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Abstract 

Pulsed thermography has been used for many years to investigate the presence of subsurface defects 

in composite materials for aeronautics. Several methods have been proposed but only few of them 

include a complete automated approach for the effective defect characterization. This paper presents 

a novel method which approximates the thermal decays on the laminate surface, induced by a short 

heat pulse, by means of an exponential model in three unknowns (model parameters), estimated in 

the least squares sense. These parameters are discriminant and noise-insensitive features used to 

feed several classifiers, which are trained to label possible defects according to their depths. 

Experimental tests have been performed on a carbon-fiber reinforced polymer (CFRP) laminate 

having four inclusions of known properties. The comparative analysis of the proposed classifiers 

has demonstrated that the best results are achieved by a decision forest made of 30 trees. In this case 

the mean values of standard and balanced accuracies reach 99.47% and 86.9%, whereas precision 

and recall are 89.87% and 73.67%, respectively.  
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1. Introduction 

Carbon fiber reinforced plastic (CFRP) is a composite material widely used in many applications in 

the automotive and aerospace fields. As clearly demonstrated in the literature [1], the presence of 

defects can dramatically change the strength of the CFRP material and so, non-destructive 



techniques (NDT) play a key role for estimating the residual strength of structures or components. 

In this regard, many NDT techniques are currently used for defect detection in composites such as 

X-ray [2],[3], ultrasound [4]-[8], shearography [9], vibration testing [10] and electrical potential 

technique [11] and in many applications a combination of them is necessary to identify different 

kinds of defects to quantify. 

Infrared thermography - Non Destructive Technique (IR-NDT) presents peculiarities suitable for 

investigation of large areas [1],[12],[13] since i) it does not require the coupling with the 

component, ii) it is easily automatable and iii) the testing time is relatively shorter with respect to 

other well-established NDT techniques. With regards of testing setup and data processing, the most 

diffused thermographic techniques for the non-destructive evaluation of composite materials are: 

Lock-in Thermography (LT) and Pulsed/Stepped Thermography (PT) [14]. Further techniques use 

infrared thermography in combination with acoustic emission (AE) to identify damage evolution in 

carbon fiber reinforced composites [15]. In any case, all techniques use an external heat source 

(mechanical [12],[13], electromagnetic [1],[16], and optical [8]) to stimulate with thermal waves the 

material in order to induce a heat flux in the material and analyse the temperature behaviour on the 

surface of the component.  

Among IR-NDT, Pulsed Thermography (PT) is largely used for inspecting composite materials. In 

particular, PT employs a short thermal stimulation to produce a thermal perturbation within the 

material. The presence of a defect is revealed by monitoring the surface temperature decay of the 

specimen. The defect appears as a limited area of different temperature with respect to a 

surrounding sound area: the subsurface defect produces an abnormal behavior of the temperature 

decay curve. In the last years, different algorithms associated with PT technique have been 

developed with the aim to extract information about defects [17]. Among them, the Difference 

Temperature Signal [14], the Thermographic Signal Reconstruction [18],[19] and the Polynomial 

Fitting [20],[21] can enhance thermal signals, thus allowing the detection of deep defects, even with 

high noise levels. On the other hand, most of them are limited to the mere segmentation of defects 

and are not able to infer their complete properties (defect characterization).  

Since the last decades, researchers have investigated the possibility of using machine learning 

approaches for both the detection and the classification of internal defects, inspected by NDT 

techniques. Artificial Neural Networks (ANNs), have been proposed for the automatic analysis of 

results of inspections performed with ultrasonic techniques in [22]-[24] and active infrared 

thermography in [25],[26]. In these cases, supervised techniques require a learning phase during 

which a number of examples of the observable phenomenon are used to build the model of the 



different defects that has to be recognized. Different kinds of impact damages are recognized in [27] 

by active thermography. Distinguishing features are extracted from the thermographic signals of 

damaged parts in the image and related to the impact energy with an ANN in order to model the 

entity of the impact. An unsupervised approach has been used in [28] to evaluate the reliability of 

sound regions by a clustering technique which aggregates similar thermal data belonging to the 

same kind of regions. In this case, the number of target classes is provided by the user to group 

surface regions which share the same probability of being defective.  

According to our knowledge, thermal maps and videos are typically treated as standard images by 

classical machine methods and algorithms. As an example, image processing tools, such as two-

dimensional median filters, histogram equalization, contrast enhancement, standard feature spaces 

(e.g. Scale Invariant Feature Transform, SIFT [29], or Speeded Up Robust Features, SURF [30]), 

are often used to enhance images and highlight defects. However, thermal imaging follows well-

known physical laws, whose understanding can further improve results: feature representations with 

physical meanings can be much more informative than standard processing. Besides, a comparative 

analysis of different machine learning methodologies, able to explain the relation between features, 

classifiers and performances, has not been applied before in this context.  

This paper presents a novel approach for automatic defect detection and classification in composite 

materials by pulsed thermography imaging. The main novelties of the proposed approach are 

summarized in the following points. 

• First of all, new features are extracted from the thermographic signals, in order to model the 

differences among different defects and pristine regions. In particular, following the 

principles of pulsed thermography, local transient temperature decays, collected by a 

thermocamera, are normalized and compared with those expected in pristine regions. 

Resulting temperature contrasts are modeled by robust and compact features whose 

analytical meaning is directly related to the presence of defects buried in the composite.  

• Then, several machine learning algorithms have been selected. The extracted features are 

thus used to train the classifiers to detect defects depending on their depths. 

• A comparative analysis has been performed on a known specimen made of carbon fiber, 

pre-preg epoxy resin, which shows few inclusions of foreign objects of known geometry and 

material, used to simulate interlaminar delaminations. Results demonstrate that the use of 

the proposed exponential-model-based features, together with a decision forest of 30 trees, 

can correctly detect and classify defects in accordance with their depths within the sample 

under testing.  



