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A B S T R A C T

Soft-bottom bioturbators are ecosystem engineers in the sense that they can have considerable effects on sedi-
ment erodibility and resuspension. The common cockle Cerastoderma edule is a bioturbating filter feeder that is
widespread along the European Atlantic coastline. Its presence and activity can decrease sediment erosion
thresholds in cohesive sediments but little is known about its effect on non-cohesive sediments. Using controlled
annular flume experiments, we investigated the relative effects of different cockle densities on sediment re-
suspension in cohesive vs. non-cohesive sediments by assessing the following: (i) the mud and sand burrowing
behavior of cockles, (ii) critical erosion thresholds, (iii) the mass of eroded sediment and (iv) erosion rates. Our
results show that cockles were more active in non-cohesive sediment compared with cohesive sediment. Despite
their lower activity, the presence of cockles in cohesive sediment increased sediment erodibility by reducing the
critical erosion threshold (Ucrit) and increasing both the mass of eroded sediment and erosion rate. In contrast,
cockles had no effect on erodibility in non-cohesive sediment, especially on the eroded sediment mass and
erosion rate. The mass eroded was not significantly different between cohesive and non-cohesive sediments
when cockles were present. Our experiments show that the increased erodibility of cohesive sediment due to the
bioturbation by cockles is density dependent: higher cockle density results in stronger effects on erodibility.
Moreover, this increase in cohesive sediment erosion due to cockle bioturbation was positively correlated with
current velocity. In contrast, the erosion of non-cohesive sediment only depended on the current stress and was
unaffected by cockle density. Considering the high abundance of C. edule, its widespread distribution and its
extensive activities, the results of this study could be widely applicable to intertidal mud flats around the world.

1. Introduction

The morphology and ecology of intertidal mudflats are determined
by the dynamics between sediment stability and erosion (Kristensen
et al., 2013). Intertidal mudflats can have strong seasonal dynamics,
with periods of accretion and erosion alternating over a season (Yang
et al., 2008). Sediment dynamics can also be event driven, with erosion
levels on the order of 100 mm occurring during a single storm (Hu
et al., 2015). Such short-term sediment dynamics on intertidal mudflats
are important for understanding the long-term dynamics of ecosystems
like seagrass meadows (Suykerbuyk et al., 2016) and salt marshes
(Bouma et al., 2016). Thus, understanding the processes controlling
sediment dynamics of intertidal flats is of key importance. However,
sediment dynamics are complex as they involve interactions between

physical, geochemical and biological processes influencing sediment
erodibility (Grabowski et al., 2011).

Benthic organisms can act as ecosystem engineers in the sense that
their presence or activity may alter erosional processes in the surface
sediment layer by modifying both the critical erosion threshold and
erosion rate of soft-bottom substrates (Paterson, 1989; Willows et al.,
1998; Passarelli et al., 2014). They can be divided into two main
functional groups: bio-stabilizers and bio-destabilizers (Widdows and
Brinsley, 2002). Bio-stabilizers make the sediment surface more re-
sistant to erosion. For instance, diatoms produce extracellular poly-
meric substances (EPS), a mucus that creates bonds between particles
and thus increases erosion thresholds (Meadows et al., 2012; Paterson,
1997). Additionally, aggregates of tube-building macroinvertebrates
stabilize the particles against resuspension and erosion, in concert with
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the activities of bacteria and microalgae (Krasnow and Taghon, 1997;
Borsje et al., 2014). In contrast, bio-destabilizers or bioturbators (e.g.
macrobenthic shellfish or lugworms) destabilize the sediment surface
and make it sandier, by continuously bioturbating the sediment, hence
resuspending fine particles into the water column (Volkenborn et al.,
2007; Volkenborn and Reise, 2006).

In general, sediments can be divided into cohesive and non-cohesive
sediments, which strongly differ in erodibility because of their differ-
ences in physical and chemical properties (Flemming, 2000; Grabowski
et al., 2011). Cohesive sediments contain a significant proportion of silt
(i.e., < 63 μm diameter), which binds the sediment particles together
and makes the sediment harder to erode. Apart from altering erod-
ibility, the grain size distribution of the sediment also influences the
structure of the invertebrate community living within the sediment
(Flemer et al., 2002; Cozzoli et al., 2013). Although macrobenthic or-
ganisms typically have a clear preference for a specific sediment grain-
size, many species can occur across a broad range of habitats (Ellingsen,
2002; Cozzoli et al., 2013).

