
Citation: Carracciuolo, L.; D’Amora,

U. Mathematical Tools for Simulation

of 3D Bioprinting Processes on

High-Performance Computing

Resources: The State of the Art. Appl.

Sci. 2024, 14, 6110. https://doi.org/

10.3390/app14146110

Academic Editor: Juan A.

Gómez-Pulido

Received: 23 May 2024

Revised: 5 July 2024

Accepted: 10 July 2024

Published: 13 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Review

Mathematical Tools for Simulation of 3D Bioprinting Processes
on High-Performance Computing Resources: The State of the Art
Luisa Carracciuolo * and Ugo D’Amora

The Institute of Polymers, Composites and Biomaterials (IPCB) of the National Research Council (CNR),
80078 Pozzuoli, NA, Italy; ugo.damora@cnr.it
* Correspondence: luisa.carracciuolo@cnr.it

Abstract: Three-dimensional (3D) bioprinting belongs to the wide family of additive manufacturing
techniques and employs cell-laden biomaterials. In particular, these materials, named “bioink”,
are based on cytocompatible hydrogel compositions. To be printable, a bioink must have certain
characteristics before, during, and after the printing process. These characteristics include achievable
structural resolution, shape fidelity, and cell survival. In previous centuries, scientists have created
mathematical models to understand how physical systems function. Only recently, with the quick
progress of computational capabilities, high-fidelity and high-efficiency “computational simulation”
tools have been developed based on such models and used as a proxy for real-world learning.
Computational science, or “in silico” experimentation, is the term for this novel strategy that
supplements pure theory and experiment. Moreover, a certain level of complexity characterizes
the architecture of contemporary powerful computational resources, known as high-performance
computing (HPC) resources, also due to the great heterogeneity of its structure. Lately, scientists and
engineers have begun to develop and use computational models more extensively to also better
understand the bioprinting process, rather than solely relying on experimental research, due to the
large number of possible combinations of geometrical parameters and material properties, as well
as the abundance of available bioprinting methods. This requires a new effort in designing and
implementing computational tools capable of efficiently and effectively exploiting the potential of
new HPC computing systems available in the Exascale Era. The final goal of this work is to offer an
overview of the models, methods, and techniques that can be used for “in silico” experimentation
of the physicochemical processes underlying the process of 3D bioprinting of cell-laden materials
thanks to the use of up-to-date HPC resources.

Keywords: computational simulation; 3D bioprinting; high-performance computing; cell-laden
hydrogels

1. Introduction

In recent years, great interest has been devoted to three-dimensional (3D) bioprinting,
which employs a numerically controlled dispensing system to deposit cells and biomaterial
inks, named bioink, in a well-defined and controlled way. A wide number of papers have
shown how beneficial it could be in the creation of smart patches for wound healing or
thick tissue constructs, named scaffolds, for bone and cartilage tissue engineering [1–4].
Despite this, there are numerous difficulties with bioprinting, including the inability of
cell-laden biomaterials to be printed, the severe circumstances that cells must endure while
being printed, and the development of the bioprinted scaffold [5]. What you print in
bioprinting is not necessarily what you obtain; natural cell rearrangements may alter the
system, frequently for the better. Indeed, bioprinting is complicated at every stage of the
process, from pre-processing to processing to post-processing.

Numerous geometrical characteristics and tunable material properties have been
shown experimentally to have a clear and significant impact on cell viability and the

Appl. Sci. 2024, 14, 6110. https://doi.org/10.3390/app14146110 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14146110
https://doi.org/10.3390/app14146110
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-8521-1645
https://orcid.org/0000-0002-6142-059X
https://doi.org/10.3390/app14146110
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14146110?type=check_update&version=1

Appl. Sci. 2024, 14, 6110 2 of 83

appropriate creation of the intended tissue structure [6]. Considering the great number of
possible combinations of geometrical constraints and material properties, as well as the
great number of bioprinting techniques that are currently available, it can be crucial to create
and apply computer models to gain a deeper knowledge of the bioprinting process, rather
than exclusively depending on experimental research [7]. Indeed, in silico experiments
like computational research and digital fabrication are thought to be important sources
of innovation and to have a significant impact on the emerging field of 3D bioprinting
and tissue engineering. While producing more accurate and realistic virtual experiments
is still a difficulty, this can be overcome with a variety of strategies, including statistical
tools and methodologies coupled with first-principles-based simulations (The contribution
of Bradley et al. [8], with the terms “first principles models”, intend to represent models
derived from fundamental laws of physics, chemistry, thermodynamics, kinetics, and
transport phenomena, such as mass balance and energy balances. These models can take
many different forms, such as a system of ordinary or partial differential equations (ODE
or PDE), a system of fundamental algebraic equations, or a mix of the two to create a
general nonlinear algebraic partial differential system of equations. Although the term

“first principles models” was primarily used to represent methods for systems with continuous
dynamics, systems with discrete or non-continuous relationships, as well as stochastic
systems, can be represented by them as well [8]. On the contrary, purely data-driven models
are distinct from first principles models in that their parameters are “fitted” according to the
available data. Empirical models are another name for data-driven models. The data may
originate from historical records, physical experiments, samples from simulations or first-
principles models, or any combination of the aforementioned sources [8]). It is relevant to
mention that computational science (which is the basis for any “in silico” experimentation)
is a highly interdisciplinary discipline that requires the contribution of experts from the field
of interest, mathematicians, and computer scientists [9] who jointly define the descriptive
mathematical model of the problem, and implement, using appropriate tools, algorithms,
and software, its numerical model (see Section 2 for a more complete description of the
computational science (CS) process).

Numerous research papers have examined the effects of various hydrogel-based
materials on cellular survival, “printability” (see [10] for a definition of the term), and
shape fidelity [11], due to their significant role in the 3D bioprinting process. In fact,
printability and shape accuracy are the most critical factors in bioprinting [12] since the
printed construct should mimic the exact structure and architecture of the natural tissue.

In ref. [13], in the context of bone tissue engineering, a proof-of-concept study that
integrates computationally guided design with customized bioprinting of cells and bioma-
terial carriers is reported. This work intends to be the necessary premise to the definition
of a protocol for the “automatic” determination of the characteristics of “biological” inks
fundamental to the success of scaffolds created through 3D printing: the characteristics of
these bioinks must guarantee the mechanical features necessary to the printing process and
at the same time the survival of the cells, suitably embedded into the ink, at every stage of
the scaffold’s life.

Since each of the aforementioned stages is characterized by particular needs of the
bioink [14], it was preferred to classify the above methods according to their applicability
in each of the following phases:

Pre-printing
In the print cartridge, a cell-laden bioink can be considered a composite material.
Therefore, even in the absence of different compounds such as rheological enhancers
or additional biomaterials, high-cell-density suspensions behave as colloidal sys-
tems that exhibit printability. The impact of the cells embedding on the viscoelastic
properties of the bioink is further complicated by the possibility that the cells are sur-
rounded by a pericellular matrix, which could alter their mechanical characteristics,
the hydrodynamic radius, and boundary conditions at the fluid interface [15].

Appl. Sci. 2024, 14, 6110 3 of 83

It is worth noting that cells can interact with each other, during the pre-printing phase
and during the whole process, adding a further level of complexity to the overall
system. Furthermore, different cell sources can be also considered when dealing
with interface tissues such osteochondral one, which involves bone and cartilage
tissues. Nonetheless, a bioink must prevent cell sedimentation to preserve a uniform
cell suspension [16]. The cells in the ink are no longer evenly distributed when they
settle. This may result in clogged nozzles as well as an uneven cell distribution in
the finished printed structure (i.e., more cells in the early printed layers than in the
latter ones). Creating bigger and more complex scaffolds may exacerbate the concerns
related to cell sedimentation because these structures usually demand longer printing
times (i.e., printing full-scale tissues or organs can take hours or even days). In
conclusion, since cells can flow when a force is applied, a bioink would avoid cell
sedimentation while yet remaining printable [14].

Additionally, the volume occupied by the cells within a bioink varies according
to their size and density. The hydrogel is excluded from the volume occupied by
cells, which could affect the physicochemical and viscoelastic properties [15]. For
example, cells may actually hinder the cross-linking process by limiting contact
between reacting groups or acting as a physical barrier between various ink layers.

During Printing
This indicates that as a force is applied, their viscosity alters. Non-Newtonian fluids
are primarily categorized into shear thickening (viscosity increases when shear rate
increases) and shear thinning (viscosity reduces when shear rate increases) in response
to this viscous tendency. Generally speaking, printability increases with material
viscosity—at least to the point at which the internal pressures created can harm cells.
Furthermore, some studies examine the impact of temperature on the viscosity of
bioink. Nonetheless, they must be bioprinted at physiological conditions at 37◦ C to
preserve the cells [11]. Additionally, as a result of cell migration and proliferation, the
distribution of cells during printing may change, which may have an impact on the
bioink’s rheological characteristics. In fact, as cells interact with the matrix around
them and with one other, traction forces are created that operate on the hydrogel
macromolecules in a printed structure.

Post-Printing

Bioink needs to produce a 3D “milieu” that promotes cellular survival and function
after printing. Because they offer an aqueous, cell-compatible environment that can
mimic many of the mechanical and biochemical characteristics of the original tissue,
hydrogels are frequently utilized in 3D cell culture. The simple passage of nutrients
and waste products to and from encapsulated cells is made possible by their high
water content and permeability. They can also provide a variety of signals to control
cell phenotypic, differentiation, growth, and migration.

The goal of this scoping review is to provide an overview of the models, methods and
techniques that can be used for “in silico” experimentation (or computational simulation)
of the physico/chemical processes underlying the process of 3D printing of cell-laden
materials [14,17] on high-performance computing (HPC) systems.

Although bioprinting for tissue engineering has made significant progress, additional
research is required to determine the best bioink compositions and process parameters to
create repeatable procedures that will result in the production of more functional tissue-
engineered scaffolds. More knowledge is needed about the interplay between fluid flow,
nutrient or oxygen distribution, cell–cell interaction, and flow shear stress in in vitro tissue
morphogenesis. In this scenario, computational and mathematical modeling can be very
helpful in explaining the intricate underlying mechanisms and facilitating the rapid and effec-
tive comparison of different conditions. Moreover, advances in “in silico” experimentation
largely rely on concurrent advances in algorithms, software, and hardware needed to obtain

Appl. Sci. 2024, 14, 6110 4 of 83

high-performance levels for computational models. So many challenges related to the effective
use of advanced computing platforms of the Exascale Era should be faced.

To this aim, this review paper proposes itself as a guide for future research to capitalize
on the potential of mathematical models to find improved answers to the unmet clinical needs
of modern society. The review work intends to answer the following research question:

“What are the relevant mathematical tools for the simulation of the different phases of 3D
bioprinting with a particular focus on the first principles-based (FP) models in macro and
mesa-scales and how such tools should be modified/integrated to be compliant with the
emerging computational resource in the Exascale Era?”.

Literature searches were conducted in three electronic databases (PubMed, Google
Scholar, and Web of Science). The following search keys were used for the literature search:

(Sub-Search-1) AND (Sub-Search-2) AND (Sub-Search-3) AND (Sub-Search-4) AND
(Sub-Search-5)

where

Sub-Search-1: (bioprinting OR (cell-laden hydrogels) OR bioinks)
Sub-Search-2: (simulation OR modeling OR (computational science))
Sub-Search-3: (macro or mesa scale FP models)
Sub-Search-4: (numerical tools for computational solution of FP-model problems)
Sub-Search-5: (Exascale models and algorithms).

The review is therefore organized as follows: in Section 2 a description of how compu-
tational science (CS) allows us to perform “in silico” experiments will be provided; Section 3
will give an inventory of the mathematical tools used in the literature for the computational
simulation of the processes active in each of the above-mentioned phases (a description
of the literature that is the result of the search [(Sub-Search-1) AND (Sub-Search-2)]);
Section 4 will report a description of the “state of the art” of HPC systems in the Exascale
Era; Sections 5 and 6 will give a deeper insight into both models and numerical tools used in
the literature (a description of the literature that is the result of the searches (Sub-Search-3)
and (Sub-Search-4) respectively); Section 7 will describe the most advanced results in
developing and implementing such mathematical tools on HPC systems in the Exascale
Era (a description of the literature that is the result of the search (Sub-Search-5)); the final
part of this paper (Section 8) will summarize the aims, results, potential usefulness of the
work, and the open challenges and will highlight the future perspectives of the field in the
emergent realm of biofabrication and process optimization thanks to approaches based on
models that “learn from data”.

For quick access to the transversal contents and to the description of the mathematical
tools that are the aim of the research question related to this work, we present Table 1.

Appl. Sci. 2024, 14, 6110 5 of 83

Table 1. An overview of the mathematical tools suggested in this review work that we included as
relevant in consideration of our literature search.

Transversal Contents

Introduction on Computational Science (Section 2)
“State of the Art” of HPC Systems (Section 4)

Inventory of Mathematiacl Tools for Computational Simulation of Bioprinting Processes (Section 3)

Models
Numerical Tool

Exascale Numerical Tool
Discretization Algorithms

Fluid Flows Equations or
coupled continuos equations
(Two-Phase flow problem,
transport and response of
species, Section 5.1)

Cellular Particle Dynamics
(Section 5.2.2)

FEM, FDM, FVM
(Section 6.1.1)

Cellular Particle Dynamics
Algorithm (Section 6.2.2)

• Time Steppers (point 1 of
Section 6.1.2)

• Non-linear problem
solvers (point 2 of
Section 6.1.2)

• Linear problem solvers
(point 3 of Section 6.1.2)

• The Saddle Point Prob-
lem solvers (point 4 of
Section 6.1.2)

• General consideration on
models suitable for
Exascale (Section 7.1)

• Parallel Time Steppers
(Section 7.2.1)

• Composite Non Linear
Solver (Section 7.2.2)

• Parallel Iterative and
Direct Linear Solver
(Section 7.2.3)

• Fast Multipole Methods
and “Hierarchical”
matrices (Section 7.2.4)

Monte Carlo approach
(Section 5.2.1)

The Markov Chain Monte
Carlo Algorithms

(Section 6.2.1)

Parallel Monte Carlo based
methods (Section 7.2.5)

The Cellular Automata Model
(Section 5.2.3)

The Cellular Automata Model
Algorithms (Section 6.2.3)

General considerations on
stochastic-based algorithms
(Section 7.2)

2. The Role of Computational Science (CS)

Mathematical models have traditionally been created by theorists to better under-
stand how physical systems function. But in the last several decades, there has been a
tremendous advancement in processing power that has allowed for the creation of high-
fidelity simulation software based on such models, used as a proxy for learning about
the real world. We call this new method CS, which is a supplement to pure theory and
experiment. Deep knowledge of mathematical modeling, numerical analysis, software
engineering, high-performance computing, statistics, and a thorough comprehension of
the technological application domain being investigated are essential for successful CS
research. This is therefore a highly interdisciplinary work that requires the cooperation of
application scientists, mathematicians, statisticians, and computer scientists [18], all acting
in an integrated and interdependent ecosystem.

Figure 1 represents the process on which CS is based:

1. Field experts and mathematicians jointly define the descriptive mathematical model
of the problem.

2. Mathematicians and computer scientists jointly define and implement the descriptive
numerical model of the problem. The numerical model is described by an algorithm
that can have a high computational cost due to the great number of operations.
Therefore, it may be desirable to exploit the parallelism made available by resources
for HPC [19–25].

3. Field experts, mathematicians, and computer scientists jointly validate the correctness
and accuracy of the numerical model and algorithm by executing its implementing
software. Parallel algorithms and software are evaluated on the basis of their per-
formance in terms of the number of performed operations per time unit, strong and
weak scalability, and other useful metrics [26].

Appl. Sci. 2024, 14, 6110 6 of 83

4. If necessary, on the basis of the observations collected in the previous steps, a new
formulation of the mathematical model is constructed.

In the CS process, each step has an impact on all the other steps in a loop where
single-field experts can contribute just a small part (see the right part of Figure 1). Re-
search endeavors may yield the dissemination of precisely designed software, empowering
members of the wider scientific community to conduct their research based on the CS
process [27,28].

Figure 1. The process of Computational Science. Image realized on the basis of materials from The
German Priority Programme “Software for Exascale Computing” (SPPEXA) [29].

3. An Inventory of the “In Silico” Experiments in 3D-Bioprinting of Cell-Laden Hydrogels

In past centuries, scientists have created mathematical models to understand how
physical systems function. With the quick progress of computational capabilities, high-
fidelity and high-efficiency “computational simulation” tools have been developed based on
such models and used as a proxy for real-world learning.

Scientists and engineers in the context of material science have begun to develop
and use computational models more extensively to better understand also the bioprinting
process, rather than solely relying on experimental research, due to the large number of
possible combinations of geometrical parameters and material properties, as well as the
abundance of available bioprinting methods.

Figure 2 shows the logical structure graph of the relationships between 3D bioprinting
computational simulation and concerned technologies and tools. In particular, bioprinting
techniques could help find answers to some clinical needs of modern society, such as the
regeneration of bone tissue using scaffolds or the “in vitro” study of the proliferation of
tumor cells. Due to the enormous complexity of these techniques, experimental knowledge
of the physical/chemical phenomena associated with them alone is not sufficient to fully
understand their dynamics. Computational simulation is now widely recognized as a very
powerful tool for broadening this understanding. Computational simulation obviously
cannot exist without an effective investment in research on mathematical models and
algorithms capable of guaranteeing effectiveness and efficiency in the solution of the
involved numerical problems.

This section gives an inventory of the numerical approaches used in the literature for
computational simulation of the processes active in each phase of the bioprinting process.
Table 2 reports a purview of the papers described in the following that used the most

Appl. Sci. 2024, 14, 6110 7 of 83

representative mathematical models based on the “first principles” approach to predict the
different phases of the bioprinting process.

Table 2. Purview of the papers highlighting the most representative mathematical models based on
the “first principles” approach used to describe the different phases of the bioprinting process.

Model Aim Ref.
Pr

e
Pr

in
ti

ng

Fluid Flows Equations

Evaluate the influence of a seeding loading
regime on suction pressure and infiltration
velocity of the cell suspension.

[30]

Introduce a new methodology to simulate
the cell-seeding process under perfusion
conditions. The cells are treated as spherical
particles dragged by the fluid media.

[31]

Design a model describing the fusion of
growing cell clusters, such as embryo cell
aggregates or tumor cell spheroids.

[32]

D
ur

in
g

Pr
in

ti
ng

Fluid Flows Equations

Used to study the influence of needle ge-
ometries on cell clogging during printing. [33]

Determine how printing process parameters
affect the flow velocity of cell-laden printing
material and the survivability of cells within
printed structures.

[34]

Aid the design of an extruder system for the
biofabrication of vascular networks with the
goal of maintaining cell viability throughout
the printing process.

[35]

Monte Carlo approach

Used to study cellular adhesiveness and
motility, interactions with concentration fields,
and concentration-dependent, stochastic cell
dynamics, driven by metabolite-dependent
cell death.

[36]

Immersed Boundary Method
Used to study cell deformation during
the extrusion/ injection-based bioprinting
processes.

[37]

Two-Phase Level Set Methods

Used to study droplet formation. [38,39]

Computational simulations of bioink print-
ing process in suspension baths. [40]

Used to assess the influence of bioink temper-
ature on shear stress, pressure, and velocity. [11]

Models for transport and
response of biological and
chemical species

Optimize printing process parameters in or-
der to achieve the required cell dispersion
and maintain cell viability.

[41]

Investigate the distribution of oxygen and
glucose in bioprinted structures, as well as
examine the reality of the diffusion and con-
sumption phenomena and their impact on
the growth and demise of cells.

[42]

Surface Tension Model
Study the filament deposition and the fi-
nal bioprinted shape during the extrusion/
injection-based bioprinting processes.

[43]

Appl. Sci. 2024, 14, 6110 8 of 83

Table 2. Cont.

Model Aim Ref.

Po
st

Pr
in

ti
ng Monte Carlo approach

Study cell self-assembly and cellular aggregate
fusion of multicellular aggregate systems. [44]

Study early morphogenesis of 3D tissue
structures formed through the post-printing
fusion of the bioink particles,

[45]

Fluid Flows Equations
Study post-printing cell rearrangement to
forecast the geometry and stability of printed
structures

[46]

Cellular Particle Dynamics
Study the discrete bioink units’ ability to
self-assemble into the intended form after
deposition and their deposition rate.

[47–49]

Cellular Automata
Simulate post-printing cell behavior within
the 3D bioprinted complex under a variety
of bioprinting conditions.

[50]

Figure 2. Graph of the logical structure of the relationships between 3D bioprinting computational
simulation and concerned technologies and tools.

3.1. Pre-Printing

A crucial stage in biofabrication process is cell seeding. Using computational method-
ologies in conjunction with experimental activities, efficient cell seeding strategies are
designed. For example, the relative impact of permeability and thickness, and coating
on cell seeding efficiency and homogeneity was evaluated in [30] using a fully factorial
experimental design, in conjunction with the Finite Elements Method (FEM) discretization
of fluid flows equations, to predict the scaffold permeability effects on cell seeding effec-
tiveness. For another example, the number of cells and the seeding time were optimized
using the simulation of cellular interactions with biomaterials, cells, and dynamic medium
in a situation where cell seeding takes place under perfusion conditions [31].

Furthermore, the theoretical framework, based on tissue fluidity, considers that cells
tend to aggregate like droplets of an exceedingly viscous and incompressible fluid. In
the mathematical model, cell clusters are assumed to have a size lower than 0.5 mm.
Otherwise, gas and nutrients exchange are prevented, enabling the formation of necrotic
areas [5]. A good agreement was found between continuum models of the coalescence of
highly viscous liquid droplets and tissue cell cluster fusion studies. But there is a crucial

Appl. Sci. 2024, 14, 6110 9 of 83

difference between very viscous inanimate fluids and cell populations: they do not follow
the principle of volume conservation. Dechristé et al. designed a compressible viscoelastic
fluid model describing the fusion of growing cell clusters, such as embryo cell aggregates
or tumor cell spheroids [32]. The authors initially gave the whole partial differential system,
which describes the fusing of expanding spheroid, based on the Stokes equation. The
combined model included a viscous model representing the velocity field and a tumor
growth model. It is interesting to note that both models produced similar results since the
velocity field’s divergence equals the rate at which volume changes. The authors reduced
the complexity of the 3D model to a 0D model, which included an ordinary differential
system, under the symmetry conditions. To show the consistency, the experiments were
fitted to a numerical model. Similarly, Kuan et al. built a 2D continuum theory to model the
aggregate formation in a system characterized by uniformly distributed cells, as well as the
coalescence of aggregate doublets [51]. In particular, the authors explained the production
of aggregates as an active-phase separation phenomenon, and the merging of aggregates
as the coalescence of viscoelastic droplets, with the important timeframes associated with
the active force’s turnover. The theory offered a broad framework for investigating the
nonequilibrium dynamics and rheology of dense cellular aggregates [52].

3.2. During Printing

By clarifying the intricate interactions between the many printing parameters and
forecasting their ideal configurations for certain goals, mathematical model techniques
have shown to be effective in streamlining the bioprinting process [53,54]. There may be
several goals for the computational optimization of bioprinting procedures [55].

Maximizing printing fidelity—the degree of resemblance between the product mod-
els and the real bioprinted product—is the goal of some models. Alternative strategies
aim to optimize biomimetic fidelity, which refers to the construct’s biological, mechanical,
and rheological resemblance to its in vivo equivalent. Alternative methods address the
problem of simultaneously optimizing printing and the biomimetic fidelity in bioprinting.
For instance, to assess the significance of different process parameters, such as ultravi-
olet (UV) intensity and UV exposure time, on cell viability in stereolithography-based
3D bioprinting, Xu et al. [56] successfully developed a predictive model using computa-
tional methods based on data to anticipate cell viability with good sensitivity. Several
investigations have also attempted to create various methods to enhance the printability
of bioinks. Using multiple regression analysis, Lee J. et al. showed how printability and
the ink’s mechanical characteristics relate to one another. Nevertheless, depending on
the goal of the study and the data-collection procedure, this approach highlighted certain
limitations even with the significant advancements made in the application of the models
in the biological sciences [57]. The biofabrication of high-resolution, fragile cell transfer
of printed human-induced pluripotent stem cells (iPSC) using a low-cost 3D printer for
exact cell placement and stem cell development is based on computational analysis, which
uses fluid flow equations and it allows to tune flow parameters to improve needle geome-
try [33]. Simulations for studying cell deformation during the extrusion/injection-based
bioprinting processes are described in [37]. Those simulations are based on the Immersed
Boundary Method (IBM) [58]. Some authors [38,39] used the Two-Phase Level Set Methods
(TPLSMs) [59,60] to study droplet formation.

Sego et al. used computational methods to predict the spheroids’ viability under
different process parameters, during biofabrication prediction. The authors developed
a discrete–continuous heuristic model that predicts metabolic effects over cells during
spheroid-dependent construction combining field equations with a cellular Potts-type
method, which is based on a Monte Carlo approach [36].

To determine how process parameters affect the flow velocity of cell-laden printing
material and the survivability of cells within printed structures, researchers have explored
the experimental effects of needle geometry and air pressure, and appropriately, models,
based on equations for viscoelastic fluids, have been created to mimic these findings [34].

Appl. Sci. 2024, 14, 6110 10 of 83

The models can be used to optimize process parameters in order to achieve the re-
quired cell dispersion and maintain cell viability. It has also been shown that computational
modeling, based on models for the transport and response of biological and chemical
species, can be used to produce well-designed tissue engineering structures that enhance
bone and tissue regeneration by employing a particular spatial layout of cells in a ma-
trix [41]. In particular, compared to uniform structures, a cell-gradient pattern of cell-laden
hydrogels with different cell densities produced greater cell survivability after printing.

Using TPLSM and Carreau constitutive viscosity models, Prendergast et al. reported
computational simulations of bioink printing in suspension baths in [40]. With IBM and
the Surface Tension Model [61], a further publication [43] examined the filament deposition
and the final bioprinted shape. The linear “Phan-Thien and Tanner (PTT)” model provided
a clear explanation of the viscoelastic bioink’s rheology [62]. Employing a TPLSM-based
simulation, Gomez-Blanco et al. assessed the influence of bioink temperature on shear
stress, pressure, and velocity [11].

Meanwhile, the design of an extruder system for the biofabrication of vascular net-
works was aided by multiphysics computational models, based on fluid dynamics equa-
tions, with the goal of maintaining cell viability throughout the printing process [35].

Recently, Gironi et al. developed a computational model, based on models for the
transport and response of biological and chemical species, to investigate the distribution
of oxygen and glucose in bioprinted structures, as well as to examine the reality of the
diffusion and consumption phenomena and their impact on the growth and demise of cells.
The model’s initial validation was carried out on straightforward droplet-shaped structures.
The investigation of constructions with and without channels, varying in size and geometry,
was conducted using the model. In order to create vascularized bioprinted tissues, more
intricate bioprinted construct configurations with bigger sizes and hierarchical vascular
networks will be studied computationally and physically [42].

However, a summary of the different numerical models used to investigate cell via-
bility and shape fidelity during the printing process can be found in [7]. The goal was to
use these data to develop a mathematical model that could forecast the state of the cell
resulting from the generated shear stresses. Additionally, this could aid in the optimization
of the printing procedure and explore the effects of process-induced mechanical effects on
cell vitality (e.g., refer to Nair et al. [63]).

3.3. Post-Printing

Computational methods may allow also one to target the overall design of the biofabri-
cation process by forecasting the characteristics and quality of the end product based on the
stimuli that are delivered and how they are arranged in space and time [64]. Furthermore,
they may allow the evaluation of the cell maturation after the printing phase.

In particular, over time, cells embedded into the bioink proliferate and grow, tending
to form a tissue. This represents an important aspect of the bioprinting process. Computa-
tional modeling can be used to simulate the fusing of cellular aggregates in biofabrication [7].
For instance, cell self-assembly and the cellular aggregate fusion of multicellular aggregate
systems were studied in [44] utilizing kinetic Monte Carlo (KMC) methods [65]. Specifically,
KMC was used to anticipate how post-printed scaffolds’ morphological characteristics
would alter as tissue morphogenesis progressed. Predicted equilibrium tissue configu-
rations were extrapolated from the interfacial tensions among the many cell types that
comprise the bioprinted tissue. This was accomplished by applying a discrete multicellular
lattice model that explained how cells interacted using the differential adhesion theory [44].

Computational techniques can be utilized not just to mimic the bioprinting process
but also to investigate the mechanisms behind the fusing of multicellular structures. For
example, post-printing cell rearrangement was predicted using the Lattice Boltzmann
approach, which is based on fluid dynamics equations, to forecast the geometry and
stability of printed structures [46]. A number of shapes were tested: a faulty hexagon, a
square lattice that fuses into a structure resembling tissue, a hexagonal configuration of

Appl. Sci. 2024, 14, 6110 11 of 83

cylinders that fuses into a cylindrical tube, and a sequence of cylinders that fuses into a
planar construct. New working hypotheses can be evaluated using computer simulations
more quickly and cheaply than in a lab [46]. Jakab et al. mimicked, by using a Monte
Carlo approach, the early morphogenesis of 3D tissue structures formed through the post-
printing fusion of the bioink particles, in analogy with early structure-forming processes in
the embryo that utilize the apparent liquid-like behavior of tissues composed of motile and
adhesive cells [45].

In ref. [47–49], the predictive power of the computational method, named Cellular
Particle Dynamics (CPDs) [65,66], was demonstrated in cases of simple printed constructs
prepared with spherical multicellular bioink units. The discrete bioink units’ ability to
self-assemble into the intended form after deposition and their deposition rate both affect
the success of a bioprinting procedure. In particular, the creation of a tissue after printing is
mainly guided by basic principles of biological organization. The development of biological
structures in bioprinting, where mini-tissues are used as bioink, is characterized by their
discrete fusion into multicellular spheroids or cylinders, which resembles the merging of
liquid droplets. More specifically, the fusion of discrete bioink particles can be described by
equations applicable to very viscous liquids.

Phase field theories were used to simulate the fusing of cellular aggregates in biofab-
rication in a different mathematical model, in which the surrounding hydrogel and cells
were considered as a binary fluid combination consisting of two immiscible fluids [67].
In particular, the surrounding hydrogel ink and the cellular aggregates were modeled by
considering a viscous fluid and a spheroid of complex fluids, respectively. A mean-field po-
tential was then created, using a higher-order spectra model, by combining the long-range,
attractive interactions between cells with the short-range, repulsive interactions resulting
from the immiscibility. A two-phase model that can be used to study how active matter
interacts with the surrounding viscoelastic medium was described in [68]. Moreover, an
Oldroyd-B model was used to characterize the fluid rheology [62].

The development of a cellular automata model (CA) [69] to simulate post-printing
cell behavior within the 3D bioprinted complex was first described in [50]. Preliminary
“in vitro” studies were used to establish the criteria for cell proliferation, viability, and
cluster formation in the CA model. In addition to quantitatively capturing the post-printing
“in vitro” behavior of cells in the 3D scaffold, the CA model was able to predict and elucidate
the behavior of the cells under a variety of bioprinting conditions. It was able to replicate,
for example, the way that cells move and proliferate inside the pores. Furthermore, the
in-silico data demonstrated how cell proliferation is directly influenced by the initial cell
density in the bioink as well as the number of starting cells.

4. A “State of the Art” of HPC Systems in the Exascale Era

Progress in the deployment of computing platforms has constituted both a pull
and a push factor for the advancement of scientific knowledge and engineering design.
Historically, the HPC systems era started in the 1980s, when vector supercomputing
dominated high-performance computing, as embodied in systems designed by Cray Re-
search Inc. [70,71]. The 1990s saw the rise of massively parallel processing (MPP) in
distributed memory systems and shared memory multiprocessors (SMPs) [72]. In turn,
clusters of commodity (Intel/AMD x86) [73] and purpose-built processors (such as IBM’s
BlueGene) [74] dominated the beginning of this Millenium.

Today, these clusters (which are made of hundreds of nodes and millions of proces-
sors/cores) are enriched by computational accelerators in the form of coprocessors, such
as General Purpose Graphical Processing Units (GP-GPUs); they are based on high-speed,
low-latency interconnects (such as Infiniband) (see Figure 3 for a representation of modern
HPC systems) [71].

Parallel computers (in all their different architectural evolutions) made it possible
to lay the foundations for overcoming the limits that, over the years, have slowed down
the possibility of enhancing processor computational power [75]. Just a few years ago,

Appl. Sci. 2024, 14, 6110 12 of 83

teraflops (1012 floating point operations/second) was the state-of-the-art of HPC technology.
Today, those same values can be obtained by a simple personal computer with just one
accelerator, so advanced computing is now defined by multiple petaflop ((1015) floating
operations/second) supercomputing systems. The exponential increase in advanced com-
puting capability is outlined by the results of the well-known high-performance LINPACK
(HPL) benchmark [76] which is used to compile the Top 500 list of the world’s fastest
computers [77]. Such a list shows that the Exascale (1018 operations per second) Era is by
now the current affairs in the long journey of performance increases that lasts for more than
half a century. Indeed, in the second part of the 2022 year, the “Frontier” supercomputer
installed at the US Oak Ridge National Laboratory broke the glass ceiling of the Exascale
limit [78].

I
n
t
e
r

c
o
n
n
e
c
t
i
o
n

n
o
d
e
s

A
C
C
E
L
E
R
A
T
O
R
S

A
C
C
E
L
E
R
A
T
O
R
S

node

RAMRAM

CPUCPU

corecore

corecore

corecore

C
A
C
H
E

C
A
C
H
E

corecore

CPUCPU

corecore

corecore

corecore

C
A
C
H
E

C
A
C
H
E

corecore

A
C
C
E
L
E
R
A
T
O
R
S

A
C
C
E
L
E
R
A
T
O
R
S

node

RAMRAM

CPUCPU

corecore

corecore

corecore

C
A
C
H
E

C
A
C
H
E

corecore

CPUCPU

corecore

corecore

corecore

C
A
C
H
E

C
A
C
H
E

corecore

A
C
C
E
L
E
R
A
T
O
R
S

A
C
C
E
L
E
R
A
T
O
R
S

node

RAMRAM

CPUCPU

corecore

corecore

corecore

C
A
C
H
E

C
A
C
H
E

corecore

CPUCPU

corecore

corecore

corecore

C
A
C
H
E

C
A
C
H
E

corecore

A
C
C
E
L
E
R
A
T
O
R
S

A
C
C
E
L
E
R
A
T
O
R
S

node

RAMRAM

CPUCPU

corecore

corecore

corecore

C
A
C
H
E

C
A
C
H
E

corecore

CPUCPU

corecore

corecore

corecore

C
A
C
H
E

C
A
C
H
E

corecore

Figure 3. The hierarchical architecture of modern HPC systems. Several processing units (core/CPU)
are aggregated in a CPU/node and share some memory devices. Access to “remote” memory devices
on other nodes is performed thanks to an interconnection network. Memory is organized into levels,
where access speed is inversely proportional to memory size and directly proportional to the memory
“distance” from the processing units. Accelerators are a very particular type of processing unit with
thousands of cores.