The paper is organized as follows: Section 2 briefly describes the experimental method used to 

provide the thermal data, the feature extraction pipeline with reference to the analytical model, and 

the classifiers which will be used to characterize defects; Section 3 deals with the experiments 

performed on an actual sample, whereas final conclusions and remarks are in Section 4. 

2. Methodology 

The proposed method aims to classify CFRP laminates depending on the presence of defects and to 

characterize them in terms of their properties. This purpose is achieved starting from experimental 

analyses performed by pulsed thermography. Then robust and discriminative features are defined to 

describe exhaustively the response of the composite under testing, thus enabling the classification of 

any possible defect within the medium. The next subsections will describe the whole pipeline to 

reach the complete classification of flaws, according to their depths. 

2.1. Pulsed thermography 

The investigation of CFRP is performed by using active pulsed thermography [31]. This technique 

is based on the analysis of the thermal behavior of the target specimen in response to a short (few 

milliseconds) thermal pulse. Pristine semi-infinite and isotropic media produce a transient decay, 

after a Dirac pulse, which follows the well-known equation: 
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where x represents the depth coordinate, t is time and T is the temperature value. ρ [kg/m3], c [J/kg 

K] and k [W/m K] are properties of the specific material under testing, respectively equal to mass 

density, heat capacity and thermal conductivity, whereas the term α [m2/s] is the thermal diffusivity, 

equal to the ratio k/ρc. Q [J/m2] takes into account the source energy transferred to the specimen 

surface. 

Pulsed thermography applied for the analysis of finite-thickness materials can be exploited in two 

different configurations: reflection or transmission configuration. With reference to the sketch in 

Fig. 1, the proposed method will be defined in case of reflection configuration, which requires that 

both input lamps and receiving thermocamera are positioned on the same side with respect to the 

specimen. Here, dL and dT are the specimen-lamps and specimen-thermocamera distances, 

respectively, whereas β is the angle enclosed by the camera optical axis and the dominant light 

direction. Although this configuration shows lower resolution for deeper defects, as heat has to 



travel within the specimen for a round trip, it is the most suitable for in-line testing, since a single 

system can both heat up the surface and scan the response. 

 

Fig. 1. Sketch of a setup for pulsed thermography. 

In this case the analytical model in Eq. (1) can be reduced to the one of Eq. (2), since thermocamera 

can map the top surface of the specimen, producing an image of size I×J. 
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Following the simplified models in [32],[33], the presence of an interlaminar delamination within 

the medium alters the transient temporal decay of temperature, depending on the difference of 

effusivities  = ck  [Wm-2K-1s1/2] between the defect and the background material. Specifically, 

the collected thermal decay is [32]: 
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where d [m] is the depth of the discontinuity due to the presence of the defect (e.g. delaminations or 

foreign objects), R is the reflection coefficient related to the difference of effusivities of the two 

involved media, and α refers to the sample material. Eq. (3) shows a summation term due to the 

presence of multiple internal reflections of the travelling heat wave impinging on the interfaces 

between the different media of the whole air-composite-defect arrangement. Moreover, the 

inspection of Eq. (3) reveals that the heat wave propagates faster in regions where defects are at 

lower depths d (or of higher diffusivity α) than the case of defects at higher depths (or in regions of 



lower diffusivity). This phenomenon is of great importance for the feature extraction process which 

will follow in the next sections. 

At this stage, it is important to notice that the one-dimensional simplified model of Eq. (3) well fits 

only the behavior of isotropic media and, consequently, it can lead to misleading interpretations of 

the defects depth buried in finite actual samples. Nevertheless, this model gives a realistic 

approximation of thermal propagation if defects are larger than their depths. These conditions are 

verified for the analysis of targets made for aeronautics. In this context, actual mechanical 

tolerances impose the detection and classification of flaws having sizes of few millimeters, in 

panels having thickness which rarely exceeds 3 mm.  

In addition, this hypothesis further justifies the use of pulsed thermography to provide the best 

results [34], since the finite thickness of these panels meets the capability achievable in reflective 

configuration. Here, thickness values are within the limits of penetration of the input thermal wave.  

2.2. Analytical representation 

As a result of the application of Eq. (3), the surface of a defective region shows a temporal decay of 

the temperature which is directly linked to the constitutive material of the defect and to the specific 

depth at which it arises. Specifically, a defect beneath the surface alters the standard linear profile in 

natural logarithmic scale (with slope -0.5), leading to the thermal decays in Fig. 2(a), which depend 

on the ratio d2/α. In these examples, the constant ratio Q ck  has been kept to unity for 

simplicity and R is equal to 0.5. 

As shown previously, the discrepancy between the expected linear profile and the one due to the 

presence of the defect is linked to the properties of the inhomogeneity, in terms of position in depth 

and thermal effusivities of both materials. The aim of testing laminates is the detection of defects 

and their classification, dividing target sets, namely defects, in several categories which differ in 

geometrical properties. To achieve this task, input thermal behaviors, captured from the top surface 

of the specimen by a thermocamera, are treated to further enhance alterations with respect to the 

reference profile. Specifically, at this stage input enhancement is obtained by normalizing the 

profiles, i.e. enclosing their dynamics in the range between 0 and 1. This transformation can be 

easily obtained as: 
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where T0 is the minimum value of temperature, corresponding to the last observation of the target at 

the time instant ttot, and T(0,tδ) is the temperature at the end of the heat pulse excitation, namely the 

maximum temperature level reached by the top surface of the composite. The result of this 

normalization is displayed in Fig. 2(b) where the normalized profiles are gained starting from the 

same input thermal decays of Fig. 2(a). 

 

Fig. 2. (a) Transient temporal decay of the surface temperature of a semi-infinite medium heated by a pulsed-source and (b) corresponding normalized 
temperature curves. Profiles are obtained by changing the ratio d2/α, linked to the presence of a reflecting defect at depth d. The reference decay is T = 

t-1/2. 

