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Abstract: This narrative review aims to provide an overview of the main Machine Learning (ML) 
techniques and their applications in pharmacogenetics (such as antidepressant, anti-cancer and 
warfarin drugs) over the past 10 years. ML deals with the study, the design and the development of 
algorithms that give computers capability to learn without being explicitly programmed. ML is a 
sub-field of artificial intelligence, and to date, it has demonstrated satisfactory performance on a 
wide range of tasks in biomedicine. According to the final goal, ML can be defined as Supervised 
(SML) or as Unsupervised (UML). SML techniques are applied when prediction is the focus of the 
research. On the other hand, UML techniques are used when the outcome is not known, and the 
goal of the research is unveiling the underlying structure of the data. The increasing use of 
sophisticated ML algorithms will likely be instrumental in improving knowledge in 
pharmacogenetics. 
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1. Introduction 
Pharmacogenetics aims to assess the interindividual variations in DNA sequence 

related to drug response [1]. Gene variations indicate that a drug can be safe for one 
person but harmful for another. The overall prevalence of adverse drug reaction-related 
hospitalization varies from 0.2% [2] to 54.5% [3]. Pharmacogenetics may prevent drug 
adverse events by identifying patients at risk in order to implement personalized 
medicine, i.e., a medicine tailored focused on genomic context of each patient.  

The need to obtain increasingly accurate and reliable results, especially in 
pharmacogenetics, is leading to a greater use of sophisticated data analysis techniques 
based on experience called Machine Learning (ML). ML can be defined as the study of 
computer algorithms that improve automatically through experience. According to Tom 
M. Mitchell “A computer program is said to learn from experience E with respect to some 
class of tasks T and performance measure P if its performance at tasks in T, as measured 
by P, improves with experience E.” [4]. According to the final goal, ML can be defined as 
Supervised (SML) or as Unsupervised (UML). SML techniques are applied when 
prediction is the focus of the research. On the other hand, UML techniques are used when 
the outcome is not known, and the goal of the research is unveiling the underlying 
structure of the data.  

This narrative review aims to provide an overview of the main SML and UML 
techniques and their applications in pharmacogenetics over the past 10 years. The 
following search strategy, with a filter on the last 10 years, was run on PubMed “machine 
learning AND pharmacogenetics” (Figure 1). 
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The paper is organized as follows: Section 2 illustrates the SML approach and its 
application on pharmacogenetics; Section 3 reports the principal UML approach and its 
application on pharmacogenetics; Section 4 is devoted to discussion. 

 
Figure 1. Word-cloud analysis using the titles of articles obtained based on the following search 
strategy (PubMed): machine learning AND pharmacogenetics. The pre-processing procedures 
applied were: (1) removing non-English words or common words that do not provide information; 
(2) changing words to lower case and (3) removing punctuation and white spaces. The size of the 
word is proportional to the observed frequency. 

2. Supervised Machine Learning Approaches 
Several SML techniques have been implemented. They can be classified into two 

categories: regression methods and classification methods (Figure 2). 



Genes 2021, 12, 1511 3 of 13 
 

 

 
Figure 2. Summary representation of different SML algorithms: examples of regression and classification methods. 

2.1. Regression Methods 
The simplest regression method is linear regression. A linear model assumes a linear 

relationship between the input variables (X) and an output variable (Y) [5]. Standard 
formulation of linear regression models with standard estimation techniques is subject to 
four assumptions: (i) linearity of the relationship between X and expected value of Y; (ii) 
homoscedasticity, i.e., the residual variance is the same for any value of X; (iii) 
independence of the observations and (iv) normality: the conditional distribution of Y|X 
is normal. To overcome the linear regression model assumptions, the generalized linear 
models (GLM) have been developed. The GLM generalize linear regression by allowing 
the linear model to be related to the response variable via a link function [6,7]: 𝐸(𝑌|𝑋) = 𝜇௜ = 𝑔ିଵ(𝑥௜் 𝛽) 

where 𝜇௜ is the response function, and 𝑔 is the link function. 
In order to address more complex problems, sophisticated penalized regression 

models have been developed allowing to overcome problems such as multicollinearity 
and high dimensionality. In particular, Ridge regression [8] is employed when problems 
with multicollinearity occur, and it consists of adding a penalization term to the loss 
function as follows: arg minఉ ‖𝑦 − 𝑋𝛽‖ + 𝜆‖𝛽‖ଶଶ 

where 𝜆 is the amount of penalization (tuning parameter), and ‖𝛽‖ଶଶ is the norm 2 of the 
βs, i.e.,  ‖𝛽‖ଶଶ = ∑ 𝛽௜ଶ. More recently, Tibshirani et al. introduced LASSO regression, an 
elegant and relatively widespread solution to carry out variable selection and parameter 
estimation simultaneously, also in high dimensional settings [9]. In LASSO regression, the 
objective function to be minimized is the following: arg minఉ ‖𝑦 − 𝑋𝛽‖ + 𝜆‖𝛽‖ଵ 

