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Abstract – Underwater noise analysis allows estimation of parameters of meteorological interest, 12 

difficult to monitor with in-situ devices, especially in very harsh environments such as polar waters. 13 

Rainfall detection is a fundamental step of acoustical meteorology toward quantifying precipitation 14 

and, indirectly, wind. To date, this task has been conducted with some success by using a few 15 

frequency bins of the noise spectrum, and combining their absolute values and slopes into some 16 

inequalities. Unfortunately, these algorithms do not perform well when applied to spectra obtained 17 

by averaging multiple noise recordings made over the course of an hour. Supervised, machine 18 

learning models allow the use of all the frequency bins in the spectrum, exploiting relationships that 19 

are difficult for a human observer to identify. Among the different models tested, a binary classifier 20 

based on random forest performed well with moderate computational load. Using a data set 21 

consisting of over 18,000 hourly-averaged spectra (approximately 25 months of in-situ recordings) 22 

and comparing the results with measurements from a surface-mounted rain gauge, the proposed 23 

system detects precipitations greater than 1 mm/h with 90% probability, keeping the false alarm 24 

probability below 0.5%. This system has demonstrated remarkable robustness as performance is 25 

achieved without excluding spectra corrupted by sounds produced by other sources, such as naval 26 

traffic and wind blowing over the sea surface. 27 

Keywords – underwater acoustics, acoustical meteorology, rainfall detection, noise analysis, 28 

supervised learning, machine learning.    29 

 30 

 31 

I. INTRODUCTION 32 

 33 
The measurement of rain and wind in the marine environment is an essential operation in 34 

understanding and monitoring natural phenomena, especially in relation to climate change and risk 35 

prevention [1-4]. Satellites for meteorological observation provide a valuable contribution, although 36 

the spatial and temporal resolutions they provide do not always meet monitoring requirements. This 37 
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problem is particularly felt in the polar environment due to the reduced coverage that these satellites 1 

offer at higher latitudes [3,5]. Weather surveillance radars, operating along the coast, and surface 2 

rain gauges and anemometers, installed on oceanographic fixed or mobile platforms, also present 3 

critical issues that make it difficult to deploy these devices on a large scale [3,6,7]. For these 4 

reasons, estimating wind speed and rainfall intensity using underwater acoustic noise is considered 5 

a crucial technique for a better understanding of the oceans, either as an alternative to or in support 6 

of satellites, coastal radar systems, and meteorological buoy networks [6,8].  7 

In recent years, acoustical meteorology has received considerable attention, demonstrating 8 

that wind and rain can be measured with satisfactory accuracy using low-cost underwater devices 9 

installed on fixed moorings or moving platforms, in a variety of ocean environments [1,3,7,9-17]. 10 

However, several problematic issues are still present and need convincing answers to achieve 11 

proper operation of these devices in the field [2,18,19]. These issues include the possibility of 12 

performing wind and rain estimates when only acoustic data averaged over a significant period of 13 

time are available. Indeed, deploying a network of measurement devices in polar waters that operate 14 

completely autonomously, continuously operating for one or more years, could force a dramatic 15 

reduction in processing and storage resources. In mobile platform installations, it may be necessary 16 

to minimize the transmission resources to be committed during the rare and brief periods of 17 

surfacing. These savings requirements led Vagle, Large and Farmer, in their pioneering work [9], to 18 

propose a method for estimating wind speed using the average of the acoustic data acquired, at 19 

various times, over a period of one hour. Recently, a similar proposal has also been formulated and 20 

tested for rain monitoring [20].  21 

In the literature concerning the acoustic measurement of rain, the intensity of precipitation is 22 

estimated through two distinct steps [3,7,10-13,15,18,20,21,22]: the detection of rainfall and, if any, 23 

the estimation of its intensity. With the exception of [20], for both operations the input data are 24 

derived from acoustic signals gathered over a few seconds or, at most, a few minutes. This paper 25 

investigates the possibility of detecting precipitation over a one-hour period by exploiting only the 26 
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average of consecutive acoustic spectra acquired at intervals of a few minutes during that hour, 1 

without performing any processing to filter out measurements potentially affected by noise sources 2 

other than rain. The detection also aims to reveal intermittent rain falling for a period shorter than 3 

the hour under examination. Furthermore, the adopted dataset consists of spectra acquired during 4 

different deployments of the acoustic sensor, seasons, and environmental conditions, covering about 5 

25 months of operation, using the same platform. Over such an extended time interval, while 6 

precipitation detection is an essential step in quantifying rainfall, it can also be useful in estimating 7 

wind speed, due to the combined effect of these phenomena on underwater noise, and in monitoring 8 

of oceanographic parameters, such as sea surface salinity.  9 

The methods mentioned above [1,7,9,10,13,14,21] that aim to perform rainfall detection 10 

using short-term acoustic data (short-term being the term adopted to indicate data gathered over 11 

some seconds or a few minutes) do not provide satisfactory performance when hourly-averaged 12 

acoustic data are used as input. In addition, the detection is performed by decision rules that exploit 13 

only the values and slopes of the acoustic spectrum at a few predetermined frequencies (for this 14 

reason, these methods will be referred to as rule-based). To overcome this restriction, a recent paper 15 

[20] proposed machine learning methods to estimate rainfall intensity and wind speed using all the 16 

frequency bins of the underwater noise spectrum as input data, in order to exploit implicit 17 

relationships that are not evident to the human observer. In [20] machine learning methods are also 18 

applied for rainfall detection, using hourly-averaged spectra as input data. Unfortunately, detection 19 

is limited to precipitation intensities greater than 1 mm/h and the performance obtained over a one-20 

year period is worse than that reported in [15], where a rule-based estimation method [21] was fed 21 

with short-term data collected by the same equipment and over the same time period used in [20].  22 