The use of the temperature normalization has a twofold advantage: 

1. Increase discrimination: the normalized temperature decays are varied so that their levels 

can be over or below the reference at specific time instants: the presence of a defect not only 

changes how fast the material is locally heated up, but also alters the normalized 

temperature level over or below the reference. In particular, deeper defects can apparently 

“cool down”, in terms of normalized temperature, the laminate faster than the reference if 

normalized behaviors are considered (see the green dotted curve of Fig. 2(b)). It is worth 

noticing that separation among profiles can be solved with different resolution depending on 

the extension of the time range of observation [tδ, ttot]: the shorter time is considered, the 

higher resolution is achieved. On the other hand, reducing the observation range can delete 

information on the presence of deeper inhomogeneity; 

2. Independence of the properties of the media: normalization adjusts temperature dynamics to 

a common scale, thus making the following steps insensitive to the specific properties of the 

considered material. As a consequence, there is no need to exactly characterize the media, 

since the response of the composite will be bounded within known limits. 



Normalized temperatures are then processed to highlight defect contrast ΔT, which is the result of 

the difference between the responses of defective and non-defective regions. By subtracting the 

normalized reference to the normalized temperature profile, after simple algebra, it is possible to 

obtain the following: 
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. Fig. 3(a) presents the thermal contrasts 

corresponding to temperature transient profiles in Fig. 2(b). 

 

Fig. 3. (a) Thermal contrast behavior related to the normalized temperature profiles after the source pulse as a function of d2/α. (b) Corresponding 

model approximation for feature extraction. 

As shown previously, the use of temperature normalization enhances discrimination between the 

different contrasts which can be positive or negative, depending on the value of the ratio d2/α.  

The proposed methodology for defect classification tries to group transient contrasts by looking at 

their time evolutions, which are directly related to the depth of the possible defect beneath the 

surface of the laminate. For this reason, a simple exponential model is developed to approximate all 

thermal contrasts, including the trivial one, which corresponds to homogeneity. Specifically, the 

analytical model approximates the thermal contrast as: 

 ( ) ( ) ( )2
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being a1 ≥ 0 and a3 ≥ 0. The estimation of the three parameters in the least squares sense leads to the 

plots in Fig. 3(b), which approximate the corresponding thermal contrasts in Fig. 3(a). 

As shown in Fig. 3, this simplified model is able to reproduce the whole profile of the normalized 

thermal contrast by using only three unknowns, which include the contributions of all parameters in 

Eq. (5). As a consequence, the possible presence of subsurface defects can be easily estimated by 

the inspection of the values assumed by the three parameters a1, a2 and a3, computed in every point 

captured by the thermocamera. The three unknowns a1, a2 and a3 are the starting discriminant 

features for effective material assessment.  

In addition, it is worth noticing that the use of least square fitting of the model in Eq. (6) on actual 

input decays also ensures the reduction of the effects of measurement noise, which can alter 

significantly the results of surface labeling. As a consequence, defect classifiers can perform with 

increasing robustness with respect to the negative contributions of actual noise.  

Further and deeper discussions on feature extraction processing are in the next subsection. 

2.3. Feature processing 

As shown previously exponential-model-based features are directly linked to the values of the three 

parameters a1, a2 and a3 in Eq. (6). These values are obtained as the approximation of the 

normalized thermal contrast, which in turn is related to the actual transient decay of temperature and 

to the reference profile in Eq. (2). The former term is the output temperature measured by the 

camera on the top surface of the specimen, whereas the latter has to be found by a preliminary 

processing on the acquired data. Since no a priori assumption can be stated on the presence of 

defects, which is the actual unknown within this lines, it is not possible to select a trust area of 

homogeneity to be used to study the reference response of the constitutive medium. For this reason, 

the temperature reference Tref(i,j,t) of a pixel of coordinates (i,j) at time t is determined as the 

median value of temperature measurements belonging to a patch Pi,j, having custom shape: 
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It is possible to take two assumptions: 

1. the number of defective pixels within the patch P is much lower than the number of non-

defective ones; 



2. the source pulse illuminates homogeneously the whole surface of the specimen, or 

equivalently it is possible to recognize the direction of the thermal gradient produced by the 

source wave. 

The first hypothesis states that the normalized procedures will work only if the defected area is 

significantly smaller than the patch Pi,j. In this way the median value of surface temperature can be 

reliably attributed to sound material. For this reason, the patch Pi,j must be larger than the size of the 

expected defects. Alternatively, the size of P defines a limit for delaminations that can be detected. 

In this case, wide defects can generate a false positive as the median temperature would be close to 

the one of the delamination and not to that of the sound material. 

Moreover, it is important to notice that the choice of the patch Pi,j strictly depends on the 

experimental setup and can be tuned in agreement with the lamp-sample arrangement. As an 

example, if no gradients are present along horizontal lines, i.e. the input thermal excitation is 

homogeneous along the rows of the thermal map, it is possible to choose a patch element Pi,j of a 

flat, linear and horizontal shape. Consequently, the reference thermal profiles are computed along 

each row of the frames of the thermal video sequence. The normalized reference temperatures can 

be then arranged in a 2D matrix Tref(i,t) of median decays, having size equal to I×ttot. In particular, 

the rows of Tref(i,t) are the median profiles related to each row of the video frames at a specific time 

instant t. The columns of Tref(i,t) report the time development of the normalized reference 

temperatures for the specific i-th row, till the final observation instant ttot.  

Once the reference is defined, it is possible to compute the normalized contrast for every pixel of 

the thermal images. Then the feature extraction processing can follow the development outlined in 

Fig. 4.  

 



 

Fig. 4. Feature vectors arrangement from the model approximation through the generation of feature maps. Each line of the final matrix corresponds 

to a transient temporal decay collected by a pixel of the thermocamera (observation). 

Every pixel of the image produces the entries of three feature maps, filled by the values of a1, a2 and 

a3. Feature maps can be directly used for material characterization or can be further processed to 

enhance the accuracy and the reliability of defect detection. As discussed previously, thermal videos 

are mainly affected by measurement noise, which is intrinsically limited by the application of the 

least square fitting of the model of Eq. (6) on the actual normalized contrasts. Although this process 

of noise reduction, noise can still alter significantly the results of the model approximation, 

introducing sparsely occurring impulse of noise within the feature maps (salt and pepper noise). 

