)] + z(0)m [sin(α) sin(β) cos(γ)− cos(α) sin(γ)] , (7)

zm = −x(0)
m sin(β) + y(0)m cos(β) sin(γ) + z(0)m cos(β) cos(γ). (8)

Communication
Precoder

Radar
Precoder

Communication
Waveform

Radar
Waveform

sk̂ xk̂ = wk̂ sk̂

s0 x0 = w0 s0

x

Transmitted
Signal

Fig. 3: Beamforming transmission for both communication and
sensing.

The transmitted power is thus given by

E
[

x(n)Hx(n)
]

= w0(n)
H
E
[

s0(n)
Hs0(n)

]

w0(n)

+wk̂n
(n)HE

[

sk̂n
(n)Hsk̂n

(n)
]

wk̂n
(n), (16)

where (·)H is the Hermitian operator and where we have

assumed E

[

s0(n)Hsk̂n
(n)
]

= 0 (orthogonality) [40]. Then,

by further assuming

E

[

sk̂n
(n)Hsk̂n

(n)
]

= 1,

E
[

s0(n)
Hs0(n)

]

= 1, (17)

we can write

E
[

x(n)H x(n)
]

= ∥w0(n)∥2 + ∥wk̂n
(n)∥2. (18)

Hence, according to (18), the constraint of the maximum
available power can be expressed as

∥w0(n)∥2 + ∥wk̂n
(n)∥2 ≤ Pmax. (19)

D. Air-to-Ground Channel Model

THz communication enables a high achievable rate thanks
to the available bandwidth. However, the THz spectrum, lying
in between microwaves and optical regions, suffers from high
propagation losses and is sensitive to NLoS conditions. UAVs
can have a privileged position in the 3D space and, thus, have
a better chance of creating a LoS link with the intended target
and GBS. Deploying high directive antennas with high direc-
tivity through large arrays on the UAV effectively mitigates
the THz propagation losses [45].

This section characterizes the wireless channel between a
possible destination, the selected GBSs or the target, and
the UAV by deterministic large-scale path loss and random
small-scale fading. As widely adopted in works dealing with
UAV trajectory [36], we use a probabilistic path loss model,

where the LoS and NLoS links are considered separately with
different path loss exponents. Thus, two path loss functions
can be described. We assume the signal through the THz band
is affected by both free space loss and molecular absorption
[46]. Then, to model the path loss of the LoS, we need
to discriminate between two configurations, that is, i = 0
(sensing) and i = k̂n (communication).

In the sensing case, that is, when i = 0, we can exploit the
radar range equation to model the path loss as [47]

PLLoS,0(n) =
λ2

(4π)3 d40(n)
ρT · exp (4Kfcd0(n)) , (20)

where the fourth power of the distance encapsulates the effect
of the wave traveling the round-trip-channel between the target
and the UAV, d0(n) is the UAV-target distance at time instant
n, and ρT represents the target radar cross-section. Note that
Kfc represents the overall absorption coefficient of the trans-
mission medium at the central (subcarrier) frequency fc since,
for THz-band signals, there is the molecular absorption caused
by water vapor and other gases that increases the path loss.
Thus, in the radar range equation, we have accounted twice
for such an effect through the term exp (4Kfcd0(n)) [46].

For the communication case, that is, when i = k̂n, again,
the main component is dictated by the free space loss, whose
path loss can be calculated as [46]

PLLoS,k̂n
(n) =

λ2

(4π dk̂n
(n))2

exp
(

2Kfcdk̂n
(n)
)

. (21)

The respective path loss in NLOS can be defined as [46]

PLNLoS,k̂n
(n) = PLLoS,k̂n

(n)K2
N

=
λ2

(

4πdk̂n
(n)
)2K

2
N exp

(

2Kfcdk̂n
(n)
)

,

(22)

where KN is the NLoS attenuation-loss coefficient.

It follows that at time slot n, the path loss between the UAV
and the ith destination can be written as

PLi(n) =PLoS,i(n)PLLoS,i(n) + PNLoS,i(n)PLNLoS,i(n),
(23)

where PLoS,i and PNLoS,i are the probabilistic occurrences of
the LoS and NLoS links, related to the ith destination, where
PNLoS,i = 1− PLoS,i.
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We model the LoS probability between the UAV, of height
z(n), and the ith destination, of height zi, as follows

PLoS,i(n) =

− κ1 exp

{

− κ2 · atan
(

z(n)− zi
di(n) sin (θi(n))

)}

+ κ3, (24)

where di(n) = ∥q(n)−ui∥2 is the distance between the UAV
and the destination whereas different values of κ1, κ2 and κ3

lead to different propagation scenarios [48].