Historically, HPC advances largely relied on concurrent advances (in a sort of co-
design approach) in algorithms, software, architecture, and hardware that led to higher
performance levels for computational models. However, there are many challenges related
to the effective use of advanced computing platforms of the Exascale Era, including, but not
limited to, massive parallelism and high complexity in programming such heterogeneous
computing facilities.

A series of studies identified research challenges in developing the generation of
advanced computing systems for the Exascale objective [71,79,80]. From a computational
scientist’s point of view, particular relevance has challenges related to

• Application programming support, which, in response to the complexity and scale of
advanced computing hardware, makes available programming languages, numerical
libraries, and programming models, eventually combined in hybrid and hierarchical
approaches, exploit the multi-node, multi-core, and accelerators-based architecture of
up-to-date HPC resources.

• New mathematical models and algorithms that can give solutions to the need for
increasing amounts of data locality and the need to obtain much higher levels of con-
currency and that can guarantee a high level of “scalability” [81] and “granularity” [82].
Then, it is now the time to develop new algorithms that are more energy-aware, more
resilient, and characterized by reduced synchronization and communication needs.

Therefore, such scientists, supported by an appropriate programming environment,
should spend effort developing models, re-designing algorithms, and re-implementing
applications to fully exploit the power of Exascale architectures.

Appl. Sci. 2024, 14, 6110 13 of 83

In addition to the technical ones, opportunities offered by the Exascale Era also
brought challenges related to organizational, cultural, and economic issues. Among them,
the issues related to the specific need to educate new students and workers to ensure a
sufficiently large and capable workforce to manage “the Exascale transition” are worth noting.
Despite these challenges, all the scientific communities cannot avoid facing them since
every advance in computing technology has driven industry innovation and economic
growth, spurring research in every domain of science. Managing the innumerable technical,
political, and economic challenges will not be easy. Still, these challenges could be more
addressable if they were faced in coordinated planning across different academic, industry,
and social contexts. All the above considerations are the basis of the multiple efforts
spent by different communities all around the world to reach and consolidate the objectives
related to the effective and efficient use of up-to-date advanced computing platforms during
the Exascale Era (i.e., see the various projects funded all around the world [80,83–85] or the
initiatives from the civil society [86]).

Such efforts reveal the strategic role of HPC and SC for the present and the future.
Indeed, the HPC community is already starting to question itself on the future of post-
Exascale computing. For example, the organizers of both the International Conference on
High-Performance Computing 2024 and the International Conference on Parallel Processing
2023 asked Kathy Yelick, Vice Chancellor for Research at the University of California
Berkeley, to deliver the opening keynote talk, titled “Beyond Exascale Computing” [87,88]. The
Yelick talk summarizes the results from two reports [89,90] both on Scientific Computing
in the Post-Exascale Era. About her statements about the future of SC, one cannot help
but agree that we have “ ... to continue to rethink applications ...” and thus the mathematical
models and the algorithms.

5. Mathematical Models

CS may be used to describe the dynamic behavior of physicochemical systems using
simulations and models. Mathematical models can be created at the three conventional
scales: microscopic, macroscopic, and kinetic [91].

On the microscopic scale, the state of the system is made up of all of its component
states and is solely a function of time. The dynamics are modeled using a large system
of ordinary differential equations, each representing a variable at the microscopic level.
At the macroscopic level, continuum models for systems whose state variable can be
a vector, are created. This kind of variable, which depends on both space and time, is
provided by locally averaged data. Partial differential equations derived from equilibrium
or conservation rules characterize the dynamics within the elementary volume of the space
of microscopic states. At the mesoscopic scale, kinetic theory models can be also defined for
systems composed of numerous interacting units, each of whose unique states is referred
to as a microscopic state. The dynamics are described by a differential system created by
conservation relations within the elementary volume of the space of microscopic states [91].
Furthermore, mathematical models at different scales can also be combined to form a
hybrid technique called a multiscale approach [92].

Although the idea of multiscale modeling impacts many domains, material modeling
has only benefited greatly from it in recent decades. Since the physics at a finer scale is better
understood than at a coarser size, multiscale modeling refers to formulating equations,
parameters, or simulation techniques that characterize behavior at a particular length scale
starting from information obtained at the finer scale [92]. Many of these techniques have
been created, employing different strategies to bridge various lengths and time spans. For
a summary of multiscale computational methods and representative examples, the reader
may refer to Table 1 of the work by Fish et al. [92]. As examples, we provide below two
indicative samples taken from that table:

Upscaling methods based on the same mathematical models: On different scales, the same
(or similar) physics models are applied. The interscale coupling could be based

Appl. Sci. 2024, 14, 6110 14 of 83

on different techniques such as asymptotic theory, wavelets, or macrohomogeneity
conditions [92].

Resolved-scale methods based on a Multigrid approach: Separate physics models and discretiza-
tion schemes are used in different spatial domains that can be simulated concurrently.
Coupling strategies are based on interscale operators (restriction and prolongation).
The solution algorithms are similar to iterative Multigrid matrix solvers [92].

The extensive treatment of the “multiscale approaches” goes beyond the scope of this work
but could be the objective of future developments. In any case, for those wishing to delve
deeper into the topic, they can refer to the interesting review by Fish et al. [92].

According to what has already been tested and described in the literature cited in
Section 3, we will only focus on models used at both macro and mesa scales, neglecting
models that work at micro-scales.

5.1. Models at the Macro-Scale

The proposed models are all based on Fluid Flows Equations that are described in
Section 5.1.1. Such equations could be coupled with other ones to describe more complex
problems such as “The two-phase flow problem” (see Section 5.1.2) or the simulation of
Transport and response of biological and chemical species (see Section 5.1.3).

In Table 3 we provide a summary of “Pros and Cons” of the described models.

Table 3. Summary of “Pros and Cons” of the models at the macro-scale.

Model “Pros’’ “Cons”

The Navier–Stokes equa-
tions for Viscoelastic Flu-
ids (Section 5.1.1)

The most comprehensive way to
describe complex fluid dynamics.

The definition of model parame-
ters could be very hard.

The Level Set Method
(LSM) for the two-
phase flow problem
(Section 5.1.2)

LSM is based on a front-
capturing approach that uses a
scalar function on a stationary
grid to capture the interface evo-
lution. The ability to compute
phenomena like bubble break-up
and coalescence is made possible
by the implicit interface capture.

The main difficulty in using
this approach is keeping a clear
boundary between the differ-
ent fluids.

The Immersed Boundary
Method (IBM) for the
two-phase flow problem
(Section 5.1.2)

IBM is based on a combina-
tion of front-capturing and front-
tracking approaches. It can be use-
ful to describe fluid–structure in-
teraction when the structure is in-
tended to be an immersed body.

IBM could inherit drawbacks of
front-tracking approaches in de-
scribing interfaces with complex
geometries. Moreover, the cor-
rect definition of the distribution
function d could be crucial.

The continuum surface
force (CSF) model for the
two-phase flow problem
(Section 5.1.2)

The probably most famous ap-
proach used to compute the sur-
face tension force needed by the
application of front capturing
methods. The model considers
surface tension force as a contin-
uous, 3D effect across an inter-
face, rather than as a boundary
value condition on the interface.

The definition of the transition
region and of the “color” func-
tion c̃.

Appl. Sci. 2024, 14, 6110 15 of 83

Table 3. Cont.

Model “Pros’’ “Cons”

Transport and response
of biological and chemi-
cal species (Section 5.1.3)

Models used to study how the
tissue reacts to the chemical and
mechanical environment in the
culture medium. They can be
considered a strict framework of
conservation laws for mixes of in-
teracting continua that describe
the transfer of mass and momen-
tum between different compo-
nent phases.

The definition of model parame-
ters could be very hard.

5.1.1. The Navier–Stokes equations for Viscoelastic Fluids

A fluid is said to be Newtonian if the local rate of change in its deformation over time
is linearly proportional to the viscous stresses arising from its flow. On the other hand,
non-Newtonian fluids defy this principle, and, for the most part, their viscosity depends
on the present or past shear rate. Non-Newtonian fluids include blood, proteins, polymers,
suspensions, emulsions, chemical reactants, and most other fluids found in both nature
and industry. These fluids typically exhibit a wide range of remarkable properties, such as
viscoelasticity, shear-thinning, and shear-thickening properties [93,94]. Shear-thinning (also
called pseudoplastic) fluids are characterized by an apparent viscosity which decreases by
increasing the shear rate. Conversely, shear-thickening fluids are those whose apparent
viscosity rises as the shear rate decreases [95]. Finally, it should be noted that viscoelastic
fluids exhibit time-dependent strain, a characteristic in which the fluids’ strain gradually
approaches the equilibrium value when stress is applied.

Navier–Stokes equations are used to describe the conservation of mass and momentum
of incompressible fluid, varying in temporal domain Θ, in a spatial domain Ω ⊆ ℜn,
n = 1, 2, 3 with boundary δΩ as the following problem:

Problem 1. The Navier–Stokes equations defined in Ω×Θ

∂

∂t
(ρv) + (ρv)⊙∇v = −∇p + div T + ρg + f (Momentum equation) (1)

div v = 0 (Continuity equation) (2)

v|t=0 = v0 (3)

p|t=0 = p0 (4)

where v is the velocity field, ρ is the density of the fluid, p is the pressure field, g is the gravitational
acceleration, f is an additional force field, and T is the stress response to the deformation of the fluid.

An example for f is the “Surface Tension” force [96] in a two-phase problem [59] (see
Section 5.1.2).

The notations ∇u, div u, ∇ f and u⊙∇u respectively are used to representing:

∇u =

∂u1
∂x1

· · · ∂un
∂x1

...
. . .

...
∂u1
∂xn

· · · ∂un
∂xn

 (5)

div u = ∑
i=1,...,n

∂ui
∂xi

(6)

Appl. Sci. 2024, 14, 6110 16 of 83

div T =

∑j=1,...,n

∂t1,j
∂xj

...

∑j=1,...,n
∂tn,j
∂xj

 (7)

∇ f =

∂ f
∂x1
...

∂ f
∂xn

 (8)

u⊙∇u =

∑j=1,...,n uj

∂u1
∂xj

...
∑j=1,...,n uj

∂un
∂xj

 (9)

where f (x, t) ∈ ℜ, u(x, t) = [ui(x, t)]Ti=1,...,n ∈ ℜn, T(x, t) =
[
ti,j(x, t)

]
i,j=1,...,n ∈ ℜ

n×n and
x = (x1, . . . , xn) ∈ ℜn

The solvent-polymer stress splitting technique is used in this formulation to decom-
pose the stress response into two terms [93]: Ts, which represents the solvent’s instanta-
neous response, and Tp, which represents the polymeric contribution to the stress response
which accounts for the polymers’ memory effects [97]:

T = Ts + Tp (10)

where the solvent part, Ts, is defined as below:

Ts = 2µs(γ̇)D (11)

where

D =
1
2

[
∇v + (∇v)T

]
, (12)

where γ̇ is the shear rate defined by [98]

γ̇ =
√

2∥D∥, (13)

and where ∥·∥ denotes the Hilbert–Schmidt norm of a matrix A defined as

∥A∥ =
√

∑
i,j=1,...,n

a2
ij

The following viscosity models µs for generalized Newtonian fluids could be consid-
ered [93,99]:

Newtonian viscosity model
µ
(0)
s = µ

(0)
∞ = µs,

Power-Law model
µ
(1)
s = µ

(1)
∞ γ̇n−1,

Cross model
µ
(2)
s = µ

(2)
∞ +

(
µ
(2)
0 − µ

(2)
∞

)[
1 + (λγ̇)b

]−1
,

Modified Cross model

µ
(3)
s = µ

(3)
∞ +

(
µ
(3)
0 − µ

(3)
∞

)[
1 + (λγ̇)b

]−a
,

Appl. Sci. 2024, 14, 6110 17 of 83

Carreau model

µ
(4)
s = µ

(4)
∞ +

(
µ
(4)
0 − µ

(4)
∞

)[
1 + (λγ̇)2

] n−1
2 ,

Carreau–Yasuda model

µ
(5)
s = µ

(5)
∞ +

(
µ
(5)
0 − µ

(5)
∞

)[
1 + (λγ̇)m] n−1

m ,

where µ
(θ)
0 and µ

(θ)
∞ are the asymptotic viscosity values at zero and infinite shear rates

(where θ = 0, 1, 2, 4, 5). The parameters of the non-Newtonian viscosity models are a, b,
m, and n, and the relaxation time is denoted by the symbol λ. The Power-Law model [93]
may explain shear-thinning behavior for n < 1, shear-thickening behavior for n > 1, and
Newtonian behavior for m = 1.

Several constitutive rheological models are available in the literature with polymeric
stresses Tp [93,97], which are typically functions A number of constitutive rheological
models with polymeric stresses Tp are available in the literature [93,97]. These stresses are
usually functions fS(·) of the conformation tensor C,

Tp =
µp fS(C)

λ
(14)

where µp the polymeric viscosity.
According to [97], the conformation tensor C ∈ ℜn×n can be viewed as an internal

state variable that describes the molecular deformation of the polymer chains. Assuming
symmetry and positive definiteness, the conformation tensor C behaves in accordance with
the following equation:

▽
C = − fR(C)

λ
(15)

where the relaxation function, which varies for each specific constitutive model, is fR(·).
The operator upper-convected derivative, described in [97], is indicated by ▽. With the
symbol •, we intend to represent the matrix–matrix operation.

▽
C =

∂C
∂t

+∇ • (vC)− C • ∇v−∇vT • C (16)

where

∇ • (vC) =

∑k=1,...,n vk

∂c1,1
∂xk

· · · ∑k=1,...,n vk
∂c1,n
∂xk

...
. . .

...

∑k=1,...,n vk
∂cn,1
∂xk

· · · ∑k=1,...,n vk
∂cn,n
∂xk

 (17)

Table 4 collects the expressions of the strain fS(C) and relaxation functions fR(C) for
some constitutive models [97].

Table 4. The relaxation and strain functions for some constitutive models are denoted by fS(C) and
fR(C). L is the ratio of the length of a fully expanded polymer dumbbell to its equilibrium length,
and tr(C) denotes the trace of the tensor C.

Oldroyd B FENE-P FENE-CR Linear PTT

fR(C) C − I C
1−tr(C)/L2 − I C−I

1−tr(C)/L2 [1 + ϵtr(C − I)](C − I)

fS(C) C − I C
1−tr(C)/L2 − I C−I

1−tr(C)/L2 C − I

Appl. Sci. 2024, 14, 6110 18 of 83

Classically, in the case of the Oldroyd-B model, it is usual to skip the use of C by com-
bining Equations (1) and (15). Then, the constitutive equations in terms of the viscoelastic
stress tensor, Tp is written as

λTp +
▽
Tp = 2µpD. (18)

The summation of µs and µp of the fluid is defined as total viscosity and denoted as
µ0 = µs + µp. The ratio of µs to µp is defined as viscosity ratio of viscoelastic fluid also
known as the retardation ratio and denoted as β = µs

µp
≤ 1.

Different boundary conditions can occur on the boundary ∂Ω of Ω depending on the
different physical conditions. However, it is important to consider that while the Neumann
condition specifies the gradient of the velocity perpendicular to the boundary, the Dirichlet
boundary condition expresses the value of the velocity on the boundary. The decomposition
of the velocity v in its normal component vN := v · n and its tangential part vT := v− vNn
(where n is the vector normal to boundary ∂Ω) allows the description of five different types
of boundary conditions [98] as reported in the Table 5.

Table 5. Boundary conditions that are possible on the boundary ∂Ω of Ω depending on the different
physical conditions.

No-slip

The boundary ∂Ω is considered as a rigid wall where no fluid comes out of the
wall. On the boundary, the following equation is valid [98]:

v = 0

Free-slip

No fluid comes out of the wall, but in contrast to the no-slip condition, no
friction acts along the wall. Therefore, on the boundary, the following equation is
valid [98]

vN = 0 and τ · T · n = 0 for each τ ⊥ n

With the symbol ·, we intend to represent the matrix-vector operation and the
vector dot product operation depending on the type of the operands.

Inflow
In this case, all velocity components are stated [98], i.e.,

v = vin where vin is given

Outflow

In order to prescribe boundary conditions at the outlet, many technics exist.
Practicable importance can be attributed to the so-called “do-nothing” method,
which is described by the following equation

∇v · n− pn = 0

with a prescribed normalized pressure p [98].

Periodic

In the case of a one-directional periodical problem with periodic length π, the
velocities and the pressure have to be equal on both sides of the periodical
direction. If we assume that the problem is periodic in the xi direction, it follows
that [98]

v(x1, . . . , xi, . . . , xn, t) = v(x1, . . . , xi + π, . . . , xn, t)
∂x1 v(x1, . . . , xi, . . . , xn, t) = ∂x1 v(x1, . . . , xi + π, . . . , xn, t)

p(x1, . . . , xi, . . . , xn, t) = p(x1, . . . , xi + π, . . . , xn, t)

If the velocity is stated on the whole boundary of the domain (i.e., when pure Dirichlet
boundary conditions are considered), the additional condition∫

∂Ω
v · n dA = 0

must be satisfied because the velocity field is divergence-free [98].

Appl. Sci. 2024, 14, 6110 19 of 83

5.1.2. The Two-Phase Flow Problem

Two-phase flow describes the combined behavior of two different fluids (or phases)
that are immiscible at a molecular level and both occupy domain Ω ∈ ℜn. For example,
this method was used to describe a water droplet in the air or the description of cellular
aggregates in the surrounding hydrogel. Within each phase, all physical quantities are taken
to be continuous; however, at the interface, at least one physical quantity is discontinuous.
Modeling and simulating multiphase fluid flows have been a big challenge over the years;
we will describe some of the related models.

We denote the domain occupied by the two liquids with Ω1 and Ω2, respectively, such
that Ω = Ω1 ∪Ω2 and such that they are separated by an interface Γ = Ω1 ∩Ω2. In general,
the phase index i = 1, 2 is used for all quantities of the liquid phase i. If the fluids are in
motion, the domains Ωi(t), i = 1, 2, as well as the interface Γ(t), are unknown at the time
instant t getting a so-called free boundary problem.

When it comes to the numerical treatment of free boundary problems, we can often
identify two different kinds of issues [98].

1. The representation and evolution in time of the interface.
2. The way the imposed surface boundary conditions are treated.

The first issue above will be treated at the following point 1, whereas point 2 deals
with the second issue above.

1. Representation and time evolution of the interface. To represent the two-phase flows
with shifting inter-phase boundaries, various methodologies have been developed in
response to the problem’s complexity, both numerically and physically. In principle,
the methods can be divided into two classes: the so-called front-tracking (FT) methods
and front-capturing (FC) methods.
In these methods, two-phase flow is treated as a single flow with the density and
viscosity smoothly varying across the moving interface which is captured in a Eulerian
framework (FC) or in a Lagrangian, framework (FT), with the terms Eulerian and
Lagrangian frameworks, meaning, meaning the following [100]:

Lagrangian framework: In classical field theories, the Lagrangian specification of
the flow field is a way of looking at fluid motion where the observer follows an
individual fluid parcel as it moves through space and time.

Eulerian framework: The Eulerian specification of the flow field is a way of looking
at fluid motion that focuses on specific locations in the space through which the
fluid flows as time passes.

The front-tracking method is based on a formulation in which a separate unstructured
grid (surface grid) with nodes converging at a local velocity is used to represent the
interface. One benefit of the technique is that interfacial conditions can be easily
included because the interface is precisely established by the surface grid’s position.
Moreover, a good approximation of the curvature allows for the consideration of
surface tension force. The method’s drawback is that it requires the use of extra
algorithms to compute flows with substantial interface deformations such bubble
break-up and coalescence since the surface grid will be severely distorted.
In contrast, the front-capturing approach uses a scalar function on a stationary grid
to capture the interface as part of its implementation of the interface evolution. The
ability to compute phenomena like bubble break-up and coalescence is made possible
by the implicit interface capture provided by front-capturing techniques. The two
main difficulties in using this approach are keeping a clear boundary between the
different fluids and accurately calculating the surface tension forces [98].
The Level Set approach was developed as a result of the front-capturing approach [59,60].
A different method, known as the Immersed Boundary (IB) method [58,101–104],
was developed for flows across challenging geometries. It can be thought of as a
combination of front-capturing and front-tracking procedures.

Appl. Sci. 2024, 14, 6110 20 of 83

Level Set Method The idea on which the level set method is based is quite simple.
Given an interface Γ in ℜn of codimension one, bounding an open region Ω,
the LS method intends to analyze and compute its subsequent motion under a
velocity field v.
This velocity depends on the position, time, the geometry of the interface (e.g., its
normal or its mean curvature) and the external physics.
The idea is to define a smooth function ϕ(x, t) representing the interface as the
set where ϕ(x, t) = 0.
The level set function ϕ(x, t) has the following properties:

ϕ(x, t) > 0 for x ∈ Ω1

ϕ(x, t) < 0 for x ∈ Ω2

ϕ(x, t) = 0 for x ∈ Γ(t)

Thus, the interface is to be captured for all times t, by defining the set of points
Γ(t) for which the ϕ values (levels) obey the following equation

∂ϕ

∂t
+ v · ∇ϕ = 0. (19)

Coupling the level set method with problems related to two-phase Navier–Stokes
incompressible flow needs the reformulation of Problem 1 as follows

Problem 2. Equations of two-phase Navier–Stokes incompressible flow defined in
Ω×Θ using the level set method

∂

∂t
(ρv) + (ρv)⊙∇v = −∇p + div T + ρg + δ(ϕ)σκN (20)

div v = 0 (21)
∂ϕ

∂t
+ v · ∇ϕ = 0 (22)

v|t=0 = v0 (23)

p|t=0 = p0 (24)

ϕ|t=0 = ϕ0 (25)

where v is the velocity field, p is the pressure field, g is the gravitational acceleration,
ρ(ϕ) and T(ϕ) are the piecewise constant fluid densities and stress tensors described
by the Heaviside function, σ is the surface tension coefficient, κ is the curvature of the
interface, N is the unit normal vector outward to Γ(t), and δ(ϕ) is a delta function.
The following equations hold [59]: With the symbol |u|, we denote the modulus of the
vector u ∈ ℜn, that is,

|u| = ∑
i=1,...,n

u2
i

T(ϕ(x, t)) = T1H1(x, t) + T2(1− H1(x, t)) (26)

ρ(ϕ(x, t)) = ρ1H1(x, t) + ρ2(1− H1(x, t)) (27)

H1(x, t) =

{
1 for x ∈ Ω1(t)
0 for x /∈ Ω1(t)

(28)

δ(ϕ(x, t)) =

{
1 for x ∈ Γ(t)
0 for x /∈ Γ(t)

(29)

N = − ∇ϕ

|∇ϕ| (30)

κ = −div
(
∇ϕ

|∇ϕ|

)
(31)

Appl. Sci. 2024, 14, 6110 21 of 83

Note that the term σκN added to Equation (20) is used to model the surface tension
forces [98].

The function ϕ can have different format [105–107], which helps to avoid some
disadvantages of the LS method related to the discrete solution of transport
equations, which may be affected by numerical error leading to loss or gain
of mass.
In standard level set methods, the level set function ϕ is defined to be a signed
distance function

ϕd(x, t) =
{

d(x, t) for x ∈ Ω1
−d(x, t) for x /∈ Ω1

(32)

where d(x, t) = minxΓ∈Γ(t) |x− xΓ|.
To improve numerical robustness, “smoothed out” Heaviside functions (needed to
represent density and viscosity discontinuities over the interface) are often used.
For example [106],

Hsm(ϕ) = ϕ (33)

Immersed Boundary Method
The Immersed Boundary Method (IBM) can be useful to describe fluid–structure
interaction when the structure is intended to be an Immersed Body. In the IBM,
the fluid is represented in a Eulerian coordinate system, and the configuration of
the Immersed Body is described by a Lagrangian approach [101].
Consider the simulation of incompressible flow around the body in Figure 4a,
which is described by Problem 1 where Ω = Ω f ∪Ωb. Ω f denotes the surround-
ing fluid domain occupied by the solid body domain Ωb with the boundary
denoted by Γb.
In an IB method, the boundary condition would be imposed indirectly through
a specification of Problem 1. In general, the specification takes the form of a
source term (or forcing function) in the governing equations, which reproduces
the effect of boundary [102].
The original IBM, created by Peskin [58], is typically appropriate for flows with
immersed elastic limits. It was designed for the combined modeling of blood
flow and muscle contraction in a beating heart. A collection of massless points
moves with the local fluid velocity v, and these points serve as a Lagrangian
tracker of the location of the Immersed Body, represented by a set of elastic fibers.
Thus, the coordinate X of the Lagrangian point is governed by the equation

δX
δt

= v(X, t) (34)

The effect of the Immersed Body on the surrounding fluid is essentially captured
by transmitting the fiber’s stress F to the fluid through a localized forcing term
f IBM(x, t) in the momentum equations, which is given by

f IBM(x, t) =
∫

Ωb

F(X, t)δ(|x− X|)dX, (35)

where δ(·) is the Dirac delta function. The Dirac delta function in ℜn is formally
defined by the following:

δ(x) =
{

+∞ x = 0
0 x ̸= 0

Appl. Sci. 2024, 14, 6110 22 of 83

and is also constrained to satisfy the identity∫
x∈ℜn

δ(x)dx = 1.

The function F can be written as

F(X, t) = − ℘E
℘X

, (36)

where E[X] is a given functional called “the elastic potential energy of the material”
in configuration X and where the notation ℘E

℘X is shorthand for the “Fréchet
derivative” of E with respect to X. Thanks to the use of the Dirac delta function,
Equation (34) can be rewritten as

δX
δt

=
∫

Ωb

v(x, t)δ(|x− X|)dx. (37)

The forcing term is thought to be distributed over a band of cells surrounding
each Lagrangian point (see Figure 4b), as the fiber locations typically do not
coincide with the nodal points of the Eulerian grid. This distributed force is then
imposed on the momentum equations of the surrounding nodes. As a result, a
smoother distribution function, represented by d in this case, effectively replaces
the delta function and may be applied to a discrete mesh. The d function allows
for the rewriting of Equations (37) and (35) as follows:

δX
δt

=
∫

Ωb

v(x, t)d(|x− X|)dx, (38)

f IBM(x, t) =
∫

Ωb

F(X, t)d(|x− X|)dX. (39)

The choice of the distribution function d is a key ingredient in this method.
Several different distribution functions were employed in the past (i.e., see [102]
for a list of employed d).

(a) (b)

Figure 4. A generic body around which flow is to be simulated. The body occupies the volume Ωb
with boundary Γb (a). Transfer of forcing F from Lagrangian boundary point X to surrounding fluid
nodes (b).

Coupling the IB equations with problems related to the Navier–Stokes incompressible
flow requires the reformulation of the Problem 1 as follows:

Appl. Sci. 2024, 14, 6110 23 of 83

Problem 3. Equations of the Navier–Stokes incompressible flow defined in Ω f ×Θ surround-
ing an Immersed Body Ωb:

∂

∂t
(ρv) + (ρv)⊙∇v = −∇p + div T + ρg + f IBM (40)

div v = 0 (41)

v|t=0 = v0 (42)

p|t=0 = p0 (43)

δX
δt

=
∫

Ωb

v(x, t)d(|x− X|)dx (44)

f IBM(x, t) =
∫

Ωb

F(X, t)d(|x− X|)dX (45)

F(X, t) = − ℘E
℘X

, (46)

where ρ is the density of the fluid, v is the velocity field, p is the pressure field, g is the
gravitational acceleration, T is the stress response to the deformation of the fluid, X is the
Lagrangian coordinate of the generic point of the body, and E is the elastic potential energy of
the body material.

Equations (38) and (39) are interaction equations. They convert Lagrangian variables
to Eulerian variables (Equation (38)) and vice versa (Equation (39)).

2. Surface boundary conditions treatment
Since the second derivative of a discontinuous function determines the curvature κ,
using front-capturing methods to compute the surface tension force requires particular
considerations. Various methods were devised to precisely calculate the surface
tension force. The most well-known method is presumably the continuum surface force
(CSF) model [61]. The model considers surface tension force as a continuous, 3D effect
across an interface, rather than as a boundary value condition on the interface. The
continuum method eliminates the need for interface reconstruction. A model of a
diffuse interface is examined, in which the surface tension force is converted into a
volume force that distributes across several cell layers.
We note (see Equation (20)) that surface tension Fsa per interfacial area at a point xΓ
on the interface Γ is given by

Fsa(xΓ) = ρκ(xΓ)N(xΓ) (47)

where ρ is the surface tension coefficient, κ is the curvature of the interface, and N is
the unit normal vector outward to Γ(t).
Suppose that the interface Γ where the fluid changes from fluid 1 to fluid 2 discon-
tinuously is replaced by a continuous transition. Applying a pressure jump at an
interface brought on by surface tension is no longer appropriate. Instead, as can be
shown in Figure 5, surface tension should be considered active everywhere in the
transition area.

Appl. Sci. 2024, 14, 6110 24 of 83

Figure 5. The transition region (unshaded) separating two fluids used in the CSF formulation: h is
the width of the region. Credits: image inspired by the work of Brackbill et al. [61].

As in [61], we choose a volume force Fsv(x) at any point x of transition region as

Fsv(x) =
{

ρκ(x)∇c̃(x) for |N(xΓ)(x− xΓ)| < h
0 for |N(xΓ)(x− xΓ)| ≥ h

(48)

where c̃(x) is a smooth “color function” that approaches the “characteristic function”,
c(x), as the width h of the region approaches to zero,

lim
h→0

c̃(x) = c(x), (49)

and where the “characteristic function” can be defined as

c(x) =

1 for x ∈ Ω1
0 for x ∈ Ω2
1
2 for x ∈ Γ

, (50)

where Ω1 and Ω2 represent the domains occupied by fluids 1 and 2, respectively.
We note that for the curvature κ of the interface Γ and for the unit normal vector N
outward to Γ, the following equations are valid:

N = − ∇c̃
|∇c̃| (51)

κ = −div
(
∇c̃
|∇c̃|

)
(52)

The function c̃(x) can be defined as a convolution of the function c(x) with an inter-
polation function J according to Brackbill et al. [61]:

c̃(x) =
1
h3

∫
V

c(y)J (y− x)dy (53)

where J has to satisfy the following conditions

(a)
∫

V J (x)dx = h3,
(b) J (x) = 0 for |x| ≥ h/2,
(c) J (x) is differentiable and decreases monotonically with increasing |x|.
Volume force Fsv(x) will result in the same total force as Fsa(xΓ), but spread over the
finite interface width, i.e.,

lim
h→0

∫
∆V

Fsv(x)dxn =
∫

∆A
Fsa(xΓ)dA (54)

Appl. Sci. 2024, 14, 6110 25 of 83

Coupling the continuum surface force (CSF) model with problems related to two-phase
Navier–Stokes incompressible flow requires the reformulation of the Problem 1 as fol-
lows:

Problem 4. Equations of two-phase Navier–Stokes incompressible flow defined in Ω×Θ
using the CSF model:

∂

∂t
(ρv) + (ρv)⊙∇v = −∇p + div T + ρg + Fsv(x) (55)

div v = 0 (56)

v|t=0 = v0 (57)

p|t=0 = p0 (58)

where v is the velocity field, p is the pressure field, g is the gravitational acceleration, and
ρ(x) and T(x) are the piecewise constant fluid densities and stress tensors described by the
Heaviside function.
The following equations hold [61]:

T(x) = T1H1(x) + T2(1− H1(x)) (59)

ρ(x) = ρ1H1(x) + ρ2(1− H1(x)) (60)

H1(x) =

{
1 for x ∈ Ω1(t)
0 for x /∈ Ω1(t)

(61)

(62)

Note that the term Fsv(x) (as defined in Equation 48) is added to Equation (55) to model the
surface tension forces [61].

5.1.3. Transport and Response of Biological and Chemical Species

This subsection will describe models that are used to study how the tissue reacts to
the chemical and mechanical environment in the culture medium. Although there are not
many studies on this topic, this aspect is crucial for models that seek to create better culture
protocols [64]. Creating a strict framework of conservation laws for mixes of interacting
continua has been the subject of countless investigations [108]. According to this theory,
the characteristics of composite biological tissues are assessed in relation to the volume
percentage of the constituent parts (i.e., extracellular matrix, culture medium, and cells). A
system of conservation equations that control the transfer of mass and momentum between
the component phases is the foundation of the multi-phase models.

For a system comprising incompressible phases, if inertial effects and body forces are
negligible, then the equations governing the i-th phase may be expressed as

∂

∂t
(ρiθi) + ρidiv(θiv)− Di∇2θi = Si, (63)

div(θiTi) + ∑
j ̸=i

Fij = 0 (64)

where ρi, θi, v, Di, and Ti are, respectively, the density, the volume fraction (a value in [0 1]
interval), the velocity, the diffusive coefficient, and the stress tensor characterizing the i-th
phase, where Si is the net rate of mass transfer into the i-th phase and Fij denotes the force
acting on phase i as a result of interactions with phase j.

The sum of all phases adds up to 1 (∑i θi = 1) following the conservation of mass. The
biological component can also be modeled as a single-phase material, for instance, cells
only, where Equation (63) can be used to estimate θc as the cell density; in such a case, the
conservation of mass law above does not apply; for example, Equation (64) does not apply.