This noise can be effectively contrasted by the application of a simple median filter over a 5×5 

neighborhood [35]. Parameters can now be referred in the (i,j)-th pixel of the video frames as 

a1
F(i,j), a2

F(i,j) and a3
F(i,j). 

These results are then rearranged in vectors of features F(i,j) = [A1(i,j), A2(i,j), A3(i,j)]. Here A1(i,j), 

A2(i,j) and A3(i,j) can be equal to the scalar values of the corresponding parameters, either filtered 

or directly equal to the input, or can be made of blocks of values, having size N×N, obtained by 

windowing feature maps around the (i,j)-th coordinates. Each feature vector has a length equal to 

3∙N2. As an example, Fig. 5 shows the process of reshaping feature maps in case of 5×5 

neighborhood. The example produces the feature vector F(i,j), referred to the (i,j)-th coordinate of 

the feature maps.  

The use of extended windows of exponential-model-based features can introduce better results since 

the analysis of local contributions add more information than single point values. In this case 

classifiers, which will be then responsible for deciding whether a pixel of the map belongs to defect 

areas, can receive more comprehensive information of the thermal behavior of the whole specimen 



surface. As a consequence, defect characterization can be more reliable against sparse noise or at 

edges, where transitions between homogeneities and defects are estimated considering feature 

changes. 

 

Fig. 5. Single feature vector formation in case of extended patch size. This example substitutes a generic line of the final feature matrix. Neighboring 

observations can share some entries. 

2.4. Classifiers 

Exponential-model-based features are input predictors able to characterize the area framed by a 

pixel (or observation) of the thermocamera. This information is used by classifiers to establish 

whether there is a defect or not. Furthermore, if a defect is detected, classifiers can also recognize 

the kind of discontinuity, thus grouping features together. For the next development, three classes 

will be considered: 

• Class 0: Regions of homogeneity; 

• Class 1: Surface defects, i.e. defects placed within the medium but close to the top surface, 

which is illuminated by the thermal pulse; 

• Class 2: Internal defects, i.e. buried defects deeper than those of class 1. 



For each of these classes an input set of examples, made of couples of known inputs (feature 

vectors) and expected labels, will be provided to train the classifiers. In this manuscript, the 

following classifiers will be implemented to manage the input features [36]: 

1. Decision tree classifier: Decision trees are graph-based classifiers which label input 

observations by splitting them at different levels through a threshold mechanism. This 

process can be traced explicitly as a sequence of decisions, starting from the most significant 

till the output node, where classification is achieved. As a drawback, small alterations of the 

input predictors can lead to wrong labeling, since thresholds can be closely related to the 

specific training set; 

2. Ensemble of decision trees: Ensemble of classifiers can provide better results in the decision 

process. With reference to the case of ensembles of decision trees, also known as decision 

forests, several trees are trained to produce different labeling on the same input. This 

approach takes advantage of the instability of the trees in response to slightly altered input 

predictors, thus reaching a more flexible structure, preventing overfitting; 

3. k – Nearest Neighbor (k-NN) classifier: this classifier defines several representations 

(prototypes), which act as a reference of the three classes of interest. Every input 

observation is compared with the closer k prototypes and then labeled accordingly with a 

voting mechanism. Two different variants will be considered in the following experiments: 

a. Standard k-NN: The number of the nearest neighbors is set to k and all prototypes 

have the same weight in the voting process; 

b. Weighed k-NN: The contribution of the k nearest prototypes is weighted in the 

voting phase by the inverse of the Euclidean distance between the input observation 

and the corresponding prototype. 

As a result, the trained classifiers will be then able to make a prediction on the behavior of the 

inspected region of the specimen, thus estimating the presence and the type of defect, accordingly 

with the preliminary training phase. 

3. Experimental results 

The proposed methodology has been tested for the inspection of an actual CFRP laminate, in which 

several foreign objects of known geometries have been placed at specific positions. Exponential-

model-based features have been used as input for four classifiers in order to compare results. The 

next subsections will introduce the experiments and the sample, and a detailed discussion on final 

results. 



3.1. Experiments 

3.1.1. Setup description 

Fig. 6 shows the experimental setup adopted for thermographic tests. Two flash lamps with a power 

of 1500 W were used and controlled by a flash power control (Bowens Quadx®) with a max stored 

energy of 3000 Ws and an approximate flash duration of 1/1430 s. The lamps were placed about to 

120 mm from the specimen surface (dL in Fig. 1). The two lamps are arranged with an angle β equal 

to 15°. 

The FLIR X6540sc [37] thermal image camera with a indium antimonide (InSb) cooled detector 

(640×512 pixels, NETD < 25 mK) has been used for acquiring thermal sequences with a framerate 

of 100 Hz. This framerate is achieved by downsizing the sensor area to a region of interest of 

384×452 pixels. The IR camera is placed between the flash lamps at a distance dT = 1500 mm from 

the specimen in order to obtain a geometrical resolution of about 0.25 mm/pixel over a 100-mm-

wide region. 

 

Fig. 6. (a) Picture of the actual setup used for experiments. (b) Camera point of view focused on the specimen. 

3.1.2. Sample specification 

Defect classification has been tested on a reference sample made of a vertical arrangement of eight 

layers Pk, k = 1, …, 8, of CFRP taper, consisting of unidirectional carbon fiber impregnated with an 

epoxy resin (NTA 62470, form 1, Type 35, Class 3, Grade a90), having width and thickness equal 

to 150 mm and 0.1 mm, respectively. Each layer is made of several plies, whose in-plane 

orientation is defined accordingly with those reported in Fig. 7(a), in order to obtain a balanced and 

symmetric laminate with thickness of 0.8 mm. During the specimen manufacture with the vacuum 

bag process, several foreign objects (red blocks in the sketch of Fig. 7(a)) have been placed between 

the layers P4-P5 and P7-P8. These inclusions are different in size and material. Specifically, 0.05-



mm-thick fluorinated ethylene propylene (FEP) and 0.08-mm-thick white paper have been used 

within these experiments. Further details on the target defects are listed in Tab. 1. 