E. Received Signal Model

The steering vector a (q(n),ui) towards the ith destination
can be expressed as [43]

a (q(n),ui) =
[

eȷ2π fc τ0 , . . . , eȷ2π fc τm , . . . , eȷ2π fc τM−1
]

,
(25)

where fc is the central frequency where the inter-antenna delay
can be formulated as

τm (α,β, γ) =
1

c
pm i⃗ (θk(n),φk(n))

=
1

c
[xm(α,β, γ) cos(φk(n)) sin(θk(n))+

ym(α,β, γ) sin(φk(n)) sin(θk(n))+

zm(α,β, γ) cos(θk(n))] , (26)

with pm being the position coordinates of the mth array
antenna, expressed in (3), and i⃗ (θk(n),φk(n)) being the
wavefront direction.

As a result, the channel vector between the UAV and the
ith destination can be written as the following M × 1 vector:

hi(q(n),ui) =
√

PLi(n) e
ȷ2πfc

di(n)
c a (q(n),ui) , (27)

and the received signal at the ith destination can be written as

yi(n) = hH
i (q(n),ui)xi(n) + νi(n) ∈ C, (28)

where νi(n) is the additive circular complex white Gaussian
noise (AWGN) with variance σ2.

Note that the time of arrival (TOA) between the mth antenna
of the UAV and the ith destination at time n is approximated
as

τm,i (n) ≈ τm +
∥ui − q(n)∥

c
, (29)

where c is the speed of light and τm is the propagation time
from the mth antenna to the array center located in q(n), as
reported in Fig. 2.

Then, by defining the angles between the transmitter (UAV)
and the receiver (GBS) as

θi = acos

(
z(n)− zi
di (n)

)

, (30)

φi(n) = atan

(
y(n)− yi
x(n)− xi

)

, (31)

with di (n) = ∥ui − q(n)∥, and the direction vector as

i⃗ (θ,φ) = [cos(φ) sin(θ),

sin(φ) sin(θ),

cos(θ)] . (32)

Note that this TOA depends on the antenna array coor-
dinates and the rotational angles (to be optimized). Indeed,
the DFRC UAV can adapt its beamforming weights and
orientation according to communication purposes, to the GBS
association introduced in Section II-A, and sensing needs.
The next section proposes the joint sensing and ground GBS
association problem.

III. PROBLEM FORMULATION

This section illustrates the joint optimization problem for
balancing and finding a tradeoff between communications and
sensing needs. Before presenting the problem, we separately
introduce the metric functions to be optimized for both func-
tionalities.

a) Communication metric: For enhancing the communi-
cations between the UAV and the selected GBS, we consider
the SINR at the k̂n-th GBS formulated as

SINR(q(n),uk̂n
) =

|hH
k̂n
(q(n),uk̂n

)wk̂n
(n)|2

σ2 + |hH
0 (q(n),u0)w0(n)|2

. (33)

We have considered the worst-case scenario where the receiver
cannot cancel the radar signals’ interference before decoding
its desirable information signal [40].

b) Sensing metric: A key performance metric adopted in
literature for radar signal design is the transmit beam-pattern
[49], [50]. The transmit beam pattern describes the transmit
signal power at a generic focal point pointed towards the
potential target in the interested area. Without prior knowledge
of the target location, the transmit signal power is pointed
at any value in the range [−π/2,π/2] to perform a target
search in any direction. Here, we assume the target is fixed
in one position and that the position is known a priori. In the
following, we note the estimated position of the target as û0.

Starting from [50], we can formalize the transmit beam-
pattern gain towards location u0 as

B(q(n),u0) =

(a (q(n),u0))
H(∥w0(n)∥2 + ∥wk̂n

(n)∥2)a (q(n),u0) .
(34)

We highlight that on the one hand, a(q(n),u0) is a known
function of θ since we initially assume a single static target,
such that j = 1, u1 = (x1, y1, z1). On the other hand, the beam
pattern B varies along the trajectory because we assume that
the angle between the target and the UAV changes through
time.