Previous studies on the biological effects of macrobenthos have
mostly focused on the destabilization and resuspension of cohesive
sediments (e.g. Widdows et al., 1998; Andersen, 2001; Dickhudt et al.,
2009; Briggs et al., 2015; Van Colen et al., 2013), even though mac-
robenthic organisms can also be abundant and hence potentially in-
fluence sediment erosion in non-cohesive sediments (Van Colen et al.,
2013). For instance, the common cockle C. edule, while showing a
preference for muddy bottoms, can inhabit sediments with a median
grain size ranging from 50 μm (fully cohesive) to 250 μm (fully non-
cohesive) (Cozzoli et al., 2013). The biogenic effects of bioturbators
may be expected to vary with sediment type and population density.
How this subsequently translates into erosion characteristics may,
moreover, depend on the physical setting, with cohesive sediments
being more typical for low-energy areas and non-cohesive sediments
being more typical for high-energy environments. Hence, there is a
need for an in-depth study addressing the combined effects of bio-
turbating behavior, bioturbator density and physical setting on the se-
diment erosion characteristics of both cohesive and non-cohesive se-
diments.

The aims of the present study are to compare the bioturbation ef-
fects of the cockle C. edule on the erosion of both cohesive and non-
cohesive sediments subject to tidal currents. More specifically, we
aimed to (i) provide a visual description of the mud and sand burrowing
behavior of cockles, (ii) quantify critical sediment erosion thresholds
(i.e., current velocity when erosion starts), (iii) quantify the mass of the
eroded sediment and (iv) calculate the net erosion rates. The common
cockle C. edule is an ideal model species as it inhabits both cohesive and
non-cohesive sediments along the European Atlantic coastline and is a
well-recognized ecosystem engineer. By its burrowing behavior, C.
edule has been shown to lower sediment erosion thresholds and change
the erosional dynamics of cohesive sediments (Montserrat et al., 2009),
but little is known about its effects on non-cohesive sediments. Our
experimental study was conducted by gradually increasing current ve-
locities in an annular flume and testing their effects on both cohesive
and non-cohesive sediments in the absence and presence of two den-
sities of cockles. We hypothesized that the magnitude of the bioturba-
tion effect of the cockle C. edule on sediment resuspension will be de-
pendent on both current velocity and sediment cohesiveness.

2. Materials and methods

2.1. Target organism

The common cockle C. edule is a widespread and dominant sus-
pension-feeding bivalve that lives and burrows in the top few cen-
timeters of sediments along the European Atlantic coastline (Tebble,
1966). Malham et al. (2012) reviewed the biology of C. edule, including
its genetics, immunology, production, development, feeding energetics,

growth, predators, and extrinsic environmental drivers. Cockles are
defined as bioturbators as they disturb the sediment and increase tur-
bidity levels by their vertical and horizontal activity and by excreting
fecal pellets into the water column (Richardson et al., 1993; Widdows
et al., 1998). Cockles may occur in very high densities in some areas, up
to 5000 individuals m−2; conditions favoring high density are found in
the intermediate to high intertidal zone (between 20 and 60% of
emersion time for tidal cycle) with oceanic salinity levels (35 g L−1),
intermediate levels of mud content (grain size between100 and 200 μm)
and moderate levels of hydrodynamic stress (between 30 and
70 cm s−1 of maximal tidal current velocity) (Coosen et al., 1994;
Cozzoli et al., 2014). A moderate density of 500 cockles/m2 has been
estimated to occupy about 16% and disturb about 29% of the sediment
surface in one week (Flach, 1966). Earlier studies have shown that in-
creasing the presence of cockles can increase sediment erodibility
(Ciutat et al., 2006, 2007) and significantly lower the sediment erosion
threshold (Neumeier et al., 2006), making it an ideal model species to
study the effects of bioturbation.