 

Fig. 7. (a) Detailed layup of the specimen having foreign object inclusions within layers P4-P5 (internal defect, class 2) and P7-P8 (surface defect, class 

1). Also ply orientations (θ) are reported in the scheme. (b) Surface of the specimen before polymerization. Circles are centered on top defects made 

of FEP and white paper. (c) Depth map acquired after the deposition of P5 over P4 which sandwiches two defects of class 2. (d) Depth map resulting 

by scanning the top layer. Two new defects of class 1 are highlighted. 

Tab. 1. List of defects within the specimen and corresponding properties. 

Name Size [mm] Depth Material Class 

D1
Cl2 25×25 P4-P5 White paper 2 

D2
Cl2 12.5×12.5 P4-P5 FEP 2 

D1
Cl1 25×25 P7-P8 FEP 1 

D2
Cl1 12.5×12.5 P7-P8 White paper 1 

 

Furthermore, the specimen has been preliminary scanned by means of a custom laser profilometer 

in order to gain information about the shape and the position of every defects beneath its surface. 

Acquisitions have been performed by using a custom triangulation setup [38],[39] made by a laser 

source able to generate a line over the surface of the specimen (see the red line in Fig. 7(b)). The 

laser line is revealed on the sensor plane of a standard camera, which complete the optical probe of 

the system. As known, a rigid translation of the target, or equivalently every corrugation of the 

surface, is translated in a shift of the reveled laser spot onto the camera plane. After a first 

calibration phase it is possible to define exactly the shape of the sample surface, i.e. a three-

dimensional model of the surface, with high resolution. In this case, the optical receiver is a Dalsa 



Falcon 4M60 [40]. The whole probe is set to reach the resolution of 0.05 mm in depth 

measurements. 3D models have been acquired after the deposition of every single layer before 

polymerization. As a result, measurements are able to characterize with high precision all defects, 

as shown in Figs. 7(c)-(d) which display the depth maps computed after the deposition of P5 and P8, 

respectively. With more details, blue regions of depth maps in Figs. 7(c)-(d) correspond to deeper 

points, whereas yellow areas are related to points over the surface level. Circles in Figs. 7(c)-(d) 

enclose the target defects. 

It is important to notice that the specimen has a specific texture, due to further artificial defects 

added during manufacturing. This texture is underlined by the presence of further in-plane valleys, 

such as the blue stripes in Fig. 7(c), or sharp ridges, such as yellow stripes in Fig. 7(d)). These 

structures belong to the 0 class of homogeneity, which actually includes all regions other than those 

of inclusions, labeled in class 1 and 2. 

As discussed previously, the thermal setup is able to frame a limited area of the specimen. For this 

reason the analysis of the whole specimen has been divided in three different steps, namely one 

used for training the algorithms and the rest for testing them (Test 1 and Test 2).  

Once the specimen has been completely scanned and thus modeled in three dimensions, all 

geometrical properties about each element beneath the surface are thoroughly known. Hence it is 

possible to build a reference ground truth having exact information about the in-plane position of 

both classes of defects (see the maps in Fig. 8). This information will be then used for both training 

and testing phases for the proposed classifiers. In this case the training dataset corresponds to a 

square region placed at the highest values of the x-axis in Fig. 7(d), since this area covers both 

classes of defects, thus producing a significant input for the learning phase. 

 

Fig. 8. Ground truth corresponding to the three regions considered for training classifiers and test predictions. 



3.1.3. Evaluation metrics 

Ground truths are the basis to define the evaluation metrics, which is useful for the comparison of 

final results. At the end of the classification task, it is possible to compare predictions, namely class 

assignments, with expected ones, defined by the maps in Fig. 8. Specifically, quantitative tests can 

be performed by evaluating the following measurements: 
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where BACCc is the balanced accuracy, PPVc refers to the positive prediction value (or precision) 

and TPRc is the true positive rate (or recall). In these formulations TPc, TNc, FPc and FNc are the 

numbers of True Positive, True Negative, False Positive and False Negative, respectively. All 

evaluations are obtained for binary classification, i.e. they explain whether the method can correctly 

label inputs belonging to the c-th class against the others.  

With more details, the balanced accuracy estimates the number of correct predictions, weighted by 

the number of occurrence of the class of interest. Precision is the ratio of correct assignments over 

all labels of that class, i.e. it shows if all defect detections are true. Then recall is related to the 

number of missed labelling (FNc) of observations of the c-th class. In this case it states the ability of 

the classifier to detect a defect beneath the specimen surface.  

It is important to notice that balanced accuracy is preferred with respect to standard accuracy, 

namely the ratio between true labels over the total number of observations, since datasets are 

heavily unbalanced. In this case the number of observations of class 0 is much higher than the one 

of the other classes, since defective regions are much smaller in extension than pristine ones. Using 

the standard formulation for accuracy might lead to ambiguous results, numerically close to the 

unity, as effect of the structure of the given dataset. On the contrary, balanced accuracy always 

produces informative results, since the comparison of output labels with the expected ones has the 

same weight, regardless the number of occurrences of the class c under evaluation. 

3.2. Results and discussion 

The pulse-source excitation produces a transient decay of surface temperature, described by the 

equations discussed previously. The response of the actual specimen has been tested by the 



inspection of thermal sequences, as the one reported in Fig. 9, which shows several frames acquired 

by the thermocamera after the generation of the heat pulse. In this case the heat pulse illuminates 

the specimen surface at t = 0 s. All images are related to the inspection of the region of Test 1, 

where all defects are placed. 