Then, let B⋆(qℓ(n),ui) denote the desired beam pattern,
which specifies the desired beamforming weights and direc-
tions for the N UAV positions along the ℓth trajectory.

We can then formalize a cost function C that defines the
beam-pattern matching error along the ℓth trajectory as

C(qℓ(n),Wℓ(n)) =
N
∑

∀ℓ,n=1

|B⋆(qℓ(n),u0)−B(qℓ(n),u0)|2,

(35)
where we added subscript ℓ to W to indicate the beamforming
matrix associate to the ℓ-trajectory.
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We note that, according to (34), we would like to choose Rd

and wk̂n
under the total transmit power constraint such that

the available transmit power is used to maximize the signal
power at the locations of interest.

c) Problem formulation: Our objective is to minimize
the beam-pattern gain error, expressed in (35) optimizing Rd

and wk̂n
together with the optimal GBS k̂n, subject to a

connectivity constraint. Thus, our optimization problem can
be formulated as

P : min
o,Wℓ,k̂n

C(qℓ,Wℓ(n)) (36a)

s.t. z(n) > zk̂n
= hBS, (36b)

q(1) = qI,q(N) = qF (36c)

∥w0(n)∥2 + ∥wk̂n
(n)∥2 ≤ Pmax, (36d)

SINR(q(n),uk̂n
) ≥ γSINR. (36e)

where o = [α,β, γ], (36b) ensures the UAV height respects
the local height regulations, with hBS indicating the minimum
required height; (36c) guarantees that the UAV starts and ends
its trajectory at the required locations. Then, (36d) denotes
the power constraint on the UAV, with Pmax denoting the
maximum tolerable transmitted power. Finally, (36e) ensures
the minimum connectivity constraint with the GBS.

Note that, in general, it is difficult optimally solve problem
P for the following reasons:

• The cost function is not convex. To make it convex, an
auxiliary variable should be introduced [49]. However,
this would add another constraint to the problem, increas-
ing the complexity.

• Even if the objective cost function can be turned into
a linear function, modeling the end-to-end channel of
UAV-Base Station (BS) to derive (36e) requires accurate
channel modeling and perfect global channel information.
This might be complicated or even impractical for the
THz frequency band under consideration.

• The formulated problem requires a joint solution for the
sensing and the GBS association problem. A conventional
approach would lead to splitting the solution into two
problems and operate an alternate optimization approach
while we propose a unique solution.

• Lastly, due to the sharp LoS/NLoS transitions, the convex
shaped GBS coverage property may not hold [51]

Consequently, in the next section, we propose a double DNN
approach.

IV. PROPOSED DNN APPROACH

We propose a data-driven approach to develop a learning-
based beamforming scheme to address problem P . To this
purpose, we note that (36) can be considered as a beamforming
design problem for each UAV ’s position along the trajectory
qℓ. Notably, the control of the constraints in (36) and the
UAV rotation while finding the beamforming matrix is a
complex task and requires synthesizing real-world, real-time
beamforming patterns for any possible UAV trajectory point.

Currently developed ad-hoc tools, like beam-pattern opti-
mizers [52], allow to manage for a single point at a time

Algorithm 1: Beam-Pattern Optimizer

Input:Initial UAV location;
EIRP∗, EIRP per beam,;
SLLmin, SLL minimum per beam;
(θNull,φNull), Null position per beam;

Output:Wgv , Weight matrix based on previous inputs;
Data: Set of possible configurations on UAV

considering system constraints;
F1 = initial value;
Data: Beam-Pattern Optimizer;
while counter < countermax do

Compute: Wgv

Compute: radiation pattern, SLL(e)
c , SLL(a)

c and
EIRPc;

Compute: F (Z1(Wgv) + Z2(Wgv));
if F < η then

W⋆
gv = Wgv;

saves the optimal matrix;
break

else
counter← counter + 1;

end

Optimize: g, v, SLL(a), SLL(e), and PPE;
end
Save the optimal matrix Wgv;

the different requirements of the beamforming applied at the
DFRC UAV. For this reason, we compute training beam-
forming matrices for a different set of UAV trajectories that
satisfy conditions (36b), (36c), (36d) using a beam-pattern
optimizer. Then, we develop a DNN that synthesizes real-
time realistic antenna beam patterns considering the radiation
pattern’s possible rotation.

The developed predictive beamforming framework is illus-
trated in Fig. 4 and consists of two phases: a) training with
a Beam-Pattern Optimizer and b) a double DNN solution. We
will describe in what follows the two phases separately.