Depending on the type of biological phase, diffusive and convective transport are
taken into account in Equation (63). For example, cells are typically thought of as a

Appl. Sci. 2024, 14, 6110 26 of 83

single phase that diffuses slowly and does not undergo convection. The force balance
between the various phases is captured by the equation for the conservation of momentum
(see Equation (64)). Interactions between cell populations, between the cells and the
scaffold, and between the cells and the media are included in Equation (64). More complex
processes, including tissue evolution through cell proliferation or ECM deposition (in
biology, the extracellular matrix (ECM), also called the intercellular matrix (ICM), is a
network consisting of extracellular macromolecules and minerals that provide structural
and biochemical support to surrounding cells [109]), can be considered by using the term
Si. The introduction of functions controlling cell proliferation or ECM formation is possible.
Proliferation and death terms are typically included in cell growth functions, and they
depend on the available cell volume fraction θc and the concentration of nutrients like
oxygen. Indeed, it is widely known that the migration, differentiation, and proliferation
of cells are influenced by growth factors, waste products like lactate, and nutrients like
oxygen (called “chemical species”).

Mass conservation is used to describe the distribution of any solute, assuming Fickian
diffusion and setting the initial and boundary conditions.

∂Ci
∂t

+ div(Civ)− Di∇2Ci = Mi, (65)

where v is the media flow velocity, Di is the appropriate coefficient of diffusion, Mi is a
term indicating the metabolic reaction, and Ci is the concentration of the i-th species (in, for
example, oxygen).

See [64,108] for more details about models related to the transport of chemical species
and the response of biological species (cells and tissues) to the chemical and mechanical
environment.

5.2. Models at the Meso Scale

The proposed models are based on a stochastic approach (the Monte Carlo-based
method) on a deterministic particle-dynamics-based approach (the Cellular Particle Dy-
namics), and on a potential hybrid stochastic–deterministic approach (the cellular automata
method). In Table 6, we provide a summary of the “Pros and Cons” of the described models.

Appl. Sci. 2024, 14, 6110 27 of 83

Table 6. Summary of “Pros and Cons” of the models at the meso-scale.

Model “Pros” “Cons”

Monte Carlo-based methods
(MCMs) (Section 5.2.1)

MCMs are a broad category of
computing methods for assess-
ing sums and integrals or esti-
mates of energy or other macro-
parameters in a physical or bi-
ological system. They are uni-
versally appreciated for their
power and easy implementation
beyond their versatility and flex-
ibility.

They can only be used to assess
equilibrium states.

The cellular automata
method (Section 5.2.3)

An approach where the behav-
iors of the species under study
are determined by rules which
can be probabilistic or determin-
istic. CA could be particularly
significant in managing the be-
haviors of systems where the
traditional, differential-equation-
based methodologies are either
useless or difficult to adopt due
to the numerous complex inter-
connections between the system
constituents.

They can only be used to as-
sess equilibrium states. Either
synchronous or asynchronous
rule applications lead to CA de-
velopment but serious practi-
cal implementations limit the
use of CA to an asynchronous
rule application.

The cellular parti-
cle dynamics (CPD)
(Section 5.2.2)

CPD is based on the idea of con-
structing a cell from a cloud of
sub-cellular entities called ele-
ments. All the elements, through
their relative positions, and in re-
sponse to cell internal and exter-
nal forces, determine the dynam-
ics of all the cells.

The definition of model parame-
ters could be very difficult.

5.2.1. Monte Carlo-Based Methods

The collection of algorithms, based on Markov Chain Monte Carlo (MCMC) meth-
ods, are universally appreciated for their power and easy implementation beyond their
versatility and flexibility. Such relevance inspired Dongarra et al. [110] to call the original
Metropolis algorithm [111], which is the first implementation of an MCMC method, one of
the ten most important algorithms of the twentieth century. For the story of the evolution
of MCMC methods, we suggest reading the paper by Matthew Richey [112] that is also
relevant for the accessible and synthetic introduction to MCMC methods. MCMC is a
broad computing method for assessing sums and integrals or estimates of energy or other
macro-parameters in a physical or biological system [113].

The original MCMC method, the so-called “Metropolis algorithm”, was inspired by
nature and arose in physics. Its creators were aware that they had defined

...a general method, suitable for fast electronic computing machines, of calculating
the properties of any substance which may be considered as composed of interacting
individual molecules. [111]

The original Metropolis algorithm proposed an approach to solve the basic problem of
averaging in classical equilibrium statistical mechanics. Such an approach was intended to
compute averages of any physical observable F using an arithmetic mean of the values of F
obtained in different sampled states of a system composed of N particles. The sampling
schema described in [111] was based on an approach that later was discovered to be a
Marchov Chain stochastic process [112]. Let us briefly describe some of the fundamental
ideas behind the Marchov Chain.

Appl. Sci. 2024, 14, 6110 28 of 83

Definition 1. Markov Chains
Given a finite state space S = {1, 2, ..., N}, a Markov Chain is a stochastic process defined by a
sequence of random variables, Xi ∈ S, i ∈ N such that

Prob(Xk+1 = xk+1|X1 = x1, . . . , Xk = xk) = Prob(Xk+1 = xk+1|Xk = xk). (66)

Equation (66) expresses the fact that the probability of being in a particular state at
the (k + 1)-th step only depends on the state at the k-th step. When Markov Chains are
considered for which this dependence is independent of k (that is, time-homogeneous
Markov Chains), a N × N transition matrix P =

(
pi,j
)

can be defined by

pi,j = Prob(Xk+1 = j|Xk = i). (67)

Note that

1. ∑N
i=1 pi,j = 1.

2. The (i, j)-entry of the K-th power of P gives the probability of transitioning from state
i to state j in K steps.

A Markov Chain is

Irreducible if, for all states i and j, there exists K such that
(
PK)

i,j ̸= 0.

A-periodic if, for all states i and j, the Greatest Common Divisor of the set
{

K :
(
PK)

i,j > 0
}

is equal to 1.

An irreducible, a-periodic Markov Chain must have a unique distribution π on the
state space S with the property that

π = πP. (68)

where π = (π1, π2, . . . , πN) and where πi is the probability of state i.
If Equation (68) is valid, the Markov Chain is said to be “stable on the distribution” π, or

that π is the stable distribution for the Markov Chain. The following two considerations
are valid:

• If π is the stable distribution for an irreducible, a-periodic Markov Chain, then the
Markov Chain can be used to sample from π.

• Samples from π can be used to approximate the properties of π. For example, suppose
f is any real-valued function on the state space S, and suppose that s1, s2, . . . , sM is a
sample from π; then, the ergodic theorem [114] ensures that

lim
M→∞

1
M

M

∑
i=1

f (si) = Eπ [f], (69)

where Eπ [f] is the expected value Eπ [f] = ∑N
i=1 f (i)πi.

So, if an irreducible, a-periodic Markov Chain can be built that is stable on π, that
chain can be used to generate states from S that can be exploited to approximate, by
Equation (69), the expected value Eπ [f] of any real-valued function on the state space S.
The original Metropolis algorithm builds a Markov Chain that is stable on a particular type
of distribution πBoltzmann that is the “Boltzmann distribution”.

Indeed, in the context of statistical mechanics, which is the branch of physics concerned
with the average behavior of large systems of interacting particles, the Metropolis algorithm
was introduced to study the properties of πBoltzmann. In statistical mechanics, the state of the
particles is described by a configuration ω taken from the configuration space Ω. The physics
of a configuration space is described by an energy function E : ω ∈ Ω← E(ω) ∈ ℜ+. Then,
the value E(ω) is said to be the energy of the configuration ω. The random organization of
molecules in a limited space is governed by the fundamental principle of statistical physics

Appl. Sci. 2024, 14, 6110 29 of 83

assuming that Nature seeks low-energy configurations. For any ω ∈ Ω, its Boltzmann
probability, πBoltzmann(ω), is

πBoltzmann(ω) =
BoltzmannWeight(ω)

Z
, (70)

where T is the temperature and k is the Boltzmann’s constant,

BoltzmannWeight(ω) = e−
E(ω)

kT (71)

and where Z is known as “Partition Function”, defined as

Z = ∑
ω′

e−
E(ω′)

kT . (72)

The relationship between energy and probability leads to expressions for many inter-
esting physical quantities. For example, the total energy of the system, ⟨E⟩, is the expected
value of the energy function E(ω) and is defined by

⟨E⟩ = ∑
ω∈Ω

E(ω)πBoltzmann(ω). (73)

The brilliant idea behind the Metropolis algorithm is that it creates an easily computed
Markov Chain that is stable on the Boltzmann distribution. The making of such a chain
requires only the evaluation of the ratio between the values of Boltzmann probabilities
of two consecutive states (i.e., see algorithm described in Section 6.2.1 where g(·) =
πBoltzmann(·)) that is

πBoltzmann(ω)

πBoltzmann(ω∗)
=

BoltzmannWeight(ω)

BoltzmannWeight(ω∗)
= e−

E(ω)−E(ω∗)
kT

and not the full probabilities Z, avoiding the evaluation of the partition function which is
analytically and computationally intractable in any realistic setting. All the steps in the
Markov Chain can be computed easily, if the value of E(ω) is easily computable, and, most
importantly, the value of ∆E = E(ω)− E(ω∗). In many settings, E is extremely simple to
compute; often, it is independent of |Ω| (the energy could reflect just the influence that
neighboring particles exert on each other).

Finally, thanks to the use of the Metropolis algorithm, a sample {ωi}i=1,...,M of Ω can
be generated that can be used to compute an approximation (see Equation (69)) Ẽ of ⟨E⟩ by
the following

Ẽ =
1
M

M

∑
i=1

E(ωi). (74)

Moreover, since naturally physical systems “seek” the state of minimal value for
their energy, the succession of states {ωi}i=1,...,M “converges” toward the equilibrium state
characterizes the minimum energy state.

The generalization of the Metropolis algorithm is due to Hastings [115]. To generalize
the Metropolis method for a given distribution π, a Markov Chain P =

(
pi,j
)

i,j=1,...,N
should be defined with π as its stationary distribution.

Hastings assumes that pi,j has the form

pi,j =

{
qi,jαi,j if i ̸= j

1−∑k ̸=i pi,k if i = j
, (75)

Appl. Sci. 2024, 14, 6110 30 of 83

where Q =
(
qi,j
)

i,j=1,...,N is the proposed transition matrix of an arbitrary Markov Chain on
a finite state space S, and αi,j is given by

αi,j =
si,j

1 + πi
πj

qi,j
qj,i

, (76)

where si,j is a symmetric function of i and j and is chosen so that 0 ≤ αi,j ≤ 1 for all i, j =
1, . . . , N. For such choices for si,j, the matrix P satisfies the following reversibility condition

πi pi,j = πj pj,i. (77)

From Equation (77), it follows that

∑
i=1,...,N

πi pi,j = πj, for all j = 1, . . . , N, (78)

and hence that π is a stationary distribution of P.
The following two examples for S =

(
si,j
)

i,j=1,...,N are given:

S(M) =
(

s(M)
i,j

)
i,j=1,...,N

, where s(M)
i,j =

 1 + πi
πj

qi,j
qj,i

(
if πi

πj

qi,j
qj,i
≥ 1

)
1 +

πj
πj

qj,i
qi,j

(
if πi

πj

qi,j
qj,i

< 1
)

S(B) =
(

s(B)
i,j

)
i,j=1,...,N

, where s(B)
i,j = 1.

(79)

With qi,j = qj,i and S defined as S(M), a method devised by Metropolis et al. is obtained.
If qi,j = qj,i and S is defined as S(B), another classical MCMC method from Barker [116]
is recalled.

In Section 6.2.1, the algorithm implementing a Metropolis–Hastings method is de-
scribed.

5.2.2. Cellular Particle Dynamics

In the previous subsection, MCMC methods were introduced. While it is incredibly
helpful for various statistical physics and biology problems, there are some situations that
might not even be amenable to stochastic approaches [49,117].

CPD is based, as in the Subcellular Element Model (SEM) approach [118], on the idea
to “construct a cell from a cloud of NCellularElements sub-cellular entities” called elements [49,118].
The elements, belonging to a single cell, all together define the same cell and, through their
relative positions and in response to the cell’s internal and external forces, determine the
cell’s shape (see Figure 6).

Figure 6. A schematic figure showing two cells constructed from elements, with intra-cellular
potentials binding elements of a given cell to each other, and inter-cellular potentials binding adjacent
elements from neighboring cells.

Appl. Sci. 2024, 14, 6110 31 of 83

The SEM approach (that takes place in a Lagrangian framework) is based on a stochas-
tic assumption using Langevin equations [119]. The stochastic variables are the position
vectors yαi of each element, where the notation αi denotes the α-th element of the i-th cell,

and where yαi =
(

y1
αi

, . . . , yN
αi

)
∈ ℜN .

In the simplest case, in which the inertial terms in the equation of motion are discarded
and in which the movement of elements is due to stochastic forces and biomechanical
interactions, the following equation is valid for the generic element αi:

µ
∂yαi

∂t
= ηαi −∇yαi

[
∑

βi ̸=αi

Vintra
(∣∣yαi − yβi

∣∣)]
︸ ︷︷ ︸

Internal forces F Intra
αi

−∇yαi

∑
j ̸=i

∑
β j

Vinter

(∣∣∣yαi − yβ j

∣∣∣)

︸ ︷︷ ︸
External forces F Inter

αi

(80)

where µ is the friction coefficient, ηαi =
(

η1
αi

, . . . , ηN
αi

)
∈ ℜN is a stochastic force modeled

as a Gaussian white noise with zero mean and variance
〈

ηn
αi
(t), ηm

β j
(t′)
〉

with〈
ηn

αi
(t), ηm

β j

(
t′
)〉

= 2Dδn,mδi,jδαi ,β j δt,t′ , (81)

where D is the self-diffusion coefficient. The Equation (81) indicates that stochastic forces
are uncorrelated in all the possible variables: between cells, between elements within
a cell, between spatial dimensions, and between two different instants. The vectors
F Intra

αi
=
(

FIntra1
αi

, . . . , FIntra N
αi

)
∈ ℜN and F Inter

αi
=
(

FInter1
αi

, . . . , FInter N
αi

)
∈ ℜN repre-

sent the internal and external biomechanical forces, respectively, acting on the generic
element αi.

The functions Vintra

(
dαi ,β j

)
and Vinter

(
dαi ,β j

)
, which depend on the distance

dαi ,β j =
∣∣∣yαi − yβ j

∣∣∣ = (N

∑
n=1

(
yn

αi
− yn

β j

)2
) 1

2

between two elements, represent the intra- and inter-cellular interaction potential between
two elements in the same and different cells, respectively. In [49], Flenner et al. propose the
following expression for functions Vintra(d) and Vinter(d)

Vintra(d) = VLJ(d, ϵ, ρ) + Vc(d, k, γ), (82)

Vinter(d) = VLJ(d, ϵ, ρ), (83)

where VLJ(d, ϵ, ρ) is the Lennard–Jones (LJ) potential energy

VLJ(d, ϵ, ρ) = 4ϵ

[(ρ

d

)12
−
(ρ

d

)6
]

, (84)

and where Vc(d, k, γ) represents a confining potential energy of the form

Vc(d, k, γ) =

{ k
2 (d− γ)2, for d > β

0 for d < β
. (85)

By tuning the values of k and γ in the confining potential Vc(d, k, γ), the stiffness and
the size of a cell can be controlled, respectively, while the LJ parameters ϵ and ρ represent the
energy required to separate the elements and the size (diameter) of the elements, respectively.

5.2.3. Cellular Automata Model

The previous sections discussed a number of standard categories of physical models.
These models govern the evolution of physical systems formalized in terms of coupled sets

Appl. Sci. 2024, 14, 6110 32 of 83

of ordinary or partial differential equations. Most conventional models are deterministic,
which means that the force fields that are employed and the initial conditions of the
simulations fully determine the results of running simulations. This section offers an
alternative approach where the behaviors of the species under study are determined by
rules, which can be probabilistic or deterministic, as opposed to forces and energy.

The foundation of this approach is the use of cellular automata (CA) [120] postu-
lated for the first time by the mathematical physicist John von Neumann [121] and the
mathematician Stanislaw Ulam [122], more than 70 years ago.

Since then, different research teams have proven that CA is particularly significant
in managing the behaviors of systems where the traditional, differential-equation-based
methodologies are either useless or difficult to adopt due to the numerous complex inter-
connections between the system constituents.

According to the mathematician Stephen Wolfram, the CA model can be defined as
follows:

CA are simple mathematical idealizations of natural systems. They consist of a
lattice of discrete identical sites, each site taking on a finite set of ... values. The values
of the sites evolve in discrete time steps according to ... rules that specify the value of
each site in terms of the values of neighboring sites. CA may thus be considered as
discrete idealizations of the partial differential equations often used to describe natural
systems [123].

According to Kier et al. [120], a model made up of the following parts is referred to as
a cellular automaton (singular):

• A grid of individual cells.
• A group of ingredients.
• A collection of local rules dictating how the constituents behave.
• Identified starting conditions.

A simulation can be run after the model’s aforementioned elements have been defined.
The system in the simulation changes through a sequence of discrete time steps, or iterations,
when all of the system’s components are subjected to the model’s rules, and the system’s
configuration is updated as a result.

Either synchronous or asynchronous rule application might lead to CA development.
In the first scenario, every automaton cell changes on each iteration; in the second scenario,
the algorithm merely processes a subset of the cells or even just one cell. One way to
model the complex behavior of macroscopic systems, which arises from the interaction
of all components on a small scale, is through the synchronous application of transition
rules. However, there are serious practical implementation limitations associated with this
approach, such as the potential for conflicts in certain situations (e.g., assigning two ingre-
dients to move to the same empty cell).

Due to this latter factor, the majority of automata currently in development can only
be implemented asynchronously [124] (see algorithm described in Section 6.2.2 for the
asynchronous version of the CA simulation). The above general CA framework can be
used to construct a wide range of various models.

The components of this CA model are then described in more detail.

The grid, the cells, and the ingredients: A cellular automaton consists of a regular grid
of NCells cells. The grid can be in any finite number of dimensions N. Every grid
cell can typically exist in a limited number NStates of “states”, which specify the cell’s
occupancy. The cell may be empty or hold a specified ingredient, which, if it is
present, may be a type of particle, a specific molecule, or some other relevant thing
for the topic under consideration. An illustration of a bi-dimensional CA grid with
5× 5 cells each, whereby some cells are occupied by ingredient A (red cells) and other
cells by ingredient B (blue cells), can be found in Figure 7a.

Movements and other actions on the grid are controlled by rules that are only de-
pendent on the characteristics of the cells that are closest to the ingredient. The

Appl. Sci. 2024, 14, 6110 33 of 83

neighborhood of a cell is its immediate surroundings. The “Von Neumann neighbor-
hood” is the most often employed neighborhood in two-dimensional CA investigations
(see Figure 7d, where the blue cell neighborhood is pictured by the four red cells).

Another common neighborhood is the “Moore neighborhood”, pictured by the red
cells surrounding the blue cell in Figure 7c. Another useful neighborhood is the
“extended Von Neumann neighborhood”, shown in Figure 7d by the red and green cells
surrounding the blue cell.

(a) (b)

(c) (d)

Figure 7. (a) A grid of cellular automata in two dimensions. Two sets of occupied cells with various
constituents, A and B, are displayed. The empty cells are left blank. (b) Movement of cell constituents
at the grid boundaries on a torus’s surface. It is possible for one of the ingredients in the blue cell
to move off the grid to the right and then return to the grid’s left border. It is possible for another
component of red cells to shift from the bottom to the top of the grid. (c,d) Representation (see the
red cells) of the Moore (c) and von Neumann (d) neighborhood, respectively, for the blue cell. Green
cells in Figure (d) represent the extended von Neumann neighborhood for the blue cell.

Every grid cell’s value will be impacted by how its neighborhoods are managed,
including cells that are on the edge of the CA grid. Keeping the values in those cells
constant is one approach that might be taken. Using distinct neighborhood definitions
for these cells is an additional strategy. They might have fewer neighbors, but it is also
possible to define more elaborate strategies for the cells that are closest to the edges.

These cells are typically handled in a toroidal manner; for instance, in a bi-dimensional
grid, one cell “goes off the top” and “enters” at the corresponding position on the
bottom, and one cell “enters on” the right when it “goes off” the left (this is some-
times referred to as periodic boundary conditions in the field of partial differential
equations). To illustrate this, consider taping the rectangle’s left and right sides to
create a tube, and then the top and bottom edges to create a torus (see Figure 7b).

Appl. Sci. 2024, 14, 6110 34 of 83

The rules: The behaviors of the ingredients on the grid, and consequently the evolutions
of the CA systems, are governed by a variety of rules. According to what is described
in [69], a list of potential rule types is provided below.

Movement rules: Movement rules define the condition that, during an iteration, the
ingredients move to neighborhood cells. These rules take several forms [120]:

• The “breaking” probability, PB(AB) ∈ [0, 1], defines the condition that two
adjacent ingredients A and B may remain linked to each other.

• The “joining” parameter, J(AB) ∈ ℜ+, defines the condition that, if two
ingredients A and B are separated by an empty cell, ingredient A moves
toward or away from ingredient B.

• The “free-moving” probability Pm(A) ∈ [0, 1] of an ingredient A defines the
ingredient’s propensity to move on the grid more rapidly or slowly.

Transition rules: Transition rules define the condition that, during an iteration,
an ingredient will transform to some other species. These rules take several
forms [120]:

• The “simple first-order transition” probability PT(AB) ∈ [0, 1] defines the
condition that an ingredient of species A will change to species B.

• The “reaction” probability PR(AB→ CD) ∈ [0, 1] defines the condition that
ingredients A and B will transform into ingredients C and D, respectively,
in case they “encounter” each other during their movements in the grid.

Other types of rules may also be considered [69,120].

The critical characteristics of all these rules are their local nature, focusing solely on
the ingredient in question and potentially any nearby ingredients.

All the probabilities listed above are enforced using a random-number generator in
the CA algorithm. For example, suppose we use a random-number generator which
generates numbers in the interval [0, 1]. Suppose that one of the above rule proba-
bilities P·(A) is set to P·(A) = p and that the random-number generator generates a
number r; the ingredient A can make the “move” prescribed by the rule if r < p and
“cannot move” otherwise.

The initial conditions: The remaining conditions of the simulation must be determined
after the grid type, size, and governing rules have been established, the latter by
giving particular values to the previously mentioned parameters. These consist of
(1) the types and quantities of the beginning ingredients; (2) the setup of the system’s
initial state; (3) the number of simulation runs that are to be performed; and (4) the
duration of the runs or the number of iterations they should contain.

About points (3) and (4) above, it needs to be emphasized that when the CA rules
are stochastic, i.e., probabilistic, each simulation run is, in effect, an independent
“experiment”. This implies that the outcomes of different runs could theoretically
be different. A single ingredient’s activity is typically totally unpredictable. But for
the majority of cases, we will look at which collective outcome—from a run with a lot
of ingredients or from a lot of runs with few ingredients—tends to show a similar
pattern. As a result, two further simulation-related details must be determined: the
number of independent runs that must be completed and their duration (in iterations).
These numbers will be heavily influenced by the type of simulation that will be run.
In certain situations, it will be preferable to let the runs continue for a sufficient
amount of time in order to reach an equilibrium or steady-state condition [120].

6. Numerical Methods and Algorithms
6.1. Models at the Macro-Scale

This section will describe the methods and techniques that can be used to discretize
the continuous problems introduced in Section 5.1 and then compute the solution of the

Appl. Sci. 2024, 14, 6110 35 of 83

discretized problem as an approximation of the continuous one. The themes can be explored
further by reading [125–127].

6.1.1. Discretization in the Space-Time Domain

Numerical techniques called the finite-element, finite-difference, and finite-volume
methods (FEM, FDM, and FVM, respectively) are used to discretize Partial Differential
Equations (PDEs) into the space domain.

Nevertheless, they differ from one another in different ways, and each of them has
both advantages and disadvantages. Understanding these distinctions could help to select
the method most appropriate for the purposes. In the following, a description of the ideas
on the basis of each of those methods is given. See [127–129] for other discussions about
finite elements versus finite volumes versus finite differences.

Finite Elements A strong computational method for solving differential and integral
equations that come up in many applied scientific and engineering domains is the
Finite Element Method (FEM) [125].

The fundamental idea behind the FEM is to consider a given domain as a collection of
basic geometric shapes called finite elements, for which the approximation functions
required to solve a differential equation can be generated systematically. Indeed, the
solution u of a differential equation can be approximated, on each element e, by a
linear combination of unknown parameters cj and appropriately selected functions ϕj:

uh(x) =
l

∑
i=1

ciϕi(x), on Ωe. (86)

For a given differential equation, it is possible to develop different finite element
models, depending on the choice of a particular type of approximation method
(e.g., Galerkin, weak-form Galerkin, least-squares, subdomain, collocation, and so
on). The finite element model is a set of algebraic relations among the unknown
parameters cj of the approximation: so, solving the problem to find an approximation
uh of u requires the solution of a system of algebraic equations with the unknown
parameters cj.

The major steps in the finite element formulation and analysis of a typical problem are
as follows.

1. Discretization of the domain into a set of selected finite elements. This is accom-
plished by subdividing the given domain Ω̄ = Ω ∪ Γ into a set of subdomains
Ω̄e = Ωe ∪ Γe where Γ = ∂Ω and Γe = ∂Ωe, called finite elements (see Figure 8a).
The phrase “finite element” often refers to both the geometry of the element
and degree (or order) of approximation: The form of the element Ωe can be
either triangle or quadrilateral, and the degree of interpolation over it can take
on various forms, including linear and quadratic. The finite element mesh of
the domain Ω is the non-overlapping total (or assembly) of all elements used to
represent the actual domain, and it is represented by Ωh. In general, Ωh may
not equal the actual domain Ω because of its potentially complex geometry.
Nodal points, also known as nodes, are typically taken at appropriate positions
in the structure, usually to simplify the element. They are used to characterize
the individual elements and subsequently the complete mesh structure (see
Figure 8b).

2. Construction of a statement, often a weighted-integral in a weak-form statement
according to Weighted Residual Methods (WRMs) [130], which is equivalent (in
some sense) to the differential equation to be analyzed over a typical element. A
general class of techniques, called the Weighted Residual Method, was created
to obtain an approximate solution to the problem of the form

L(u(x)) = f (x), on Ω (87)

Appl. Sci. 2024, 14, 6110 36 of 83

where L(u) is a general linear differential operator. If uh is just an approximation
of the true solution function u of (87), then an error or residual will exist such that

R(x) = L
(

uh(x)
)
− f (x) ̸= 0 (88)

The idea at the basis of WRM is to force the residual to zero in some average
sense over the domain Ω, namely,∫

Ω
R(x)wi(x)dx = 0, i = 1, . . . , l, (89)

where wi(x) values are the so-called weight functions. Depending upon the
nature of the weight function, different types of Weighted Residual Methods
can be used. The Point Collocation Method, Subdomain Collocation Method,
Least Square Method, and Galerkin Method are a few of the common ones. The
trial functions themselves are selected as the weight functions in the Galerkin
variant of the Weighted Residual Method. So, in the Galerkin method, we set
wi = ϕi, ∀i = 1, . . . , l and the weak-form Galerkin model, for each element e is
the following set of algebraic relations obtained from (89) and (86):

l

∑
j=1

cj

[∫
Ω

L
(
ϕj(x)

)
ϕi(x)dx

]
=
∫

Ω
f (x)ϕi(x)dx, i = 1, . . . , l. (90)

or, in matrix form,
e Mec = e f , (91)

where

e M =

[∫
Ω

L
(
ϕj(x)

)
ϕi(x)dx

]
i,j=1,...,n

,

ec = [c1, . . . , cl]
T ,

e f =

[∫
Ω

f (x)ϕi(x)dx
]T

i=1,...,l
,

are, respectively, an l × l matrix and two vectors of length l. We assume that
the vectors e f also include both the “essential” and the “natural” boundary
conditions (see [125] for details). The drawback of this model for second- and
higher-order differential equations is that the approximation functions should
be differentiable as many times as the actual solution u(x).
The weak form in Equation (87) requires that the approximation chosen for
u(x) should be at least linear in x. In addition, it requires that u(x) be made
continuous across the elements. The approximation functions ϕi(x)i=1,...,l , in
each element e, are chosen to have the so-called interpolation property, that is,

ϕi
(exj

)
= δij, ∀i, j = 1, . . . , l, (92)

where
{exj

}
j=1,...,l are the nodal points of the element e. The scalar δij is defined

as follows :

δij =

{
1 if i = j
0 if i ̸= j

Then, the values of cj in Equation (86) coincide with the values that uh takes on
at the same nodal points:

cj = uh(exi).

Therefore, solving the equation (91) allows one to identify the values that the
approximation uh takes on in the nodal points of each element e. Functions that

Appl. Sci. 2024, 14, 6110 37 of 83

satisfy the interpolation property (92) are known as the Lagrange interpolation
functions. The shape and number of nodes of the element are determined by
the number l of linearly independent terms in the representation of uh. Not all
geometric shapes qualify as finite element domains. It turns out that triangle-
and quadrilateral-like shapes, with an appropriate number of nodes, qualify
as elements.

3. Finite element assembly to produce the global system of algebraic equations of
the form

g Mgc = g f , (93)

where g M, gc, and g f are, respectively, am Nnodes × Nnodes matrix and two
vectors of length Nnodes and where Nnodes denotes the number of the nodes
(the global grid node) of all the Nelements elements composing the finite element
mesh. Therefore, the assembly procedure represents the realization of the global
displacement boundary conditions as well as the inter-element compatibility of
the approximation functions and the displacement field. Indeed, each global
grid node is shared by different finite elements which all contribute to the
solution of the unknown values gc on the involved nodes. Let us denote with

{gxI}I=1,...,Nnodes

the set of such global grid nodes; then, a transformation τ(i, e) exists that “maps”
the “local” index i of the i-th node of the element e into the “global” index I of the
same node (see Figure 8c). Thanks to the validity of the “superposition” property
in FEM context due to the linear nature of the problem, for the global matrix g M
and the global vector g f , the following equalities are valid:

g MI J = ∑
Nnodes

e=1

∑ i: τ(i,e)=I
j: τ(j,e)=J

e Mij

 (94)

g fI = ∑
Nnodes

e=1

(
∑ i: τ(i,e)=I

e f i

)
(95)

If u is a function defined both in space and time and the linear differential operator
L(u) has the following form:

L(u(x)) =
∂u
∂t

+ E(u(x)), (96)

where E(u(x)) does not contain terms with differentiation with respect to the time
variable t, then Equation (93) can be rewritten as:

g M̄gu̇ + gK̄(gu)gu = g f , (97)

where u is a vector of the values assumed by the approximation uh in all the nodal
points of the finite elements mesh and where the symbol u̇ denotes the partial deriva-
tive of the function u respect to time t: u̇ = ∂u

∂t . The nonlinear Equation (97) represents
an approximation to the original system of partial differential equations, which is
discrete in space and continuous in time.

See [131–134] for applications of FEM to some viscoelastic problems. See [125,135,136]
for details about the Finite Element Method, including those details related to how
the integrals used by these methods are computed.

Appl. Sci. 2024, 14, 6110 38 of 83

(a) (b)

(c)

Figure 8. Finite element discretization of a domain (a). Linear triangular finite elements (b). Global–
local correspondence of nodes for the assembly of elements (c).

Finite Differences [127] The basic idea of FDM is to compute an approximation uh of the
solution u of (87) by mean an approximation of all the differential operators defining
L(u(x)). As for FEM, the major steps in the finite element formulation and analysis
of a typical problem are:

1. Discretization of the space domain into a set of nodes
{

xI =
[
xI

1, . . . , xI
n
]}

I=1,...,Nnodes
.

This is accomplished by subdividing the given domain Ω̄ = Ω∪ Γ by mean of a
grid of nodes which represent the finite difference mesh (see Figure 9a).

2. Construction of approximation statements, based on a finite difference, for all the
differential operators present in L(u(x)). Thanks to the use of Taylor expansion,
the validity of the following relations can be demonstrated [137]:

∂nu
∂xi

n (x) = i∆n
h [u](x)

hn + O(h)

=
i∇n

h [u](x)
hn + O(h)

=
iκ

n
h [u](x)

hn + O
(

h2
)

, (98)

where i∆n
h [u](x), i∇n

h [u](x) and iκ
n
h [u](x) are, respectively, named the n-th order

forward, backward, and central differences with respect to xi and are given by,
respectively,

Forward difference

i∆n
h [u](x) =

n

∑
j=0

(−1)n−j
(

n
j

)
u
(

x + jhδj
)

(99)

Backward difference

i∇n
h [u](x) =

n

∑
j=0

(−1)j
(

n
j

)
u
(
x− jhδj

)
(100)

Appl. Sci. 2024, 14, 6110 39 of 83

Central difference

iκ
n
h [u](x) =

n

∑
j=0

(−1)j
(

n
j

)
u
(

x +
(n

2
− j
)

hδj

)
(101)

where δj =
[
δij
]

i=1,...,n.
By substituting one of the above approximations to each space derivative opera-
tor in L(u(x)), we obtain the so-called space approximated operator Lh(u(x)),
which can be written generally as a nonlinear algebraic operator as follows:

Lh(u(x)) =
m

∑
j

aj(u)u
(

x + αjhδj
)

(102)

where α and m depend on the type of approximation chosen.
The set of the following Nnodes algebraic equations

Lh(u(xI)) = f (xI), I = 1, . . . , Nnodes (103)

which are obtained by evaluating the equation Lh(u(x)) = f (x) in each node of
finite difference mesh can be written, after the inclusion of boundary conditions,
in matrix form as

Mu = z, (104)

where M, u, and z are, respectively, a matrix and two vectors whose generic
elements are

Mi,j = aj(u(xi))

zi = z(xi)

ui = uh(xi)

where i, j = 1, . . . , Nnodes. Therefore, solving Equation (104) allows us to identify
the values at which the approximation uh takes on the nodal points of the finite
element mesh. It is obvious that the accuracy of uh depends on the type of
approximation chosen for the derivative operators that are present in L(u(x)).

(a) (b)

Figure 9. (a) Finite difference discretization of a 2D rectangular domain Ω = [0, Lx]×
[
0, Ly

]
by a

grid of Nnodes = Nx × Ny nodes (distance between two adjacent nodes in the x− and y− directions
are, respectively, ∆x and ∆y). If h = ∆x = ∆y, nodes are part of a uniform grid mesh. (b) Example of
a finite volume discretization of a 2D domain. The cell centers xc of each subdomain Ωc are denoted
by squares and enumerated according to the total number of the domains. The Γc

i=1,2,3 denotes the
faces of each domain Ωc.