This paper is aimed at improving the performance of rule-based methods in rainfall 23 

detection, exploiting all the frequency bins of the spectrum within a scheme based on supervised 24 

machine learning models, already successfully applied to other detection problems of the 25 

underwater acoustic domain [23-25]. The new knowledge that this work introduces is twofold: the 26 
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demonstration that hourly-averaged spectra can be used to detect rainfall with better performance 1 

than that achieved by rule-based methods fed by short-term data; and, secondly, an in-depth 2 

analysis of the potential and limitations of the machine learning models adopted, made possible by 3 

experimentation on real data collected at sea over a period of more than two years. In addition, the 4 

detection scheme proposed here is capable of operating even with extremely light precipitation, 5 

being able to detect rainfall intensity of 0.1 mm/h, a value that represents the instrumental limit of 6 

most commercial rain gauges. 7 

This paper is organized as follows. Section II presents a brief state-of-the-art in rainfall 8 

detection from underwater noise. Section III describes the experimental set-up and data used in this 9 

study, the detection algorithms from the prior literature, and the proposed approach, based on 10 

machine learning models. Section IV reports and compares the detection results obtained from rule-11 

based methods, the proposed approach, and a weather radar system operating simultaneously in the 12 

area of interest. Finally, some conclusions are drawn in Section V. 13 

 14 

II. STATE-OF-THE-ART OVERVIEW 15 

 16 
 The methods proposed in past decades for rainfall detection through underwater noise 17 

analysis are based on spectral values and slopes at given frequencies, compared among them or 18 

against fixed thresholds. In [9], the spectral slopes between 3 and 8 kHz and between 3 and 19.5 19 

kHz are compared to specific thresholds to achieve an indication of the precipitation presence. In 20 

[1], rainfall is classified in several categories depending on the difference between the average 21 

spectral levels in two bands: from 4 to 10 kHz and from 10 to 30 kHz. In [10], rainfall is detected 22 

when a set of inequalities, in which the spectral levels at 5, 8 and 25 kHz are linearly combined and 23 

compared against specific thresholds, are satisfied. Similarly, in [7], the spectral levels at 5.4, 8.3 24 

and 21 kHz are adopted with different coefficients and thresholds. In addition, spectra corrupted by 25 

transient noise or by high wind are discarded, and a continuity check is applied to reduce the false 26 

detection rate: if no new rainfall detections occur within 10 minutes of the first detection, then such 27 
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a detection is assumed to be false. At a later time, one of the authors of [7] proposed a new version 1 

of the detection algorithm [21], in which a higher number of inequalities combine the spectral levels 2 

at 5, 8, and 20 kHz (as is and squared) and the slopes between 2 and 8 kHz and between 8 and 15 3 

kHz. In [13] this algorithm is further refined by updating a couple of threshold levels. Finally, in 4 

[14], a detection scheme is introduced in which the minimum and maximum spectral levels between 5 

10 and 20 kHz are exploited. All these algorithms are set through the authors’ observations of 6 

acoustic spectra collected in rainy and non-rainy conditions. Moreover, they are designed to process 7 

input data derived from short-term acoustic signals. 8 

A statistical assessment of the detection results is provided only in [3,7,15], whereas the 9 

other papers cited above evaluate the proposed algorithms only on a few selected cases. In [7], 10 

thanks to the removal of noisy samples and the introduction of a continuity check, the probability of 11 

false alarm (𝑃𝑓𝑎, i.e., the probability of detecting rain in the absence of precipitation) is 0.004. The 12 

probability of detection (𝑃𝑑, i.e., the probability of detecting rain when precipitation occurs) is 0.6 13 

for a rainfall intensity greater than 5 mm/h and 0.8 for a rainfall intensity greater than 10 mm/h. In 14 

[15] the authors applied the detection algorithm described in [21], including noisy sample removal 15 

and a continuity check, obtaining 𝑃𝑓𝑎 = 0.0052 and 𝑃𝑑 = 0.584 for a rainfall intensity greater than 16 

0.1 mm/h. 𝑃𝑑 increases to 0.839 when only samples with rainfall intensity greater than 1 mm/h are 17 

considered. Finally, in [3] the authors reported a 𝑃𝑑 = 0.7 for a rainfall rate greater than 3 mm/h 18 

using the acoustic device described in [13]. 19 

The machine learning approach proposed in [20] for rainfall monitoring applies supervised 20 

models to hourly-averaged acoustic spectra, extending the analysis to all the frequency bins instead 21 

of only a few frequencies and slopes. For the detection task, a binary classifier is built through the 22 

CatBoost algorithm, setting the lower bound for rainfall intensity equal to 1 mm/h. When the 23 

detector is applied to the available one-year dataset (through the cross-validation scheme), a 𝑃𝑓𝑎 = 24 

0.0332 and a 𝑃𝑑 = 0.811 are obtained: a poorer performance than that obtained in [15] using the 25 

same dataset but exploiting short-term data in place of hourly-averaged data.  26 
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 1 

III. MATERIAL AND METHODS 2 

 3 
A. Experimental measurements 4 

The acoustic underwater noise and the rainfall intensity at sea surface were collected from 5 

17 June 2011 to 6 September 2013 (with a few breaks, approximately 1.5 months overall) by 6 

apposite sensors installed on the meteo-oceanographic observatory W1M3A, moored on a deep-sea 7 

bed of 1,200 m, about 80 km off the Ligurian coast, in the northwestern part of the Mediterranean 8 

Sea, as detailed in [15,26,27]. 9 

The rainfall intensity was measured with a Vaisala RAINCAP Sensor, comprised in a 10 