A. Beam-Pattern Optimizer for Training Data Generation

During the first phase a), a beamforming matrix for a
different set of UAV trajectories is created such that it satisfies
conditions (36b), (36c), (36d).

We consider a realistic antenna and a realistic number of an-
tenna elements to perform the communication and sensing task
and compute the inherent footprint. Accordingly, we consider a
patch antenna that generates a cardioid radiation pattern and a
maximum number of M = 100 elements. The direction angles,
measured in azimuth and elevation, are defined geometrically
by the positions of the UAV, the associated GBS, and the
target. According to the considerations above, the nulling
operation has to be performed in the directions of the non-
attached GBSs.

The beam-pattern optimizer operates by activating or deac-
tivating the number of active rows (mx) and columns (mz)
in the array and finding the proper tapering by selecting the
adequate side lobe level (SLL) in both planes to generate the
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Fig. 4: Architecture and inputs/outputs of the proposed NN solution.

required θ3dB in the elevation (θ(e)3dB) and azimuth planes (θ(a)3dB),
and computing the required power per element to address the
necessary effective isotropic radiated power (EIRP). For each
position of the UAV, we have to compute two array weights
vectors: (i) one dedicated to the sensing operation and (ii) one
dedicated to the communication.

According to the previous considerations, the cost function
is composed of the sum of two sub-objectives as follows

W⋆
gv = min

Wgv

Z1(Wgv) + Z2(Wgv), (37)

where Wgv indicates the gv-th element of the beamforming
matrix, Z1(Wgv) and Z2(Wgv) are given by

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

Z1(Wgv) =

(

|SLL(a)
c (Wgv)− SLL(a)

o |
SLL(a)

o

+
|SLL(e)

c (Wgv)− SLL(e)
o |

SLL(e)
o

)

· k1

Z2(Wgv) =
EIRP(Wgv)− EIRP∗

EIRP∗ · k2 .

(38)

Note that Z1(Wgv) computes the error between the minimum

desired SLL in both planes, that is, SLL(a)
o , SLL(e)

o compared
with their computed counterparts SLL(a)

c , SLL(e)
c per beam.

Z2(Wgv) reports the error between the desired EIRP∗ and
the calculated EIRP per beam. Each of those terms has a
weighting factor k1 and k2 that will add additional importance
to their calculation.

With that said, the algorithm operates as follows. First, it
requires the azimuth and elevation coordinates of the cen-
ter of the beam, the tolerable SLL range delimited by the
minimum (SLLmin) values, the required EIRP (EIRPd), and
the null position (θNull,φNull). Then, the progressive phase

Parameters Value Parameters Value

Area size 2.25 km2 BS height 2m
Number of BS K 5 max EIRP 37 dBm
UAV height 100m Bandwidth 100MHz
UAV speed 10m Frequency 0.3THz
δt 1 sec Noise Power −110 dBm
SNR threshold 0.3 dB UAV training

trajectories
100

TABLE II: Simulation Parameters

SLL
(dB)

EIRP
(dBm)

φ0

θ0

φtarget

θtarget

φNull,1

θNull,1

φNull,2

θNull,2

# 1 >15 15.38
43.6◦

16.2◦
48.54◦

26.16◦
12.61◦

42.63◦
76.64◦

42.4◦

# 2 >23 18
−58.4◦

8.4◦
8.84◦

11.26◦
57.09◦

25.47◦
33.85◦

27.30◦

TABLE III: Input parameters for UAV trajectory point 1 (# 1) and 2
(# 2).

shift, nulling, and tapering based on Chebyshev amplitude
control are calculated and given as an initial weight matrix
Wgv to the optimization algorithm with all the active elements
and an initial power per element PPE. Later, the algorithm
calculates, for each iteration, the radiation pattern principal
cuts per beam and extracts the SLL, nulling, and EIRP for
both cuts. Based on the previously extracted parameters, the
algorithm calculates the cost function F , which, if it is lower
than the minimum threshold, η, then the algorithm stops,

SLL
(dB)

EIRP
(dBm)

Active elements

# 1 30.2 15.3801 100
# 2 25.6 18.001 100

TABLE IV: Output parameters of the radiation pattern presented in
Fig. 5 for UAV Trajectory Point 1 (# 1) and 2 (# 2).
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(a) ISAC (b) Communication (c) Sensing