 

Fig. 9. Thermal sequence samples after the heat pulse generation (t = 0 s). Frames are captured from region Test 1. The white circle at t = 0.15 s 

encloses the defect D2
CL1 

The inspection of the maps of surface temperatures reveals that a thermal gradient is generated 

along the vertical direction. This result is actually due to the specific excitation used in these 

experiments. Flash lamps do not produce a thermal wave of infinite extension, able to illuminate 

orthogonally the whole specimen surface. Consequently heat is not radiated homogeneously from 

areas without defects. Nevertheless a specific regularity can be sensed during the cooling phase, i.e. 

regions without defects produce a response with an almost vertical in-plane gradient of temperature. 

This consideration enables the computation of the reference temperature following the approach 

discussed in Eq. (7), where the kernel patch Pij is assumed to be equal to the whole i-th row of each 

frame of the thermal video. 

On the contrary, the vertical direction of the in-plane thermal gradient is altered in regions where a 

defect arises. As an example, it is possible to notice this alteration, enclosed by the circle at t = 0.15 

s, which corresponds to the presence of D2
CL1. This different behavior of defective regions is 

highlighted in Figs. 10(a), where temperature profiles, corresponding to points which belong to the 

three classes, are displayed.  



 

Fig. 10. (a) Actual decays of surface temperature and (b) corresponding normalized behaviors. (c) Thermal contrast obtained by the normalized 

temperature profiles and (d) corresponding model approximations. Curves are extracted from a flawless region (blue solid)  and defective regions of 

class 1 (red dashed) and class 2 (green dotted). 

Experimental results in Fig. 10(a) clearly prove that the temperature decay in logarithmic scale no 

longer follows the linear profile as an effect of the finite thickness of the laminate, also in the case 

of inspection of a non-defective area (solid blue curve). As a consequence, every algorithm of 

feature extraction working on the analysis of the deviations of temperature decays from the linear 

model will work with low accuracy, since the reference profile is actually far from the expected 

one. For this reason, the proposed methodology goes through the normalization of temperature 

decays, whose results are in Fig. 10(b). In this case the process of temperature normalization is 

performed on a time interval of 1.2 s, which is enough extended to enhance discrimination between 

the two classes of defects of interest.  

Reference temperature decays at each row are finally used to obtain the normalized thermal 

contrasts, which are able to highlight alterations of transient thermal behaviors, as shown in Fig. 

10(c). In this case, the homogeneous region produces a flat contrast, which evolves around zero, 

whereas regions with surface or internal defects have representative responses to the heat pulse. The 

use of the exponential approximation in Eq. (6) is able to model with three parameters the temporal 

evolution of all thermal contrasts, as demonstrated by the inspection of Fig. 10(d). The analysis of 



results also confirms that the model approximation through least square fitting can filter 

measurement noise, denoted by the fluctuations of thermal contrasts in Fig. 10(c), adding more 

reliability to the estimation of the feature vectors. 

The parameters (a1, a2, a3) of the fitting model are finally reported in the feature maps of Fig. 11 

(first row), which is related to the analysis of the training region. The application of the median 

filter produces the maps of (a1
F, a2

F, a3
F) reported in the second row of Fig. 11. 

 

Fig. 11. Feature maps obtained by processing thermal images of the training region. First row: input data; Second row: filtered data. 

At a glance, it can be noticed that these two sets of maps contain the information needed to detect 

the defective areas of the training region, whose ground truth is in Fig. 8. This suggests that the 

proposed process can give accurate results in solving the defect detection task. Accordingly, feature 

values in each pixel of the maps have to be arranged in vectors F(i,j), whose size depends on the 

considered extension of the neighborhood.  

In these experiments, four neighborhood sizes have been considered, namely 1×1 (single scalar 

input), 3×3, 5×5 and 7×7, for the two sets of features (a1, a2, a3) and (a1
F, a2

F, a3
F). Predictors are 

arranged following the processing of Fig. 5 which results in input feature vectors of increasing 

length, equal to 3, 27, 75 and 147, respectively, which will clearly increase the computational cost. 

At the same time, four classifiers are used, namely a decision tree (CTree), a decision forest made 

of 30 trees (BagTree), a k-nearest neighbor classifier defined over a neighborhood of 10 prototypes 

(KNN10) and a k-nearest neighbor classifier with an inverse-distance voting function (WeiKNN). 

Numerical experiments are performed on 32 predictors, resulting from the application of four 



classifiers receiving four different feature sizes out of two sets of inputs. The response to testing 

predictors can be compared by means of the metrics in Eq. (8). 

Each classifier has been trained by using a set of examples made of couples of feature vectors out of 

the training region and the corresponding known class, given by the ground truth. Training is 

performed following the k-fold cross-validation approach (k = 10) [41]. Once classifiers are 

correctly trained, they are used to predict the labels, i.e. the class, of every observation of the two 

test regions. The outcomes can be then compared with the expected ones, thus producing the 

balanced accuracy results in Tab. 2, which refers to the use of input features, and Tab. 3, which 

exploits filtered data. 

Tab. 2. Balanced accuracy measurement obtained by testing the four classifiers considering the c-th class against the remaining. Results are obtained 

by the application of input feature values (a1,a2,a3). Best results for the c-th class are highlighted in bold. 

Classifier Patch 

Size 

Class 0 vs 

All 

Class 1 vs 

All 

Class 2 vs All 

CTree 1×1 80.1187 77.1856 83.8733 

3×3 77.9718 72.5782 84.5683 

5×5 79.6243 75.3876 84.7479 

7×7 78.5763 73.4712 84.6012 

BagTree 1×1 82.4784 79.4222 86.4161 

3×3 83.9361 80.3682 88.1210 

5×5 81.1887 76.3457 86.7372 

7×7 82.4784 79.4222 86.4161 

KNN10 1×1 82.8589 81.8610 84.3473 

3×3 78.4377 80.2449 76.4500 

5×5 71.7832 79.0738 63.6606 

7×7 69.7845 80.4208 58.0958 

WeiKNN 1×1 82.3086 81.0790 84.3413 

3×3 79.9985 80.8842 79.1083 

5×5 73.3447 79.7357 66.2910 

7×7 70.9883 80.9987 60.0410 

 

 



Tab. 3. Balanced accuracy measurement obtained by testing the four classifiers considering the c-th class against the remaining. Results are obtained 

in case of filtered input data (a1
F, a2

F, a3
F). Best results for the c-th class are highlighted in bold. 