2.2. Sediment and animal collection

Sediment samples were collected from two tidal flats located in the
tidal basin of the Oosterschelde estuary in the Netherlands: Zandkreek
(cohesive, 51°23′15.5″N 3°49′48.6″E) and Oesterdam (non-cohesive,
51°27′51.5″N 4°13′16.3″E). These locations are characterized by a low
to moderate peak in tidal current (ca. 35 cm s−1) and low wave ex-
posure (Cozzoli et al., 2017), with the average tidal amplitude mea-
sured as 290.652 cm in Zandkreek and 333.182 cm in Oesterdam. C.
edule can occur with an average biomass of ca. 15 g AFDW m−2 with
peaks up to 100 g AFDW m−2 at Zandkreek and an average biomass of
30 g AFDW m−2 with peaks up to 200 g AFDW m−2 at Oesterdam
(Cozzoli et al., 2014). Considering its high abundance, widespread
distribution and extensive activities, C. edule is expected to affect se-
diment erosion at these locations and, indeed, on tidal flats throughout
the Oosterschelde basin.

At each of the two sites, the top 15 cm of sediment was collected and
transported to the laboratory, and fauna were removed by wet-sieving
through a 1 mm mesh. Sieving also removed shell debris and other
larger particles or sediment aggregates that may influence sediment
erodibility. Particle Size Distribution D50 is the median diameter or the
medium value of the particle size distribution and is considered an
important parameter characterizing particle size. The mud content
(fraction of sediment particles < 63 μm; Montserrat et al., 2009) and
the median grain size data of both sediment types were measured using
a Mastersizer 2000 (Malvern Instruments Ltd., Malvern, UK). Non-co-
hesive sediments (median grain-size D50 = 273.92 μm) were defined
as sandy sediments containing 0% silt (Fig. 1A), and cohesive sediments
were defined as muddy sediments with ≥32% silt content (median
grain-size D50 = 101.43 μm) (Fig. 1B).

Specimens of the cockle C. edule were collected from the Oesterdam,
located in Zeeland, the Netherlands, and transported to the laboratory.
After collection, the cockles were left to acclimate in buckets filled with
aerated seawater for 24 h in a temperature-controlled room at 15 °C.
After this period, active cockles were transferred to flumes, which had
been previously filled with sediment, and left for another 48 h before
starting the experiment. The average shell length of the selected cockles
was 36.0 ± 1.2 mm (n = 96) with a range from 31.7 mm to 38.2 mm.
The majority of the cockles dug into the sediment and buried them-
selves in< 10 min after they were introduced to the sediment surface.
When individuals were inactive and remained on the sediment surface
for one day, they were replaced with new individuals. Two different
densities of cockles were used in the experiments, which were set ac-
cording to the relevant densities at the sites where sediments were
collected (Cozzoli et al., 2014): a low density (LD) of 228 ind. m−2 with
a biomass of 14.1 g ash-free dry weight (AFDW) m−2 (n = 3), and a
high density (HD) of 686 ind. m−2 with the biomass of
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42.24 g AFDW m−2 (n = 3).

2.3. Annular flumes and experimental setup

The annular flumes (surface area of 0.157 m2) used for determining
the erosion thresholds and erosion rates were developed following the
design described by Widdows et al. (1998). For the flume experiments,
a consolidated sediment bed was constructed by placing a 7 cm layer of
gravel on the bottom of each flume, followed by a plankton net and,
finally, a 10 cm layer of sieved sediment on top. The 10 cm layer of
sieved sediment was mixed by hand or with a stainless steel sheet to
create a smooth and homogeneous mass. The gravel bed under the se-
diment layer was used for water drainage, which was needed to com-
pact the sieved sediment layer. After a sediment compaction period of
4 days inside the flumes, 31 L of sea water was gently pumped into the
flumes while keeping a ‘bubble wrap’ layer on top of the sediment to
prevent sediment disturbance. The flumes were left for another 3 days
before starting the experiment.

To mimic the typical tidal current dynamics found at our collection
sites (see Bouma et al., 2005 and Cozzoli et al., 2017 for hydrodynamics
at a very similar site), each experimental run consisted of a gradual
increase in current velocity from 0.05 to 0.4 m s−1 using steps of
0.05 cm s−1. Each step lasted 20 min in the time series analysis. This
setup allowed us to measure both the erosion rate and the final equi-
librium suspended sediment concentration (SSC) reached at each cur-
rent velocity step. Current velocity was increased using a flat annular
lid driven by a microprocessor-controlled engine. An acoustic Doppler
Velocimeter probe (ADV) was used to calibrate water velocity as a
function of the rotation speed. Changes in SSC were recorded every 30 s
during each experimental run with an optical backscatter sensor (OBS
3+, Campbell scientific). The flumes were located in a temperature-
controlled room set at 15 °C, which is similar to the average tempera-
ture found under field conditions. For each flume, an experimental run
(without cockles) was conducted to provide an independent control for
later runs. An experimental measurement with cockles was conducted
48 h after the animals had been left for acclimation in the flumes.