Vaisala Weather Transmitter WXT520, placed on the upper part of the buoy trellis, at about 10 m 11 

above sea level. Precipitation measurements were acquired at high temporal resolution (5 seconds) 12 

and contribute to the measurements of the hourly cumulative rainfall intensity [15]. During the 13 

hours when the cumulative precipitation was acquired, the hourly average wind speed was also 14 

computed using measurements from a WindSonic 2D anemometer installed on the same trellis on 15 

the observatory at 10 m above sea level. 16 

The underwater acoustic noise was acquired by a dedicated oceanic recorder, based on 17 

Passive Aquatic Listener (PAL) technology [13,28,29], clamped to the body of the platform at a 18 

depth of 36 m. This device is designed to operate unattended at sea for a long period of time 19 

powered by an internal battery, and to acquire an average of seven acoustic noise snapshots per 20 

hour. Each snapshot consists of a time series of 4.5 s, sampled at 100 kHz, which is processed on 21 

board to obtain a spectrum composed of 64 frequency bins, with a resolution of 0.2 kHz from 0.1 to 22 

3 kHz and 1 kHz from 3 to 50 kHz. The spectra of the snapshots acquired in one hour (at an average 23 

interval of about 9 minutes from each other) were averaged, producing a mean spectrum that is 24 

included in the acoustic dataset used in this paper for rainfall detection.  25 

In the entire period of operation, 18,193 hourly-averaged acoustic spectra were collected and 26 

are available for processing, amounting to about two and a half times those considered in [20]. The 27 
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concurrent measurements of the hourly rainfall intensity are also available and are assumed, in this 1 

study, as the ground truth. The rain gauge measured a precipitation greater than 0.1 mm/h in 876 of 2 

the 18,193 hours considered. The maximum rainfall intensity measured was 51.5 mm/h, and the 3 

distribution of the observed intensities is shown in Fig. 1. The average wind speed ranged between 4 

0.4 and 20.7 m/s with the distribution shown in Fig. 2. Finally, the tracks of the Automatic 5 

Identification System (AIS) used on ships reveal how many of them transited near the buoy in the 6 

period of data acquisition. Considering a circle with a radius of 5 km, centered at the position of the 7 

buoy, the number of hours in which at least one ship crossed the circle is 1,999, of which 78 are 8 

characterized by the presence of rain.       9 

 10 

Fig. 1. Rainfall intensity distribution in the dataset 

samples. 

Fig. 2. Wind speed distribution in the dataset 

samples. 

 11 

The W1M3A observation system is permanently moored in the operation area of the weather 12 

radar on Mount Settepani, located at about 1,400 m above sea level, about 87 km away from the 13 

buoy, jointly operated by the Regional Agency for environmental protection of Piedmont and 14 

Liguria, as detailed in [15,29]. Assuming the measurements provided by the rain gauge deployed on 15 

the W1M3A observatory as ground truth, the performance of this radar system in detecting rainfall 16 

at the buoy position was reported in [15], limited to the period from 17 June 2011 to 9 May 2012. 17 

This figure is used in this paper as a further comparison for the proposed underwater detection 18 

system. 19 
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 1 

B. Rule-based algorithms for rainfall detection  2 

The notation 𝑆(𝑓k) is introduced to indicate the sound spectral level of underwater noise, 3 

measured in dB re 1 Pa
2
 Hz

-1
, at the frequency 𝑓k expressed in kHz.  4 

According to [9], rainfall is present when: 5 

 𝑆(19.5) − 𝑆(3)  >  −13.25     OR     𝑆(8) − 𝑆(3)  >  −6.82 (1) 

In [7] rainfall is detected if at least one of the following three conditions is verified, the third 6 

condition being specific for drizzle: 7 

 𝑆(21) + 2.35 𝑆(5.4)  >  194 (2) 

 𝑆(21)  >  48    AND    𝑆(5.4)  >  53 (3) 

 𝑆(21)  >  44    AND    𝑆(21) − 0.7 𝑆(8.3)  >  14 (4) 

In addition, the removal of spectra corrupted by noise and the temporal continuity check are applied 8 

[7], as described in Section II. These operations lose their meaning when this algorithm is applied to 9 

hourly-averaged spectra. 10 

 In [13] and [21] rainfall is detected if at least one of the following four conditions is verified, 11 

the third condition being specific for drizzle and the fourth for rain with high wind: 12 

 𝑆(20) − 0.75 𝑆(5)  >  5    𝐴𝑁𝐷    𝑆(5)  ≤  70 (5) 

 𝑆(8)  >  60   𝐴𝑁𝐷    𝑄(2,8) > 𝜃    𝐴𝑁𝐷    𝑆(20)  >  45 (6) 

 𝑆(8)  <  50  𝐴𝑁𝐷   𝑄(8,15) > −5   𝐴𝑁𝐷   𝑆(20)  >  35   𝐴𝑁𝐷   𝑆(20)  >  0.9 𝑆(8) (7) 

 
{

𝑆(20) + 0.1144 𝑆2(8) − 12.728 𝑆(8) > −307     𝐴𝑁𝐷      𝑄(2,8) > 𝜃

   𝐴𝑁𝐷   𝑆(20) + 0.1 𝑆2(8) − 11.5 𝑆(8) < −281     𝐴𝑁𝐷    51 < 𝑆(8) < 64
 (8) 

where 𝑄(𝑓1, 𝑓2) is the spectral slope, in dB/decade, between the frequencies 𝑓1 and 𝑓2 (expressed in 13 

kHz): 14 

 
𝑄(𝑓1, 𝑓2) =

𝑆(𝑓1) − 𝑆(𝑓2)

log10(𝑓1) − log10(𝑓2)
 (9) 