Appl. Sci. 2024, 14, 6110 40 of 83

Finite Volumes [127,138] A space discretization technique called the finite volume ap-
proach works well for numerical modeling of several kinds of conservation laws that
are represented by PDEs of the form (87) where the linear differential operator L(u)
can be expressed as

L(u(x)) = div F(u(x)). (105)

As for FEM and FDM, the major steps in the finite element formulation and analysis
of a typical problem are

1. Discretization of the domain into a set of selected subdomains. This is ac-
complished by subdividing the given domain Ω̄ = Ω ∪ Γ into a set of Ncells
subdomains Ω̄c = Ωc ∪ Γc where Γ = ∂Ω and Γc = ∂Ωc, called control volumes
or cells (see Figure 9b), forming the finite volume mesh. Planar surfaces in 3D or
straight edges in 2D define the boundaries of the control volumes. Consequently,
flat faces or straight edges are used to approximate the bounding surface, if
it is curved. Cell faces, or just faces, are the names given to these bounding
discrete surfaces.

2. Construction of approximation statements needed to identify the approximation
function uh for the actual solution u of (105). Following the approach described
for the FEM framework and based on Weighted Residual Methods, from (89),
where the weight functions wi(x) are chosen to be constant and equal to identity,
it follows that ∫

Ωc
div F(u(x))dx =

∫
Ωc

f (x)dx (106)

for each cell Ωc of the finite volume mesh. By using the Divergence Theorem,
Equation (106) can be rewritten as∮

Γc
F(u(x))nΓc dγ =

∫
Ωc

f (x)dx. (107)

Thanks to the use of mean value theorem, in each subdomain Ωc, Equation (107)
can be re-written as ∮

Γc
F(u(x))nΓc dγ = |Ωc| f̄Ωc , (108)

where f̄Ωc are the mean values respectively of functions f in subdomain Ωc (which
can be considered as values of f in cell center xc) and where the symbol |·| is used
to represent the volume/area/length of respectively a 3D/2D/1D space domain.
One can substitute the integral on the left side of Equation (108) with a summa-
tion over the faces enclosing the c-th cell, resulting in

∑
f=1,...,Nc

f

∮
Γc

f

F(u(x))nΓc
f
dγ = |Ωc| f̄Ωc , (109)

where Nc
f is the number of faces of the c-th cell and Γc

f represents the f -th face

of the c-th cell. Details about the forms for the restriction of uh on each Ωc

are available in the literature (i.e., see [139,140]), but, for the sake of semplicity,
assume, as in [139], that, on each cell, uh is a constant function whose value is
ūc; then, Equation (109) can be rewritten as

∑
f=1,...,Nc

f

∮
Γc

f

Fh(ūc)nΓc
f
dγ = |Ωc| f̄Ωc , (110)

where Fh is an approximation of F that can be defined using a variety of ap-
proaches. For this purpose, Taylor series expansions have historically been
employed [141]. The end result of approximating F by Fh in terms of cell

Appl. Sci. 2024, 14, 6110 41 of 83

center values (that is, the constant values ūc), followed by substitution into
Equation (110) and by the boundary conditions incorporation, is a set of discrete
linear algebraic equations of the form

Fu = h (111)

where F , u, and h are, respectively, an Ncells × Ncells matrix and two Ncells
vectors. The solution u of (111) allows us to calculate the values of uh(xc) for all
the Ncells representing the finite volume mesh.

For further information, we recommend reading [138,139,141]

The same considerations about partial differential equations that are discrete in space
and continuous in time, which were already made for finite elements, can be repeated in
the case of finite difference and finite volume discretizations. An attempt at comparison
between the different discretization methods, according to [127–129], can lead to the con-
siderations listed in Table 7. Table 7 also contains, by way of example, references to the
literature already introduced in Section 3 and regarding the use of discretization methods
(where such information is available).

Table 7. Comparison, from the numerical point of view, between space discretization methods
in terms of their “Pros and Cons”. The table contains, by way of example, references to the litera-
ture already introduced in Section 3 and regarding the use of discretization methods (where such
information is available).

Discretization
Methods “Pros” “Cons” Refs

Finite
Element
Method
(FEM)

• Possibility to increase the accu-
racy of the solution around a
“critical” part of the domain:

– By “increasing the order of
the elements”, approximat-
ing the physics fields with
higher order polynomials,

– By adaptive mesh refine-
ment. The finer the mesh,
the more accurate approxi-
mation can be obtained.

• Irregular domain geometries
can be considered.

The mathematics needs
are advanced.

[11,30,33,35]

Finite
Difference
Method
(FDM)

• Increased “approximation order”
and accuracy are made simple on
each dimension basis.

• Space domain with box-shaped
geometry can be discretized by
a regular grid, useful for very
large-scale simulations.

Managing curved
boundaries or material
discontinuities might
be challenging.

[46]

Finite Volume
Method
(FVM)

• Only the cell borders’ flux eval-
uation needs to be completed.

• Helpful for nonlinear problems
(transport problems).

• Refining the mesh can improve
local accuracy (around a corner
of interest).

The functions that ap-
proximate the solution
cannot be easily made
of higher order.

[31]

It is noteworthy that each of the space discretization methods described above can be
re-formulated via the other ones (i.e., see [127]).

Appl. Sci. 2024, 14, 6110 42 of 83

6.1.2. Solution of the “Discrete in Space” Model

1. The Time Integration algorithm The proposed space discretization methods allow the
construction of similar discrete problems since they all lead to a generally non-linear
system of algebraic equations in the following form:

Mu̇ + K(u)u = f (112)

which represents an ordinary differential equation (ODE) with respect to the time variable.
Depending on the type of the approximation of the time derivative present in the
left term of Equation (112) and the discretization of the temporal domain Θ, different
methods are available to solve the problem described by Equation (112), which is
discrete in space and continuous in time.
Assuming that Θ is the time interval Θ = [0, T] and that it is discretized by a set
of NT + 1 equally spaced points {tn}n=0,...,NT

, where tn = ∆t ∗ n and ∆t = T
NT

, then
there exist different methods—called “Time Integration Schemes (TIS)”—to compute
the approximation un+1 of u at the time tn+1 as a function of just the approximation
of u and u̇ at the time tn (explicit methods) or as a function of u and u̇ at the times tn
and tn+1 (implicit methods).

un+1 = f (un, u̇n,) explicit schema

un+1 = f (un, u̇n, un+1) implicit schema

See [142] for a classification of such schemes.
Among the rich set of available TIS, a one-parameter family of methods, called the
α-family, is commonly used [143]. In this family of methods, a weighted average
of time derivative u̇ of a dependent variable u is approximated at two consecutive
time steps by a linear interpolation of the values of the same variable u at the same
two steps:

(1− α)u̇n + αu̇n+1 =
un+1 − un

∆t
. (113)

By substituting Equation (113) into Equation (112), the following relation is obtained

K̂n+1(un+1)un+1 = f̂n,n+1, (114)

where

K̂n+1(un+1) = M + a1Kn+1 (115)

f̂n,n+1 = ∆t[α fn+1 + (1− α) fn] + K̄nun (116)

K̄n = M − a2Kn (117)

and where

Ki = K(ui), ∀i = 0, . . . , NT , (118)

fi = f (ti), ∀i = 0, . . . , NT , (119)

a1 = α∆t, (120)

a2 = (1− α)∆t. (121)

Since at time t = 0 (i.e., n = 0), the right-hand side is computed using the initial
values defined in the time boundary conditions, and since the vector f is always
known, for both times tn and tn+1, then the approximation un+1 of u at time tn+1
(when n = 0, . . . , NT − 1) can be computed by Algorithm 1.
For different values of the parameter α, several well-known time approximation
schemes are obtained:

Appl. Sci. 2024, 14, 6110 43 of 83

α = 0, the forward difference Euler explicit scheme. The problem (114) is linear,
the schema is conditionally stable, and its order of accuracy (see Definition 2 for
a definition of the “order of accuracy” terms) is O(∆t);

α = 0.5, the Crank–Nicolson implicit scheme. The problem (114) is nonlinear, the
schema is unconditionally stable, and its order of accuracy is O

(
(∆t)2

)
;

α = 2
3 , the Galerkin implicit scheme. The problem (114) is nonlinear, the schema

is unconditionally stable, and its order of accuracy is O
(
(∆t)2

)
;

α = 1, the backward difference Euler implicit scheme. The problem (114) is
nonlinear,the schema is unconditionally stable, and its order of accuracy is O(∆t).

Algorithm 1 The algorithm implementing the α-family methods for the approximated solu-
tion of the discrete in space and continuous in time problem described by Equation (112).

1: procedure TIMEINTEGRATOR(M, K0, K1, u0, u1, f0, f1, α, T, NT , uNT)
2: Input: M, K0, K1, u0, u1, f0, f1, T, NT
3: Output: uNT
4: Compute ∆t, a1 and a2
5: for n = 1 to NT − 1 do
6: K̂n(un)← Compute K̂n(un) = M + a1Kn
7: K̄n−1 ← Compute K̄n−1 = M − a2Kn−1
8: f̂n−1,n ← Compute f̂n−1,n = ∆t[α fn + (1− α) fn−1] + K̄n−1un−1
9: un+1 ← Solve K̂n(un)un+1 = f̂n−1,n

10: Kn+1 ← Compute Kn+1 = K(un+1)
11: fn+1 ← Compute fn+1 = f (tn+1)
12: end for
13: end procedure

For α ≥ 0.5, the scheme is stable, and for α < 0.5, the scheme is stable only if the
time step meets the following restrictions (i.e., conditionally stable schemes) (see
Reddy [136]):

∆t <
2

(1− 2α)λmax
, α <

1
2

(122)

where the greatest eigenvalue of the eigenvalue problem related to the matrix
Equation (114) is denoted by λmax:∣∣K̂n+1(un+1)− λI

∣∣ = 0.

See [144] for further definitions and descriptions of the “stability” and “accuracy” terms.
Generally, Algorithm 1 requires the solution of a nonlinear problem (see line 9) that
can be solved by methods described in the next point 2. If the problem degenerates
into a linear one (i.e., when a1 = 0) its solution can be obtained by methods described
at next point 3.

2. The Non-linear problem solver Let us consider the following nonlinear algebraic system:

G(u) = 0, (123)

where G = [Gi(u)]
T
i=1,...,M and u = [ui]

T
i=1,...,M are vectors in ℜM. Assuming the

existence of a solution ū for the system (123), an approximation of that solution can be
obtained by different methods. The “Newton–Raphson methods”, and their derivatives,
should be cited as the most commonly used [145]. Such methods iteratively compute
an approximation un+1 of ū, and they are based on a Taylor series development of the
left term of (123) at an already known state un

G(un + ∆u) ≈ G(un) + D[G(un)]∆u, (124)

Appl. Sci. 2024, 14, 6110 44 of 83

where D[G(un)] is the Jacobi matrix of G at un, i.e.,

Jn = D[G(un)] =

[
∂Gi(un)

∂uj

]
i,j=1,...,M

.

Let un+1 = un + ∆u; then

G(un+1) ≈ 0 ⇐⇒ G(un) + Jn∆u ≈ 0. (125)

Therefore, an approximation uN of ū can be computed using the iterative algorithm
represented in Algorithm 2. The rate of convergence of the Newton-Raphson scheme
is characterized by the following inequality:

∥un+1 − ū∥ ≤ C∥un − ū∥2.

Algorithm 2 The algorithm implementing the “Newton–Raphson methods” for the approxi-
mated solution of Equation (123).

1: procedure NEWTONSOLVER(G, u0, N, uN)
2: Input: G, u0, N
3: Output: uN
4: for n = 0 to N − 1 do
5: G(un)← Compute G(un)
6: Jn ← Compute Jn
7: ∆un ← Solve Jn∆un = −G(un)
8: un+1 ← Compute un+1 = un + ∆un
9: end for

10: end procedure

Depending on the approach used to approximate/compute the Jacobi-matrix (or tan-
gent matrix) Jn of G(un), different derivations of the scheme can be obtained: Table 8
lists some of them. Also, when the application of the BFGS-update is considered,
Algorithm 2 can be used. Only the equation system at the line 7 of Algorithm 2 has to
be reformulated by introducing the BFGS-update of the inverse of the secant matrix.
See Algorithm 3 for details on the BFGS reformulation of Algorithm 2.
Algorithms 2 and 3 require the solution of a linear problem (see, respectively, lines 7 and 6)
that can be solved by methods described in the next point 3.
Details about convergence and other numerical issues are available in the literature
(see [145]).

Appl. Sci. 2024, 14, 6110 45 of 83

Table 8. The Newton–Raphson-like schemes obtained from the original formulation by using different
approaches to approximate/compute the Jacobi-matrix of G.

Discrete Newton

The matrix Jn is approximated by JDN
n where

JDN
n =

[
n jDN

k

]
k=1,...,M

,

and where
n jDN

k =
1
hk

(G(un + ϵkδk)−G(un)).

n jDN
k should be considered an approximation of the k-th column of Jn

obtained by a difference finite method with step size ϵk. The value of ϵk
must be selected so that the tangent matrix approximation is as accurate as
feasible. Its value should be very tiny.

Modified Newton
The matrix JMN

n substitutes Jn. It is considered to be equal to J0 for all
steps n, i.e.,

JMN
n = J0, ∀n = 1, . . . , N

Quasi-Newton

The tangent matrix Jn is approximated by the “secant matrix” JQN
n for which

the following relation is valid:

JQN
n (un − un−1) = −(G(un)−G(un−1)).

Letting KQN
n =

(
JQN
n

)−1
, then KQN

n can be considered an approximation
of the inverse of the tangent matrix Jn for which the following relation is
valid :

KQN
n gn = wn

where wn = un − un−1 and gn = −(G(un)−G(un−1)). A number of
update algorithms exist for the explicit determination of KQN

n . Here, the
BFGS method will be presented since it has been observed to be successfully
applied in the solution of problems from Finite Element Methods. It was
based on the following update for KQN

n :

KQN
n =

(
1 + anbT

n

)
KQN

n−1

(
1 + bnaT

n

)
,

where
an =

1
gT

n wn
wn,

bn = −

gn −
[
− wT

n gn

wT
n G(un−1)

]− 1
2

G(un−1)

.

Appl. Sci. 2024, 14, 6110 46 of 83

Algorithm 3 The algorithm implementing the “BFGS” reformulation of the Newton–
Raphson method.

1: procedure BFGSNEWTONSOLVER(G, u0, N, uN)
2: Input: G, u0, N
3: Output: uN
4: g1 ← Compute g1 = −G(u0)

5: JQN
0 ← Compute JQN

0
6: KQN

0 ← Solve JQN
0 KQN

0 = I
7: w1 ← Compute w1 = KQN

0 g1
8: for n = 1 to N − 1 do
9: un ← Compute un = un−1 + wn

10: Gn ← Compute Gn = G(un−1)
11: an ← Compute an = 1

gT
n wn

wn

12: bn ← Compute bn = −
{

gn −
[
− wT

n gn
wT

n Gn

]− 1
2
Gn

}
.

13: KQN
n ← Compute KQN

n =
(
1 + anbT

n
)
KQN

n−1
(
1 + bnaT

n
)
,

14: wn+1 ← Compute wn+1 = KQN
n gn+1

15: end for
16: uN ← Compute uN = uN−1 + wN
17: end procedure

3. The linear problem solver: Let us consider the linear problem of the form

Ax = y, (126)

where A =
[
aij
]T

i,j=1,...,M, y = [yi]
T
i=1,...,M and x = [xi]

T
i=1,...,M are, respectively, a matrix

and two vectors in ℜM×M and ℜM. Since the matrices coming from the discretization
of problems of interest for this review are sparse if not even structured—for example,
see matrices generated for the solution of Navier–Stokes equations for viscoelastic
fluids in Section 6.1.3, which have a lot of zero elements (or have zero blocks)—
particular attention will be spent in this work to describe methods to be used for
the solution of (126) when A is sparse (or structured) (see [146] for a more precise
definition of the sparsity concept).
There are three fundamental classes of methods that are used to solve Equation (126):

Direct methods The direct solution of (126) is generally based on a technique called
“LU decomposition” [147]. This technique consists of factoring the matrix A as
in Equation (127) (by algorithms whose computational complexity is generally
on the order of M3), and it is based on the concept that triangular systems of
equations are “easy” to solve:

PAQT = LU, (127)

where L and U are, respectively, lower triangular and upper triangular matrices
and where P and Q are permutation matrices. A permutation matrix is used
to represent row or column interchanges in matrix A, and it is obtained from
the identity matrix I by applying on it the same sequence of row or column
interchanges. The row or column permutations on A are often required for both
numerical and sparsity issues [146].
The LU decomposition facilitates the solution of (126) effectively, particularly
when solving several systems that share the same matrix A. In fact, if a matrix
A already has a LU decomposition available, the linear system in (126) can be
solved by (1) the solution of Lz = Py (forward substitution), followed by (2) the
solution of Uw = z (backward substitution) where w = QTx. Then, the values

Appl. Sci. 2024, 14, 6110 47 of 83

of all the unknowns xi, ∀i = 1, . . . , M can be obtained by permuting the rows of
w based on the permutation matrix Q. The execution of both a forward and a
backward substitution has a general computational complexity of O

(
2M2)).

If the matrix A is symmetric and positive definite (that is, if ixT Ax > 0 for all
nonzero vectors x), then the LU decomposition of A becomes PAPT = LLT and
is called “Cholesky” factorization.
Numerical issues related to the stability and accuracy of the presented direct
solver can be found in [146].
With the aim to present and discuss methods useful in computing the LU decom-
position of sparse matrices, we propose the “Frontal methods”. Such methods
have their origin in the solution of finite-element problems, but they are not
restricted to this application. They are of great interest in their own right since
the extension of these ideas to multiple fronts, regardless of the origin of the
problem, will offer a great opportunity for parallelism [146,148,149].
In the context of “Frontal methods” the matrix A can be considered as the sum
of submatrices of varying sizes, as happens for the matrices that are the result of
the assembly process underlying the discretization using finite elements. That is,
each entry is computed as the sum of one or more values:

Aij = ∑
l=1,...,L

A[l]
ij , ∀i, j = 1, . . . , M. (128)

Entry Aij in (128) is said to be fully summed (or fully assembled) if all the
operations (128) have been performed, and the index of the unknown k is said to
be fully summed if all the A entries in its row (i.e., Akj, ∀j = 1, . . . , M) and its
column (i.e., Aik, ∀i = 1, . . . , M) are fully summed.
The fundamental notion of frontal techniques is to limit decomposition opera-
tions to a frontal matrix F, on which Level 3 BLAS [150] is used to execute dense
matrix operations. (The BLAS (Basic Linear Algebra Subprograms) are routines
that provide optimized standard building blocks for performing primary vector
and matrix operations. BLAS routines can be classified depending on the type of
operands: Level 1: operations involving just vector operands; Level 2: operations
between vectors and matrices; and Level 3: operations involving just matrix
operands.) In the frontal scheme, the factorization proceeds as a sequence of
partial factorization on frontal matrices F [l], which can be represented, up to
some row or column permutations, by a 2× 2 blocks structure:

F [l] =

[
F [l]

11 F [l]
12

F [l]
21 F [l]

22

]
. (129)

where F [l]
11 is related to the unknown indices that are fully summed.

The LU decomposition by Frontal methods can be described by Algorithm 4.
A variation of frontal solvers is the Multifrontal method. It could be considered
an improvement of the frontal solver, which, based on an appropriate order or
coupling of the addends in the summation in (128), can lead to the use of several
independent fronts paving the way, naturally, to the development of parallel
algorithms. Efficient parallel and sequential decomposition algorithms based
on Frontal and Multifrotal methods should be able to perform an analysis of
the structure of matrix A to define all the needed reorganizations of its row and
columns (i.e., by the definition of appropriate permutations) to better exploit
sparsity, preserve “good” numerical properties, and define the order of front
assembly. See [146] for details about techniques to be used in such analyses.

Appl. Sci. 2024, 14, 6110 48 of 83

Algorithm 4 The algorithm implementing the “Frontal method”.

1: procedure FRONTALDECOMPOSITION(
{

A[l]
}

l=1,...,L
, L)

2: Input:
{

A[l]
}

l=1,...,L
, L

3: Output: L, U
4: S[l−1] ← 0
5: for l = 1 to L do
6: F [l] ← Compute S[l−1] + A[l]

7: L[l]
11, U [l]

11 ← Factorize F [l]
11 = L[l]

11U [l]
11

8: U [l]
12 ← Solve L[l]

11U [l]
12 = F [l]

12

9: L[l]
21 ← Solve L[l]

21U [l]
11 = F [l]

21

10: S[l] ← Compute S[l] = F [l]
22 − L[l]

21U [l]
12

11: end for

12: L← Form L =

L[1]

11 0 . . . 0
L[2]

11 0
. . .

...
L[1]

21 L[2]
21 . . . L[L]

11

3ex

13: U ← Form U =

U [1]

11 U [1]
12

0 U [2]
11 U [2]

12
...

. . .
...

0 0 U [L]
11

14: end procedure

Iterative methods: Direct methods could exploit the sparse linear system structure
as much as possible to avoid computations with zero elements and zero-element
storage. However, these methods are often too expensive for large systems,
except where the matrix A has a special structure. For many problems, the direct
solution methods will not lead to solutions in a reasonable amount of time. So,
researchers have long tried to iteratively approximate the solution x starting
from a “good ” initial guess x0 for the solution [151].
The Krylov subspace iteration methods (KSMs) are among the most important
iterative techniques for solving linear systems because they have significantly
altered how users approach huge, sparse, non-symmetric matrix problems. The
techniques in question were recognized as one of the top ten algorithms that
had the biggest impact on the advancement and application of science and en-
gineering during the 1900s [110], and they seem to have also confirmed their
importance in the current century due to the effort spent to improve their effec-
tiveness and efficiency in up-to-date computing architecture.
Like the majority of feasible iterative methods now in use for resolving large
linear equation systems, KSM makes use of a projection process. A projection
process is the standard method for taking an approximation from a subspace to
the solution of a linear system [152].
LetKN and LN be two N-dimensional subspaces of ℜM. Finding an approximate
solution xN to (126) requires a projection technique onto the subspace KN and
orthogonal to LN . This is carried out by imposing the conditions that xN belongs
toKN and that the new residual vector is orthogonal to LN , where x0 is the initial
guess to the solution; that is,

Find xN ∈ x0 +KN , such that y− AxN ⊥ LN .

Appl. Sci. 2024, 14, 6110 49 of 83

Note that if xN is written in the form xN = x0 + δ, and the initial residual vector
r0 is defined as r0 = y− Ax0, then the above condition becames,

Find δ ∈ KN , such that r0 − Aδ ⊥ LN . (130)

In other words, the approximate solution can be defined as

Find δ ∈ KN such that ⟨r0 − Aδ, w⟩ = 0, ∀w ∈ LN (131)

Compute xN = x0 + δ, (132)

where the symbol ⟨·, ·⟩ denotes the Euclidean inner product. In the most general
form, this is a basic projection step. A series of these projections is used in the
majority of common techniques. A new pair of subspaces, KN+1 and LN+1, are
used in a new projection step to compute xN+1. An initial guess, xN , is equal
to the most recent solution estimate obtained from the previous projection step.
Many well-known techniques in scientific computing, such as the more complex
KSM procedure or the simpler Gauss–Seidel step, have a unifying framework
that is provided by projection methods.
A Krylov subspace method is a method for which the subspace KN = KN(A, r0)
is the Krylov subspace [152]

KN(A, r0) = span
{

Air0

}
i=0,...,N−1

. (133)

Variations in the choices of subspace LN give rise to different Krylov subspace
methods. The most popular methods arise from two general options for LN .
The first is simply LN = KN and the minimum residual variation LN = AKN .
The most representative among the KSMs is related to the choice LN = AKN ,
and it will be described in this work: the “Generalized Minimum Residual
Method (GMRES)”. The second class of methods is based on defining LN to
be a Krylov subspace method associated with AT , namely, LN = KN

(
AT , r0

)
(see [152] for details).
The GMRES method can be used to solve sparse linear systems whose matrix A
is general (i.e., not necessarily symmetric or positive definite). Let VN matrices
whose columns are an orthonormal basis for space KN = KN(A, r0), then δ can
be expressed as as δ = VNϑ where ϑ ∈ KN . Furthermore, let LN = AKN and
define

JN(ϑ) = ∥rN∥2 = ∥y− AxN∥2,

= ∥y− A(x0 + VNϑ)∥2,

= ∥r0 − AVNϑ∥2, (134)

where ∥·∥2 is the spectral norm, that is, the matrix norm induced by the Euclidean
vector’s inner product.
Then, condition (130) (or equivalently the condition (132)) is satisfied by x̃N =
x0 + VN ϑ̃ if, and only if, ϑ̃ is the solution to the following minimum problem
(see Proposition 5.3 in Saad [152]):

ϑ̃ = argminϑ∈KN JN(ϑ). (135)

A schema for the GMRES iterative algorithm, useful to compute the approxima-
tion xN of the solution for problem (126), is represented in Algorithm 5.

Appl. Sci. 2024, 14, 6110 50 of 83

Algorithm 5 The GMRES iterative algorithm.

1: procedure GMRES(A, y, x0, N, xN)
2: Input: A, x0, N
3: Output: xN
4: r0 ← Compute r0 = Ax0 − y
5: V0 ← Assign [r0]
6: for n = 1 to N do
7: Vn ← Compute an orthonormal basis [Vn−1, vn] for Kn(A, r0)
8: ϑn ← Compute ϑ̃n = argminϑ∈KN Jn(ϑ)

9: un ← Compute xn = xn−1 + Vnϑ̃n
10: end for
11: end procedure

Different methods can be used to perform steps at line 7 of Algorithm 5. The most
common ones are related with the Gram–Schmidt or Householder procedures,
which both compute, at the step n, both the matrix Vn and the (n + 1)× n upper
Hessenberg matrix (see [153] for the definition of upper Hessenberg matrix) H̄n,
for which the following relation is valid [152]:

AVn = Vn+1H̄n. (136)

Thanks to Equation (136) (see Proposition 6.5 in Saad [152]), the function Jn(ϑ)
can be rewritten as

Jn(ϑ) = ∥c− H̄nϑ∥2, (137)

where c is the constant n + 1 vector defined as c = [∥r0∥2, 0, . . . , 0, 0]T . The
solution to the minimum problem at line 8 of Algorithm 5 is easy and inexpensive
to compute since it requires the solution of an (n + 1)× n least-squares problem
where n is typically small and where the coefficient matrix H̄n is an upper
triangular matrix.
Although KS methods are well founded theoretically, they are all likely to experi-
ence slow convergence when dealing with problems arising from applications
where the numerical features of the coefficient matrix A are not “good”. The
matrix’s “condition number” is the primary parameter that describes its numerical
“goodness”. The condition number of a square matrix A is defined as

κ(A) = ∥A∥2

∥∥∥A−1
∥∥∥

2

In numerical analysis, the condition number of a matrix A is a way of describing
how well or badly a linear system with A as a coefficient matrix could be numeri-
cally solved in an effective way: if κ(A) is small, the problem is well-conditioned;
otherwise, the problem is rather ill-conditioned and it can hardly be solved
numerically in an effective way [147].
In these situations, preconditioning is essential to the effectiveness of Krylov
subspace algorithms. Preconditioners, in general, are modifications to initial
linear systems that make them “easier” to solve.
Identifying a preconditioning matrix M is the first stage in the preconditioning
process. The matrix M can be defined in a variety of ways, but it must meet a
few minimal requirements. The most crucial one is that linear system Mx = b
must be cheap to solve because the preconditioned algorithms will need to solve
linear systems with coefficient matrix M at each stage. Furthermore, M should
be nonsingular and “close” to matrix A in some sense (i.e., M−1 A ≈ I) [152].
For example, if the preconditioner M is applied from the left, the modification
leads to the preconditioned linear system

M−1 Ax = M−1b, (138)

Appl. Sci. 2024, 14, 6110 51 of 83

whose coefficients matrix M−1 A should have better numerical features than A
because it is “near” the identity matrix I. An incomplete factorization of the
original matrix A is one of the easiest ways to define a preconditioner. This
involves taking into account the formula A = LU − R, in which R represents
the residual or factorization error and L and U represent the lower and upper
portions of A, respectively, with the same nonzero structure. Calculating this
incomplete factorization, often known as ILU(0), is not too difficult or expensive.
More sophisticated preconditioners are available, such as the preconditioners
based on Domain Decomposition Methods and those based on Multigrid Meth-
ods (i.e., see [152] for the basic panoramic of such tools).
It is worth mentioning that if the matrix A is symmetric and positive definite,
then specialized algorithms exist in the context of KSM: the Conjugate Gradient
(CG) method is the most famous among those [152].

Hierarchical/Multilevel methods: When solving linear systems resulting from
discretized partial differential equations (PDEs), preconditioned Krylov subspace
algorithms tend to converge more slowly as the systems get bigger. There is
a significant loss of efficiency because of this decline in the convergence rate.
The convergence rates that the Multigrid method class can achieve, on the other
hand, are theoretically independent of the mesh size. Discretized elliptic PDEs
are the primary focus of Multigrid methods, which distinguish them significantly
from the preconditioned Krylov subspace approach. Later, the technique was
expanded in many ways to address nonlinear PDE problems as well as problems
not described by PDEs [152]. The most important contribution in this sense
is related to the Algebraic Multigrid (AMG) [154]. The main ingredients of
multilevel methods to solve (126) are as follows.

(a) A hierarchy
Ahxh = yh, h = 0, . . . , H (139)

of H problems along with restriction Ih
h+1 and prolongation Ih+1

h operators
to move between levels, where

AH = A, xH = x, and yH = y, (140)

and where
Ah = Ih

h+1 Ah+1 Ih+1
h , (141)

xh = Ih
h+1xh+1, (142)

yh = Ih
h+1yh+1, (143)

with
Ih

h+1 =
(

Ih+1
h

)T

for each h = 0, . . . , H − 1;
(b) A relaxation operator, S

(
Ah, f h, f h

0 , bh
)

, for “smoothing”. S
(

Ah, f h, f h
0 , bh

)
is in general a tool to compute iteratively an approximation for the solu-
tion of the linear system Ah fh = bh from the initial guess f h

0 .

Algorithm 6 describes the recursive implementation schema of AMG methods
based on the ingredients listed above, where xh

0 is the initial guess for solution xh.

Appl. Sci. 2024, 14, 6110 52 of 83

Algorithm 6 Implementation schema of AMG methods.

1: function xh =AMG(H, Ah, xh
0, yh, ν1, ν2, γ)

2: Input: H, Ah, xh
0, yh, ν1, ν2, γ

3: Output: xh

4: xh ← Pre-smooth ν1 times Sν1
(

Ah, xh, xh
0, yh

)
5: rh ← Get residual rh = yh − Ahxh

6: rh−1 ← Restrict residual rh−1 = Ih−1
h rh

7: Ah−1 ← Restrict matrix Ah−1 = Ih−1
h Ah Ih

h−1
8: if h = 1 then
9: δ0 ← Solve Coarse System A0δ0 = r0

10: else
11: δh−1 = 0
12: for i = 1 to γ do
13: δh−1 ← Recursive Solve δh−1 = AMG

(
H − 1, Ah−1, δh−1, rh−1, ν1, ν2, γ

)
14: end for
15: end if
16: xh ← Correct by prolongation xh = xh + Ih

h−1δh−1

17: xh ← Post-smooth ν2 times Sν2
(

Ah, xh, xh, yh
)

18: return xh

19: end function

The Multigrid schema is defined by the parameter γ, which controls the number
of times AMG is iterated in line 13 of Algorithm 6. The V-cycle Multigrid is
obtained for the situation γ = 1. The W-cycle Multigrid is the case where γ = 2.
The illustrations in Figure 10 show how complicated the ensuing inter-grid up
and down moves can be. Seldom is the case γ = 3 used [152].

Figure 10. Illustrations of different V and W cycles.

Details about restriction, prolongation, and relaxation operators can be found in
Stuben [154].

4. The Saddle Point Problem solvers Let us consider the block 2× 2 linear systems of
the form [

A BT
1

B2 −C

][
x1
x2

]
=

[
y1
y2

]
(144)

where A ∈ ℜn×n, B1, B2 ∈ ℜm×n and C ∈ ℜm×m. If one or more of the following
requirements are met by the constituent blocks A, B1, B2, and C, then the linear
system (144) defines a (generalized) “Saddle Point problem” [155]:

C1 A is symmetric (A = AT);

Appl. Sci. 2024, 14, 6110 53 of 83

C2 the symmetric part of A, H = 1
2
(

A + AT), is positive semidefinite;
C3 B1 = B2 = B;
C4 C is symmetric and positive semidefinite;
C5 C = O.

In addition to the standard differentiation between direct and iterative techniques,
generalized Saddle Point problem-solving algorithms can be broadly classified into
two groups: segregated and coupled methods [155].

Segregated methods x1 and x2, the two unknown vectors, are computed indepen-
dently via segregated procedures. This method entails solving two linear systems
(referred to as reduced systems), one for each of xi, that are less in size than n+m.
Each reduced system in segregated techniques can be addressed using an iter-
ative or direct approach. The Schur complement reduction method, which is
based on a block LU factorization of the block 2× 2 matrix in Equation (144)
(also known as the global matrix A), is one of the primary examples of the segre-
gated approach. Indeed, if A is nonsingular, the Saddle Point matrix admits the
following block triangular factorization:

A =

[
A BT

1
B2 −C

]
=

[
I 0

B2 A−1 I

][
A BT

1
0 S

]
, (145)

where S = −
(
C + B2 A−1BT

1
)

is the Schur complement of A in A. It follows
that if A is nonsingular, S is also nonsingular. Using Equation (145), the linear
system (144) can be transformed into[

I 0
−B2 A−1 I

][
A BT

1
B2 −C

][
x1
x2

]
=

[
I 0

−B2 A−1 I

][
y1
y2

]
, (146)

or equivalently, [
A BT

1
0 S

][
x1
x2

]
=

[
y1

y2 − B2 A−1y1

]
. (147)

Algorithm 7 The algorithm of the segregated approach to the solution of a generalized
Saddle Point system.