The OBS output (expressed as Natural Turbidity Unit) was cali-
brated against the gravimetric analysis results of water samples taken
during the experiment. Water samples of a known volume between 200
and 300 mL were taken from the flumes at the end of each of the eight
current velocity steps. These water samples were filtered through pre-
weighed glass fiber (GFC) filters, which were then oven dried at 70 °C
for> 24 h and weighed again to obtain the turbidity value.

2.4. Erosion threshold and erosion rates

The erosion threshold, expressed as critical current velocity (U,
m s−1), was estimated as the intercept from a regression of measured
SSC against U, following Kristensen et al. (2013). Net erosion rates (E,
mg m−2 s−1) were calculated by the following formula (Eq. (1)):

= = − ∆∗ ∗E dM dt SSC SSC V A t( )end start (1)

where M is the eroded mass, SSCend is the final suspended sediment
concentration as measured during the last time step, SSCstart is the final
suspended sediment concentration as measured during the previous
time step (mg mL−1), V is the volume of the flume (31 × 103 mL), A is
the flume channel basal area (0.157 m2) and t is the duration of the last
step in seconds (Quaresma et al., 2004; Kristensen et al., 2013). The
mass of sediment eroded (MSE, mg m−2) was calculated by the fol-
lowing formula (Eq. (2)):

=

∗

MSE SSC V
A (2)

2.5. Statistical analysis

In all experiments, we ran three replicates for each of the two cockle
densities and six replicates of the control treatment (i.e., 3 controls each
for two cockle densities). These replicates were used to obtain the mean
values and standard errors representative of the turbidity under a cer-
tain current velocity. To measure the combined effects of current ve-
locity and cockle density on the suspended sediment (mg mL−1) for
each current velocity, we averaged all turbidity readings collected
during the last 2.5 min at that current velocity. One-way ANOVA and
two-way ANCOVA were used to test the significant differences between
experimental groups. For the ANCOVA, sediment type and cockle
density were treated as fixed factors and velocity as the covariate. Non-
parametric Mann-Whitney rank sum test were used to assess for sig-
nificant differences when variances were unequal. Statistical tests were
performed using the software coPASW Statistics (version 19) with the
significance level set at 0.05. All the variables were normalized by log
(X + 1) transformation prior to analysis.

3. Results

3.1. Cockle behavior in non-cohesive vs. cohesive sediment

There were visual differences in the way cockles impacted the sur-
face topography of the two sediment types. In the non-cohesive sedi-
ment, all individuals ploughed the sediment, leaving evident tracks of
movement on the surface that were> 10 cm in length. In contrast, all
individuals stayed in place in the cohesive sediment and no tracks were
found on the sediment surface. Only valve-abduction behavior was
observed in the cohesive sediment, through which the cockles were able
to rework the sediment within an area of about 0.5 cm around them-
selves over 2–3 days.

3.2. Time series analysis: suspended sediment changes at different current
velocities

In the cohesive sediment, the SSC of control treatments (no cockles)
gradually increased when the current velocity was higher than
15 cm s−1 (Fig. 2A). In contrast, the SSC for cockle treatments (at both

Fig. 1. Visual differences in the mud and sand burrowing
behavior of cockles impacted the surface topography in
non-cohesive sandy sediment (0% silt) (A) and in cohesive
muddy sediment (≥32% silt) (B).
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densities) already increased significantly when the current velocity
exceeded 10 cm s−1 (Fig. 2A). In the non-cohesive sediment, the SSC
rapidly increased for all three treatments (control, low and high density
of cockles) when the current velocity exceeded 13 cm s−1 (Fig. 2B).