(d) ISAC (e) Communication (f) Sensing

Fig. 5: Radiation patterns under different requirements in a case where the target and the associated BS positions are close (figures a-b-c)
or far apart (figures d-e-f). The unit of the colormap is dB. The black circle indicates the main radiation lobe where most of the power is
directed. The stars represent the positions of the neighbouring GBS. In the ISAC cases a) and d), the computed weights can focus the power
on both the target (red dot) and the associated BS (black dot). In the communication and sensing case, on the other hand, the beam pattern
is optimized for only one of the tasks, communicating with the associated GBS or sensing the target. This is particularly visible when the
sensing target and the associated BS are located distant to each other (figures e-f), where the black circle contains either the black or the
red dot.

and the optimum weight matrix W⋆
gv = Wgv will be the

output. Note that the threshold is selected to have a slight
error between the optimized and required values. On the other
hand, if the cost function is above the threshold, the algorithm
increases the counter and searches for a suitable active number
of rows g, columns v, a Chebyshev taper based on the SLL
admissible range, and power per element PPE and repeat the
previous calculation until it found the optimal weight matrix.

The main steps are reported in Algorithm 1.

B. Proposed NN Solution

Problem 36 is highly non-convex, includes a GBS associ-
ation procedure not considered in the beampattern optimizer,
and requires running a new simulation every time the UAV
moves. Moreover, the UAV might take many trajectories
and scan different GBSs associations. During the training
process and the different GBS association along its trajectories,
conditions (36d) and (36e) might be satisfied for the single
communication or sensing task, but failed when considered
jointly. Thus, the weight recalculations via a beam optimizer
for each UAV position and GBS association would lead to
lengthy procedures with high computational resources and
power consumption. This is unsuitable due to the need for
fast response of the UAV.

In this sense, phase b) comes to help first produce the
required beamforming matrix for any point of the UAV flying
area in a reduced time compared to the optimizer. Second, we

also address the UAV-GBS association problem described in
II-A with constraints (36d) (36e), exploiting the output of the
first NN to train a DNN to learn the optimal mapping from
the input features to the GBS association decision.

In our approach, the output of the beamformer optimizer
is used to train the DNN accounting for both the sensing
and communication performance. We exploit the ability of
DNN to map the input-output of generic scenarios in a model-
agnostic way [53]. The training phase consists of generating
random trajectories in the considered area. For each point in
the trajectory the antenna pattern optimizer generates training
beamforming weights. The beamforming weights for com-
munication and sensing are generated via the beampattern
optimizer presented in the previous section and then used as
input training of DNN. Once trained, the optimized beamform-
ing weights Wℓ can be obtained from the DNN. Once this
training phase is completed, the UAV is able to generate, in
the inference step, a beamforming matrix for any point in the
flight area under consideration in a reduced computation time.
The power hungry training procedure can be performed offline
and leave the inference only, less computational expensive, to
be performed on board.

Then, we employ a feed forward neural network (FFNN)
implementation, where we load as input for the communication
beamforming weights for each UAV position and for all the
trajectories, the azimuth, and elevation towards the associated
GBS, the azimuth and elevation of the interfering GBS based
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on the decided GBS association rule, and the EIRP (Fig. 4).
To generate the sensing weights, we load to the FFNN with
the azimuth and elevation towards the target position and the
associated EIRP.

C. Proposed NN Complexity Analysis

The computational complexity of the proposed radiation
pattern optimization algorithm is primarily influenced by the
number of antenna elements received as input. This algorithm
uses the AF (array factor) formula to estimate the approximate
radiation pattern for subsequent calculations of beamwidth,
SLL (side lobe level), nulls, and EIRP (effective isotropic
radiated power). As the total number of antenna elements
increases, the algorithm’s runtime also increases due to the
need for larger matrices and more multiplications involved in
the array factor calculation.
The computational complexity of the proposed DNN algo-
rithm can be analyzed in terms of multiplications of its
main components. The computational complexity of a fully
connected network is typically given by the multiplication of
the parameters of each fully connected layer and depends on
the number of features in the input vector and the number of
neurons in the layer [54], O(ζiζn), where ζi is the number of
features and ζn the number of neurons in the layer. Finally,
the overall complexity is given by the sum of all layers of the
DNN.