The difference between the algorithms in [13] and [21] is only the value assigned to the constant 𝜃: 15 

𝜃 = –18 dB/decade in [21] and 𝜃 = –13 dB/decade in [13]. 16 
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 The algorithms proposed in [1], [10] and [14] are not included in this collection because: [1] 1 

is mainly dedicated to the classification of rain, downstream of a detection carried out by other 2 

means; [10] represents a preliminary version of the algorithm proposed in [7]; [14] presents a 3 

general idea based on the maximum spectral slope observed between 10 and 20 kHz, with no 4 

specific detection algorithm. 5 

 6 

C. Rainfall detection by supervised learning models 7 

An alternative to the rule-based detection algorithms described above is to exploit all the 8 

information available, looking for relationships between the spectrum frequency bins (none 9 

excluded) and the rainfall presence through machine learning models driven by experimental 10 

observations. A supervised binary classifier (the classes of which are rainy and non-rainy) that 11 

receives as input the frequency bins of an hourly-averaged spectrum can successfully perform 12 

precipitation detection. In this study, standard supervised learning methods well suited to address 13 

binary classification in the presence of a large number of features are adopted: two linear 14 

classification techniques (Linear Discriminant Analysis and Logistic Regression), a kernel-based 15 

method (Support Vector Machine) and an ensemble learning method (Random Forest). Given the 16 

type and size of the available data, the spectrum of the methods adopted is considered sufficient to 17 

assess the advantage of employing a data driven approach to effectively detect rainfall.  18 

1. Notation for data and performance 19 

To discuss the characteristics of the models mentioned, the following notation will be used. 20 

A sample is an hourly-averaged spectrum and is indicated by the vector 𝒙, 𝒙 ∈ ℝ𝑑. The vector is 21 

composed of 𝑑 frequency bins, called features. In this study 𝑑 is equal to 64 and the dataset contains 22 

18,193 samples, a fraction of which are used for the training of the statistical models. The training 23 

set is indicated by {(𝒙𝑖 , 𝑦𝑖)}𝑖=1
𝐿 , where 𝐿 is the number of samples used for the training phase; 𝒙𝑖 is 24 

the 𝑖th training sample, associated with either rainy or non-rainy classes; and 𝑦𝑖 is equal to ±1 25 

depending on membership of 𝒙𝑖 to one of the two classes: +1 for the rainy case and −1 for the non-26 
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rainy case. The samples not belonging to the training set constitute the test set. The application of 1 

the trained model to a sample 𝒙 taken from the test set allows us to assign such a sample to the +1 2 

or −1 class. Since the actual rain condition is also known for the samples of the test set, 𝑃𝑑, 𝑃𝑓𝑎, the 3 

overall accuracy (𝑂𝐴, i.e., the probability of correct classification) and the receiver operating 4 

characteristic (ROC) curve can easily be estimated. The ROC curve shows the possible tradeoffs 5 

between 𝑃𝑑 and 𝑃𝑓𝑎 and can be traced by varying the threshold used to decide membership of the 6 

test sample 𝒙 on the basis of the real-valued score produced by the trained model, when the model 7 

is applied to 𝒙. The area under the ROC curve (AUC) is commonly used to quantitatively evaluate 8 

the detector positioning between the detector choosing at random (AUC = 0.5) and the ideal detector 9 

(AUC = 1.0).  10 

2. Linear Discriminant Analysis 11 

Linear Discriminant Analysis (LDA) is a traditional method [30], based on decision theory 12 

and Bayes theorem, in which the probability density functions for the samples belonging to the +1 13 

and −1 classes are assumed to be multivariate Gaussian with mean vectors 
+1

 and 
−1

, 14 

respectively, and the same covariance matrix . The knowledge of these class-conditional densities, 15 

𝑓𝒙|+1(𝒙) and 𝑓𝒙|−1(𝒙), together with the prior probabilities for the two classes, 𝑃(−1) and 𝑃(+1), 16 

makes  computation of the class posterior probabilities possible for a given sample 𝒙, 𝑃(+1 | 𝒙) 17 

and 𝑃(−1 | 𝒙). Specifically, the probability for the +1 class given sample 𝒙 is:  18 

 
𝑃(+1 | 𝒙) =

𝑓𝒙|+1(𝒙)𝑃(+1)

𝑓𝒙|+1(𝒙)𝑃(+1) + 𝑓𝒙|−1(𝒙)𝑃(−1)
 (10) 

Sample 𝒙 is assigned to the +1 class if this probability exceeds 0.5, to the −1 class otherwise. 19 

Although the 0.5-threshold is optimum in terms of overall classification accuracy, a different value 20 

can be set to modify the balance between 𝑃𝑑  and 𝑃𝑓𝑎, and, therefore, the tuning of the threshold 21 

allows the tracing of the detector’s ROC curve. The samples belonging to the training set are used 22 

in LDA to estimate the mean vectors, the covariance matrix and the prior probabilities mentioned 23 

above. LDA is a linear classification method because membership of sample 𝒙 can be equivalently 24 
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assigned working on the log-odds function (i.e., the logarithm of the ratio between 𝑃(+1 | 𝒙) and 1 

𝑃(−1 | 𝒙)), which is a linear equation in 𝒙. 2 

3. Logistic Regression 3 

The Logistic Regression (LR) model assumes the log-odds function to be a linear function in 4 