We found a significant multiple linear regression between SSC and
velocity, cockle density and sediment type (F = 19.2 p < 0.05, two
way ANCOVA; Table 1). Cockle density showed a positive relationship
with SSC, e.g., higher density resulted in higher SSC values (F = 4.72
p < 0.05, two-way ANCOVA; Table 1, Fig. 2A). Increasing current
velocity also significantly increased SSC (F = 94.05, p < 0.05, two-
way ANCOVA; Table 1, Fig. 2A). The interaction between cockle den-
sity and sediment type had a positive influence on sediment erosion
(F = 5.2, p < 0.05, two-way ANCOVA). However, the SSC of all
treatments along the current velocity gradient between the two types of
sediments was not significantly different (F = 1.21 p > 0.05, two way
ANCOVA).

3.3. Erosion thresholds and net erosion rates

In cohesive sediment (Fig. 3A), the presence of cockles significantly
decreased the critical erosion threshold (i.e., current velocity where
erosion starts) from 14.4 ± 3.8 cm s−1 in the control treatment to
10.0 ± 1.4 cm s−1 in the low-density treatment and
10.6 ± 0.4 cm s−1 in the high-density treatment (F = 6.16,

p < 0.05, ANOVA). The net erosion rates noticeably increased with
each incremental increase in current velocity in all three treatments:
i.e., control treatment, low-density treatment and high-density treat-
ment (Table 2, Fig. 3A).

In non-cohesive sediment, both the erosion threshold and net ero-
sion rates in all treatments were significantly different from those found
in cohesive sediment (Fig. 3B). However, the critical erosion thresholds
did not significantly differ among treatments in the non-cohesive se-
diment, with a mean of 13.1 ± 0.1 cm s−1 in the control treatment,
12.4 ± 0.2 cm s−1 in the low-density cockle treatment and
12.2 ± 0.8 cm s−1 in the high-density cockle treatment (Table 2,
Fig. 3B). The net erosion rates significantly increased with current ve-
locity in all three treatments, and the presence of cockles did not sig-
nificantly affect erosion in the non-cohesive sediment, in contrast to the
effect of increasing current velocity (the statistical results are shown in
detail in Table 2).

3.4. Combined effect of current velocity and cockles on cohesive vs. non-
cohesive sediment

In the control treatments, SSCs in the non-cohesive sediment were
significantly higher than those found in the cohesive sediment
(χ2 = 6.4, p < 0.05, Kruskal Wallis Test), especially when the current
velocity was higher than 25 cm s−1 (Fig. 4A). In the cockle treatments,
however, even though SSCs were enhanced in cohesive sediment after
introducing both densities of cockles, the SSCs between sediment types
were not significantly different due to the integrated effect of current
velocity (F = 1.1, p > 0.05, two way ANCOVA) (Fig. 4B and C).

4. Discussion

The relative effects of bioturbation by cockles on the erodibility of
both cohesive and non-cohesive sediments were investigated using
controlled annular flume experiments. Our experiments showed that
the presence of cockles resulted in a marked increase in sediment
erodibility in cohesive sediment, while the erodibility of non-cohesive
sediment was mostly unaffected by cockles. The latter result may be
explained by the already considerable erosion caused by current stress
found in the non-cohesive controls. In the cohesive sediment, the in-
crease in sediment resuspension due to cockle bioturbation was posi-
tively correlated with both current velocity and bioturbator density.

Fig. 2. Time series of suspended sediment concentration (SSC)
in response to incremental increases in current velocity from 5 to
40 cm s−1 in cohesive (32% silt) (A) and non-cohesive (0% silt)
sediments (B). Six replicates for the control and 3 replicates each
for two density treatments.

Table 1
The statistical analysis results on suspended sediment concentration (SSC) and velocity,
cockles density and sediment type (tests of between-subjects effects).

Dependent variable: SSC

Source Type III sum of squares df Mean square F Sig.

Corrected model .941a 6 0.157 19.188 0.000
Intercept 0.140 1 0.140 17.161 0.000
Velocity 0.768 1 0.768 94.052 0.000
Density 0.077 2 0.039 4.720 0.014
Sediment 0.010 1 0.010 1.214 0.277
Density ∗ sediment 0.085 2 0.043 5.211 0.010
Error 0.335 41 0.008
Total 2.079 48
Corrected total 1.275 47

R squared = 0.737 (adjusted R squared = 0.699).
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Fig. 3. The net erosion rates for three treatments and
8 current velocities in cohesive (32% silt) (A) and non-
cohesive (0% silt) sediment (B). The lower case letters,
a, b and c, indicate critical erosion threshold values in
the control, low-density and high-density cockle
treatments in the cohesive sediment, respectively; d, e
and f indicate corresponding values in the non-cohe-
sive sediment, respectively.