V. NUMERICAL EVALUATION

A. Scenario Definition

This section provides extensive simulation data to validate
the proposed framework and evaluate system parameters’
impact on sensing and communication performance. For the
simulations, we consider an area of 1.5 × 1.5 km2, where
five GBS are distributed. The starting and final UAV path
points are set respectively at [0, 0]m, [700, 800]m, and target
location is at [350, 400]m. For ease of illustration, the flight
altitude is assumed to be fixed at 100 m during the path 1.
We have randomly generated NT = 100 different trajectories
between the starting and final points. A sub-THz downlink
system is considered, operating at 0.3THz. Table II specifies
the remaining simulation parameters.

B. Evaluation of the Proposed DNN solution

To validate and demonstrate the capabilities of the antenna
pattern optimizer that creates the dataset and the proposed
DNN solution, let us consider two example trajectory points
where an UAV phased array generates a radiation pattern with
the parameters presented in Table III. The antenna optimizer
considers an array antenna to produce a beam synthesized with
SLL, pointing angle, EIRP, and nulling as input. The above
generated are computed for each point of the UAV trajectories
as follows: the pointing angle is the angle pointing to the
associated GBS or target, the nulling is the direction of the
two closest neighboring GBS, the EIRP is the minimum EIRP
to satisfy constraint 36e. The generated M proper complex
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Fig. 6: Left: synthesized transmit azimuth beampattern profile. Right:
synthesized transmit elevation beampattern profile.

Computational Time
Solution Training Epochs Elapsed Time

Beamforming Optimizer one UAV position 16 sec
Beamformer NN 200 47 sec - Training
Beamformer NN 1 60 msec - Inference
Association NN 200 20 sec - Training
Association NN 200 30 msec - Inference

TABLE V: Computation time for the DNN proposed solutions

weights wm, with m ∈ {1, ...,M}, are used to train the
beamforming neural network. The beamforming network has
an input layer of seven neurons corresponding to the desired
bandwidth, sidelobes, power antenna constraints, one hidden
layer (50 neurons), and an output layer (200 neurons). The
proposed architecture task predicts the beamforming weights
for each UAV position satisfying (36). The inputs are normal-
ized to improve the optimization performance and the training
process. We train the DNN by using the ADAM optimizer. We
considered a slow learning rate and a batch size equal to 128.
We chose a ratio of 70− 30 for the training and test sets. The
structure of the association network is composed of an input
layer with four neurons, corresponding to the UAV position
in 2D space. Two hidden layers of 64 and 32 neurons follow,
and finally, the output layer has one neuron corresponding to
the BS index decision.

Fig. 5 shows the obtained (transmit) DNN beampattern
gains in space at specifically chosen trajectory points for the
sensing-only design, ISAC design, and the communication-
only design, respectively. For ease of illustration, angle (0, 0)
and angles to the radar and GBS in azimuth and elevation
are computed using the reference system in Fig. 2. The
results show that the algorithm generates the three radiation
patterns, addressing the desired EIRP and SLL requirements
and pointing to the desired direction of the main beam and
the nulls. For sensing design in Fig. 5c and Fig. 5f, the UAV
is observed to direct its antenna main lobe (θ3dB) at the center
of the sensing area, and the sensing power exactly covers the
whole sensing area, thanks to the adequately designed sensing
beams in this case. Next, for the communication-only design in
Fig. 5b and Fig. 5e, it is observed that the UAV antenna main
lobe is deployed above the associating GBS, and the UAV
’s transmission power is radiated towards GBS to perform the
task of communication efficiently. Moreover, the beamforming
nulls are placed in the neighboring GBS directions to minimize
the interference at the GBS antenna side.

1Our proposed scheme can be extended to UAV paths with altitude
variation.
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Fig. 7: Beam-pattern error vs training epoch for different GBS
association policy.

Finally, in Fig. 5a, Fig. 5d, it is observed that the UAV
beamforming direction is deployed between the users and
the sensing area. It is possible to note that when using the
ISAC beamforming weights, the θ3dB is directed towards the
associated GBS. Two nulls are placed in the direction of
inferring GBS. On the other hand, when using the sensing
weights, the main lobe is directed towards the target while the
GBS directions are not nulled properly. In this regard, Table
IV shows the obtained SLL, EIRP, and active elements of
the desired array pattern at the UAV for the two considered
points. Fig. 6-left shows the transmit beampattern obtained
by the DNN beamformer. The dashed line specifies the ISAC
azimuth profile obtained by summing the communication and
the sensing profile. Its counterpart, the transmit beampattern
obtained by the beamforming optimizer, is shown in Fig. 6-
right. The dashed line specifies the ISAC azimuth profile ob-
tained by summing the communication and the sensing profile.
It is observed that for the communication case, the pattern is
formed to meet the SINR requirements with minimum power,
while, for the sensing case, the pattern is created such that the
resultant matching error can be minimized.