𝒙 and derives the equations for the class posterior probabilities without introducing any assumption 5 

about the class-conditional density functions [30]. In the binary case, the probability for the +1 6 

class given the sample 𝒙 results: 7 

 
𝑃(+1 | 𝒙) =

1

1 + exp(𝛽0 + 𝜷𝑇𝒙)
 (11) 

i.e., a sigmoid function whose parameters 𝛽0 and 𝜷 can computed by maximizing a conditional log-8 

likelihood function. The maximization is achieved through an iterative procedure in which the 9 

training set samples are exploited and the Newton-Raphson algorithm is typically applied to find the 10 

root of the first derivative [30]. As in LDA, sample 𝒙 is assigned to the +1 class if 𝑃(+1 | 𝒙) is 11 

greater than 0.5, to the −1 class otherwise, but different threshold values can be used to trace the 12 

detector’s ROC curve and change the balance between 𝑃𝑑  and 𝑃𝑓𝑎.  13 

4. Support Vector Machine 14 

A Support Vector Machine (SVM) assigns sample 𝒙 to one of the two classes based on the 15 

score of the discriminant function: 16 

 

ℎ(𝒙) = ∑ 𝛼𝑖𝑦𝑖𝐾(𝒙𝑖 , 𝒙)

𝐿

𝑖=1

+ 𝑏 (12) 

where 𝐾(⋅,⋅) is a kernel function and the coefficients 𝛼𝑖 and 𝑏 are optimized by solving a quadratic 17 

programming problem [30]. This optimization problem exploits the samples of the training set and 18 

includes a parameter 𝐶 that bounds the range for 𝛼𝑖:  0 < 𝛼𝑖 < 𝐶, 𝑖 = 1,2, … , 𝐿. Sample 𝒙 is 19 

assigned to the +1 class if ℎ(𝒙) is positive, to the −1 class otherwise. As for previous methods, 20 

different threshold values can be used to trace the detector’s ROC curve and change the balance 21 

between 𝑃𝑑  and 𝑃𝑓𝑎. In the SVM literature the most commonly adopted kernels are the linear 22 
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function, polynomial function of order 𝑞 and Gaussian radial basis function (RBF), defined, 1 

respectively, as: 2 

 𝐾(𝒙𝑖 , 𝒙) = 𝒙𝑇𝒙𝒊 (13) 

 𝐾(𝒙𝑖 , 𝒙) = (1 + 𝒙𝑇𝒙𝒊)
𝑞 (14) 

 
𝐾(𝒙𝑖 , 𝒙) = exp (

−‖𝒙 − 𝒙𝑖‖2

2𝜎2⁄ ) (15) 

where 𝜎2 is a specific parameter of the RBF kernel.  3 

The choice of 𝐶 and 𝜎2 (if the case) requires specific attention and, possibly, an 4 

optimization stage [30]. In addition, although not strictly necessary, all features of the dataset 5 

samples are often preliminarily standardized, so that each of them has a zero mean and a unitary 6 

variance. This operation makes features insensitive to the scales on which they are measured and 7 

favors numerical stability in the solution of the quadratic programming problem mentioned above. 8 

5. Random Forest 9 

Random Forest (RF) is an ensemble model that aggregates the predictions individually 10 

achieved by many decision trees, separately trained on a subset of samples randomly chosen from 11 

the training set [30]. A decision tree is an acyclic connected graph where each node represents a 12 

decision rule (called split) related to a single feature that leads to the partition of data in two groups. 13 

To automatically set the structure and splits of a decision tree, Classification and Regression Trees 14 

(CART) is a widely adopted algorithm in which a new node is created by identifying the feature 15 

that yields the best split in terms of a pre-selected metric. In an RF model 𝐵 trees are generated and 16 

trained in an independent and identically distributed way by performing, for each tree 𝒯𝑏, b = 1, …, 17 

𝐵, the following steps [30]: (a) a subset of 𝐿 samples is drawn randomly from the training set, 18 

uniformly and with replacement (this means that some samples are taken more than once, others are 19 

not chosen at all); (b) such a subset is used to grow the tree 𝒯𝑏, for each node of which a pool of 𝑚 20 

features is selected (at random and uniformly from the 𝑑 features) and used to identify the best 21 

feature and the best decision rule to split the node into two daughter nodes; (c) the previous step is 22 
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repeated until at least one of the predefined stopping criteria is satisfied. When all the 𝐵 trees are 1 

generated, an unknown sample 𝒙 is classified as follows: the sequence of decision rules of the 𝑏th 2 

tree is applied to 𝒙 in such a way that the corresponding class prediction 𝑦̂𝑏(𝒙) is reached (namely, 3 

+1 or −1); the predictions from all the trees of the RF are used to compute a score 4 

 

𝑔(𝒙) =
1

𝐵
∑ 𝑦̂𝑏(𝒙)

𝐵

𝑏=1

; (16) 

sample 𝒙 is assigned to the +1 class if 𝑔(𝒙) is positive, to the −1 class otherwise. Threshold values 5 

different from zero can be used to trace the detector’s ROC curve and tune the balance between 6 

𝑃𝑑  and 𝑃𝑓𝑎. Although the setting of 𝐵 and 𝑚 does not critically affect performance, it deserves some 7 

investigation, recalling that these two parameters affect the computational burden. 8 

6. Cross-validation 9 

The assessment of a trained statistical model performance is a crucial task for which K-fold 10 

cross-validation represents an easy and extensively applied option [30]. To exploit the available 11 

data for both training and testing a machine learning model, the dataset is split in K subsets (called 12 

folds), non-overlapped and of approximately equal-size. Taking the kth subset aside, the model is 13 

trained using the other K–1 subsets of data, and the test is performed using the data of the kth 14 

subset. This operation is repeated for k ranging from 1 to K, in such a way that every sample is 15 

used, in turn, to train and test the supervised model. By combining the predictions performed at 16 

each step k on the data subset kept aside, a prediction for each sample of the entire dataset is finally 17 

available. Because the prediction consists of the probability (or score) for membership of the 18 

sample of a given class, after setting a threshold value, estimation of OA, Pd, and Pfa is possible. In 19 

addition, the tuning of such a threshold allows the generation of the cross-validated ROC curve 20 