1: procedure SADDLEPOINTSEGREGATEDMETHOD(A, B1, B2, C, y1, y2, x1, x2)
2: Input: A, B1, B2, C, y1, y2
3: Output: x1, x2
4: w← Solve Aw = y1
5: v← Compute v = y2 − B2w
6: x2 ← Solve Sx2 = v
7: z← Compute z = y1 − B1x2
8: x1 ← Solve Ax1 = z
9: end procedure

Then, the solution of the linear system (144) by the segregated method can be
performed using Algorithm 7. Solution of linear systems at the lines 4, 6 and 8 of
Algorithm 7 can be solved either directly or iteratively. This approach is attractive
if the order m of the reduced system at line 6 of Algorithm 7 is small and if linear
systems with coefficient matrix A can be solved efficiently. Since the solution of
two linear systems with coefficient matrix A is required, it should be convenient
to perform just one LU factorization of A to be used twice. The two main
drawbacks are that A must be nonsingular and that the Schur complement S can
be full, making it prohibitively expensive to factor or compute. When creating
S, numerical instability could potentially be an issue, particularly if A is not
well conditioned [155]. If S is too costly to form or factor, a Schur complement

Appl. Sci. 2024, 14, 6110 54 of 83

reduction can still be used by solving related linear systems using iterative
techniques like KSM, which only require S in the form of matrix-vector products
that involve the matrices BT

1 , B2, and C, as well as by solving a linear system
with matrix A. These techniques do not require access to individual entries of S.
It is possible that the Schur complement system is not well conditioned, in which
case preconditioning will be necessary.

Coupled methods Coupled methods deal with the system (144) as a whole, com-
puting x1 and x2 (or approximations to them) simultaneously. Among these
approaches are direct solvers based on triangular factorizations of the global
matrix A, as well as iterative algorithms such as KSM applied to the system as a
whole (144), usually preconditioned in some way.
For direct methods based on triangular factorizations of A, we give a brief
overview limited to the symmetric case (that is, where A = AT , B1 = B2 = B
and C = CT), since no specialized direct solver exists for a nonsymmetric Saddle
Point problem. Furthermore, we assume that A is positive definite and B has full
rank, then the Saddle Point matrix A admits the following factorization,

A = LDLT (148)

where D is a diagonal matrix and L is a unit lower triangular matrix. To be
more precise, A is positive definite, so its decomposition is A = LADALT

A, where
LA is the unit lower triangular and DA is the diagonal (also positive definite);
additionally, the Schur complement S = −(C + BA−1BT) is negative definite, so
its decomposition is S = −LSDSLT

S . Thus, we are able to write

A =

[
A BT

B −C

]
=

[
LA 0
LB LS

][
DA 0
0 −DS

][
LT

A LT
B

0 LT
S

]
= LDLT , (149)

where LB = BL−T
A D−1

A . Note that BA−1BT = LBDALT
B. However, in prac-

tice, with the original ordering, the factors will be fairly dense, and sparsity
preservation requires the employment of symmetric permutations Q. Not every
sparsity-preserving permutation is suitable, though. It is demonstrated that there
are permutation matrices Q such that the factorization of LDLT , where D is
a diagonal matrix, is not available for QAQT . Moreover, some permutations
might result in issues with numerical instability [155].
Iterative methods are preferred for solving the linear system (144) using coupled
methods, as sparse QAQT factorization methods are not completely foolproof,
especially for Saddle Point systems arising from PDE problems.
About the usage of iterative algorithms, we wrote some words about the use
of preconditioned KSM for iterative solution of the entire linear system (144).
Various preconditioning strategies designed for (generalized) Saddle Point sys-
tems are explained. To develop high-quality preconditioners for Saddle Point
problems, one must take advantage of the problem’s block structure and possess
a comprehensive understanding of the origin and structure of each block [155].
We consider block diagonal and block triangular preconditioners for KSM ap-
plied to the coupled system Ax = y as in (144). The basic block diagonal
preconditioner is given by

Pd =

[
Â 0
0 −Ŝ

]
(150)

Appl. Sci. 2024, 14, 6110 55 of 83

where both Â and ŝ are approximations of A and S, respectively. Several dif-
ferent approximations have been considered in the literature. A fairly general
framework considers a splitting of A into

A = D− E, (151)

where D is invertible and easy to invert. Then Â = D and Ŝ = −
(
C + B2D−1BT

1
)

are chosen.
The basic block (upper) triangular preconditioner has the form

Pupper
t =

[
Â BT

1
0 Ŝ

]
, (152)

and, on the other hand, the form of a (lower) triangular preconditioner is

P lower
t =

[
Â 0
B2 Ŝ

]
, (153)

where, as before, both Â and ŝ are approximations of A and S, respectively.
For the coupled solution of a linear system (144) using KSM, the availability
of reasonable approximations for the block A and the Schur complement S is
necessary for the development of excellent block diagonal and block triangular
preconditioners. Such approximations are difficult to build and heavily rely on
the specific problem at hand.

For other details about the treatment of Saddle Point problems, we suggest reading
the monograph by Benzi et al. [155].

6.1.3. The Discrete Model of The Navier–Stokes Equations for Viscoelastic Fluids

Considering the high flexibility of FEM (see considerations listed in Table 7), we
propose the description of FEM discretization of the vscoelastic fluid model.

According to [125], and for the sake of simplicity, we choose to use an Oldroyd-B
model for TP and a Newtonian viscosity model for Ts. So, a viscoelastic fluid’s behavior
can be described by the following system of equations:

div v = 0 (154)
∂

∂t
(ρv) + (ρv)⊙∇v = −∇p + div (2µsD) + div Tp + ρg + f (155)

λTp +
▽
Tp = 2µpD. (156)

v|t=0 = v0 (157)

p|t=0 = p0 (158)

Tp |t=0 = Tp
0 (159)

The finite element form of the above formulation is often termed the MIX (mixed
method) formulation, and it is the basis for many other advanced formulations.

The system of equations (154)–(156) can also be written in Cartesian component form
in a Eulerian reference frame x = (x1, . . . , xn) as follows:

Continuity equation

∑
i=1,...,n

∂vi
∂xi

= 0 (160)

Momentum equation

Appl. Sci. 2024, 14, 6110 56 of 83

ρ

(
∂vi
∂t

+ ∑
j=1,...,n

vj
∂vi
∂xj

)
= − ∂p

∂xi
+ ∑

j=1,...,n

∂

∂xj

(
2µsDij

)
+ ∑

j=1,...,n

∂

∂xj

(
Tp
)

ij + hi(161)

Constitutive equation

λTpij +
▽
Tpij = 2µpDij. (162)

for all i = 1, . . . , n where h = ρg+ f, Dij =
1
2

(
∂vi
∂xj

+
∂vj
∂xi

)
. The equations in (160)–(162) provide

n + 1+ n2 relations for the unknowns [vi(x, t)]1,...,n, p(x, t),
[(

Tp
)

ij(x, t)
]

i,j=1,...,n
.

The application of the finite element procedure to the partial differential equations
in (160)–(162) follows the standard format. The velocity components ve

i , pressure pe, and

extra-stress components
(

Te
p

)
ij

are approximated, in each element e, by expansions of

the form

ve
i =

M

∑
m=1

Ψmvi

(
exΨ

m, t
)
= ΨTevi (163)

pe =
N

∑
n=1

Φn p
(

exΦ
n , t
)
= ΦTe p (164)

Te
ij =

K

∑
k=1

ΠkTij

(
exΠ

k , t
)
= ΠTeTij (165)

where

• Ψ, Φ, and Π are vectors of basis functions (the symbol (·)T denotes the transposition
operation);

• M, N, and K indicate the number of nodal points exΨ
m, exΦ

m and exΠ
m at which the

various unknowns are defined in each element e;
• evi, e p and eTij are vectors of unknowns into the nodal points in each element e, i.e.,

evi =
[
vi

(
exΨ

m, t
)]T

m=1,...,M
, (166)

e p =
[

p
(

exΦ
n , t
)]T

n=1,...,N
, (167)

eTij =
[

Tij

(
exΠ

k , t
)]T

k=1,...,K
; (168)

and where the underscript p for the extra stress has been omitted for clarity.
We recall that

▽
T ij =

∂Tij

∂t
+ ∑

k=1,...,n
vk

∂Tij

∂xk
− ∑

k=1,...,n
Tik

∂vj

∂xk
− ∑

k=1,...,n
Tkj

∂vi
∂xk

(169)

Then, by using the finite element approximations (163)–(165) in standard weighted-integral
statements (i.e., weak forms) of the system in (160)–(162), the following system of finite
element equations can be obtained.

Continuity equation

∑
i=1,...,n

[∫
Ωe

Φ
∂ΨT

∂xi
dx
]

evi = 0 (170)

Appl. Sci. 2024, 14, 6110 57 of 83

Momentum equation[∫
Ωe

ρΨΨTdx
]

ev̇i +
[
∑j=1,...,n

[∫
Ωe

ρΨΨTevj
∂ΨT

∂xj
dx
]]

evi

+
[∫

Ωe
∂Ψ
∂xi

ΦTdx
]

e p

−
[
∑j=1,...,n

[∫
Ωe

µs
∂Ψ
∂xj

∂ΨT

∂xj
dx
]]

evi

−
[
∑j=1,...,n

[∫
Ωe

µs
∂Ψ
∂xj

∂ΨT

∂xi
dx
]

evj

]
−
[
∑j=1,...,n

[∫
Ωe

∂Ψ
∂xj

ΠTdx
]

eTij

]
=
∫

Ωe
Ψehidx

(171)

Constitutive equation[∫
Ωe

ΠΠTdx
]

eṪij +
[∫

Ωe
λΠΠTdx

]
eTij

−
[∫

Ωe
µpΠ ∂ΨT

∂xj
dx
]

evi −
[∫

Ωe
µpΠ ∂ΨT

∂xi
dx
]

evj

+
[
∑n

k=1

[∫
Ωe

ΨTevk
∂ΠT

∂xk
dx
]]

eTij

−
[
∑n

k=1

[∫
Ωe

ΠTeTik
∂ΨT

∂xk
dx
]]

evj

−
[
∑n

k=1

[∫
Ωe

ΠTeTkj
∂ΨT

∂xk
dx
]]

evi

(172)

where en = [eni]i=1,...,n is the vector normal to boundary ∂Ωe.
The algebraic relations system (170)–(172), in each element e, can be written in nonlin-

ear matrix form as follows: e MΨΨ 0 0
0 0 0
0 0 e MΠΠ

 eV̇
e ṗ
eṪ

+

 eKΨΨ(
eV) eKΨΦ

eKΨΠ
eKΦΨ 0 0
eKΠΨ 0 eKΠΠ +e KΨΠ(eV)

 eV
e p
eT

=

 eH
0
0

 (173)

where

e MΨΨ = I ⊗ e MΨ, e MΠΠ = I ⊗ (I ⊗ e MΠ), eKΦΨ =
[

eK1
ΦΨ · · · eKn

ΦΨ

]
,

eKΨΦ =
[

eK1
ΨΦ · · · eKn

ΨΦ

]T
, eKΠΠ = I ⊗ (λI ⊗ e MΠ),

eKΨΠ = I ⊗
[

eK1
ΨΠ · · · eKn

ΨΠ

]
, eKi

ΦΨ =

[∫
Ωe

Φ
∂ΨT

∂xi
dx
]

,

eT =
[

eTT
11 · · · eTT

1n · · ·e TT
n1 · · ·e TT

nn

]T
, eV =

[
evT

1 · · · evT
n

]T
,

eK̄ΨΨ = −
[

∑
j=1,...,n

[∫
Ωe

µs
∂Ψ

∂xj

∂ΨT

∂xj
dx

]]
, e MΠ =

[∫
Ωe

ΠΠTdx
]

,

eKi∗
ΠΨ(T) =

[
n

∑
k=1

[∫
Ωe

ΠTeTik
∂ΨT

∂xk
dx
]]

, eK j
ΨΠ = −

[∫
Ωe

∂Ψ

∂xj
ΠTdx

]
,

eKΨΠ(eV) = I ⊗
(

I ⊗
[

n

∑
k=1

[∫
Ωe

ΨTevk
∂ΠT

∂xk
dx
]])

, eK j
ΠΨ =

[∫
Ωe

µpΠ
∂ΨT

∂xi
dx
]

,

eK∗j
ΠΨ(T) =

[
n

∑
k=1

[∫
Ωe

ΠTeTkj
∂ΨT

∂xk
dx
]]

, eKi
ΨΦ =

[∫
Ωe

∂Ψ

∂xi
ΦTdx

]
,

Appl. Sci. 2024, 14, 6110 58 of 83

eK̄i
ΨΨ(

eV) =

[
∑

j=1,...,n

[∫
Ωe

ρΨΨTevj
∂ΨT

∂xj
dx

]]
, e MΨ =

[∫
Ωe

ρΨΨTdx
]

,

e H =

[(∫
Ωe

ΨTeh1dx
)
· · ·
(∫

Ωe
ΨTehndx

)]T
,

eKΠΨ = −
(

I ⊗ diag
(

eK j
ΠΨ

)
j=1,...,n

)
−
(

diag
(

eKi
ΠΨ

)
i=1,...,n

⊗ I
)

−
(

I ⊗ diag
(

eK∗j
ΠΨ(T)

)
j=1,...,n

)
−
(

diag
(

eKi∗
ΠΨ(T)

)
i=1,...,n

⊗ I
)

,

eKΨΨ(
eV) =

(
diag

(
eK̄i

ΨΨ(
eV)
)

i=1,...,n
+ (I ⊗ eK̄ΨΨ)

)
+ e ¯̄KΨΨ,

e ¯̄KΨΨ = −

[∫

Ωe
µs

∂Ψ
∂x1

∂ΨT

∂x1
dx
]
· · ·

[∫
Ωe

µs
∂Ψ
∂xn

∂ΨT

∂x1
dx
]

...
. . .

...[∫
Ωe

µs
∂Ψ
∂x1

∂ΨT

∂xn
dx
]
· · ·

[∫
Ωe

µs
∂Ψ
∂xn

∂ΨT

∂xn
dx
]
,

and where I is the identity matrix of dimension n× n. The operator ⊗ represents the Kro-
necker products of two matrices: if A =

(
aij
)

i,j=1,...,n and B =
(
bij
)

i,j=1,...,m are respectively
matrices of dimensions n× n and m×m, A⊗ B is a matrix of dimensions mn×mn, where

A⊗ B =

 a11B . . . a1nB
... · · ·

...
an1B . . . annB

.

The operator diag(Bi)i=1,...,n represents the matrix of dimensions mn×mn

diag(Bi)i=1,...,n =

 B1 . . . 0
... · · ·

...
0 . . . Bn

.

where Bi is a matrix of dimension m×m for all i = 1, . . . , n. .
The assembly process of all the elements of the finite element mesh generates an

algebraic system of the type in Equation (112) where the matrices and vectors have the
structure described in Equation (173), that is,

NSVF MNSVFu̇ + NSVFK
(

NSVFu
)

u = NSVF f , (174)

where

NSVF M =

 MV 0 0
0 0 0
0 0 MT

, (175)

NSVFK(u) =

 KV,V(u) KV,p KV,T
Kp,V 0 0
KT,V 0 KT,T(u)

, (176)

NSVFu =

 V
p
T

, NSVF f =

 H
0
0

. (177)

During a Time Integration Scheme, the solver of a nonlinear problem always requires
the solution to linear systems (see the line 6 of Algorithm 3) whose coefficient matrix A

Appl. Sci. 2024, 14, 6110 59 of 83

(see Equation (115)) has the form of a Saddle Point problem. Indeed, the block structure of
matrix A can be reassembled as

A =

 [
MV + a1KV,V(u0) KV,p

Kp,V 0

] [
KV,T

0

]
[

KT,V 0
]

MT + a1KT,T(u0)

, (178)

or equivalently

A =

[NSVFK11
NSVFK12

NSVFK21
NSVFK22

]
, (179)

where the matrix NSVFK11 is, in turn, a Saddle Point problem where its upper-left block
MV + a1KV,V(u0) is a symmetric matrix, where its left-bottom and upper-right blocks
are each the transpose of the other (i.e., Kp,V = KT

V,p), and where its bottom-right one is
a zero block. Such a system could then be solved by an opportune combination of the
algorithms described in Section 6.1.2 on the basis of numerical and structural properties of
matrices NSVF M and NSVFK(u). The number of system unknowns is Nnodes ×

(
n + n2 + 1

)
,

but, in consideration of the symmetric nature of the matrix Tp, just n(n+1)
2 elements of

Tp have to be computed, so the real number of system unknowns should be Nnodes ×[
(n + 1) + n(n+1)

2

]
= Nnodes

2 (n + 1)(n + 2).
We note that the solution of Problems 2 and 3 related to Two-Phase Fluids requires

the solution of the equations describing Problem 1 coupled with other equations describ-
ing, respectively, interface motion (see Equation (22)) and Immersed Body motion (see
Equation (44)).

The discretization of such equations adds row and column blocks, related, respectively,
with values chosen to approximate ϕ and X on the discretization mesh, to the algebraic
system in Equation (174). The resulting system, which preserves its block sparse structure,
can then be solved using algorithms described in Subsection 6.1.2.

The same considerations could be made about the equations (63)–(64) and (65) if they
are coupled with the equations describing Problem 1 (or Problems 2 and 3).

6.2. Models at the Meso Scale
6.2.1. The Markov Chain Monte Carlo Algorithms

Let Ω be a finite configuration space of a physical system and assume that a suitable
proposal transition method M(ω) from the state ω ∈ Ω to the state ω∗ ∈ Ω has been
selected: in general,M is defined by a transition probabilities P(ω∗|ω). Let π be a given
distribution for which a function g : Ω← Ω exists such that

g(ω)

g(ω∗)
=

π(ω)

π(ω∗)
.

If ω0 is the initial state, the Metropolis–Hastings algorithm generates the set of M states
{ωi}i=1,...,M ⊂ Ω that asymptotically reaches the stationary π distribution, and it is de-
picted in Algorithm 8.

Appl. Sci. 2024, 14, 6110 60 of 83

Algorithm 8 The MCMC Metropolis–Hastings algorithm.

1: procedure MCMCMETROPOLISHASTINGS(Ω, ω0, M)
2: Input: Ω, ω0, M
3: Output: {ωi}i=1,...,M
4: for n = 1 to M do
5: ω∗ ← Select ω∗ =M(ωi−1)
6: ξ ← Generate a uniform random number ξ ∈ [0, 1]
7: Ξ← Compute Ξ = min

(
1, g(ω∗)

g(ωi−1)
P(ωi−1|ω∗)
P(ω∗ |ωi−1)

)
▷ Acceptance probability Ξ

8: if ξ ≤ Ξ then ▷ Allow the new state
9: ωi ← ω∗

10: else ▷ Reject the inew state
11: ωi ← ωi−1
12: end if
13: end for
14: end procedure

6.2.2. The Cellular Particle Dynamics Algorithms

Let C ne a finite set of NCells cells, and assume that each cell is composed of NCellularElement

elements. Let yαi =
(

y1
αi

, . . . , yN
αi

)
∈ ℜN , the position vectors of each element αi where

α = 1, . . . , NCellularElement and i = 1, . . . , NCells.
For the generic element αi, Equation (80) can be rewritten as

µ
∂yαi

∂t
= ηαi − ∑

βi ̸=αi

∇yαi

[
Vintra

(∣∣yαi − yβi

∣∣)]−∑
j ̸=i

∑
β j

∇yαi

[
Vinter

(∣∣∣yαi − yβ j

∣∣∣)] (180)

Thanks to the properties of the gradient ∇y of a composite real function f (g(y)),
we have

∇y f (g(y)) =
d f
dg

(g)∇yg(y).

Then, for each component n and for each element αi, Equation (180) can rewritten as

µ
∂yn

αi

∂t
= ηn

αi
− ∑

βi ̸=αi

[
yn

αi
− yn

βi

dαi ,βi

d Vintra
d dαi ,βi

(
dαi ,βi

)]
−∑

j ̸=i
∑
β j

[
yn

αi
− yn

β j

dαi ,β j

d Vintra
d dαi ,β j

(
dαi ,β j

)]
(181)

The set of all N×NCellularElement×NCells equations of type (181) represents a generally
non-linear system of algebraic equations in the form represented by Equation (112) where
the vector of unknowns y is given by

y =
[
yn

αi

]
α=1,...,NCellularElement
i=1,...,NCells
n=1,...,N.

This system could then be solved by an opportune combination of the algorithms described
in Section 6.1.2 on the basis of numerical and structural properties of the matrices involved.

6.2.3. The Cellular Automata Model Algorithms

Let A bea Cellular Automata defined by

1. A N-dimensional grid G of NCells = ∏N
n=1 Nn

Cells cells C = {cn}n=1,...,NCells
where, for

each of them, the set of neighborhood N n is defined;
2. A set I of Ningredients ingredients, i.e., I =

{
il
}

l=1,...,Ningredients
;

3. A setR of Nrules rules, i.e.,R = {rn(I)}n=1,...,Nrules
.

Appl. Sci. 2024, 14, 6110 61 of 83

Given the number M of the iteration defining the length of each run and the number Nrun
defining the number of the runs to be executed, the M× Nrun states

{
Gi,j
}

i=1,...,M;j=1,...,Nrun
of

asynchronous simulation based on the automataA can be computed by Algorithm 9.

Algorithm 9 The asynchronous cellular automata algorithm.

1: procedure ASYNCHRONOUSCELLULARAUTOMATA(A, G0, N, M)
2: Input: A, G0, N, M
3: Output:

{
Gi,j
}

i=1,...,M;j=1,...,Nrun
4: for j = 1 to Nrun do
5: Generate an initial condition state G0,j for the grid G;
6: for i = 1 to M do
7: for n = 1 to NCells do
8: if (cell cn

i−1,j of the grid Gi−1,j is occupaied by some ingredient il ∈ I) then
9: for m = 1 to Nrules do

10: Apply rule rm(I) to cn
i−1,j to define cn

i,j, and its neighborhood N n
i,j, on grid Gi,j

11: end for
12: end if
13: end for
14: end for
15: end for
16: end procedure

7. Algorithms for HPC Systems in the Exascale Era

The extremes of temporal and spatial scales, as well as the intricate nonlinear interac-
tions of several physical processes, are two recurring themes in computer science. Although
it is still beyond the capabilities of present petascale systems, high-fidelity simulation of
this kind of physical system may become affordable on approaching Exascale computer
resources. Exploiting the capabilities of impending Exascale architectures will need signifi-
cant new model creation, algorithm reform, and reimplementation of research application
code. A few of these problems have already been documented [156–158].

If solvers are a mainstay of scientific computing and justify a great investment in CS
research for Exascale resources, the discretization and mathematical formulation of the
problem are also critical stages in the simulation process that provide new difficulties for
both linear and nonlinear solvers.

In computational materials sciences, Exascale computing is needed to predict and
understand the behavior of new and heterogeneous materials at disparate lengths and
time scales. It is worth noting that to describe such systems, characterized by a significant
structural disorder and chemical complexity, a multiscale approach should be pursued.
To this aim, creating links between continuum and microscale models is essential for
bridging different length scales. Providing precise up-scaling interaction for coarse-grained
approaches and down-scaling interactions to treat nanoscale and electronic environments
is how this is achieved [156]. For example, linking a microscopic model to an atomistic or
continuum model using a microscopic simulation to fit or estimate parameters contained in
a higher-level model is among the CS challenges. To this aim, a system of closely coupled
nonlinear differential/integral equations should be solved. Additionally, gathering data
from several parallel instances of microscopic simulations might be necessary. For solving
both coupling equations and nonlinear equations employed in a microscopic model, it is
extremely desirable to apply iterative solver acceleration approaches that can leverage a
physics-motivated preconditioner. Time-evolution systems that are both stable and efficient
are required to explain the material’s dynamic behavior [156].

Appl. Sci. 2024, 14, 6110 62 of 83

7.1. Models for Exascale Computing

As described in Section 5, mathematical models often involve coupled physical phe-
nomena being inherently multiphysics-based. In addition, there are many potential levels
of description from the atomic up to macroscopic scales.

Although it is severely constrained by the computer resources at hand, the degree
of fine-grained physical accuracy in models is contingent upon the significance of the
fine-scale processes’ characteristics on the macroscopic time and length scales. In theory,
classical molecular models may try to perform simulations at this size. Even with Exascale
resources, such a model has far too many unknowns to compute at macroscopic (engi-
neering) scales. To this aim, the approach is to divide and conquer the scales by creating
simplified (or coarse-grained) models able to correctly describe a particular set of dynamics.
In such a way, it can also be possible to control the complexity and scale disparity of first-
principles-based models. Naturally, using this method produces multiscale or scale-bridging
models [156,159–161] in which a coupled hierarchy of models is considered.

These models avoid using a brute-force approach that would lead to an infeasible
solution by making many attempts to bridge disparate time and length scales. By definition,
these scale-bridging algorithms employ the split of scales to generate optimal formulations
at different levels of issue description. This clearly leads to a hierarchical or layered issue
description, which is useful in conjunction with the expected future Exascale computer
systems’ hierarchical nature [156] (see Section 4).

Two common mathematical representations are utilized, as explained in Section 5:
(1) continuum models, which use a Eulerian approach to numerically represent functions
on a continuous domain by means of a finite-dimensional representation linked to a
mesh, and (2) particle models, which follow the dynamics of individual or groups of
discrete entities in space in a Lagrangian fashion. The particle models can explain a
wider range of (nonequilibrium) behavior, but they are noisy and can become costly
at macroscopic scales. Despite their lack of noise and better-understood convergence
properties, continuum models may become too expensive to use at small scales. Particle-
based models (see Section 5.2 for examples of such approaches) are suitable for Exascale
computing applications in some cases.

It is possible to process particles individually until they synchronize at a later time-step
level. This allows for arbitrary fine-grained parallelism and the exploitation of asynchrony.
Particle models can efficiently use single precision due to their statistical character, where
the accuracy impact of a lower precision is significantly smaller than the associated statisti-
cal noise. It is also easier to manage particles’ fault tolerance due to their statistical character.

Exascale computing generally offers a chance to reconsider and enhance the way
that models in multiphysics/multiscale models should be integrated across scales and
physical processes. An effective substitute for operator splitting has been made possible
by the development of nonlinear implicit solvers. The shift toward more closely coupled
techniques presents a great possibility for adaptation to the Exascale, with its memory
bandwidth stringencies, despite some unsolved mathematical issues [156,162]

This article makes multiple references to the phrases “coupled” (also known as “splitted”
or “segregated”), and since coupling exists at least on an algorithmic and physical level,
some definitions are needed. According to Keyes et al. [162], “the terms “strong (versus
weak) coupling” of physical models mean that physical components of the modeled system are
coupled by a strong (versus weak) interaction. Correspondingly, the term “tight (versus loose)
coupling of numerical models means that algorithmic components are coupled by a tight (versus
loose) interaction”.

In the management of multiscale multiphysics problems, the strategy described in
Keyes et al. can therefore be considered appropriate

“Because we strongly advocate examining coupling strength before pursuing a
decoupled or split strategy for solving a multiphysics problem, we propose “coupled
until proven decoupled” as a perspective worthy of 21st-century simulation purposes
and resources.” [162]

Appl. Sci. 2024, 14, 6110 63 of 83

Description of multiphysics modeling, associated implementation issues such as coupling
or decoupling approaches, and example applications are available in Keyes et al. [162].

A contemporary multiscale technique, the multiscale high-order/low-order (HOLO)
strategy [161], is appropriate for issues where a microscopic description must be con-
nected to a macroscopic one. The resulting technique will be referred to as HOLO if the
macroscopic system is called the low-order (LO) description and the microscopic one the
high-order (HO) description. Descriptions of some applications of the HOLO method are
available in Chacon et al. [161].

7.2. Parallel Solvers for Exascale Computing

To create and implement effective solvers on Exascale systems, it will be necessary to
overcome many obstacles. The architectural features of these computers, which include
additional memory levels, more concurrency with less memory per core, and heteroge-
neous cores, will affect the performance of all the proposed algorithms. As explained
in [157], in fact, the following considerations should guide the development and use of
new Exascale solvers.

• Extreme-scale computers might consist of millions of nodes with thousands of light
cores or hundreds of thousands of nodes with more aggressive cores, according to
technological advancements. In any case, solvers will need to enable billion-way
concurrence with small thread states [157].

• Extreme-scale systems will probably encounter a high number of hardware malfunc-
tions since they will be constructed on a vast number of components, highlighting a
resilient and non-deterministic behavior. Applications should therefore anticipate a
high frequency of soft mistakes (such as data value changes due to logic latch faults)
and hard interruptions (device failure). Current fault-tolerance methods (those based
on traditional, full checkpoint/restart) may cause significant overhead and be im-
practical for these systems. Solvers must therefore be equipped with methods for
locating and resolving software errors and interruptions to reduce any detrimental
consequences on an application [157].

• Compared to memory technologies, the cost of devices designed for floating-point
operations is decreasing more quickly. Recent system trends indicate that the memory
per node is already modestly increasing while memory per core is dropping. Therefore,
to take advantage of parallelism, solvers will need to reduce synchronization, increase
computation on local data, and shift their focus from the typical scenario of weak
scaling, which involves using more resources to solve problems of larger sizes, to one
that favors strong scaling, which involves using more resources to solve a problem of
fixed size in order to reduce the time to solution (see [163] for a definition of weak vs.
strong scaling) [157].

• Power consumption will be a major issue for future HPC systems. Although low-
energy accelerators and other hardware design elements can lower the needed power,
more steps must be taken to further minimize energy consumption. An approach that
could be used is algorithmic study [157].

Several methods and procedures [156,157] have been proposed in response to these
factors to help achieve algorithms that make use of the opportunities provided by Ex-
ascale computing platforms. A summary of some of these strategies and techniques is
provided below.

Communication- and synchronization-avoiding algorithms The expected costs of compu-
tation at the Exascale (also in terms of energy consumption) will be more conditioned
by movements from/to the memory or between different memories
(i.e., “a communication”) than by the execution of floating point operations. So, when
solving huge problems on parallel architectures with extreme levels of concurrency,
the most significant concern becomes the cost related to communication and synchro-
nization overheads. This is especially the case for preconditioned Krylov methods

Appl. Sci. 2024, 14, 6110 64 of 83

(see Section 6.1.2). New versions of such algorithms “minimizing communication”
should be investigated to address the critical issue of such communication costs (see
Section 7.2.3). Likewise, such popular algorithms execute tasks requiring synchroniza-
tion points, for example, the computation of BLAS operators and the preconditioner
applications. Then, additive algorithmic variants (with no synchronization among
components) may be more attractive compared to their multiplicative counterparts
[164]. Such considerations are taken into account also by “Time integrators” in the
Exascale context (see Section 7.2.1). Furthermore, the linear solution process, which is
at the base of the solution of almost all described problems in the previous sections,
requires constantly moving the sparse matrix entries from the main memory into the
CPU, without register or cache reuse. Therefore, methods that demand less memory
bandwidth need to be researched. There are promising linear techniques, such as
coefficient-matrix-free representations [165], that totally avoid sparse matrices, or
Fast Multipole Methods (see Section 7.2.4) [157].

Mixed-Precision Arithmetic Algorithms Using a combination of single- and double-
precision arithmetic in a calculation is known as mixed-precision arithmetic. Single-
precision arithmetic is typically faster than double-precision arithmetic, but some
computations may be so susceptible to roundoff errors that the entire computation
is typically not possible to complete with just a single precision, so mixed-precision
arithmetic can be used. In order to quantify the situations in which using mixed-
precision arithmetic is advantageous for a given class of algorithms, further research is
required, with a particular focus on the numerical behavior of this technique. In addi-
tion to speeding up problem-solving, mixed-precision arithmetic might also need less
memory. When working with mixed-precision arithmetic, it is crucial to understand
how round-off errors spread and affect computed value accuracy [157]. Section 7.2.3
provides examples of mixed-precision techniques for solving linear problems.

Fault-tolerant and resilient algorithms Allowing for nondeterminism in both data and
operations is a beneficial—and perhaps essential—feature that makes fault-tolerant
and robust algorithms possible. Algorithms based on pseudorandom number genera-
tors offer a multitude of possibilities at the extreme scale. Monte Carlo-like methods,
or more in general, stochastic-based algorithms such as Cellular Automata, can iden-
tify resilient implementations by using stochastic replications, which can improve
concurrency by several orders of magnitude by employing stochastic replications to
find robust implementations [157] (see Section 7.2.5). Regarding fault-tolerant algo-
rithms, a possible solution to the problem of global synchronous checkpoint/restart
on extreme-scale systems is the use of localized checkpoints and asynchronous recov-
ery. Recent work is focused on algorithm-based fault tolerance (ABFT): for example,
much of the ABFT work on linear solvers is based on the use of checksum [157,166].

7.2.1. “Implicit-Explicit” and “Parallel in Time” Solvers

Different problem components frequently develop on various temporal scales. Thus,
in real-world applications, it is frequently not possible to integrate PDE discretizations in
time efficiently using a single time-stepping technique. By utilizing the benefits of several
strategies and mitigating the drawbacks of employing a single set strategy, partitioned
methods get around these challenges. A class of partitioned time integration methods
called implicit–explicit (IMEX) methods, commonly referred to as semi-implicit schemes,
expand explicit and implicit schemes that accommodate variable redundant calculations in
favor of more scalable algorithms.

Proposed IMEX methods are based on an approach that uses extrapolation meth-
ods [167] for the solution of ODE [168,169]. Extrapolation techniques are a subset of
numerical analysis that are associated with convergence acceleration techniques, the ap-
plication of which has been researched and used in numerous contexts for many years.
Sequences and series are frequently dealt with in numerical analysis, applied mathematics,
and engineering. They are created using approximation techniques based on parameters,

Appl. Sci. 2024, 14, 6110 65 of 83

iterative processes, and so on. In actuality, certain series or sequences frequently converge
so slowly that it seriously hinders their usefulness. In such a context, extrapolation methods
can play a role. In the specific context of the ODE solution, extrapolation methods can help
to improve the rate of convergence of a “time integrator” method.

Definition 2. The extrapolation method for ordinary differential equations:
The aim is to compute an approximated solution to the the following ODE problem

u̇(t) = F(t, u(t)) (182)

where u(t0) = u0, u(t) ∈ ℜd and where t ∈ Θ = [t0 tn]. As described in Section 6.1.2 about the
Time Integration Algorithms, to compute an approximation of the solution in the considered time
domain Θ, a discretization ΘNn of Θ should be considered. For this purpose, consider ΘNn as the set
made up of the Nn + 1 equally spaced points {tk}k=0,...,Nn

where tk = t0 + ∆n ∗ k, k = 1, . . . , Nn

and where ∆n = tn
Nn

.