Classifier Patch 

Size 

Class 0 vs 

All 

Class 1 vs 

All 

Class 2 vs All 

CTree 1×1 85.3218 81.9400 89.4274 

3×3 84.8390 81.7495 88.5487 

5×5 86.8784 85.2614 88.8876 

7×7 86.0653 85.1633 87.3013 

BagTree 1×1 86.1391 83.0930 89.9358 

3×3 86.7301 84.0869 89.8968 

5×5 85.1996 81.4178 89.5964 

7×7 86.5600 84.2786 89.2063 

KNN10 1×1 85.6396 83.4455 88.4794 

3×3 80.6140 74.4382 88.0342 

5×5 81.2919 75.6974 87.9962 

7×7 83.1736 78.9857 88.2649 

WeiKNN 1×1 85.5247 83.3362 88.4411 

3×3 80.9267 74.6763 88.4815 

5×5 81.6792 76.0688 88.4396 

7×7 83.3858 79.1780 88.5799 

 

The first analysis of results shows that balanced accuracies approach satisfying values, often higher 

than 80%. It proves the robustness of the proposed exponential-model-based features, which always 

perform accurately despite the classifier used for predictions. On the other hand, although all 

classifiers can properly label observations, results in both Tabs. 2 and 3 demonstrate that decision 

trees and decision forests produce better results than the k-NN-based classifiers. At the same time 

the comparison of results given by decision trees and decision forests proves that ensembles work 

better than single predictors, taking advantages of the improved ability in producing accurate 

responses to noisy inputs. 

In addition, increasing the number of the considered neighbors to a 3×3 patch can give better results 

with respect to the scalar single input. On the other hand, the patch extension has to be limited to 



this value in case of decision forest classifiers, since adding more neighbors can introduce 

ambiguities to the classifier. 

Further analyses on the results of classification are shown in Fig. 12, where precision versus recall 

is plotted in scatter diagrams. Parametric investigations are performed as a function of the 

exponential-model-based features, both input and filtered (blue and red marks, respectively), and of 

the size of the patch used to rearrange data in feature vectors. 

 

Fig. 12. Classification results in terms of precision versus recall as a function of the set of input predictors: (a) Decision tree; (b) Decision forest made 

of 30 trees; (c) KNN with 10 neighbors; (d) Weighted KNN with squared inverse distance weights. Each scatter plot describes the performance in 

classifying a class against the others. 

With reference to Fig. 12, the best results are obtained for scatter measures in the top-right corner of 

the recall-precision plane, which corresponds to the lowest value of missed predictions, both false 

positives and negatives. In this case all classifiers perform properly in detecting the 0-class, which 



corresponds to homogeneity. On the contrary, results can differ significantly if detection of class 1 

or 2 is compared with the corresponding remaining classes. For the sake of simplicity, results of 

classification of defective classes are averaged in Fig. 13, where marks refer to the average 

precision PPV  and the average recall TPR . These measurements are the sum of precision and recall 

of class 1 and 2, weighted by the probability of that value, i.e. the number of occurrence of class 1 

and 2 (N1 and N2, respectively): 
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Fig. 13. Average precision PPV  and recall TPR  for estimating classification performances in detecting defects against regions of homogeneity: (a) 

Decision tree; (b) Decision forest; (c) KNN; (d) Weighted KNN. 

The inspection of Fig. 13 clearly indicates that the best results in terms of average precision and 

recall are obtained with the decision forest classifier made of 30 trees having filtered input data with 

patch size equal to 3×3 or 7×7. In these cases PPV  and TPR  are equal to 89.87% and 73.67% for a 

3×3 neighborhood, and 92.21% and 73.28% for a 7×7 neighborhood, respectively. High values of 

average precision PPV  are of great importance in the analysis of defects beneath the surface of the 

laminate since it shows that in case of positive labeling that region has a defect of that specific class 

with high probability. 



Furthermore, the insight on the achieved values suggests that the use of a 7×7 neighborhood allows 

better predictions than the case of using a 3×3 patch for feature extraction. Nevertheless, this 

improvement is paid in terms of an increase of computational cost, since the number of input 

predictors rises from 27 to 147 entries. For this reason, downsizing the patch is much more efficient 

for in-line inspections, at the expense of slightly alterations of results in terms of precision and 

recall. Final results of classifications are described in Fig. 14, where input thermal responses are 

treated by the proposed methodology to classify filtered input data from 3×3 patches with the 

trained decision forest. 

 

Fig. 14. Final predictions resulting by the application of the decision forest having filtered input features with 3×3 patch size. 

Final predictions in Fig. 14 are in good agreement with the expected results defined by ground 

truths in Fig. 8. In this case, the mean balanced accuracy, namely the average value of the results of 

Tab. 3 corresponding to this specific set of features and classifier, is equal to 86.9%. On the other 

hand, standard accuracy values, i.e. the ratios between the exact labels of the c-th class (TPc and 

TNc) and the total number of observations (number of pixels of the c-th class of the maps in Fig. 

14), can be averaged among classes to define the mean accuracy, which here reaches 99.47%. As a 

consequence, the two mean values of balanced and standard accuracy show that exponential-model-

based features are enough discriminant to allow the classification of defects, as clearly stated by the 

maps in Fig. 14.  

A deeper analysis of the resulting maps in Fig. 14 reveals that defects are labeled with more 

rounded edges in comparison with the expected ones. This result is more evident for the smallest 

defects D2
CL1 and D2

CL2, whose shapes are closer to circles than squares. Actually this behavior can 

be an effect of lateral heat flow which can reduce thermal contrast near the defects corners. In 

addition, it can be also due to further alterations of the specimen during polymerization. These 

possible changes are not captured in the definition of the ground truths, since they are obtained by 

scanning the specimen before its polymerization. The actual shapes of defects can be different from 

the one of the ground truth. Therefore, the overall accuracy and recall of class 1 and 2 are implicitly 



limited below the unity as missing detections at edges introduce false negatives in the estimation of 

both classes. 