[30].  21 

To cope with the different cardinality of the two classes in the dataset, the dataset partition 22 

in K subsets can be performed by a stratified scheme according to which each subset maintains 23 

approximately the same class proportions as the original dataset.  24 
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 1 

IV. RESULTS AND DISCUSSION 2 

 3 
To delineate the desired performance of the rain detector, it is necessary to recall that 4 

rainfall is present in 5% of the one-hour periods included in the dataset and that the precipitation 5 

limit which distinguishes between rainy and non-rainy hourly-averaged spectra is particularly low 6 

(i.e., 0.1 mm/h). In this scenario, it is strictly necessary that the false alarm probability be very low, 7 

while a detection probability not too close to one may be acceptable. Consequently, the 8 

performance of a detector cannot be considered acceptable if Pfa exceeds 0.01. 9 

 10 

A. Performance of rule-based algorithms 11 

The application of the algorithms introduced in Section III.B to the dataset described in 12 

Section III.A provides the results summarized in Table I. It is important to recall that these 13 

algorithms were designed to detect rainfall using short-term acoustic spectra, whereas in this study 14 

they are applied to hourly-averaged spectra.  15 

Table I. 16 

Probabilities of detection, 𝑃𝑑, and false alarm, 𝑃𝑓𝑎, for the rule-based algorithms applied to hourly-17 

averaged spectra. 18 

Algorithm Pd Pfa 

Vagle et al., 1990 [9] 0.880 0.570 

Ma et al., 2005 [7] 0.300 0.001 

Nystuen, 2011 [21] 0.671 0.116 

Nystuen et al., 2015 [13] 0.586 0.094 

 19 

The algorithm in [9] achieves high Pd, but this is accompanied by excessive Pfa. A bias in 20 

hydrophone sensitivity cannot be the cause of the problem, because the quantities compared with 21 

thresholds in (1) are subtractions between measurements. One option to make the algorithm more 22 

selective is to arbitrarily increase the two threshold values, as follows:  23 

 𝑆(19.5) − 𝑆(3)  >  −13.25 + 𝛿    OR     𝑆(8) − 𝑆(3)  >  −6.82 + 𝛿 (17) 
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where 𝛿 > 0. Varying the value of 𝛿 between 0 and 5, the ROC curve in Fig. 3 is obtained. The Pfa 1 

reduction is obtained but, unfortunately, it is accompanied by a significant Pd decrease. 2 

What is more, the algorithms in [7], [13] and [21] do not provide satisfactory performance, 3 

because Pd is too low, as for [7], or Pfa is too high, as for [13] and [21]. As discussed in [12], the 4 

performance of these algorithms can be optimized by considering potential errors in hydrophone 5 

sensitivity. To do this, the values 𝑆(𝑓k) in equations from (2) to (8), for whatever 𝑓k, are replaced by 6 

𝑆(𝑓k) + 𝜀, where 𝜀 is intended to compensate a sensitivity bias. Varying 𝜀 between –10 and 10 dB 7 

re 1 Pa
2
 Hz

-1
, the ROC curves shown in Fig. 3 are obtained. This comparison clearly evinces that 8 

the rule-based algorithm achieving the best performance (with the discussed correction) is the one 9 

proposed in [7]. In particular, for 𝜀 = 2 dB re 1 Pa
2
 Hz

-1
, a detection probability Pd = 0.521 is 10 

accompanied by Pfa = 0.010. 11 

 12 

Fig. 3. ROC curves obtained by varying threshold values [9] and hydrophone sensitivity [7,13,21] in the 13 
rule-based algorithms listed in Table I. 14 

 15 

B. Performance of the supervised learning models 16 

To assess and compare the detection performance of the statistical models, 10-fold cross-17 

validation with stratification in dataset partitioning is adopted. In addition, for the SVM approach 18 

feature standardization is applied, the constant 𝐶 is set equal to 1.0, according to common practice, 19 
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and the variance 𝜎2 of the Gaussian RBF kernel, after some tests, is set equal to 8.0. For the 1 

parameters of the RF, 𝐵 = 100 trees and 𝑚 = 22 features are used, although a change of these values 2 

in even rather broad ranges does not significantly affect the performance obtained. 3 

The ROC curves obtained from the trained models are shown in Fig. 4 and their 4 

performance is summarized in Table II, where the Pd value for which Pfa = 0.01 is reported. More 5 

precisely, Table II shows the averages of the probabilities Pd and Pfa computed for the 10 folds in 6 

which the dataset is divided, together with the relative standard deviations.  7 

The linear classifiers (i.e., LDA and LR) perform moderately better than the best rule-based 8 

algorithm, increasing the probability of detection to about 0.6. A further advantage is offered by the 9 