The approximation u∆n in ΘNn is constructed recursively with the operator Ψk,k−1
∆n

(a so-called
“one step method”) with step size ∆n and order of accuracy p. The rate at which a numerical
approximation of a differential equation converges to the actual solution is measured in numerical
analysis by the order of accuracy. Consider a differential equation’s exact solution, u, and its
numerical approximation, uh, where h is a parameter that describes the approximation, and the
numerical solution uh is said to be pth-order accurate if the error E(h) := ∥u− uh∥ is limited
above by a value proportional to h to the pth power:

E(h) := ∥u− uh∥ ≤ Chp

u∆n(t0) = u0, (183)

u∆n(tk) = Ψk,k−1
∆n

u∆n(tk−1). (184)

Let
{

nj
}

j=1,...,M be a set of positive integers representing a sequence such that n < nj < nj+1, and
let

Tl,j =
l

∏
k=1

Ψk,k−1
∆nj

u∆nj
(t0), 0 < l ≤ nj. (185)

Given the M couples
(

∆nj , Tnj ,j

)
and an integer value ω ≥ 1, there exists a unique polynomial

π ∈ Π where

Π =

{
∆ 7→ a0 +

M−1

∑
l=0

ap+l∆
p+ωl : al ∈ ℜd

}
,

such that interpolates all the above M couples, that is, π
(

∆nj

)
= Tnj ,j, ∀j = 1, . . . , M [169]. The

value Tn,0 = u∆n(tn) can then be obtained by evaluating π in 0, that is, Tn,0 = π(0). The method
described above, used to compute Tn,0, can be considered a “one step method”, and it can be
proved [169] that, under some specific conditions, it is a method of order p + ωM.

The dynamics of processes that have multiple physics and multiscale components can
be categorized into relatively fast and slow terms. The informal expressions “stiff” and

“nonstiff” are commonly associated with the fast and slow evolution, respectively. So we are
concerned with solving the following problem:

u̇(t) = f (t, u(t)) + g(t, u(t)) = F(t, u(t)) (186)

where the functions f and g represent the nonstiff and the stiff components of the problem,
respectively, and where u(t0) = u0, u(t) ∈ ℜd and where t ∈ Θ = [t0 T].

In Constantinescu et al. [170,171], the following base “one step methods” (with
step size h)

{
(•)Ψn,n−1

h i
}
•=[W-IMEX,Pure-IMEX,Split-IMEX]

are used to solve (186) by an

approach based on extrapolation methods:

Appl. Sci. 2024, 14, 6110 66 of 83

un+1 =un +

[
I − h

∂g
∂u

(tn, un)

]−1

[hF(tn, un)] [W-IMEX] (187)

un+1 =un + h f (tn, un) +

[
I − h

∂g
∂u

(tn, un)

]−1

[hg(tn, un)] [Pure-IMEX] (188)

un+1 =u∗ +
[

I − h
∂g
∂u

(tn, un)

]−1

[hg(tn, u∗)]; u∗ = un + h f (tn, un) [Split-IMEX] (189)

The computation of each Tnj ,j during the implementation of an extrapolation method
(see Definition 2) can be executed independently from the others, so the wall set of tasks to
compute all the Tnj ,j values can be executed concurrently. Then, extrapolation methods,
as well as improving the convergence order of a “one step method”, can be considered
as a first approach to implement “parallelism“ in a naturally serial process as the ODE
solution by time steppers. Indeed, current methods for transient simulations are almost
exclusively sequential in time. Time progresses by employing one or more solutions from
past timesteps to compute the next, regardless of how spatial domains are discretized. As
a result, the number of timesteps multiplied by the speed at which one timestep can be
computed determines the time to solution for transient applications.

To overcome such limitations on concurrency levels exploited by traditional time inte-
grators, parallel-time algorithms have been studied for many years [172]. Based on Gander
et al., who very recently created a unified framework for Parallel-In-Time algorithms [173],
we describe them as the iterative updating of the approximation for the solution of the
“all-at-once global problem” (see Equation (192) in Definition 3). In particular, following the
approach described in Gander et al., the Definition 3 for the Parallel-In-Time method is
given as follows,

Definition 3. The Parallel-In-Time (PInt) iterative solution of time-dependent ODE
The aim is to compute an approximate solution of the following ODE problem

u̇(t) = A(t, u(t)) (190)

where u(t0) = u0, u(t) ∈ ℜd and where t ∈ Θ = [t0 T]. As described in Section 6.1.2 about the
time integration algorithms, to compute an approximation of the solution in the considered time
domain Θ, a discretization ΘN of Θ should be considered. For this purpose, consider ΘN as the set
made up of the N + 1 equally spaced points {tn}n=0,...,N where tn = t0 + ∆ ∗ n, n = 1, . . . , N
and where ∆ = T

N .
Let a time block (or simply block) denote the discretization of a time subinterval [tn, tn+1]

using M > 0 grid points,
τn,m = tn + ∆mτm, m ∈ {1, ..., M},

where τm ∈ [0, 1] denotes normalized grid points in time used for all N time subintervals.
Let a block variable be a vector

un = [un,1, . . . , un,M]T

where un,m is an approximation of u(τn,m) on the time block for the time subinterval [tn, tn+1].
Finally, let us denote as block operators the two functions ϕ : ℜM → ℜM and χ : ℜM → ℜM

for which the block variables of a numerical solution of (190) satisfy

ϕ(u1) = χ(u01),

ϕ(un+1) = χ(un), n = 1, . . . , N − 1 (191)

where 1 = [1, . . . , 1]T , where the time integration operator ϕ is bijective and where χ is a transmis-
sion operator. The time propagator ψ updating un to un+1 is given by

ψ = ϕ−1χ.

Appl. Sci. 2024, 14, 6110 67 of 83

The numerical approximation (191) of (190) can be described as the following all-at-once
global problem

ϕ
−χ ϕ

.
−χ ϕ

u1
u2
...

uN

 =

χ(u01)

0
...
0

 (192)

Iterative PinT algorithms solve (192) by updating a vector uk =
[
uk

1, . . . , uk
N

]T
to uk+1 until some

stopping criterion is satisfied. If the global iteration can be written as a local update for each block
variable separately, the local update formula is called a block iteration.

Let a primary block iteration be an updating formula of the form

uk+1
n+1 = B0

1

(
uk

n+1

)
+ B1

0

(
uk+1

n

)
+ B0

0

(
uk

n

)
, uk

0 = u01, ∀k ∈ N, (193)

where n ≥ 0, and where B0
1, B1

0, B0
0 are operators that satisfy the consistency condition(

B0
1 − I

)
ψ + B1

0 + B0
0 = 0. (194)

The solution of the all-at-once global problem (192) by an iterative method based on a
primary block iteration of the type (193) represents the Parallel-In-Time approach for the solution of
time-dependent ODE (190).

In Table 9, a summary of the the most popular PInt methods, and their block iteration
operators, are reported (see Gander et al. [173] for details).

Table 9. Summary of the the most popular PInt methods and their block iteration operators, where
ω > 0 is a relaxation parameter, TF

C and TC
F are transfer operators from “coarse to fine” and “fine to

coarse” time blocks, respectively, and where ϕC is the time integration operator on a coarse time block.

Methods B0
1

(
uk

n+1

)
B1

0

(
uk+1

n

)
B0

0

(
uk

n

)
DBJ I−ωI ωϕ−1χ −
ABJ I− ϕ̃−1ϕ ϕ̃−1χ −

ABGS I− ϕ̃−1ϕ − ϕ̃−1χ

Parareal −
(
ϕ−1 − ϕ̃−1)χ ϕ̃−1χ

TMG (1−ω)
(

I− TF
Cϕ−1

C TC
F ϕ
)

ω
(

ϕ−1 − TF
Cϕ−1

C TC
F

)
χ TF

Cϕ−1
C TC

F χ

TMGc −
(

ϕ−1 − TF
Cϕ̃−1

C TC
F

)
χ TF

Cϕ̃−1
C TC

F χ

TMGf

(
I− TF

Cϕ−1
C TC

F ϕ
)(

I− ϕ̃−1ϕ
) (

ϕ̃−1 − TF
Cϕ−1

C TC
F ϕϕ̃−1

)
χ TF

Cϕ−1
C TC

F χ

PFASST
(

I− TF
Cϕ̃−1

C TC
F ϕ
)(

I− ϕ̃−1ϕ
) (

ϕ̃−1 − TF
Cϕ̃−1

C TC
F ϕϕ̃−1

)
χ TF

Cϕ̃−1
C TC

F χ

Algorithm 10 describes an implementation of the PInt approach. We observe that
Algorithm 10 lends itself well to parallelization: indeed, if we imagine dividing the N
vectors un among P concurrent tasks, then

• The initial approximation vectors u0
n (see lines 5–7 of Algorithm 10) can be computed

concurrently and independently of each other in an “embarrassingly parallel” approach
(no communications are needed among tasks);

• The initial vectors uk
0 (see lines 8–10 of Algorithm 10) can be computed by all the P

tasks concurrently and independently of each other;
• In each iteration of the iterative method that is needed to refine the approximation

of the vectors un (see lines 11–17 of Algorithm 10), the computation of vectors zk
n

can be performed concurrently and locally to the assigned task p. To complete the
computation of uk+1

n+1, task p should eventually send the vector wk
n to its right neighbor

task p + 1 and should receive the vector zk
n−1 from its left neighbor task p− 1.

Appl. Sci. 2024, 14, 6110 68 of 83

Algorithm 10 The algorithm of the Parallel-In-Time iterative solution of ODE.

1: procedure PINT(ϕ, χ, u0, B0
0, B0

1, B1
0, N, K,

{
uK

n
}

n=1,...,N)
2: Input: ϕ, χ, u0, B0

0, B0
1, B1

0, N, K
3: Output:

{
uK

n
}

n=1,...,N
4: ▷ Compute initial approximation vectors u0

n by a one step method applied M times
5: for n = 1 to N do
6: Compute u0

n =
[
u0

n,1, . . . , u0
n,M

]T

7: end for
8: for k = 1 to K do ▷ Compute vectors uk

0
9: Compute uk

0 = u01
10: end for
11: for k = 0 to K− 1 do ▷ Compute approximation vectors uk

n by iterating on k
12: for n = 0 to N − 1 do
13: zk

n ← Compute B1
0

(
uk+1

n

)
+ B0

0

(
uk

n

)
14: wk

n ← Compute B0
1

(
uk

n+1

)
15: uk+1

n+1 ← Compute uk+1
n+1 = zk

n + wk
n

16: end for
17: end for
18: end procedure

7.2.2. Composite Nonlinear Solver

An key part of contemporary simulations is large-scale algebraic solvers for nonlinear
problems. Newton’s techniques begin with the nonlinear operator’s global linearization.
After linearization, a huge sparse linear system is produced, and the matrix can be implicitly
represented by several “matrix-free” techniques or explicitly represented by storing the
nonzero coefficients [165]. As a stand-alone solver, Newton’s approach has a number
of shortcomings. Memory bandwidth and communication limitations are caused by the
repetitive linearization construction and solution [174].

According to Brune et al. [174] we consider a collection of solvers for nonlinear
equations of the type

F(u) = b. (195)

A small set of algorithmic building blocks is shown, which, through composite com-
binations or nonlinear preconditioning, yield a wide range of solvers with varying con-
vergence and performance characteristics. This is an easily understood comparison to the
situation of linear solvers. Implementations of this kind of solvers are available in the
PETSc software library and may be brought to bear on many relevant applications.

The history of the “Portable, Extensible Toolkit for Scientific computing (PETSc)” [27,175]
began in the early 1990s and has always focused on the largest-scale parallel systems
available at the time. PETSc had the original goal to develop efficient algebraic solvers and
provide the ability to use any appropriate solver for any suitable set of PDEs and can be
considered one of the most important and widely used mathematical software libraries.
New advances in PETSc software library are now available to accomplish the needs of the
emerging extreme-scale architecture [176].

Let us express the action of a stationary nonlinear solver that employs the solution
technique M as follows: ui+1 = M(F, ui, b). A sequence or series of two (or more) solution
techniques M and N, which both provide an approximate solution to (195), make up
a nonlinear composite combination. On the other hand, by using inner technique N,
nonlinear preconditioning can be expressed as a modification of the function F. After that,
an outer solver M receives the modified function and uses it to solve the preconditioned
system. In general, composite and preconditioning combinations of different solution
methods can be considered as an effective acceleration strategy to be used in approximate
solutions of Problem (195).

Appl. Sci. 2024, 14, 6110 69 of 83

A compact representation for nonlinear composite combinations and preconditioning
is described in Table 10. A list of solution methods M that can be considered as building
blocks for different combinations are listed in Brune et al. [174]. In these works, we describe
just the Newton–Krylov solution methods (“ NEWT-K”) since they are “... often the workhorse
of simulations requiring solution of nonlinear equations ...” [174].

In Algorithm 11, the Newton–Krylov solution methods are described: details about the
cited (see line 7 in Algorithm 11) “line search” algorithm (or other “globalization strategies”)
can be found in Brune et al. [174] or in Pawlowski et al. [177]. Newton-Krylov’s basic
method is very sensitive to the initial iterate and may diverge if it is not sufficiently close to
the solution. Generally, globalization strategies seek directions ∆u and step lengths λ in
such a way that such convergence problems can be reduced [177].

An extremely important class of methods comprises nonlinear variants of domain
decomposition and multilevel algorithms. The convergence of the decomposition solvers
is not guaranteed. Although they may converge, since the decomposition solvers provide
additional opportunities for parallelism, the logical extension is to employ them in conjunction
with the global solvers as nonlinear preconditioners or accelerators. Among these kinds of
methods, we introduce the “Nonlinear Additive Schwarz Method (NASM)” [178] for its properties
concerning computational “granularity,” which is desirable in a parallel computing context.

Table 10. Nonlinear composite combinations and preconditioning given outer and inner solver M
and N.

Composite

Type Statement Abbreviation

Additive ui+1 = ui + αM(M(F, ui, b)− ui) + αN(N(F, ui, b)− ui) M + N
Multiplicative ui+1 = M(F, N(F, ui, b), b) M ∗ N

Preconditioning

Type Statement Abbreviation

Left ui+1 = M(ui − N(F, ui, b), ui, b) M−L N
Right ui+1 = M(F(N(F, ui, b), ui, b)) M−R N

Algorithm 11 The algorithm implementing the “Newton–Krylov methods” for the approxi-
mate solution of Equation (195).

1: procedure NEWTONKRYLOVSOLVER(F, b, u0, N, uN)
2: Input: G, b, u0, N
3: Output: uN
4: for n = 0 to N − 1 do
5: r(un)← Compute F(un)− b
6: Jn ← Compute Jn
7: ∆un ← Solve Jn∆un = r(un) ▷ The linear system is solved by a Krylov method
8: un+1 ← Compute un+1 = un + λ∆un ▷ λ is determined by line search
9: end for

10: end procedure

Definition 4. The Nonlinear Additive Schwarz Method (NASM)
Let us consider the solution of problem (195) where u ∈ ℜn, and let {Id}d=1,...,N be a set of subsets
of I = {1, . . . , n} whose overall union coincides with I (i.e.,

⋃
d=1,...,N Id = I). Each index subset

I defines a subdomain Dd ⊆ ℜnd of dimension nd = |Id| of ℜn.
Let us consider the two sets {Rd}d=1,...,N and {Pd}d=1,...,N of “restriction” and “prolonga-

tion” operators, respectively, with the assumption that Rd and Pd satisfy ∑d=1,...,N PdRd = I.
Examples for Rd and Pd, related with disjoint subsets Ij (i.e., Ij ∩ Ii = ∅, ∀i ̸= j),

are, respectively,

Rd : u ∈ ℜn 7→ ud ∈ ℜnd where ud = [uk]
T
k∈Id

Appl. Sci. 2024, 14, 6110 70 of 83

Pd : ud ∈ ℜnd 7→ u ∈ ℜn where uk =

{
ud

k if k ∈ Id
0 if k /∈ Id

Moreover, let Fd

(
ud
)

denote the “restriction” of operator F(u) to the d-th subdomain Dd defined as

Fd : ud ∈ Dd 7→ Fd

(
ud
)
= Rd

(
F
(

Pd

(
ud
)))

∈ Dd.

If a set of solver method {Md}d=1,...,N , one for each subdomain Dd, is given, the Nonlinear Additive
Schwarz solver Method (NASM) is based on the following statement:

ui+1 =
N

∑
d=1

Pd

(
Md

(
Fd, ud

i , bd
))

.

NASM can be used combined with a Newton–Krylov method: or (1) as its left precon-
ditioner (i.e., see Dolean et al. [178]), or (2) by using “ NEWT-K” as a local solver on each
subdomain of an NASM.

7.2.3. Parallel Iterative and Direct Linear Solver

A sparse linear system solution is sometimes the most computationally demanding
step in large-scale research and engineering simulations. Even though iterative approaches
are increasingly being used to tackle many of these issues, direct solvers are still frequently
used and will remain essential at the Exascale [156,179,180].

The fundamental advantage of direct solutions is their robustness. In fact, when
solving extremely ill-conditioned linear systems, direct solvers are often the method of
choice, that is, once the system matrix has been rearranged. When compared to iterative
methods, where the complexity is related to the primary kernel in an iteration (which is
typically a matrix-vector multiplication, the cost of which is typically proportionate to the
number of nonzeros in the matrix) and the number of iterations required for convergence,
the main drawbacks of direct approaches are their computational expense and memory
usage [156].

Exascale computing will continue to require multilevel techniques because of their
high concurrency properties. Some multi-level techniques exhibit a “natural resilience to
faults” [156], which may serve as a useful foundation for the development of fault-tolerant
algorithms. While multilevel approaches offer many advantageous characteristics, the
applicability of any one algorithm is usually very limited. Exascale computing does, in
fact, constrain algorithmic selections of multilevel approaches, conditioning selections
for relaxation operators and the Multigrid schema structure (e.g., W-cycles ought to be
disregarded due to their substantial communications costs) [156].

In recent years, the effort spent by some scientific communities around the world (for
example, see the USA Exascale Computung Project (ECP) Multiprecision Effort Team [181])
has obtained great results in developing and deploying new mixed-precision technology.
Some of the most promising and impactful achievements concern:

• Mixed-precision dense and sparse LU factorization based on Iterative Refinement (IR);
• Mixed-Precision GMRES based on IR;
• Compressed-Basis (CB) GMRES.

One of the most crucial extreme scale needs is the relaxation and lowering of synchro-
nization, which may also help to relieve load balancing pressure. It is probably difficult to
completely eliminate periodic synchronization in solvers, although many algorithms could
be designed in a way that requires a lot less synchronization.

Within the category of standard iterative methods, examples of such a type of algo-
rithm are the “s-step” CA-GMRES iterative method [21,182], which uses a redesign of the
KSM algorithms based on BLAS 2 and 3 operations (products of a vector by a matrix,
matrices products, etc.), which have a higher computational granularity (i.e., a higher ratio
of computation time to communication time) than the original KSM formulation based on
BLAS 1 operations.

Appl. Sci. 2024, 14, 6110 71 of 83

Let Mj=0,...,m−1(A) be a suitable set of monomials of the matrix A; then, the “s-step”
version of Algorithm 5, which solves problem (126), is listed in Algorithm 12, where

vm+j =
j

∏
i=0

Mi(A)vm, j = 1, . . . , s

Q0 = [v0, . . . , vs−1, vs],

Qm+1 = [q0, . . . , qms−1, qms, qms+1],

Q̄m+1 = [q0, . . . , qms−1, qms],

Vm+1 ∈ Rn×s,Qm+1 ∈ Rn×(ms+1), Qm+1 ∈ Rn×s, Rm+1 ∈ Rs×s,Hm+1 ∈ R(ms+1)×ms.

In the “s-step” version of GMRES (see line 5 of Algorithm 12), multiple column vectors
Vm+1 = [vm+1, . . . , vm+s] are calculated at the same step m, and the new orthonormal basis
is computed by two normalizations steps:

1. Orthonormalize Vm+1 against the orthonormal basis Qm and compute V̄m+1,
2. Orthonormalize columns of V̄m+1 by a QR factorization [147].

More details on Algorithm 12 can be found in Hoemmen et al. [182].

Algorithm 12 The m-th step of block-based GMRES Method.

1: procedure BB-GMRES(A, y, x0, m, Vm, xm+1)
2: Input: A, y, x0, m
3: Output: xm+1
4: OrthoBegin▷ Build an orthonormal basis of column vectors Qm+1 = [Qm, Qm+1] of
Km+s

5: Compute Vm+1 = [vm+1, . . . , vm+s−1, vm+s]
6: Compute Rm+1 = QT

mVm+1
7: Compute V̄m+1 = Vm+1 −QmRm+1
8: Compute the QR factorization of V̄m+1 = Qm+1Rm+1
9: Compute the Hessenberg matrix Hm+1 (from Rm+1 and Rm+1) such that

AQ̄m+1 = Qm+1Hm+1
10: OrthoEnd
11: SolBegin ▷ Extract a suitable vector from a subspace x0 +Km+s
12: compute ym+1 = argminy

∥∥βe1 −Hm+1y
∥∥

2
13: compute xm+1 = x0 +Qm+1ym+1
14: SolEnd
15: PrepBegin ▷ Prepare for the next step
16: Assign vm+1 ← qms+1
17: PrepEnd
18: end procedure

In exact arithmetic, s steps of Algorithm 5 are equivalent to one step of Algorithm 12,
but Algorithm 12 suffers from some instabilities when finite precision is used. A lot of work
was spent in recent years to identify the origin of these phenomena and to mitigate their
consequences (e.g., see Bai et al. [183] about the role of monomials Mj(A) on the “condition
number” of Vm+1 and then on the convergence of Algorithm 12). Also, to temper instability
effects, s is chosen to be s << n, and the execution of Algorithm 12 is restarted [152] just
after a few steps m << n [21].

7.2.4. Fast Multipole Methods and “Hierarchical” Matrices

Algorithms listed in the 20th century have included the Fast Multipole Methods
(FMM), developed by Rokhlin Jr. and Greengard [184] ranked in the top ten. They are
initially discussed in the context of particle simulations, where they lower the computational
cost from O

(
N2) to O(N) to O(N log(N)) operations for every pairwise interaction in a

Appl. Sci. 2024, 14, 6110 72 of 83

system of N particles. During its history [185–187], FFM was the basis for other useful
applications such as the fast multiplication of vectors with fully populated special matrices.
In the context of linear algebra, FFM takes the name of fast multiplication by “H-matrices”
which are a combination of the “Panel Clustering Method”, and the “mosaic skeleton matrices”
approaches [188,189].

According to [188,189], let us introduce “Hierarchical” matrices (also calledH-matrices).
First of all, it is necessary to introduce the concepts of the Rk-matrix and the “block cluster
quad-tree”.

Definition 5. Definition of Rk-matrix
Let R ∈ ℜM×N be a matrix of the form

R = ABT , A ∈ ℜM×k, B ∈ ℜk×N .

Then, R is called an Rk-matrix. Any matrix of a rank of at most k can be represented as an
Rk-matrix, and each Rk-matrix has at most a rank of k.

Definition 6. Definition of “block cluster quad-tree” of a matrix A
Let TI(L) be a binary tree [190] with the L + 1 levels l = 0, . . . , L and denote by TI the set of its nodes.
TI is called a binary cluster tree corresponding to an index set I if the following conditions hold:

1. Each node of TI is a subset of the index set I;
2. I is the root of TI(L) (i.e., the node at the 0-th level of TI(L));
3. If τ ∈ TI is a leaf (i.e, a node at the L-th level of TI(L)), then |τ| ≤ Clea f ;
4. If τ ∈ TI is not a leaf whose set of sons is represented by S(τ) ⊆ TI , then |S(τ)| = 2 and

τ =
⋃̇

τ′∈S(τ)τ
′

Let I be an index and let AC(τ × σ) = 0, 1 a logical value representing an “Admissibility
Condition” on τ × σ. Moreover, let TI(L) be a binary cluster tree on the index set I. The block
cluster quad-tree TI×I corresponding to TI(L) and to the admissibility condition AC(τ × σ) could
be built by the procedure represented in Algorithm 13.

Algorithm 13 Procedure for building the block quad-tree TI×I(L) corresponding to a cluster
tree TI(L) and an admissibility condition AC. The index set τ × σ and the value l to be
used in the first call to the recursive BLOCKCLUSTERQUADTREE procedure are such that
τ = σ = I, l = 0.

1: procedure BLOCKCLUSTERQUADTREE(TI×I(L), L, l, AC(τ × σ), τ × σ)
2: Input: TI×I(L), AC(τ × σ), L, l, τ × σ
3: if (AC(τ × σ) = 0 and l < L) then
4: S(τ × σ) = {τ′ × σ′ : τ′ ∈ S(τ), σ′ ∈ S(σ)}
5: for τ′ × σ′ ∈ S(τ × σ) do
6: BLOCKCLUSTERQUADTREE(TI×I(L), L, l + 1, AC(τ′ × σ′), τ′ × σ′)
7: end for
8: else
9: S(τ × σ) = ∅

10: end if
11: end procedure

Definition 7. Definition ofH-matrix
Let A ∈ ℜN×N =

(
ai,j
)

i,j=1,...,N be a matrix, let I = {1, . . . , N} the index set of A, and let k ∈ N .

Let us assume that, for a vector v and a subset τ ⊂ I, v|τ represents the restriction vector
(
vj
)

j∈τ

of v to τ, and that, for a matrix A and subsets τ, σ ⊂ I, the notation A|τ×σ represents the block

Appl. Sci. 2024, 14, 6110 73 of 83

(
Aij
)

i∈τ,j∈σ
. And let TI×I(L) be the block cluster quad-tree on the index set I whose admissibility

condition AC(τ × σ) is defined as

AC(τ × σ) =

{
1 if A|τ×σ can be approximated by an Rk-matrix in a specified norm ∥·∥
0 otherwise

Then, the matrix A is called the H-matrix of blockwise rank k defined on block cluster quad-tree
TI×I(L).

Let us remember that, given a matrix A, the matrix Ã is said to be an approximation of A in a
specified norm ∥·∥ if there exists ϵ ∈ ℜ such that

∥∥A− Ã
∥∥ < ϵ.

Different approaches can be used to compute an Rk-matrix approximation M̃ = M̃1M̃2
of an arbitrary matrix M [188]; as an example, we cite the one based on the “truncated
singular value decomposition,” which represents the best approximation of an arbitrary matrix
in the spectral and Frobenius norm (see [189] for details).

As an example of the use of theH-matrices to obtain algorithms of reduced complexity,
we propose the algorithm for the calculation of the matrix-vector product (see Algorithm 14):
the complexity for that matrix-vector multiplication algorithm is O(kn log(n)). Other
algorithms of interest from basic matrix algebra that use H-matrices are described in
Hackbusch et al. [189].

Algorithm 14 Matrix-vector multiplication y = y + Ax of theH-matrix A ∈ ℜI×I (defined
on block cluster quad-tree TI×I(L)) with vector x ∈ ℜI . The index sets τ × σ to be used in
the first call to the recursive HMATRIX-MVM procedure are such that τ = σ = I.

1: procedure HMATRIX-MVM(A, y, x, TI×I(L), τ × σ)
2: Input: A, y, x, TI×I(L), τ × σ
3: Output: y
4: if S(τ × σ) ̸= ∅ then ▷ τ × σ is not a leaf of TI×I(L)
5: for each τ′ × σ′ ∈ S(τ × σ) do
6: HMATRIX-MVM(A, y, x, TI×I(L), τ′ × σ′)
7: end for
8: else ▷ τ × σ is a leaf of TI×I(L)
9: y|τ ← y|τ + A|τ×σ x|σ ▷ A|τ×σ could be an unstructured or an Rk-matrix

10: end if
11: end procedure

7.2.5. Parallel Monte Carlo Based Methods

Monte Carlo-like algorithms seem to have all the characteristics that make them
suitable for Exascale computing systems. Taking inspiration from [191,192], we can observe
that it is easy enough to implement strategies that make them algorithms with the following
attributes.

Communication- and synchronization-avoiding: To implement parallelism in an MC-like
algorithm, the named dynamic bag-of-work model can be used [191]. Using such a
strategy, a large task, related to the computation of M states, is split into smaller inde-
pendent P subtasks, where each task computes M

P states and where all the P subtasks
are executed independently of each other in an “embarrassingly parallel” approach.

Fault-Tolerant and Resilient: To make an MC-like algorithm resilient to hard failures,
an P-out-of-Q strategy can be used [191]. Since MC-based applications “accuracy”
depend only on the number M of computed states and not on which random sample
set is estimated (provided that all the random samples are independent in a statistical
sense), the actual size of the computation is obtained by increasing the number of
subtasks from P to Q, where Q > P. The whole task is considered to be completed
when P partial results, from each subtask of size M

P states, are ready. In the P-out-of-Q

Appl. Sci. 2024, 14, 6110 74 of 83

approach, more subtasks are needed than are actually scheduled. Therefore, none of
these subtasks will become a “key” subtask and at most Q− P faulted subtasks can
be tolerated. The critical aspect is properly choosing the value Q since a “good” value
for Q may prevent a few subtasks from delaying or halting the whole computation.
On the other hand, an excessive value for Q could result in a much higher calculation
workload with little gain to the computation outcomes. The proper choice of Q in
the P-out-of-Q strategy can be determined by considering the average job-completion
rate in the computing system. Suppose c is the completion probability of subtasks
up to time t in the computing system. Clearly, Q ∗ c should be approximately P, i.e.,
the fraction of the Q subtasks finished should equal to P. Thus, a good choice is
Q =

⌈
P
c

⌉
[191].

To make an MC-like algorithm resilient to a soft fault causing an error in the com-
putation, for example, due to a change in data value in memory, strategies such as
the “duplicate checking” or the “majority vote” [191] could be considered. Subtasks
are repeated and executed on separate nodes in these algorithms. Comparing the
outcomes of the same subtask carried out on other nodes might help identify inac-
curate computational results (e.g., by ensuring that the results fall within a suitable
confidence interval). When performing duplicate checking, an incorrect result must
be found by doubling computations. It takes at least three times as much calculation
to find an incorrect computation result in a majority vote.

8. Conclusions and Future Work

This work aims at providing a comprehensive summary of the models and methods
that can be employed for “in silico” experimentation of the physicochemical processes
underlying the process of 3D bioprinting of cell-laden materials by using the computational
resources available in the Exascale Era.

Until now, the only way to optimize the properties of cell-laden hydrogels and the 3D
bioprinting process has been to replicate multiple expensive and time-consuming trials.
The advent of computational models has allowed us to better understand the different
phases of the process. However, there are still many challenges to address. Massive data
sets, appropriate method selection, and the identification of relevant inputs and outputs
are all necessary for the modeling. Large-scale data collection from bioprinting research
involving expensive cells and supplies, as well as labor-intensive procedures, could not
be feasible. The challenge relating to the selection of numerical methods concerns the
development of fully coupled multiscale models, now more affordable in the Exascale Era,
that (1) allow the chemical/physical processes of interest to be described more fully and
precisely and (2) are solvable effectively and efficiently by new algorithms on the complex
computing architectures available in the Exascale Era (for example, consider the definition
of the most appropriate preconditioners for iterative methods that are built based on the
nature of the reference chemical/physical problem).

This work is the result of an interdisciplinary collaboration since the two authors,
respectively, carry out research activities in the fields of material sciences (with particular
regard to bio-printing) and computational sciences (with particular regard to algorithms
in the HPC context). Then, this work can be considered the synthesis of two inventory
processes, the first relating to the numerical techniques already used for the simulation of
bioprinting processes, the second relating to the availability of versions of these techniques
capable of fully exploiting the new HPC resources in the Exascale Era.

Furthermore, this work intends to lay the foundations for the ambitious project of
building an inventory of “digital skills” and “mathematical knowledge” both necessary for
European “twin green-digital” transitions based on the case study of advanced materials for
health. This case study is taken from the Materials Innovation Markets (MIMs) (defined
by the Materials 2030 roadmap of the AMI2030 [193] initiative) which are the markets of
primary interest for Europe in terms of impacts (on people, planet, and prosperity), in
which advanced materials play a key enabling role. To achieve these goals, Europe intends

Appl. Sci. 2024, 14, 6110 75 of 83

to maximize the sustainability characteristics of new advanced materials and their visibility
using advanced digital technologies (the so-called “Materials Digitalization”) in the MIMs
mentioned above.

Unfortunately, due to a mere question of space, in the drafting of this work, some of
the most promising tools in the field of “digitalization of materials” were not included.
Among these tools should be cited the techniques relating to (1) the construction of
models starting from data (for example through the use of tools for “learning from data”,
see [56,57,194,195]) or (2) the possibility of correcting/defining first-principles-based mod-
els using data (see for instance the data assimilation approach [196,197]). Combinations of
both the techniques listed above should be investigated to implement hybrid approaches.
For example, Bradley et al. [8] describe some hybrid approaches to combine first-principles
models with data-driven methods, and Carlberg et al. [198] describe an approach to com-
bine the data-driven method with the Parallel-In-Time method. Furthermore, another
important topic to consider is that 3D bioprinting is evolving toward 4D Bioprinting, in
which 3D bioprinted tissues can adapt in terms of shape, size, or pattern over time, ac-
cording to external stimuli, adding another level of complexity to the process [199]. These
important aspects will be the main objective of our future work.

Author Contributions: Conceptualization, L.C and U.D.; methodology, L.C and U.D.; investigation,
L.C. and U.D.; writing—original draft preparation, L.C.; writing—review and editing, L.C. and U.D.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: Luisa Carracciuolo is member of the “Gruppo Nazionale Calcolo Scientifico-
Istituto Nazionale di Alta Matematica (GNCS-INdAM)”.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. D’Amora, U.; Ronca, A.; Scialla, S.; Soriente, A.; Manini, P.; Phua, J.W.; Ottenheim, C.; Pezzella, A.; Calabrese, G.; Raucci, M.G.;

et al. Bioactive Composite Methacrylated Gellan Gum for 3D-Printed Bone Tissue-Engineered Scaffolds. Nanomaterials 2023,
13, 772.

2. D’Amora, U.; Soriente, A.; Ronca, A.; Scialla, S.; Perrella, M.; Manini, P.; Phua, J.W.; Ottenheim, C.; Di Girolamo, R.; Pezzella, A.;
et al. Eumelanin from the Black Soldier Fly as Sustainable Biomaterial: Characterisation and Functional Benefits in Tissue-
Engineered Composite Scaffolds. Biomedicines 2022, 10, 2945.