Table 2
Comparison of net erosion rates in cohesive and non-cohesive sediment along current velocity gradient (significance (s.) means p < 0.05, non-significance (n. s.) means p > 0.05).

Sediment type Comparison of net erosion rates F or X2 p value Significance Statistical method

Cohesive In Control group along the current velocity gradient 19.7 < 0.05 s. ANOVA
In Low density group along the current velocity gradient 60.3 < 0.05 s. ANOVA
In High density group along the current velocity gradient 22.3 < 0.05 s. Kruskal Wallis ANOVA
Between control group (with no cockles) and groups with cockles (at both densities) 12.1 < 0.05 s. Kruskal Wallis ANOVA

Non-cohesive In Control group along the current velocity gradient 40.7 < 0.05 s. Kruskal Wallis ANOVA
In Low density group along the current velocity gradient 21.9 < 0.05 s. Kruskal Wallis ANOVA
In High density group along the current velocity gradient 18.6 < 0.05 s. Kruskal Wallis ANOVA
Between control group (with no cockles) and groups with cockles (at both densities) 0.16 > 0.05 n. s. ANOVA

Fig. 4. The suspended sediment concentration (SSC)
in cohesive (32% silt) and non-cohesive (0% silt) se-
diments for control (A), low-density (B) and high-
density cockle treatments (C).
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Interestingly, at current velocities higher than 0.25 m s−1, no differ-
ences in sediment resuspension were found between the sediment
types, with both having the same level of eroded mass. The presence of
high densities of bioturbators had the effect of smoothing out the dif-
ferences in sediment resuspension between cohesive and non-cohesive
sediment, leading to the same levels of eroded sediment mass at current
velocities higher than 0.25 m s−1.

While the cohesive sediment showed more resistance to purely
physical stress (increased current velocity) than the non-cohesive se-
diment, the two types of sediment presented very similar erosion pat-
terns in the presence of cockles. Thus, the presence of cockles, in
combination with the effect of current velocity, contributes to increased
erodibility in cohesive sediments.

4.1. Cockle behavior in the cohesive vs. non-cohesive sediment

Even though the levels of compaction used in the sediments are
found within the cockle habitat range, we observed very different be-
havior of cockles in the cohesive versus non-cohesive sediments during
the acclimation period. They roamed across the flumes in the non-co-
hesive sediment, while remaining quiescent in the cohesive sediment.
Previous studies have demonstrated that the cockle C. edule can remain
active and continue to move periodically or regularly ‘shake’ after
burrowing into sediment, disturbing the upper sediment layers (Flach,
1966). The different movement behavior of the cockles between the
types of sediment can be explained by the different properties of the
two sediment types. Cohesive sediment has a unique characteristic of
cohesion and adhesion induced by inter-particle attraction (Grabowski
et al., 2011), which makes it much stronger than non-cohesive sedi-
ment. This adhesion of cohesive sediment is likely to obstruct the
movement of cockles by requiring much more energy to move. The
burrowing and tracking activities of Hydrobia ulvae disrupted the upper
layers of sediment, generating a fluff layer, and enhanced the rates of
sediment erosion (Andersen et al., 2002; Orvain et al., 2003), which
also happened during the similar bioturbation effect of cockles.

4.2. Cockle bioturbation effects on the erodibility of cohesive and non-
cohesive sediment

This experiment demonstrated the differences in the bioturbation
effects of cockles on cohesive and non-cohesive sediments. The pre-
sence of cockles can increase erosion rates and decrease erosion
thresholds in cohesive sediment, while having no effect in non-cohesive
sediment. Sediment erosion is divided into two separate phases,
namely, i) erosion of the fluff layer and ii) subsequent bed erosion. Both
erosion phases were found to be influenced by the suspension-feeder
Scrobicularia plana and mud snail Hydrobia ulvae (Orvain et al., 2003;
Orvain, 2005). Based on the bioturbation of H. ulvae on sediment ero-
sion, a 1-dimensional vertical model was developed by Orvain et al.
(2003) to predict the community effects. In agreement with this work,
our study showed that the presence of C. edule can also impact both
erosion phases. The functional group approach has also been in-
troduced in studies of sediment erodibility by assessing the interactions
between the sediment and the organism (Pearson, 2001). François et al.
(2002) also developed a gallery-diffusor model to characterize the
bioturbation processes of the polychaete Nereis diversicolor.