The proposed DNN solution can predict the beamforming
weights with a significantly reduced time compared to running
the beampattern optimizer for any point of the possible UAV
trajectories. The training length and time for the proposed
model are reported in Table V.

Fig. 7 shows the beampattern error along the DNN training
epochs. The beampattern error diminishes with increasing
training epochs, showing a convergent learning process for
all three association policies. It means a stable beampattern at
the UAV antenna is learned.

C. GBS association policies evaluation

To assess the GBS association policy performance, we
consider the approaches described in Sec. II-A. For the sake
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Fig. 8: Instantaneous rate under different requirements: sensing,
communication, and ISAC

of clarity, we adopt the following notation:

• Policy 1 refers to choosing the closest GBS;
• Policy 2 refers to choosing the GBS with azimuth angle

closest to the target;
• Policy 3 refers to choosing the GBS experiencing the

highest SINR.

It is also interesting to discuss the instantaneous communi-
cation rates achieved by different users in Fig. 8. Results in
Fig. 8 are coherent with what was found in Fig. 5 and Fig. 5f.
The beampattern optimized for communication provides the
highest instantaneous rate along the UAV trajectory, while the
ISAC design can balance the tradeoff between communication
and sensing performances.

However, evaluating the best GBS association policy in-
cludes the evaluation of the tradeoff between constraints 36d
and 36e in the optimization problem. Condition 36d imposes
to satisfy a maximum transmission power/EIRP at the antenna
side to limit the energy consumed by the UAV. The EIRP, in
turn, has to be high enough to satisfy the SINR condition 36e
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Fig. 9: Empirical cumulative distribution function (ECDF), indicated
with ECDF(c), for the EIRP under different GBS association strate-
gies.
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Fig. 10: SINR outage (gray bars) and communication average rate
(red markers) for EIRP beampattern thresholds of 10 dBm and
15 dBm.

at the GBS side to be able to decode the UAV signal. Fig. 9
shows the EIRP distribution during the UAV paths under the
three different association strategies. While policy 2 helps to
reach higher values of communication rate, policies 1 and 3
have lower EIRP values, leading to less power dissipation at
the UAV antenna side.

Fig. 10 shows the average SINR outage at the UAV
versus the achievable rate, comparing the three benchmark
association policies and the proposed NN GBS association.
The comparison is performed considering two different EIRP
thresholds at the transmitter, 10 and 15 dBm, respectively.
Transmitting at the UAV with higher EIRP generally leads to
lower SINR outage values. More specifically, compared to the
Policy 1 and Policy 3 association strategies, the DNN-based
association strategy leads to a better performance in terms of
communication rate with a lower SINR outage. While Policy
2 can reach higher values of data rate, due to the high values

of SINR outage, picking this policy would highly penalize the
decoding of the signal reception at the GBS.

VI. CONCLUSIONS

In this paper, we proposed DNN solution for the joint
ISAC beamforming and UAV-GBS association problem. The
derived optimization problem accounts for UAV trajectory and
orientation, sensing and communication beamforming weights,
and GBS selection. Thus, the addressed optimization problem
is comprehensive, considering various factors such as the
trajectory and orientation of UAVs, beamforming weights for
sensing and communication, and selecting suitable GBSs.
Given the intricacies involved, particularly the nonconvex
nature of the cost function and constraints, our approach
leverages the power of two distinct DNNs. Our results demon-
strate the considerable potential of our proposed approach in
the context of UAV-enabled communication scenarios. Firstly,
our solution showcases the capability to predict beamform-
ing weights with significantly reduced computational time
compared to state-of-the-art beampattern optimizers. Secondly,
by utilizing a second DNN to determine the most suitable
GBS association at each point along the UAV trajectory, our
approach proves superior to traditional GBS association rules
in terms of EIRP, SINR performance and computational speed.
Future work includes comparing the proposed method with
New beamforming methods based on SF-RDA, FDA-MIMO.
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