3. Ferroni, L.; Gardin, C.; D’Amora, U.; Calzà, L.; Ronca, A.; Tremoli, E.; Ambrosio, L.; Zavan, B. Exosomes of mesenchymal stem
cells delivered from methacrylated hyaluronic acid patch improve the regenerative properties of endothelial and dermal cells.
Biomater. Adv. 2022, 139, 213000.

4. Zhang, L.; D’Amora, U.; Ronca, A.; Li, Y.; Mo, X.; Zhou, F.; Yuan, M.; Ambrosio, L.; Wu, J.; Raucci, M.G. In vitro and in vivo
biocompatibility and inflammation response of methacrylated and maleated hyaluronic acid for wound healing. RSC Adv. 2020,
10, 32183–32192.

5. Arjoca, S.; Robu, A.; Neagu, M.; Neagu, A. Mathematical and computational models in spheroid-based biofabrication. Acta
Biomater. 2023, 165, 125–139. https://doi.org/10.1016/j.actbio.2022.07.024.

6. Szychlinska, M.A.; Bucchieri, F.; Fucarino, A.; Ronca, A.; D’Amora, U. Three-dimensional bioprinting for cartilage tissue
engineering: insights into naturally-derived bioinks from land and marine sources. J. Funct. Biomater. 2022, 13, 118.

7. Lepowsky, E.; Muradoglu, M.; Tasoglu, S. Towards preserving post-printing cell viability and improving the resolution: Past,
present, and future of 3D bioprinting theory. Bioprinting 2018, 11, e00034. https://doi.org/10.1016/j.bprint.2018.e00034.

8. Bradley, W.; Kim, J.; Kilwein, Z.; Blakely, L.; Eydenberg, M.; Jalvin, J.; Laird, C.; Boukouvala, F. Perspectives on the integration
between first-principles and data-driven modeling. Comput. Chem. Eng. 2022, 166, 107898. https://doi.org/10.1016/j.
compchemeng.2022.107898.

9. Kovalchuk, S.V.; de Mulatier, C.; Krzhizhanovskaya, V.V.; Mikyška, J.; Paszyński, M.; Dongarra, J.; Sloot, P.M. Computation at the
Cutting Edge of Science. J. Comput. Sci. 2024, 102379. https://doi.org/10.1016/j.jocs.2024.102379.

10. Naghieh, S.; Chen, X. Printability—A key issue in extrusion-based bioprinting. J. Pharm. Anal. 2021, 11, 564–579. https:
//doi.org/10.1016/j.jpha.2021.02.001.

11. Gómez-Blanco, J.C.; Mancha-Sànchez, E.; Marcos, A.C.; Matamoros, M.; Dìaz-Parralejo, A.; Pagador, J.B. Bioink Temperature
Influence on Shear Stress, Pressure and Velocity Using Computational Simulation. Processes 2020, 8, 865. https://doi.org/10.339
0/pr8070865.

https://doi.org/10.1016/j.actbio.2022.07.024
https://doi.org/10.1016/j.bprint.2018.e00034
https://doi.org/10.1016/j.compchemeng.2022.107898
https://doi.org/10.1016/j.compchemeng.2022.107898
https://doi.org/10.1016/j.jocs.2024.102379
https://doi.org/10.1016/j.jpha.2021.02.001
https://doi.org/10.1016/j.jpha.2021.02.001
https://doi.org/10.3390/pr8070865
https://doi.org/10.3390/pr8070865

Appl. Sci. 2024, 14, 6110 76 of 83

12. Karvinen, J.; Kellomaki, M. Design aspects and characterization of hydrogel-based bioinks for extrusion-based bioprinting.
Bioprinting 2023, 32, e00274. https://doi.org/10.1016/j.bprint.2023.e00274.

13. Carlier, A.; Skvortsov, G.A.; Hafezi, F.; Ferraris, E.; Patterson, J.; Koç, B.; Oosterwyck, H.V. Computational model-informed design
and bioprinting of cell-patterned constructs for bone tissue engineering. Biofabrication 2016, 8, 025009. https://doi.org/10.1088/
1758-5090/8/2/025009.

14. Hull, S.M.; Brunel, L.G.; Heilshorn, S.C. 3D Bioprinting of Cell-Laden Hydrogels for Improved Biological Functionality. Adv.
Mater. 2021, 34, 2103691. https://doi.org/10.1002/adma.202103691.

15. Schwab, A.; Levato, R.; D’Este, M.; Piluso, S.; Eglin, D.; Malda, J. Printability and Shape Fidelity of Bioinks in 3D Bioprinting.
Chem. Rev. 2020, 120, 11028–11055. https://doi.org/10.1021/acs.chemrev.0c00084.

16. D’Amora, U.; D’Este, M.; Eglin, D.; Safari, F.; Sprecher, C.M.; Gloria, A.; De Santis, R.; Alini, M.; Ambrosio, L. Collagen density
gradient on three-dimensional printed poly(ϵ-caprolactone) scaffolds for interface tissue engineering. J. Tissue Eng. Regen. Med.
2018, 12, 321–329. https://doi.org/10.1002/term.2457.

17. Hölzl, K.; Lin, S.; Tytgat, L.; Vlierberghe, S.V.; Gu, L.; Ovsianikov, A. Bioink properties before, during and after 3D bioprinting.
Biofabrication 2016, 8, 032002. https://doi.org/10.1088/1758-5090/8/3/032002.

18. USA National Institute of Standards and Technology (NIST). Computational Science. Available online: https://www.nist.gov/
computational-science (accessed on 31 March 2024).

19. Carracciuolo, L.; Lapegna, M. Implementation of a non-linear solver on heterogeneous architectures. Concurr. Comput. Pract. Exp.
2018, 30, e4903. https://doi.org/10.1002/cpe.4903.

20. Mele, V.; Constantinescu, E.M.; Carracciuolo, L.; D’Amore, L. A PETSc parallel-in-time solver based on MGRIT algorithm.
Concurr. Comput. Pract. Exp. 2018, 30, e4928. https://doi.org/10.1002/cpe.4928.

21. Carracciuolo, L.; Mele, V.; Szustak, L. About the granularity portability of block-based Krylov methods in heterogeneous
computing environments. Concurr. Comput. Pract. Exp. 2021, 33, e6008. https://doi.org/10.1002/cpe.6008.

22. Carracciuolo, L.; Casaburi, D.; D’Amore, L.; D’Avino, G.; Maffettone, P.; Murli, A. Computational simulations of 3D large-scale
time-dependent viscoelastic flows in high performance computing environment. J. -Non-Newton. Fluid Mech. 2011, 166, 1382–1395.
https://doi.org/10.1016/j.jnnfm.2011.08.014.

23. Carracciuolo, L.; D’Amore, L.; Murli, A. Towards a parallel component for imaging in PETSc programming environment: A case
study in 3D echocardiography. Parallel Comput. 2006, 32, 67–83. https://doi.org/10.1016/j.parco.2005.09.001.

24. Murli, A.; D’Amore, L.; Carracciuolo, L.; Ceccarelli, M.; Antonelli, L. High performance edge-preserving regularization in 3D
SPECT imaging. Parallel Comput. 2008, 34, 115–132. https://doi.org/10.1016/j.parco.2007.12.004.

25. D’Amore, L.; Constantinescu, E.; Carracciuolo, L. A Scalable Space-Time Domain Decomposition Approach for Solving Large
Scale Nonlinear Regularized Inverse Ill Posed Problems in 4D Variational Data Assimilation. J. Sci. Comput. 2022, 91, 59.
https://doi.org/10.1007/s10915-022-01826-7.

26. Foster, I. Designing and Building Parallel Programs: Concepts and Tools for Parallel Software Engineering; Addison-Wesley Longman
Publishing Co., Inc.: Boston, MA, USA, 1995.

27. Balay, S.; Abhyankar, S.; Adams, M.F.; Benson, S.; Brown, J.; Brune, P.; Buschelman, K.; Constantinescu, E.M.; Dalcin, L.; Dener, A.;
et al. PETSc Web Page. Available online: https://petsc.org/ (accessed on 31 March 2024).

28. The Trilinos Project Web Page. Available online: https://trilinos.org (accessed on 31 March 2024).
29. The German Priority Programme “Software for Exascale Computing” (SPPEXA) Web Page. Available online: http://www.

sppexa.de/ (accessed on 31 March 2024).
30. Nasrollahzadeh, N.; Applegate, L.A.; Pioletti, D.P. Development of an Effective Cell Seeding Technique: Simulation, Implementa-

tion, and Analysis of Contributing Factors. Tissue Eng. Part Methods 2017, 23, 485–496. https://doi.org/10.1089/ten.tec.2017.0108.
31. Olivares, A.L.; Lacroix, D. Simulation of Cell Seeding within a Three-Dimensional Porous Scaffold: A Fluid-Particle Analysis.

Tissue Eng. Part Methods 2012, 18, 624–631. https://doi.org/10.1089/ten.tec.2011.0660.
32. Dechriste, G.; Fehrenbach, J.; Griseti, E.; Lobjois, V.; Poignard, C. Viscoelastic modeling of the fusion of multicellular tumor

spheroids in growth phase. J. Theor. Biol. 2018, 454, 102–109. https://doi.org/10.1016/j.jtbi.2018.05.005.
33. Reid, J.A.; Mollica, P.A.; Johnson, G.D.; Ogle, R.C.; Bruno, R.D.; Sachs, P.C. Accessible bioprinting: Adaptation of a low-cost

3D-printer for precise cell placement and stem cell differentiation. Biofabrication 2016, 8, 025017. https://doi.org/10.1088/1758-5
090/8/2/025017.

34. Li, M.; Tian, X.; Schreyer, D.J.; Chen, X. Effect of needle geometry on flow rate and cell damage in the dispensing-based
biofabrication process. Biotechnol. Prog. 2011, 27, 1777–1784. https://doi.org/10.1002/btpr.679.

35. Silva, C.; Cortres-Rodriguez, C.J.; Hazur, J.; Reakasame, S.; Boccaccini, A.R. Rational Design of a Triple-Layered Coaxial
Extruder System: In silico and in vitro Evaluations Directed Toward Optimizing Cell Viability. Int. J. Bioprinting 2020, 6, 282.
https://doi.org/10.18063/ijb.v6i4.282.

36. Sego, T.J.; Kasacheuski, U.; Hauersperger, D.; Tovar, A.; Moldovan, N.I.. A heuristic computational model of basic cellular
processes and oxygenation during spheroid-dependent biofabrication. Biofabrication 2017, 9, 024104. https://doi.org/10.1088/17
58-5090/aa6ed4.

37. Li, M.; Tian, X.; Kozinski, J.A.; Chen, X.; Hwang, D.K. Modeling Mechanical Cell Damage in the Bioprinting Process Employing a
Conical Needle. J. Mech. Med. Biol. 2015, 15, 1550073. https://doi.org/10.1142/S0219519415500736.

https://doi.org/10.1016/j.bprint.2023.e00274
https://doi.org/10.1088/1758-5090/8/2/025009
https://doi.org/10.1088/1758-5090/8/2/025009
https://doi.org/10.1002/adma.202103691
https://doi.org/10.1021/acs.chemrev.0c00084
https://doi.org/10.1002/term.2457
https://doi.org/10.1088/1758-5090/8/3/032002
https://www.nist.gov/computational-science
https://www.nist.gov/computational-science
https://doi.org/10.1002/cpe.4903
https://doi.org/10.1002/cpe.4928
https://doi.org/10.1002/cpe.6008
https://doi.org/10.1016/j.jnnfm.2011.08.014
https://doi.org/10.1016/j.parco.2005.09.001
https://doi.org/10.1016/j.parco.2007.12.004
https://doi.org/10.1007/s10915-022-01826-7
https://petsc.org/
https://trilinos.org
http://www.sppexa.de/
http://www.sppexa.de/
https://doi.org/10.1089/ten.tec.2017.0108
https://doi.org/10.1089/ten.tec.2011.0660
https://doi.org/10.1016/j.jtbi.2018.05.005
https://doi.org/10.1088/1758-5090/8/2/025017
https://doi.org/10.1088/1758-5090/8/2/025017
https://doi.org/10.1002/btpr.679
https://doi.org/10.18063/ijb.v6i4.282
https://doi.org/10.1088/1758-5090/aa6ed4
https://doi.org/10.1088/1758-5090/aa6ed4
https://doi.org/10.1142/S0219519415500736

Appl. Sci. 2024, 14, 6110 77 of 83

38. Liravi, F.; Darleux, R.; Toyserkani, E. Additive manufacturing of 3D structures with non-Newtonian highly viscous fluids: Finite
element modeling and experimental validation. Addit. Manuf. 2017, 13, 113–123. https://doi.org/10.1016/j.addma.2016.10.008.

39. Samanipour, R.; Wang, Z.; Ahmadi, A.; Kim, K. Experimental and computational study of microfluidic flow-focusing generation
of gelatin methacrylate hydrogel droplets. J. Appl. Polym. Sci. 2016, 133, 43701. https://doi.org/10.1002/app.43701.

40. Prendergast, M.E.; Burdick, J.A. Computational Modeling and Experimental Characterization of Extrusion Printing into
Suspension Baths. Adv. Healthc. Mater. 2021, 11, 2101679. https://doi.org/10.1002/adhm.202101679.

41. Carlier, A.; Geris, L.; Bentley, K.; Carmeliet, G.; Carmeliet, P.; Van Oosterwyck, H. Correction: MOSAIC: A Multiscale Model of
Osteogenesis and Sprouting Angiogenesis with Lateral Inhibition of Endothelial Cells. PLoS Comput. Biol. 2013, 9, e1002724.
https://doi.org/10.1371/annotation/38264a13-d4b5-49cd-b54e-47330bb19fe9.

42. Gironi, P.; Petraro, L.; Santoni, S.; Dede’, L.; Colosimo, B.M. A computational model of cell viability and proliferation of extrusion-
based 3D-bioprinted constructs during tissue maturation process. Int. J. Bioprinting 2023, 9, 741. https://doi.org/10.18063/ijb.741.

43. Göhl, J.; Markstedt, K.; Mark, A.; Håkansson, K.; Gatenholm, P.; Edelvik, F. Simulations of 3D bioprinting: Predicting
bioprintability of nanofibrillar inks. Biofabrication 2018, 10, 034105. https://doi.org/10.1088/1758-5090/aac872.

44. Sun, Y.; Wang, Q. Modeling and simulations of multicellular aggregate self-assembly in biofabrication using kinetic Monte Carlo
methods. Soft Matter 2013, 9, 2172–2186. https://doi.org/10.1039/C2SM27090K.

45. Jakab, K.; Norotte, C.; Damon, B.; Marga, F.; Neagu, A.; Besch-Williford, C.L.; Kachurin, A.; Church, H.K.; Park, H.; Mironov, V.;
et al. Tissue Engineering by Self-Assembly of Cells Printed into Topologically Defined Structures. Tissue Eng. Part A 2008,
14, 413–421. https://doi.org/10.1089/tea.2007.0173.

46. Cristea, A.; Neagu, A. Shape changes of bioprinted tissue constructs simulated by the Lattice Boltzmann method. Comput. Biol.
Med. 2016, 70, 80–87. https://doi.org/10.1016/j.compbiomed.2015.12.020.

47. Shafiee, A.; McCune, M.; Forgacs, G.; Kosztin, I. Post-deposition bioink self-assembly: A quantitative study. Biofabrication 2015,
7, 045005. https://doi.org/10.1088/1758-5090/7/4/045005.

48. McCune, M.; Shafiee, A.; Forgacs, G.; Kosztin, I. Predictive modeling of post bioprinting structure formation. Soft Matter 2014,
10, 1790–1800. https://doi.org/10.1039/C3SM52806E.

49. Flenner, E.; Marga, F.; Neagu, A.; Kosztin, I.; Forgacs, G. Relating Biophysical Properties Across Scales. In Multiscale Modeling of
Developmental Systems; Current Topics in Developmental Biology Series; Schnell, S., Maini, P.K., Newman, S.A., Newman, T.J., Ed.;
Academic Press: Cambridge, MA, USA, 2008; Volume 81, pp. 461–483. https://doi.org/10.1016/S0070-2153(07)81016-7.

50. Mohammadrezaei, D.; Moghimi, N.; Vandvajdi, S.; Powathil, G.; Hamis, S.; Kohandel, M. Predicting and elucidating the
post-printing behavior of 3D printed cancer cells in hydrogel structures by integrating in-vitro and in-silico experiments. Sci. Rep.
2023, 13, 1211. https://doi.org/10.1038/s41598-023-28286-9.

51. Kuan, H.S.; Pönisch, W.; Jülicher, F.; Zaburdaev, V. Continuum Theory of Active Phase Separation in Cellular Aggregates. Phys.
Rev. Lett. 2021, 126, 018102. https://doi.org/10.1103/PhysRevLett.126.018102.

52. Beaune, G.; Sinkkonen, L.; Gonzalez-Rodriguez, D.; Timonen, J.V.; Brochard-Wyart, F. Fusion Dynamics of Hybrid Cell-
Microparticle Aggregates: A Jelly Pearl Model. Langmuir 2022, 38, 5296–5306. https://doi.org/10.1021/acs.langmuir.1c02949.

53. Aguilar, I.N.; Smith, L.J.; Olivos, D. J., III; Chu, T.M.G.; Kacena, M.A.; Wagner, D.R. Scaffold-free bioprinting of mesenchymal
stem cells with the regenova printer: Optimization of printing parameters. Bioprinting 2019, 15, e00048. https://doi.org/10.1016/
j.bprint.2019.e00048.

54. Semple, J.L.; Woolridge, N.; Lumsden, C.J. Review: In Vitro, In Vivo, In Silico: Computational Systems in Tissue Engineering and
Regenerative Medicine. Tissue Eng. 2005, 11, 341–356. https://doi.org/10.1089/ten.2005.11.341.

55. Bardini, R.; Di Carlo, S. Computational methods for biofabrication in tissue engineering and regenerative medicine—A literature
review. Comput. Struct. Biotechnol. J. 2024, 23, 601–616. https://doi.org/10.1016/j.csbj.2023.12.035.

56. Xu, H.; Liu, Q.; Casillas, J.; Mcanally, M.; Mubtasim, N.; Gollahon, L.S.; Wu, D.; Xu, C. Prediction of cell viability in dynamic
optical projection stereolithography-based bioprinting using machine learning. J. Intell. Manuf. 2022, 33, 995–1005. https:
//doi.org/10.1007/s10845-020-01708-.

57. Lee, J.; Oh, S.J.; An, S.H.; Kim, W.D.; Kim, S.H. Machine learning-based design strategy for 3D printable bioink: elastic modulus
and yield stress determine printability. Biofabrication 2020, 12, 035018. https://doi.org/10.1088/1758-5090/ab8707.

58. Peskin, C.S. The immersed boundary method. Acta Numer. 2002, 11, 479–517. https://doi.org/10.1017/S0962492902000077.
59. Osher, S.; Fedkiw, R.P. Level Set Methods: An Overview and Some Recent Results. J. Comput. Phys. 2001, 169, 463–502.

https://doi.org/10.1006/jcph.2000.6636.
60. Gibou, F.; Fedkiw, R.; Osher, S. A review of level-set methods and some recent applications. J. Comput. Phys. 2018, 353, 82–109.

https://doi.org/10.1016/j.jcp.2017.10.006.
61. Brackbill, J.; Kothe, D.; Zemach, C. A continuum method for modeling surface tension. J. Comput. Phys. 1992, 100, 335–354.

https://doi.org/10.1016/0021-9991(92)90240-Y.
62. Cherizol, R.; Sain, M.; Tjong, J. Review of Non-Newtonian Mathematical Models for Rheological Characteristics of Viscoelastic

Composites. Green Sustain. Chem. 2015, 5, 6–14. https://doi.org/10.4236/gsc.2015.51002.
63. Nair, K.; Gandhi, M.; Khalil, S.; Yan, K.C.; Marcolongo, M.; Barbee, K.; Sun, W. Characterization of cell viability during bioprinting

processes. Biotechnol. J. 2009, 4, 1168–1177. https://doi.org/10.1002/biot.200900004.
64. Burova, I.; Wall, I.; Shipley, R.J. Mathematical and computational models for bone tissue engineering in bioreactor systems. J.

Tissue Eng. 2019, 10, 2041731419827922. https://doi.org/10.1177/2041731419827922.

https://doi.org/10.1016/j.addma.2016.10.008
https://doi.org/10.1002/app.43701
https://doi.org/10.1002/adhm.202101679
https://doi.org/10.1371/annotation/38264a13-d4b5-49cd-b54e-47330bb19fe9
https://doi.org/10.18063/ijb.741
https://doi.org/10.1088/1758-5090/aac872
https://doi.org/10.1039/C2SM27090K
https://doi.org/10.1089/tea.2007.0173
https://doi.org/10.1016/j.compbiomed.2015.12.020
https://doi.org/10.1088/1758-5090/7/4/045005
https://doi.org/10.1039/C3SM52806E
https://doi.org/10.1016/S0070-2153(07)81016-7
https://doi.org/10.1038/s41598-023-28286-9
https://doi.org/10.1103/PhysRevLett.126.018102
https://doi.org/10.1021/acs.langmuir.1c02949
https://doi.org/10.1016/j.bprint.2019.e00048
https://doi.org/10.1016/j.bprint.2019.e00048
https://doi.org/10.1089/ten.2005.11.341
https://doi.org/10.1016/j.csbj.2023.12.035
https://doi.org/10.1007/s10845-020-01708-
https://doi.org/10.1007/s10845-020-01708-
https://doi.org/10.1088/1758-5090/ab8707
https://doi.org/10.1017/S0962492902000077
https://doi.org/10.1006/jcph.2000.6636
https://doi.org/10.1016/j.jcp.2017.10.006
https://doi.org/10.1016/0021-9991(92)90240-Y
https://doi.org/10.4236/gsc.2015.51002
https://doi.org/10.1002/biot.200900004
https://doi.org/10.1177/2041731419827922

Appl. Sci. 2024, 14, 6110 78 of 83

65. Flenner, E.; Janosi, L.; Barz, B.; Neagu, A.; Forgacs, G.; Kosztin, I. Kinetic Monte Carlo and cellular particle dynamics simulations
of multicellular systems. Phys. Rev. E 2012, 85, 031907. https://doi.org/10.1103/PhysRevE.85.031907.

66. Kosztin, I.; Vunjak-Novakovic, G.; Forgacs, G. Colloquium: Modeling the dynamics of multicellular systems: Application to
tissue engineering. Rev. Mod. Phys. 2012, 84, 1791–1805. https://doi.org/10.1103/RevModPhys.84.1791.

67. Yang, X.; Mironov, V.; Wang, Q. Modeling fusion of cellular aggregates in biofabrication using phase field theories. J. Theor. Biol.
2012, 303, 110–118. https://doi.org/10.1016/j.jtbi.2012.03.003.

68. Plan, E.L.C.M., VI; Yeomans, J.M.; Doostmohammadi, A. Active matter in a viscoelastic environment. Phys. Rev. Fluids 2020,
5, 023102. https://doi.org/10.1103/PhysRevFluids.5.023102.

69. Bonchev, D.; Thomas, S.; Apte, A.; Kier, L.B. Cellular automata modelling of biomolecular networks dynamics. SAR QSAR
Environ. Res. 2010, 21, 77–102. https://doi.org/10.1080/10629360903568580.

70. A Supercomputing Journey Inspired by Curiosity—History of Cray Supercomputers. Available online: https://www.hpe.com/
uk/en/compute/hpc/cray.html (accessed on 31 March 2024).

71. Reed, D.A.; Dongarra, J. Exascale Computing and Big Data. Commun. ACM 2015, 58, 56–68. https://doi.org/10.1145/2699414.
72. Edelman, A.. Chapter 6 of the selected Lecture Notes from Applied Parallel Computing (SMA 5505) course. Massachusetts

Institute of Technology. Parallel Machines. Available online: https://dspace.mit.edu/bitstream/handle/1721.1/77902/18-337j-
spring-2005/contents/lecture-notes/chapter_6.pdf (accessed on 31 March 2024).

73. Becker, D.J.; Sterling, T.; Savarese, D.; Dorband, J.E.; Ranawak, U.A.; Packer, C.V. BEOWULF: A Parallel Workstation For
Scientific Computation. In Proceedings of the 24th International Conference on Parallel Processing, Urbana-Champain, IL, USA,
14–18 August 1995; CRC Press: Boca Raton, FL, USA, 1995; pp. 11–14.

74. Gara, A.; Blumrich, M.A.; Chen, D.; Chiu, G.L.; Coteus, P.; Giampapa, M.; Haring, R.A.; Heidelberger, P.; Hoenicke, D.; Kopcsay,
G.V.; et al. Overview of the Blue Gene/L system architecture. IBM J. Res. Dev. 2005, 49, 195–212. https://doi.org/10.1147/rd.492.
0195.

75. Tuomi, I. The Lives and Death of Moore’s Law. First Monday 2002, 7, 11. https://doi.org/10.5210/fm.v7i11.1000.
76. Petitet, A.; Whaley, R.C.; Dongarra, J.J.; Cleary, A. A Portable Implementation of the High-Performance Linpack Benchmark for

Distributed-Memory Computers; Innovative Computing Laboratory: Knoxville, TN, USA, 2000 Available online: https://icl.utk.
edu/hpl/index.html (accessed on 31 March 2024).

77. Top 500—The List. Available online: https://www.top500.org/ (accessed on 31 March 2024).
78. Top 500 List—June 2022. Available online: https://www.top500.org/lists/top500/2022/06/ (accessed on 31 March 2024).
79. Geist, A.; Lucas, R. Major Computer Science Challenges At Exascale. Int. J. High Perform. Comput. Appl. 2009, 23, 427–436.

https://doi.org/10.1177/1094342009347445.
80. Chen, W. The demands and challenges of Exascale computing: An interview with Zuoning Chen. Natl. Sci. Rev. 2016, 3, 64–67.

https://doi.org/10.1093/nsr/nww012.
81. Kumar, V.; Gupta, A. Analyzing Scalability of Parallel Algorithms and Architectures. J. Parallel Distrib. Comput. 1994, 22, 379–391.

https://doi.org/10.1006/jpdc.1994.1099.
82. Kwiatkowski, J. Evaluation of Parallel Programs by Measurement of Its Granularity. In Proceedings of the Parallel Processing

and Applied Mathematics, Naleczow, Poland, 9–12 September 2001; Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J.,
Eds.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 145–153. https://doi.org/10.1007/3-540-48086-2_16.

83. European Union. The EU Enters the Exascale Era with the Announcement of New Supercomputing Hosting Sites. Available
online: https://digital-strategy.ec.europa.eu/en/news/eu-enters-Exascale-era-announcement-new-supercomputing-hosting-
sites (accessed on 31 March 2024).

84. Matsuoka, S. To Exascale and Beyond. Japan RIKEN Center for Computational Science. Available online: https://www.riken.jp/
en/news_pubs/research_news/rr/2019spring/ (accessed on 31 March 2024).

85. US Exascale Computing Project. The Office of Science (SC) and the National Nuclear Security Administration (NNSA) organiza-
tions of U.S. Department of Energy (DOE). Available online: https://www.Exascaleproject.org/ (accessed on 31 March 2024).

86. Barone, G.B.; Boccia, V.; Bottalico, D.; Carracciuolo, L. SCoPE@Scuola: (In)-formative Paths on Topics Related with High
Performance, Parallel and Distributed Computing. In Proceedings of the Euro-Par 2017: Parallel Processing Workshops,
Santiago de Compostela, Spain, 28–29 August 2017; Springer International Publishing: Berlin/Heidelberg, Germany, 2018;
pp. 191–202. https://doi.org/10.1007/978-3-319-75178-8_16.

87. Yelick, K. Beyond Exascale Computing. Available online: https://www.isc-hpc.com/conference-keynote-2024.html (accessed on
13 May 2024).

88. Yelick, K. Beyond Exascale Computing. Available online: https://people.eecs.berkeley.edu/~yelick/talks/exascale/PostExascale-
ICPP2023.pdf (accessed on 20 May 2024).

89. National Academies of Sciences, Engineering, and Medicine. Charting a Path in a Shifting Technical and Geopolitical Landscape:
Post-Exascale Computing for the National Nuclear Security Administration; The National Academies Press: Washington, DC, USA,
2023. https://doi.org/10.17226/26916.

https://doi.org/10.1103/PhysRevE.85.031907
https://doi.org/10.1103/RevModPhys.84.1791
https://doi.org/10.1016/j.jtbi.2012.03.003
https://doi.org/10.1103/PhysRevFluids.5.023102
https://doi.org/10.1080/10629360903568580
https://www.hpe.com/uk/en/compute/hpc/cray.html
https://www.hpe.com/uk/en/compute/hpc/cray.html
https://doi.org/10.1145/2699414
https://dspace.mit.edu/bitstream/handle/1721.1/77902/18-337j-spring-2005/contents/lecture-notes/chapter_6.pdf
https://dspace.mit.edu/bitstream/handle/1721.1/77902/18-337j-spring-2005/contents/lecture-notes/chapter_6.pdf
https://doi.org/10.1147/rd.492.0195
https://doi.org/10.1147/rd.492.0195
https://doi.org/10.5210/fm.v7i11.1000
https://icl.utk.edu/hpl/index.html
https://icl.utk.edu/hpl/index.html
https://www.top500.org/
https://www.top500.org/lists/top500/2022/06/
https://doi.org/10.1177/1094342009347445
https://doi.org/10.1093/nsr/nww012
https://doi.org/10.1006/jpdc.1994.1099
https://doi.org/10.1007/3-540-48086-2_16
https://digital-strategy.ec.europa.eu/en/news/eu-enters-Exascale-era-announcement-new-supercomputing-hosting-sites
https://digital-strategy.ec.europa.eu/en/news/eu-enters-Exascale-era-announcement-new-supercomputing-hosting-sites
https://www.riken.jp/en/news_pubs/research_news/rr/2019spring/
https://www.riken.jp/en/news_pubs/research_news/rr/2019spring/
https://www.Exascaleproject.org/
https://doi.org/10.1007/978-3-319-75178-8_16
https://www.isc-hpc.com/conference-keynote-2024.html
https://people.eecs.berkeley.edu/~yelick/talks/exascale/PostExascale-ICPP2023.pdf
https://people.eecs.berkeley.edu/~yelick/talks/exascale/PostExascale-ICPP2023.pdf
https://doi.org/10.17226/26916

Appl. Sci. 2024, 14, 6110 79 of 83

90. Dongarra, J.; Deelman, E.; Hey, T.; Matsuoka, S.; Sarakar, V.; Bell, G.; Foster, I.; Keyes, D.; Kranzlmueller, D.; Lucas, B.; et al. Can the
United States Maintain Its Leadership in High-Performance Computing? A Report from the ASCAC Subcommittee on American
Competitiveness and Innovation to the ASCR Office. Report, The Advanced Scientific Computing Advisory Committee (ASCAC)
Subcommittee on American Competitiveness and Innovation: Washington, DC, USA, 2023. Available online: https://science.osti.
gov/-/media/ascr/ascac/pdf/meetings/202306/ASCAC_Subcommittee_on_American_Competitiveness_202306.pdf (accessed
on 20 May 2024).

91. Burini, D.; Chouhad, N. A multiscale view of nonlinear diffusion in biology: From cells to tissues. Math. Model. Methods Appl. Sci.
2019, 29, 791–823. https://doi.org/10.1142/S0218202519400062.

92. Fish, J.; Wagner, G.J.; Keten, S. Mesoscopic and multiscale modelling in materials. Nat. Mater. 2021, 20, 774–786. https:
//doi.org/10.1038/s41563-020-00913-0.

93. Amani, A.; Balcàzar, N.; Naseri, A.; Rigola, J. A numerical approach for non-Newtonian two-phase flows using a conservative
level-set method. Chem. Eng. J. 2020, 385, 123896. https://doi.org/10.1016/j.cej.2019.123896.

94. Ahmadi, M.; Farsani, A. CFD simulation of non-Newtonian two-phase fluid flow through a channel with a cavity. Therm. Sci.
2018, 2018, 151. https://doi.org/10.2298/TSCI180102151A.

95. Irgens, F. Rheology and Non-Newtonian Fluids; Springer: Berlin/Heidelberg, Germany, 2014. https://doi.org/10.1007/978-3-319-
01053-3.

96. Bush, J. Surface tension. In New Trends in the Physics and Mechanics of Biological Systems: Lecture Notes of the Les Houches
Summer School: July 2009; Oxford University Press: Oxford, UK, 2011; Volume 92, pp. 27–64. https://doi.org/10.1093/acprof:
oso/9780199605835.003.0002.

97. López-Herrera, J.; Popinet, S.; Castrejón-Pita, A. An Adaptive Solver for Viscoelastic Incompressible Two-phase Problems
Applied to the Study of the Splashing of Weakly viscoelastic droplets. J. -Non-Newton. Fluid Mech. 2019, 264, 144–158.
https://doi.org/10.1016/j.jnnfm.2018.10.012.

98. Wielage, K. Analysis of Non-Newtonian Two-Phase Flows. Ph.D. Thesis, University of Paderborn, Paderborn, Germany, 2005.
Available online: https://d-nb.info/978191463/34 (accessed on 31 March 2024).

99. Keslerova, R.; Reznicek, H.; Padelek, T. Numerical modelling of generalized Newtonian fluids in bypass tube. Adv. Comput.
Math. 2019, 45, 2047–2063. https://doi.org/10.1007/s10444-019-09684-y.

100. Lagrangian and Eulerian Specification of the Flow Field—Wikipedia Page. Available online: https://en.wikipedia.org/wiki/
Lagrangian_and_Eulerian_specification_of_the_flow_field#cite_note-Batchelor-1 (accessed on 31 March 2024).

101. Bhalla, A.P.S.; Bale, R.; Griffith, B.E.; Patankar, N.A. A unified mathematical framework and an adaptive numerical method for
fluid–structure interaction with rigid, deforming, and elastic bodies. J. Comput. Phys. 2013, 250, 446–476. https://doi.org/10.101
6/j.jcp.2013.04.033.

102. Mittal, R.; Iaccarino, G. Immersed Boundary Methods. Annu. Rev. Fluid Mech. 2005, 37, 239–261. https://doi.org/10.1146/
annurev.fluid.37.061903.175743.

103. Zhang, L.; Gerstenberger, A.; Wang, X.; Liu, W.K. Immersed Finite Element Method. Comput. Methods Appl. Mech. Eng. 2004,
193, 2051–2067. https://doi.org/10.1016/j.cma.2003.12.044.