Besides, false positives are mainly due to the specific layup of the specimen. As an example, results 

of Test 2 display sparse points labeled as internal defects, which actually correspond to the sharp 

ridges, highlighted by the tilted yellow stripe in Fig. 7(d). The presence of these points can be easily 

reduced improving the training phase, by adding more examples of class 0, which includes 

homogeneity and all possible structures different from the defects of class 1 and 2. In addition, 

sparse labels representative of defective regions can be filtered out by means of proper 

morphological filters working on connected components. As an example, components having areas, 

namely the number of pixels, lower than a threshold can be erased from the image. The threshold 

value has to be set in accordance with the mechanical tolerances of the specific production process. 

Further investigations on image filtering are out of the scope of this paper and will be studied in 

future works. 

The understanding of results of Fig. 14 further proves that the approximation due to the use of the 

analytical model of Eq. (3), even more amplified by the proposed model in three unknowns, is 

suitable for this analysis. It is mainly due to the size of the defects, which is larger than their depth, 

and it is ascribable to the significant difference between the depths of the two classes of defects at 

comparison (first interface against middle interface). On the contrary, smaller and/or deeper defects, 

and shorter depth differences among delaminations may bring forward the limitations of the 

analytic model. These aspects will be object of future validations through further experiments. 

4. Conclusions 

In this paper, a complete approach for the automatic detection and classification of defects in 

composite materials for aeronautics has been developed and tested. Starting from the thermal 

inspection of the response of a laminate surface to the application of a heat pulse, the proposed 

processing approximates the temperature decay with an exponential model made of three 

parameters. These unknowns are able to characterize the behavior of the specimen, dividing 

homogeneous regions from defective ones and classifying the latter depending of their depths. 

Experiments have proven the robustness of the proposed exponential-model-based features in 

reducing measurement noise, which is further limited by the use of suitable filters on extended 

feature maps. As a result, a decision forest made of 30 trees trained on the input image is able to 

classify three classes of surface areas (pristine, surface defects and internal defects) with high 

values of both standard accuracy (99.47%) and balanced accuracy (86.9%). In addition, results are 



almost insensitive to the specific classifier used in labeling, thus proving that exponential-model-

based features are enough informative to always achieve defect classification. Finally, further 

contributions will be dedicated to additional processing of the input thermal measurements in order 

to aid the extraction of the parameters used by the method, thus improving its performances in 

terms of precision and recall. 
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Figure caption 

Fig. 1.  Sketch of a setup for pulsed thermography.  



Fig. 2.  (a) Transient temporal decay of the surface temperature of a semi-infinite medium heated 

by a pulsed-source and (b) corresponding normalized temperature curves. Profiles are 

obtained by changing the ratio d2/α, linked to the presence of a reflecting defect at depth d. 

The reference decay is T = t-1/2. 

Fig. 3.  (a) Thermal contrast behavior related to the normalized temperature profiles after the 

source pulse as a function of d2/α. (b) Corresponding model approximation for feature 

extraction. 

Fig. 4.  Feature vectors arrangement from the model approximation through the generation of 

feature maps. Each line of the final matrix corresponds to a transient temporal decay 

collected by a pixel of the thermocamera (observation). 

Fig. 5.  Single feature vector formation in case of extended patch size. This example substitutes a 

generic line of the final feature matrix. Neighboring observations can share some entries. 

Fig. 6.  (a) Picture of the actual setup used for experiments. (b) Camera point of view focused on 

the specimen. 

Fig. 7.  (a) Detailed layup of the specimen having foreign object inclusions within layers P4-P5 

(internal defect, class 2) and P7-P8 (surface defect, class 1). Also ply orientations (θ) are 

reported in the scheme. (b) Surface of the specimen before polymerization. Circles are 

centered on top defects made of FEP and white paper. (c) Depth map acquired after the 

deposition of P5 over P4 which sandwiches two defects of class 2. (d) Depth map resulting 

by scanning the top layer. Two new defects of class 1 are highlighted. 

Fig. 8.  Ground truth corresponding to the three region considered for training classifiers and test 

predictions. 

Fig. 9.  Thermal sequence samples after the heat pulse generation (t = 0 s). Frames are captured 

from region Test 1. The white circle at t = 0.15 s encloses the defect D2
CL1 

Fig. 10. (a) Actual decays of surface temperature and (b) corresponding normalized behaviors. (c) 

Thermal contrast obtained by the normalized temperature profiles and (d) corresponding 

model approximations. Curves are extracted from a flawless region (blue solid)  and 

defective regions of class 1 (red dashed) and class 2 (green dotted). 

Fig. 11. Feature maps obtained by processing thermal images of the training region. First row: 

input data; Second row: filtered data. 



Fig. 12. Classification results in terms of precision versus recall as a function of the set of input 

predictors: (a) Decision tree; (b) Decision forest made of 30 trees; (c) KNN with 10 

neighbors; (d) Weighted KNN with squared inverse distance weights. Each scatter plot 

describes the performance in classifying a class against the others. 

Fig. 13. Average precision PPV  and recall TPR  for estimating classification performances in 

detecting defects against regions of homogeneity: (a) Decision tree; (b) Decision forest; (c) 

KNN; (d) Weighted KNN. 

Fig. 14. Final predictions resulting by the application of the decision forest having filtered input 

features with 3x3 patch size. 

Table caption 

Tab. 1. List of defects within the specimen and corresponding properties. 

Tab. 2. Balanced accuracy measurement obtained by testing the four classifiers considering the c-

th class against the remaining. Results are obtained by the application of input feature 

values (a1,a2,a3). Best results for the c-th class are highlighted in bold. 

Tab. 3. Balanced accuracy measurement obtained by testing the four classifiers considering the c-

th class against the remaining. Results are obtained in case of filtered input data 

(a1
F,a2

F,a3
F). Best results for the c-th class are highlighted in bold. 