SVM and RF classifiers for which probability of detection exceeds 0.7. The change of the kernel 10 

function for the SVM classifier does not significantly alter the performance, although the linear case 11 

shows a lower detection ability and the Gaussian case reports the worst AUC figure. The OA values 12 

are all greater than 0.97, but this finding has little relevance because it is strongly influenced by the 13 

correct classification of non-rainy samples (probability 0.99, Pfa being 0.01) which are by far the 14 

most numerous. Overall, the best option among the models considered is the RF classifier because it 15 

achieves the best performance figures, shows a stability better than that of SVM classifiers with 16 

polynomial or RBF kernels, requires a computational load lower than that of such SVM classifiers, 17 

and is not appreciably affected by changes in the parameter setting. Accordingly, in the remainder 18 

of this section, further analysis and performance comparisons will be carried out with reference to 19 

the RF-based classifier. Indeed, the goal is not to identify the best model, but rather to demonstrate 20 

that the machine learning approach is well suited for rainfall detection also in case of drizzle 21 

phenomena, characterized by low rainfall intensity. 22 

A portable computer with an Intel Core i7 CPU of 1.9 GHz and 16 GB of RAM memory 23 

trains the RF classifier, using a Matlab routine and the entire dataset, in about 20 seconds. The 24 

execution of the detection task on the more than 18,000 samples of the dataset requires less than 2 25 

seconds. 26 
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 1 

 2 

Table II. 3 

Detection probability, 𝑃𝑑, false alarm probability, 𝑃𝑓𝑎, overall accuracy, OA, and area under the 4 

ROC curve, AUC, for the supervised learning models. For the probabilities, the average ± the 5 

standard deviation is reported. 6 

Classifier Pd Pfa OA AUC 

LDA 0.583 ± 0.053 0.010 ± 0.003 0.970 0.926 

LR 0.597 ± 0.058 0.010 ± 0.003 0.971 0.928 

SVM, linear 0.667 ± 0.041 0.010 ± 0.003 0.974 0.931 

SVM, polynomial, 𝑞=2 0.702 ± 0.060 0.010 ± 0.002 0.976 0.936 

SVM, Gaussian RBF 0.703 ± 0.062 0.010 ± 0.003 0.976 0.897 

RF 0.708 ± 0.054 0.010 ± 0.002 0.977 0.941 

 7 

 8 

C. In-depth analysis and comparisons 9 

In Fig. 4(a), the zoom of the ROC curve for the RF model demonstrates that Pd remains 10 

greater than 0.6 even if Pfa is reduced by as much as 0.0035. More precisely, the following 11 

probability pairs, Pd, Pfa, lie on that curve: 0.661, 0.006, 0.644, 0.005, 0.623, 0.004, 12 

0.588, 0.003.   13 

The ability of the classifier to detect the precipitation can be analyzed as a function of the 14 

rainfall rate [7,15], as shown in Fig. 5. In this case, Pd is estimated using the hourly samples in 15 

which the cumulated rainfall, measured by the rain gauge on the platform in one hour, is equal to or 16 

greater than a value G. The Pd curves shown in Fig. 5 are related to three choices of the threshold 17 

value, leading to different Pfa: 0.010, 0.005 and 0.003. Pd increases rapidly with G, reaching, 18 

respectively, 0.921, 0.897 and 0.876 for G = 1 mm/h. Although the probabilities of detection of the 19 

three detectors show significant differences for G < 2 mm/h, for rainfall intensities higher than this 20 

value the three detectors provide similar Pd. It is therefore possible to design acoustic detectors 21 

capable of detecting rainfall of intensity greater than 2 mm/h with a probability greater than 0.9, 22 

while keeping a false alarm probability of 0.003. 23 
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 1 

 2 
(a) 3 

 4 
(b) 5 

Fig. 4. ROC curves for the supervised learning models listed in Table II. (a) LDA, LR and RF, with a zoom 6 
for the RF model. (b) SVM with three kernel functions. 7 

 8 

The sharp Pd increase with G observed in Fig. 5 shows that the missed detections are mainly 9 

related to drizzle phenomena characterized by low precipitation intensity. This relation is confirmed 10 

by the average of the rainfall intensities recorded by the surface rain gauge when the precipitation is 11 

detected or missed by the underwater acoustic device. Among the 876 acoustic samples collected in 12 

rainy conditions (with intensity greater than 0.1 mm/h), the RF-based classifier correctly detects 13 
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620 of them (70.8%) and misses the remaining 256 samples (29.2%). The average rainfall intensity 1 

measured for the detected samples is 2.98 mm/h, whereas the average intensity for the missed 2 

samples is 0.71 mm/h.  3 

 4 

Fig. 5. Detection probability for the rainy samples with a rainfall intensity greater than or equal to G. Three 5 
RF-based classifiers, with different false alarm probabilities, are considered. 6 

 7 

 8 

Moving from missed detections to false alarms, an analysis of wind distribution provides 9 

some interesting insights. Fig. 6 shows the wind speed histograms for rainy samples correctly 10 

detected (620 samples), non-rainy samples correctly classified (17,145 samples), and non-rainy 11 

samples raising false alarms (172 samples, corresponding to Pfa = 0.01). The average wind speeds 12 

for these three categories are, respectively, 8.5, 4.6 and 9.3 m/s. It is evident that the false alarm 13 

samples present a wind distribution more similar to that of the rainy samples than to that of non-14 

rainy samples. However, the histogram of non-rainy samples shows that there are over a thousand 15 

samples with wind speed greater than 10 m/s that are correctly classified. To analyze this issue in 16 

detail, Fig. 7 shows the estimated Pfa when the samples for which the wind speed is greater than W, 17 

W  [0.1, 10] m/s, are considered. The three detectors already examined in Fig. 5 are included. 18 

Notwithstanding the considerable rise of the Pfa with increasing wind speed, the probability of 19 

correct classification for non-rainy samples remains satisfactory (e.g., for W = 10 m/s, Pfa increases 20 

from 0.01 to 0.08, but the probability of correctly classifying a non-rainfall sample is still high: 21 
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0.92). Therefore, the wind-related similarity only partially explains why the detector is misled and 1 

false alarms occur. 2 

Finally, the performance of the RF-based detector during the period of data collection is 3 

examined in Fig. 8, where the height of the bars indicates the rainfall intensity measured by the rain 4 

gauge and the colors distinguish samples correctly detected (light blue bars) from missed alarm 5 

samples (orange bars). Samples raising false alarms are inserted as white bars with black edges, and 6 

an arbitrary height of 2 is set for them. The two zoom panels show the typical behavior that 7 

characterizes the 25-month span of data collection with good uniformity. As described in Section 8 