In addition to having direct effects on sediment erosion by dis-
rupting the upper layers of sediment (i.e., both enhancing the bed
roughness and reducing the sediment strength), C. edule can also have
indirect effects. For example, they enhance biodeposition by producing
faeces and pseudo-faeces, which may contribute a significant portion of
the total accumulation of fine-grained material, namely forming a fluff
layer. When subsequently mixed into the sediment, this may increase
the mud content, thereby making the sediment more cohesive over
time. However, this process will take time, as it has been demonstrated
that only a small fraction of these deposits is permanently deposited,

whereas the majority is easily resuspended, thereby resulting in more
resuspension in the presence of cockles (Andersen et al., 2010). These
disturbances can be characterized as being in the same integrated
process of fluff layer creation and erosion (Orvain, 2005).

An increase in SSC due to the presence of cockles might lead to a
chain reaction or the Butterfly effect (Ciutat et al., 2007), where an
increase in SSC will stimulate the frequency of valve opening and
closing in cockles, which in turn aggravates the destabilization and
resuspension of sediment by resuspending more pseudo-faeces (Navarro
and Widdows, 1997; Ciutat et al., 2007). In contrast, another study
showed that high cockle density may also dampen or reduce sediment
resuspension by producing more mucus to bind sediment particles,
thereby enhancing sediment cohesion (Ciutat et al., 2006). In these
experiments, we did not find this binding effect. This might be because
our high-density treatment level (i.e., 686 ind. m−2) is much lower than
the high densities found in natural cockle beds, which may be up to
thousands of individuals per square meter.

The increase in sediment resuspension was dependent on the in-
teraction between both bioturbator density and current velocity. At low
water current velocities under the critical erosion threshold, sediment
reworking by animals has negligible impact on erosion. At higher cur-
rent velocities, however, suspended particles may be transported away
by currents and thereby gradually change the sediment properties over
time (Wendelboe et al., 2013). Moreover, the intensity of flow speed
might initiate and enhance burrowing processes by cockles (St-Onge
et al., 2007), which in turn may enhance sediment erodibility through
the combined impact from burrowing clams and increased current
speed.

As faeces and pseudo-faeces are generally resuspended, and erosion
thresholds are reduced, cockles may contribute to making the sediment
much sandier over time. Such effects were shown at the large-scale in
an in situ lugworm exclusion experiment. Volkenborn et al. (2007)
found that Arenicola marina activities could shift a muddy sedimentary
system towards sand flats. Demonstrating the long-term effect of cockle
bioturbation, however, would require in situ investigations conducted at
similarly large spatial and temporal scales.

5. Conclusions

The particle composition of a certain type of sediment results from
the net import and export of differently sized particles. Bioturbation
represents only one of the processes mediating this equilibrium
(Wendelboe et al., 2013). The contribution of hydrodynamics and fauna
to sediment erosion may be different depending on the type of en-
vironment: low vs. high energy, low vs. high SSC, or cohesive vs. non-
cohesive sediment. In a low energy environment, macro-organisms like
cockles might play a considerable role in mediating sediment compo-
sition in cohesive sediments but not in non-cohesive sediments. These
non-cohesive sediments, however, are mainly expected in high-energy
environments or in low energy areas where no silt is available.

This consideration is further strengthened by the fact that the
muddy bottoms characterized by low hydrodynamic energy (i.e., where
cockles are more effective in sediment resuspension) are where cockles
are more commonly present and where they are able to realize their
higher densities (Cozzoli et al., 2013; Cozzoli et al., 2014).

Our results emphasize the conditional outcomes in the bioturbating
effects of (high-density) cockles, thereby providing a basis for numer-
ical modelling at the landscape scale (Willows et al., 1998; Lumborg
et al., 2006).
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