104. Wang, X.; Liu, W.K. Extended immersed boundary method using FEM and RKPM. Comput. Methods Appl. Mech. Eng. 2004,
193, 1305–1321. https://doi.org/10.1016/j.cma.2003.12.024.

105. Balcazar, N.; Jofre, L.; Lehmkuhl, O.; Castro, J.; Rigola, J. A finite-volume/level-set method for simulating two-phase flows on
unstructured grids. Int. J. Multiph. Flow 2014, 64, 55–72. https://doi.org/10.1016/j.ijmultiphaseflow.2014.04.008.

106. Olsson, E.; Kreiss, G. A conservative level set method for two phase flow. J. Comput. Phys. 2005, 210, 225–246. https:
//doi.org/10.1016/j.jcp.2005.04.007.

107. Olsson, E.; Kreiss, G.; Zahedi, S. A conservative level set method for two phase flow II. J. Comput. Phys. 2007, 225, 785–807.
https://doi.org/10.1016/j.jcp.2006.12.027.

108. O’Dea, R.; Byrne, H.; Waters, S. Continuum Modelling of In Vitro Tissue Engineering: A Review. In Computational Modeling in
Tissue Engineering; Springer: Berlin/Heidelberg, Germany, 2013; pp. 229–266. https://doi.org/10.1007/8415_2012_140.

109. Extracellular Matrix—Wikipedia Page. Available online: https://en.wikipedia.org/wiki/Extracellular_matrix (accessed on
31 March 2024).

110. Dongarra, J.; Sullivan, F. Guest Editors’ Introduction: The Top 10 Algorithms. Comput. Sci. Eng. 2000, 2, 22–23. https:
//doi.org/10.1109/MCISE.2000.814652.

111. Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. Equation of State Calculations by Fast Computing
Machines. J. Chem. Phys. 2004, 21, 1087–1092. https://doi.org/10.1063/1.1699114.

112. Richey, M. The Evolution of Markov Chain Monte Carlo Methods. Am. Math. Mon. 2010, 117, 383–413. https://doi.org/10.416
9/000298910X485923.

113. Larget, B. Introduction to Markov Chain Monte Carlo Methods in Molecular Evolution. In Statistical Methods in Molecular
Evolution; Springer: New York, NY, USA, 2005; pp. 45–62. https://doi.org/10.1007/0-387-27733-1_3.

114. Norris, J.R. Markov Chains; Cambridge Series in Statistical and Probabilistic Mathematics Series; Cambridge University Press:
Cambridge, UK, 1997. https://doi.org/10.1017/CBO9780511810633.

115. Hastings, W.K. Monte Carlo Sampling Methods Using Markov Chains and Their Applications. Biometrika 1970, 57, 97–109.
https://doi.org/10.2307/2334940.

https://science.osti.gov/-/media/ascr/ascac/pdf/meetings/202306/ASCAC_Subcommittee_on_American_Competitiveness_202306.pdf
https://science.osti.gov/-/media/ascr/ascac/pdf/meetings/202306/ASCAC_Subcommittee_on_American_Competitiveness_202306.pdf
https://doi.org/10.1142/S0218202519400062
https://doi.org/10.1038/s41563-020-00913-0
https://doi.org/10.1038/s41563-020-00913-0
https://doi.org/10.1016/j.cej.2019.123896
https://doi.org/10.2298/TSCI180102151A
https://doi.org/10.1007/978-3-319-01053-3
https://doi.org/10.1007/978-3-319-01053-3
https://doi.org/10.1093/acprof:oso/9780199605835.003.0002
https://doi.org/10.1093/acprof:oso/9780199605835.003.0002
https://doi.org/10.1016/j.jnnfm.2018.10.012
https://d-nb.info/978191463/34
https://doi.org/10.1007/s10444-019-09684-y
https://en.wikipedia.org/wiki/Lagrangian_and_Eulerian_specification_of_the_flow_field#cite_note-Batchelor-1
https://en.wikipedia.org/wiki/Lagrangian_and_Eulerian_specification_of_the_flow_field#cite_note-Batchelor-1
https://doi.org/10.1016/j.jcp.2013.04.033
https://doi.org/10.1016/j.jcp.2013.04.033
https://doi.org/10.1146/annurev.fluid.37.061903.175743
https://doi.org/10.1146/annurev.fluid.37.061903.175743
https://doi.org/10.1016/j.cma.2003.12.044
https://doi.org/10.1016/j.cma.2003.12.024
https://doi.org/10.1016/j.ijmultiphaseflow.2014.04.008
https://doi.org/10.1016/j.jcp.2005.04.007
https://doi.org/10.1016/j.jcp.2005.04.007
https://doi.org/10.1016/j.jcp.2006.12.027
https://doi.org/10.1007/8415_2012_140
https://en.wikipedia.org/wiki/Extracellular_matrix
https://doi.org/10.1109/MCISE.2000.814652
https://doi.org/10.1109/MCISE.2000.814652
https://doi.org/10.1063/1.1699114
https://doi.org/10.4169/000298910X485923
https://doi.org/10.4169/000298910X485923
https://doi.org/10.1007/0-387-27733-1_3
https://doi.org/10.1017/CBO9780511810633
https://doi.org/10.2307/2334940

Appl. Sci. 2024, 14, 6110 80 of 83

116. Barker, A.A. Monte Carlo Calculations of the Radial Distribution Functions for a Proton-electron Plasma. Aust. J. Phys. 1965,
18, 119–134. https://doi.org/10.1071/PH650119.

117. Landau, D.P.; Binder, K. A Guide to Monte Carlo Simulations in Statistical Physics, 4th ed.; Cambridge University Press:
Cambridge, UK, 2015.

118. Newman, T.J.. Modeling Multicellular Structures Using the Subcellular Element Model. In Single-Cell-Based Models in Biology and
Medicine; Birkhäuser: Basel, Switzerland, 2007; pp. 221–239. https://doi.org/10.1007/978-3-7643-8123-3_10.

119. van Kampen, N. Chapter IX—The Langevin Approach. In Stochastic Processes in Physics and Chemistry, 3rd ed.; North-Holland
Personal Library; Elsevier: Amsterdam, The Netherlands, 2007; pp. 219–243. https://doi.org/10.1016/B978-044452965-7/50012
-X.

120. Kier, L.B.; Seybold, P.G.; Cheng, C.-K. Modeling Chemical Systems Using Cellular Automata; Springer Science & Business Media:
Berlin/Heidelberg, Germany, 2005. https://doi.org/10.1007/1-4020-3690-6.

121. von Neumann, J. Theory of Self-Reproducing Automata; University of Illionois Press: Champain, IL, USA, 1966.
122. Ulam, S. Random processes and transformations. In Proceedings of the International Congress of Mathematicians,

Cambridge, MA, USA, 30 August–6 September 1950; American Mathematical Society: Providence, RI, USA, 1952; Volume 2,
pp. 264–275.

123. Wolfram, S. Cellular Automata. Los Alamos Sci. 1983, 9, 2–27.
124. Menshutina, N.V.; Kolnoochenko, A.V.; Lebedev, E.A. Cellular Automata in Chemistry and Chemical Engineering. Annu. Rev.

Chem. Biomol. Eng. 2020, 11, 87–108. https://doi.org/10.1146/annurev-chembioeng-093019-075250.
125. Reddy, J.N.; Gartling, D.K. The Finite Element Method in Heat Transfer and Fluid Dynamics: Third Edition; CRC Press:

Boca Raton, FL, USA, 2010. https://doi.org/10.1201/9781439882573.
126. Alves, M.A.; Oliveira, P.J.; Pinho, F.T.. Numerical Methods for Viscoelastic Fluid Flows. Annu. Rev. Fluid Mech. 2021, 53, 509–541.

https://doi.org/10.1146/annurev-fluid-010719-060107.
127. Chung, T. Computational Fluid Dynamics for Engineers; Cambridge University Press: Cambridge, UK, 2002. https://doi.org/10.101

7/CBO9780511606205.
128. Fontes, E. FEM vs. FVM. Available online: https://www.comsol.com/blogs/fem-vs-fvm (accessed on 31 March 2024).
129. Sjodin, B. What’s The Difference between FEM, FDM and FVM? Available online: https://www.machinedesign.com/3d-printing-

cad/fea-and-simulation/article/21832072/whats-the-difference-between-fem-fdm-and-fvm (accessed on 31 March 2024).
130. Hatami, M. Chapter 2—Weighted Residual Methods Principles and Modifications. In Weighted Residual Methods; Hatami, M., Ed.;

Academic Press: Cambridge, MA, USA, 2018; pp. 83–152. https://doi.org/10.1016/B978-0-12-813218-0.00002-9.
131. Baaijens, P.T.F. Mixed Finite Element Methods for viscoelastic flow analysis: A review. J. -Non-Newton. Fluid Mech. 1998,

79, 361–385. https://doi.org/10.1016/S0377-0257(98)00122-0.
132. Marchandise, E.; Geuzaine, P.; Chevaugeon, N.; Remacle, J.F. A stabilized Finite Element Method using a discontinuous level set

approach for the computation of bubble dynamics. J. Comput. Phys. 2007, 225, 949–974. https://doi.org/10.1016/j.jcp.2007.01.005.
133. Chen, T.; Minev, P.D.; Nandakumar, K. A projection scheme for incompressible multiphase flow using adaptive Eulerian grid. Int.

J. Numer. Methods Fluids 2004, 45, 1–19. https://doi.org/10.1002/fld.591.
134. Pillapakkam, S.; Singh, P. A Level-Set Method for Computing Solutions to Viscoelastic Two-Phase Flow. J. Comput. Phys. 2001,

174, 552–578. https://doi.org/10.1006/jcph.2001.6927.
135. Larson, M.G.; Bengzon, F. The Finite Element Method: Theory, Implementation, and Applications; Springer: Berlin/Heidelberg, Germany,

2013. https://doi.org/10.1007/978-3-642-33287-6.
136. Reddy, J.N. An Introduction to the Finite Element Method, 2nd ed.; McGraw-Hill Higher Education: Boca Raton, FL, USA, 1993.

ISBN: 9780070513556.
137. Gerald, C.; Wheatley, P. Applied Numerical Analysis; Featured Titles for Numerical Analysis; Pearson/Addison-Wesley:

London, UK, 2004.
138. Eymard, R.; Gallouët, T.; Herbin, R. Finite Volume Methods. In Handbook of Numerical Analysis; Lions, J.L., Ciarlet, P., Eds.;

Elsevier: Amsterdam, The Netherlands, 2000; Volume 7, pp. 713–1020. https://doi.org/10.1016/S1570-8659(00)07005-8.
139. Chen, L. Finite Volume Methods. In Lecture Notes for the Course Math 226: Computational PDEs; University of California: Irvine,

CA, USA. Available online: https://www.math.uci.edu/~chenlong/lectures.html (accessed on 31 March 2024).
140. Cai, Z. On the finite Volume element methods. Numer. Math. 1990, 58, 713–735. https://doi.org/10.1007/BF01385651.
141. Mazumder, S. Chapter 6—The Finite Volume Method (FVM). In Numerical Methods for Partial Differential Equations; Mazumder, S.,

Ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 277–338. https://doi.org/10.1016/B978-0-12-849894-1.00006-8.
142. Kumar, S. A Time Integration Scheme for Dynamic Problems. Ph.D. Thesis, Department of Mechanical Engineering, Indian

Institute of Technology Guwahati, Guwahati, India, 2015. https://doi.org/10.13140/RG.2.2.10053.93924.
143. Geradin, M.; Rixen, D. Mechanical Vibrations: Theory and Application to Structural Dynamics, 3rd ed.; John Wiley & Sons:

Hoboken, NJ, USA, 2015.
144. Higham, N.J. Accuracy and Stability of Numerical Algorithms; Society of Industrial and Applied Mathematics: Philadelphia, PA, USA,

1996.
145. Wriggers, P. Nonlinear Finite Element Methods; Springer: Berlin/Heidelberg, Germany, 2008. https://doi.org/10.1007/978-3-540-

71001-1.

https://doi.org/10.1071/PH650119
https://doi.org/10.1007/978-3-7643-8123-3_10
https://doi.org/10.1016/B978-044452965-7/50012-X
https://doi.org/10.1016/B978-044452965-7/50012-X
https://doi.org/10.1007/1-4020-3690-6
https://doi.org/10.1146/annurev-chembioeng-093019-075250
https://doi.org/10.1201/9781439882573
https://doi.org/10.1146/annurev-fluid-010719-060107
https://doi.org/10.1017/CBO9780511606205
https://doi.org/10.1017/CBO9780511606205
https://www.comsol.com/blogs/fem-vs-fvm
https://www.machinedesign.com/3d-printing-cad/fea-and-simulation/article/21832072/whats-the-difference-between-fem-fdm-and-fvm
https://www.machinedesign.com/3d-printing-cad/fea-and-simulation/article/21832072/whats-the-difference-between-fem-fdm-and-fvm
https://doi.org/10.1016/B978-0-12-813218-0.00002-9
https://doi.org/10.1016/S0377-0257(98)00122-0
https://doi.org/10.1016/j.jcp.2007.01.005
https://doi.org/10.1002/fld.591
https://doi.org/10.1006/jcph.2001.6927
https://doi.org/10.1007/978-3-642-33287-6
https://doi.org/10.1016/S1570-8659(00)07005-8
https://www.math.uci.edu/~chenlong/lectures.html
https://doi.org/10.1007/BF01385651
https://doi.org/10.1016/B978-0-12-849894-1.00006-8
https://doi.org/10.13140/RG.2.2.10053.93924
https://doi.org/10.1007/978-3-540-71001-1
https://doi.org/10.1007/978-3-540-71001-1

Appl. Sci. 2024, 14, 6110 81 of 83

146. Duff, I.S.; Erisman, A.M.; Reid, J.K. Direct Methods for Sparse Matrices, 2nd ed.; Oxford University Press: Oxford, UK, 2017.
https://doi.org/10.1093/acprof:oso/9780198508380.001.0001.

147. Golub, G.H.; Van Loan, C.F. Matrix Computations, 3rd ed.; The Johns Hopkins University Press: Baltimore, MD, USA, 1996.
148. Duff, I.S.; Reid, J.K. The Multifrontal Solution of Indefinite Sparse Symmetric Linear. ACM Trans. Math. Softw. 1983, 9, 302–325.

https://doi.org/10.1145/356044.356047.
149. Amestoy, P.; Buttari, A.; Duff, I.; Guermouche, A.; L’Excellent, J.Y.; Uçar, B., Multifrontal Method. In Encyclopedia of Parallel

Computing; Springer: Boston, MA, USA, 2011; pp. 1209–1216. https://doi.org/10.1007/978-0-387-09766-4_86.
150. Lawson, C.L.; Hanson, R.J.; Kincaid, D.R.; Krogh, F.T. Basic Linear Algebra Subprograms for Fortran Usage. ACM Trans. Math.

Softw. 1979, 5, 308–323. https://doi.org/10.1145/355841.355847.
151. van der Vorst, H.A.. Krylov subspace iteration. Comput. Sci. Eng. 2000, 2, 32–37. https://doi.org/10.1109/5992.814655.
152. Saad, Y. Iterative Methods for Sparse Linear Systems, 2nd ed.; Other Titles in Applied Mathematics, Society of Industrial and Applied

Mathematics: Philadelphia, PA, USA, 2003. https://doi.org/10.1137/1.9780898718003.
153. Dubrulle, A.A.; Weisstein, E.W. Hessenberg Matrix. From MathWorld—A Wolfram Web Resource. Available online: https:

//mathworld.wolfram.com/HessenbergMatrix.html (accessed on 31 March 2024).
154. Stüben, K. A review of algebraic Multigrid. J. Comput. Appl. Math. 2001, 128, 281–309. https://doi.org/10.1016/S0377-0427(00)0

0516-1.
155. Benzi, M.; Golub, G.H.; Liesen, J. Numerical Solution of Saddle Point Problems. Acta Numer. 2005, 14, 1–137. https:

//doi.org/10.1017/S0962492904000212.
156. Dongarra, J.; Hittinger, J.; Bell, J.; Chacon, L.; Falgout, R.; Heroux, M.; Hovland, P.; Ng, E.; Webster, C.; Wild, S. Applied Mathematics

Research for Exascale Computing; Technical Report LLNL-TR-651000; Lawrence Livermore National Laboratory (LLNL): Livermore,
CA, USA; 2014. https://doi.org/10.2172/1149042.

157. Ang, J.; Evans, K.; Geist, A.; Heroux, M.; Hovland, P.D.; Marques, O.; Curfman McInnes, L.; Ng, E.G.; Wild, S.M. Report on the
Workshop on Extreme-Scale Solvers: Transition to Future Architectures; Department of Energy, ASCR: Washington, DC, USA, 2012.
Available online: https://science.osti.gov/-/media/ascr/pdf/program-documents/docs/reportExtremeScaleSolvers2012.pdf
(accessed on 31 March 2024).

158. Khaleel, M.A. Scientific Grand Challenges: Crosscutting Technologies for Computing at the Exascale—February 2–4, 2010, Washington,
D.C.; Technical Report; Pacific Northwest National Laboratory (PNNL): Richland, WA, USA, 2011. https://doi.org/10.2172/1008
243.

159. Liu, W.K.; Park, H.S.; Karpov, E.G.; Farrell, D. Bridging Scale Method and Its Applications. In Meshfree Methods for Partial
Differential Equations III; Springer: Berlin/Heidelberg, Germany, 2007; pp. 185–205. https://doi.org/10.1007/978-3-540-46222-4_
11.

160. Park, H.S.; Liu, W.K. An introduction and tutorial on multiple-scale analysis in solids. Comput. Methods Appl. Mech. Eng. 2004,
193, 1733–1772. https://doi.org/10.1016/j.cma.2003.12.054.

161. Chacon, L.; Chen, G.; Knoll, D.A.; Newman, C.; Park, H.; Taitano, W.; Willert, J.A.; Womeldorff, G. Multiscale high-order/low-
order (HOLO) algorithms and applications. J. Comput. Phys. 2017, 330, 21–45. https://doi.org/10.1016/j.jcp.2016.10.069.

162. Keyes, D.E.; McInnes, L.C.; Woodward, C.; Gropp, W.; Myra, E.; Pernice, M.; Bell, J.; Brown, J.; Clo, A.; Connors, J.; et al.
Multiphysics simulations: Challenges and opportunities. Int. J. High Perform. Comput. Appl. 2013, 27, 4–83. https:
//doi.org/10.1177/1094342012468181.

163. HPC Wiki—Scaling. Available online: https://hpc-wiki.info/hpc/Scaling#Strong_or_Weak_Scaling (accessed on 1 March 2024).
164. Keyes, D.E. Exaflop/s: The why and the how. Comptes Rendus MéCanique 2011, 339, 70–77. https://doi.org/10.1016/j.crme.2010

.11.002.
165. Brown, P.N.; Hindmarsh, A.C. Matrix-Free Methods for Stiff Systems of ODE’s. SIAM J. Numer. Anal. 1986, 23, 610–638.

https://doi.org/10.1137/0723039.
166. Davies, T.; Karlsson, C.; Liu, H.; Ding, C.; Chen, Z. High performance linpack benchmark: a fault tolerant implementation

without checkpointing. In Proceedings of the International Conference on Supercomputing, Tucson, AZ, USA, 31 May–4 June
2011; pp. 162–171. https://doi.org/10.1145/1995896.1995923.

167. Brezinski, C.; Redivo Zaglia, M. Studies in Computational Mathematics 2. In Extrapolation Methods Theory and Practice; Studies in
Computational Mathematics Series; Elsevier: Amsterdam, The Netherlands, 1991; Volume 2. https://doi.org/10.1016/B978-0-4
44-88814-3.50001-5.

168. Hairer, E.; Norsett, S.P.; Wanner, G. Solving ordinary differential equations I: Nonstiff Problems; Springer: Berlin/Heidelberg, Germany,
1993. https://doi.org/10.1007/978-3-540-78862-1.

169. Althaus, K. Theory and Implementation of the Adaptive Explicit Midpoint Rule Including Order and Stepsize Control. Bachelor’s
Thesis, Department of Mathematics, Technische Universitat Munchen, Munchen, Germany, 2018. Available online: https:
//github.com/AlthausKonstantin/Extrapolation/blob/master/Bachelor%20Theseis.pdf (accessed on 1 March 2024).

170. Constantinescu, E.M.; Sandu, A. Extrapolated Implicit-Explicit Time Stepping. SIAM J. Sci. Comput. 2010, 31, 4452–4477.
https://doi.org/10.1137/080732833.

171. Constantinescu, E.M.; Sandu, A. Achieving Very High Order for Implicit Explicit Time Stepping: Extrapolation Methods; Report Preprint
ANL/ANL/MCS-TM-306; Argonne National Laboratory: Lemont, IL, USA, 2009. Available online: https://www.mcs.anl.gov/
uploads/cels/papers/TM-306.pdf (accessed on 1 March 2024).

https://doi.org/10.1093/acprof:oso/9780198508380.001.0001
https://doi.org/10.1145/356044.356047
https://doi.org/10.1007/978-0-387-09766-4_86
https://doi.org/10.1145/355841.355847
https://doi.org/10.1109/5992.814655
https://doi.org/10.1137/1.9780898718003
https://mathworld.wolfram.com/HessenbergMatrix.html
https://mathworld.wolfram.com/HessenbergMatrix.html
https://doi.org/10.1016/S0377-0427(00)00516-1
https://doi.org/10.1016/S0377-0427(00)00516-1
https://doi.org/10.1017/S0962492904000212
https://doi.org/10.1017/S0962492904000212
https://doi.org/10.2172/1149042
https://science.osti.gov/-/media/ascr/pdf/program-documents/docs/reportExtremeScaleSolvers2012.pdf
https://doi.org/10.2172/1008243
https://doi.org/10.2172/1008243
https://doi.org/10.1007/978-3-540-46222-4_11
https://doi.org/10.1007/978-3-540-46222-4_11
https://doi.org/10.1016/j.cma.2003.12.054
https://doi.org/10.1016/j.jcp.2016.10.069
https://doi.org/10.1177/1094342012468181
https://doi.org/10.1177/1094342012468181
https://hpc-wiki.info/hpc/Scaling#Strong_or_Weak_Scaling
https://doi.org/10.1016/j.crme.2010.11.002
https://doi.org/10.1016/j.crme.2010.11.002
https://doi.org/10.1137/0723039
https://doi.org/10.1145/1995896.1995923
https://doi.org/10.1016/B978-0-444-88814-3.50001-5
https://doi.org/10.1016/B978-0-444-88814-3.50001-5
https://doi.org/10.1007/978-3-540-78862-1
https://github.com/AlthausKonstantin/Extrapolation/blob/master/Bachelor%20Theseis.pdf
https://github.com/AlthausKonstantin/Extrapolation/blob/master/Bachelor%20Theseis.pdf
https://doi.org/10.1137/080732833
https://www.mcs.anl.gov/uploads/cels/papers/TM-306.pdf
https://www.mcs.anl.gov/uploads/cels/papers/TM-306.pdf

Appl. Sci. 2024, 14, 6110 82 of 83

172. Gander, M.J. 50 Years of Time Parallel Time Integration. In Proceedings of the Multiple Shooting and Time Domain Decomposition
Methods, Heidelberg, Germany, 6–8 May 2013; Carraro, T., Geiger, M., Körkel, S., Rannacher, R., Eds.; Springer: Cham,
Switzerland, 2015; pp. 69–113.

173. Gander, M.J.; Lunet, T.; Ruprecht, D.; Speck, R. A Unified Analysis Framework for Iterative Parallel-in-Time Algorithms. SIAM J.
Sci. Comput. 2023, 45, A2275–A2303. https://doi.org/10.1137/22M1487163.

174. Brune, P.R.; Knepley, M.G.; Smith, B.F.; Tu, X. Composing Scalable Nonlinear Algebraic Solvers. SIAM Rev. 2015, 57, 535–565.
https://doi.org/10.1137/130936725.

175. Balay, S.; Gropp, W.D.; McInnes, L.C.; Smith, B.F. Efficient Management of Parallelism in Object Oriented Numerical Software
Libraries. In Modern Software Tools in Scientific Computing; Arge, E., Bruaset, A.M., Langtangen, H.P., Eds.; Birkhäuser Press: Basel,
Switzerland, 1997, pp. 163–202.

176. Smith, B.; McInnes, L.C.; Constantinescu, E.; Adams, M.; Balay, S.; Brown, J.; Knepley, M.G.; .; Zhang, H. PETSc’s Software
Strategy for the Design Space of Composable Extreme-Scale Solvers. In Proceedings of the DOE Exascale Research Conference,
Portland, OR, USA, 16–18 April 2012; Report Preprint ANL/MCS-P2059-0312; Argonne National Laboratory: Lemont, IL, USA,
2012 Available online: http://www.mcs.anl.gov/uploads/cels/papers/P2059-0312.pdf (accessed on 31 March 2024).

177. Pawlowski, R.P.; Shadid, J.N.; Simonis, J.P.; Walker, H.F. Globalization Techniques for Newton–Krylov Methods and Applications
to the Fully Coupled Solution of the Navier–Stokes Equations. SIAM Rev. 2006, 48, 700–721. https://doi.org/10.1137/S0036144
504443511.

178. Dolean, V.; Gander, M.J.; Kheriji, W.; Kwok, F.; Masson, R. Nonlinear Preconditioning: How to Use a Nonlinear Schwarz Method
to Precondition Newton’s Method. SIAM J. Sci. Comput. 2016, 38, A3357–A3380. https://doi.org/10.1137/15M102887X.

179. Carson, E. Communication-Avoiding Krylov Subspace Methods in Theory and Practice. Technical Report No. UCB/EECS-2015-
179. Ph.D. Thesis, Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, CA, USA, 2015.
Available online: https://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-179.pdf (accessed on 31 March 2024).

180. Anzt, H.; Boman, E.; Falgout, R.; Ghysels, P.; Heroux, M.; Li, X.; Curfman McInnes, L.; Tran Mills, R.; Rajamanickam, S.; Rupp,
K.; et al. Preparing sparse solvers for Exascale computing. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2020, 378, 20190053.
https://doi.org/10.1098/rsta.2019.0053.

181. Abdelfattah, A.; Anzt, H.; Ayala, A.; Boman, E; Carson, E.; Cayrols, S.; Cojean, T.; Dongarra, J.; Falgout, R.; Gates, M.; et al.
Advances in Mixed Precision Algorithms: 2021 Edition; Technical Report LLNL-TR-825909; Lawrence Livermore National Lab.
(LLNL): Livermore, CA, USA, 2021. https://doi.org/10.2172/1814677.

182. Hoemmen, M. Communication-avoiding Krylov Subspace Methods. Technical Report No. UCB/EECS-2010-37. Ph.D. Thesis,
Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, CA, USA, 2010. Available online:
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-37.pdf (accessed on 31 March 2024).

183. Bai, Z.; Hu, D.; Reichel, L. A Newton basis GMRES implementation. IMA J. Numer. Anal. 1994, 14, 563–581. https:
//doi.org/10.1093/imanum/14.4.563.

184. Greengard, L.; Rokhlin, V. A fast algorithm for particle simulations. J. Comput. Phys. 1987, 73, 325–348. https://doi.org/10.1016/
0021-9991(87)90140-9.

185. Cipra, B.A. The Best of the 20th Century: Editors Name Top 10 Algorithms. SIAM News 2000, 33, 1–2.
186. Beatson, R.; Greengard, L. A Short Course on Fast Multipole Methods. Available online: http://math.nyu.edu/faculty/greengar/

shortcourse_fmm.pdf (accessed on 31 March 2024).
187. Martinsson, P.G. Fast Multipole Methods. In Encyclopedia of Applied and Computational Mathematics; Springer: Berlin/Heidelberg,

Germany, 2015; pp. 498–508. https://doi.org/10.1007/978-3-540-70529-1_448.
188. Fenn, M.; Steidl, G. FMM and H-matrices: A Short Introduction to the Basic Idea. 2002. Available online: https://madoc.bib.uni-

mannheim.de/744/ (accessed on 31 March 2024).
189. Hackbusch, W.; Grasedyck, L.; Börm, S. An introduction to hierarchical matrices. Math. Bohem. 2002, 127, 229–241. https:

//doi.org/10.21136/MB.2002.134156.
190. Weisstein, E.W. Binary Tree. From MathWorld—A Wolfram Web Resource. Available online: https://mathworld.wolfram.com/

BinaryTree.html (accessed on 31 March 2024).
191. Li, Y.; Mascagni, M.. Grid-Based Monte Carlo Application. In Proceedings of the Grid Computing—GRID 2002,

Baltimore, MD, USA, 18 November 2002; Springer: Berlin/Heidelberg, Germany, 2002; pp. 13–24. https://doi.org/10.1
007/3-540-36133-2_2.

192. Rosenthal, Jeffrey S. Parallel computing and Monte Carlo algorithms. Far East J. Theor. Stat. 2000, 4, 207–236. Available:
http://probability.ca/jeff/ftpdir/para.pdf.

193. Advanced Materials 2030 Initiative. Materials 2030 Manifesto—A Systemic Approach of Advanced Materials for Prosperity—A 2030
Perspective; EU Publications Office: Brussels, Belgium, 2022. Available online: https://research-and-innovation.ec.europa.eu/
system/files/2022-02/advanced-materials-2030-manifesto.pdf (accessed on 31 March 2024).

194. Abbadessa, A.; Landín, M.; Oude Blenke, E.; Hennink, W.E.; Vermonden, T. Two-component thermosensitive hydrogels: Phase
separation affecting rheological behavior. Eur. Polym. J. 2017, 92, 13–26. https://doi.org/10.1016/j.eurpolymj.2017.04.029.

195. Mobarak, M.H.; Mimona, M.A.; Islam, M.A.; Hossain, N.; Zohura, F.T.; Imtiaz, I.; Rimon, M.I.H. Scope of machine learning in
materials research—A review. Appl. Surf. Sci. Adv. 2023, 18, 100523. https://doi.org/10.1016/j.apsadv.2023.100523.

https://doi.org/10.1137/22M1487163
https://doi.org/10.1137/130936725
http://www.mcs.anl.gov/uploads/cels/papers/P2059-0312.pdf
https://doi.org/10.1137/S0036144504443511
https://doi.org/10.1137/S0036144504443511
https://doi.org/10.1137/15M102887X
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-179.pdf
https://doi.org/10.1098/rsta.2019.0053
https://doi.org/10.2172/1814677
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-37.pdf
https://doi.org/10.1093/imanum/14.4.563
https://doi.org/10.1093/imanum/14.4.563
https://doi.org/10.1016/0021-9991(87)90140-9
https://doi.org/10.1016/0021-9991(87)90140-9
http://math.nyu.edu/faculty/greengar/shortcourse_fmm.pdf
http://math.nyu.edu/faculty/greengar/shortcourse_fmm.pdf
https://doi.org/10.1007/978-3-540-70529-1_448
https://madoc.bib.uni-mannheim.de/744/
https://madoc.bib.uni-mannheim.de/744/
https://doi.org/10.21136/MB.2002.134156
https://doi.org/10.21136/MB.2002.134156
https://mathworld.wolfram.com/BinaryTree.html
https://mathworld.wolfram.com/BinaryTree.html
https://doi.org/10.1007/3-540-36133-2_2
https://doi.org/10.1007/3-540-36133-2_2
http://probability.ca/jeff/ftpdir/para.pdf
https://research-and-innovation.ec.europa.eu/system/files/2022-02/advanced-materials-2030-manifesto.pdf
https://research-and-innovation.ec.europa.eu/system/files/2022-02/advanced-materials-2030-manifesto.pdf
https://doi.org/10.1016/j.eurpolymj.2017.04.029
https://doi.org/10.1016/j.apsadv.2023.100523

Appl. Sci. 2024, 14, 6110 83 of 83

196. Yamanaka, A.; Maeda, Y.; Sasaki, K. Ensemble Kalman filter-based data assimilation for three-dimensional multi-phase-field
model: Estimation of anisotropic grain boundary properties. Mater. Des. 2019, 165, 107577. https://doi.org/10.1016/j.matdes.20
18.107577.

197. Evensen, G.; Vossepoel, F.C.; Van Leeuwen, P.J. Data Assimilation Fundamentals: A Unified Formulation of the State and Parameter
Estimation Problem; Springer: Cham, Switzerland, 2022. https://doi.org/10.1007/978-3-030-96709-3.

198. Carlberg, K.; Brencher, L.; Haasdonk, B.; Barth, A. Data-Driven Time Parallelism via Forecasting. SIAM J. Sci. Comput. 2019,
41, B466–B496. https://doi.org/10.1137/18M1174362.

199. An, J.; Chua, C.K.; Mironov, V. A perspective on 4D bioprinting. Int. J. Bioprinting 2016, 2, 3–5. https://doi.org/10.18063/IJB.20
16.01.003.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.matdes.2018.107577
https://doi.org/10.1016/j.matdes.2018.107577
https://doi.org/10.1007/978-3-030-96709-3
https://doi.org/10.1137/18M1174362
https://doi.org/10.18063/IJB.2016.01.003
https://doi.org/10.18063/IJB.2016.01.003

	Introduction
	The Role of Computational Science (CS)
	An Inventory of the ``In Silico'' Experiments in 3D-Bioprinting of Cell-Laden Hydrogels
	Pre-Printing
	During Printing
	Post-Printing

	A ``State of the Art'' of HPC Systems in the Exascale Era
	Mathematical Models
	Models at the Macro-Scale
	The Navier–Stokes equations for Viscoelastic Fluids
	The Two-Phase Flow Problem
	Transport and Response of Biological and Chemical Species

	Models at the Meso Scale
	Monte Carlo-Based Methods
	Cellular Particle Dynamics
	Cellular Automata Model

	Numerical Methods and Algorithms
	Models at the Macro-Scale
	Discretization in the Space-Time Domain
	Solution of the ``Discrete in Space'' Model
	The Discrete Model of The Navier–Stokes Equations for Viscoelastic Fluids

	Models at the Meso Scale
	The Markov Chain Monte Carlo Algorithms
	The Cellular Particle Dynamics Algorithms
	The Cellular Automata Model Algorithms

	Algorithms for HPC Systems in the Exascale Era
	Models for Exascale Computing
	Parallel Solvers for Exascale Computing
	``Implicit-Explicit'' and ``Parallel in Time'' Solvers
	Composite Nonlinear Solver
	Parallel Iterative and Direct Linear Solver
	Fast Multipole Methods and ``Hierarchical'' Matrices
	Parallel Monte Carlo Based Methods

	Conclusions and Future Work
	References