III.A, 1,999 out of the 18,193 dataset samples are characterized by the passage of a ship within 5 9 

km of the platform during the observation hour. These samples are not discarded and are used, like 10 

all others, to train and test the statistical model. It is verified a posteriori that the Pd and Pfa values 11 

estimated on these samples do not differ significantly from those already reported, thus supporting 12 

the robustness of the proposed detector.   13 

The performance achieved by the RF-based detector acting on hourly-averaged spectra can 14 

also be compared with those obtained by other underwater acoustic systems [3,7,15] acting on 15 

short-term spectra, summarized in Section II. By using data in Fig. 5, it is immediately possible to 16 

observe that the proposed system, at the same Pfa values and rainfall intensities, always provides a 17 

significantly higher detection capability. Moving from short-term spectra to hourly-averaged 18 

spectra, according to the data presented in Section IV.A, the performance obtained from the 19 

detection algorithms used in [3,7,15] worsen. As a result, the supervised learning models adopted in 20 

this study achieve a detection performance significantly better than those obtained from rule-based 21 

detection algorithms and better even than that obtained from the binary classifier proposed in [20]. 22 

Another useful comparison is with the rainfall detection capability of the weather radar 23 

described in Section III.A. According to [15], rainfall detection by radar at the W1M3A observatory 24 

is characterized by Pfa = 0.009 accompanied by Pd = 0.728 for G = 0.1 mm/h and Pd = 0.846 for G = 25 
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1 mm/h. The data in Fig. 5 show that the performance of the proposed acoustic system is very close 1 

to that of radar: slightly worse for G = 0.1 mm/h and slightly better for G = 1 mm/h.  2 

 3 

 4 
 (a) (b) (c) 5 

Fig. 6. Histograms of wind speed for: (a) non-rainy samples correctly classified; (b) rainy samples correctly 6 
detected; (c) non-rainy samples raising false alarms. 7 

 8 
 9 

 10 

Fig. 7. False alarm probability for non-rainy samples with a wind speed greater than W. Three RF-based 11 
classifiers with different probabilities of false alarm (on the entire dataset) are considered. 12 

 13 
 14 
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 1 
Fig. 8. Rainfall intensity during the 18,193 hours of observation (one sample per hour; about 25 months of 2 
data collection), with indication of detected rainy samples (620 hours), missed rainy samples (256 hours), 3 
false alarm samples (172 hours). The zoom panels show two examples of the occurrence of the three cases 4 

on a fine scale. 5 
 6 

 7 

V. CONCLUSIONS 8 

 9 

This study concerned the possibility of detecting precipitation, from drizzle phenomena to 10 

events of high intensity, using the underwater acoustic noise spectrum obtained from the average of 11 

the instantaneous spectra acquired, at various times, over the course of an hour. Since each sample 12 

is representative of an entire hour, to maintain sufficient temporal coverage it was necessary to 13 

analyze all the spectra acquired, even those altered by the passage of ships, high wind and other 14 

concurrent noises. 15 

A dataset composed of more than 18,000 hours of measurements at sea allowed an in-depth 16 

experimentation of different rainfall detection methods. Although the rainfall detection by rule-17 

based algorithms taken from the literature have not provided satisfying performance on this type of 18 

spectrum, machine learning methods have shown that the detection can be carried out successfully. 19 

In this analysis, kernel-based and ensemble-learning models have demonstrated the best 20 

performance among the experimented supervised classifiers. In particular, the RF-based binary 21 

classifier has shown a satisfactory balance between computational burden and performance, 22 

reaching a detection probability greater than 90% when precipitation exceeds 0.7 mm/h and Pfa is 23 
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1% or, alternatively, when precipitation exceeds 1.4 mm/h and Pfa is 0.3 %. This level of 1 

performance is slightly better than that obtained by a weather radar operating in the experiment 2 

area, and therefore the proposed method represents a promising alternative to obtain an estimate of 3 

rainfall intensity in areas where environmental constraints do not allow the installation of rain 4 

gauges or radar systems. This is even more noteworthy in polar areas, where global warming is 5 

changing the hydrological cycle of those regions, thus increasing rainfall with respect to snow 6 

precipitation [31]. 7 

While the presence of high wind, especially above 10 m/s, induced a noticeable increase in 8 

the probability of false alarm, the performances did not undergo significant alterations in the hours 9 

in which a ship transited in the area where the underwater measurement device was placed. 10 

Similarly, no fluctuations in performance were observed on a seasonal basis, attributable to varying 11 

underwater propagation conditions. 12 

Although very promising, supervised learning models require a training phase that 13 

necessitates extensive collection of underwater acoustic spectra, accompanied by concomitant 14 

precipitation measurements to be used as ground truth. On the other hand, this is also partially 15 

necessary for rule-based algorithms that need specific calibrations to account for geographic 16 

location and hydrophone sensitivity. The possibility of using the trained detector in geographic 17 

areas other than the one in which the training data were collected is a topic for future investigation. 18 

However, it is reasonable to assume that in similar environmental settings, a trained detector can 19 

continue to operate successfully.  20 

The performance obtained working on averaged spectra suggests that machine learning 21 

models may also be advantageous for rain detection using short-term acoustic spectra. This future 22 

research development is accompanied by a farther-reaching one: to design statistical learning 23 

models that act as regressors for accurate estimation of precipitation intensity and wind speed, 24 

making best use of information contained in multi-year time series of underwater acoustic noise. 25 

 26 
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