where 𝜆 is the amount of penalization (tuning parameter), and ‖𝛽‖ଵ is the norm 1 of the 
βs, i.e.,  ‖𝛽‖ଵ = ∑ 𝛽௜ . Some issues concerning the computation of standard errors and 
inference have been recently discussed [10]. A combination of LASSO and Ridge 
regression penalties leads to the Elastic Net (EN) regression:  arg minఉ ‖𝑦 − 𝑋𝛽‖ + 𝜆ଵ‖𝛽‖ଵ + 𝜆ଶ‖𝛽‖ଶଶ 

where 𝜆ଵ‖𝛽‖ଵ  is the L1 penalty (LASSO), and 𝜆ଶ‖𝛽‖ଶଶ  is the L2 penalty (Ridge). 
Regularization parameters reduce overfitting, decreasing the variance of the estimated 
regression parameters; the larger the 𝜆, the more shrunken the estimate; however, more 
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bias will be added to the estimates. Cross-Validation can be used to select the best value 
of 𝜆 to use in order to ensure the best model is selected. Another family of regression 
methods is represented by regression trees. A regression tree is built by splitting the whole 
data sample, constituting the root node of the tree, into subsets (which constitute the 
successor children), based on different cut-offs on the input variables [11]. The splitting 
rules are based on measures of prediction performances; in general, they are chosen to 
minimize the residual sum of squares: 

𝑅𝑆𝑆 = ෍(𝑦௜ − 𝑦పෝ)ଶ௡
௜ୀଵ  

The pseudo algorithm works as follows: 
1. Start with a single node containing all the observations. Calculate 𝑦పෝ  and RSS;  
2. If all the observations in the node have the same value for all the input variables, stop. 

Otherwise, search over all binary splits of all variables for the one which will reduce 
RSS as much as possible; 

3. Restart from step 1 for each new node. 
Random forests (RF) are an ensemble learning method based on a multitude of deci-

sion trees; to make a prediction for new input data, the predictions obtained from each 
individual tree are averaged [12]. 

RuleFit is another ensemble method that combines regression tree methods and 
LASSO regression [13]. The structural model takes the form:  𝐹(𝑥) = 𝑎଴ + ෍ 𝑎௠𝑓௠(𝑥)ெ

௠ୀଵ  

where M is the size of the ensemble and each ensemble member (“base learner”), and 𝑓௠(𝑥) is a different function (usually the indicator function) of the input variables x. Given 
a set of base learners 𝑓௠(𝑥), the parameters of the linear combination are obtained by 

 {𝑎ො௠}଴ெ = arg min{௔೘}బಾ ෍ 𝐿(𝑦௜, 𝐹(𝑥))ே
௜ୀଵ + 𝜆 ෍ |𝑎௠|ெ

௠ୀଵ  

where L indicates the loss function to minimize. The first term represents the prediction 
risk, and the second part penalizes large values for the coefficients of the base learners. 

Support Vector Regression (SVR) is an optimization problem of a convex loss func-
tion to be minimized to find, in such a way, the flattest zone around the function (known 
as the tube) that contains the most observations [14]. The convex optimization, which has 
a unique solution, is solved, using appropriate numerical optimization algorithms. The 
function to be minimized is the following: 12 ‖𝛽‖ଶଶ + 𝐶 ෍ 𝑉ఢ(𝑦௜ − 𝑥௜𝛽௜)ே

௜ୀଵ  

with 𝑉ఢ(𝑟) = ൜ 0, |𝑟| < 𝜖|𝑟| − 𝜖, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

and C is an additional hyperparameter. The greater is C, the greater is our tolerance for 
points outside ϵ. 

2.2. Classification Methods 
Classification methods are applied when the response variable is binary or, more 

generally, categorical. Naive Bayes (NB) is a “probabilistic classifier” based on the appli-
cation of the Bayes’ theorem with strong (naïve) independence assumptions between the 
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features [15]. Indeed, NB classifier estimates the class C of an observation by maximizing 
the posterior probability: 𝑎𝑟𝑔 max஼ 𝑝(𝑥|𝐶)𝑝(𝐶)𝑝(𝑥)  

Support Vector Machine (SVM) builds a model that assigns new examples to one 
category or the other, making it a non-probabilistic binary linear classifier [16]. The un-
derlying idea is to find the optimal separating hyperplane between two classes, by max-
imizing the margin between the closest points of these two classes. To find the optimal 
separating hyperplane it needs to minimize:  minఉ 12 𝛽்𝛽     𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝑦௜(𝑥௜் 𝛽) ≥ 1. 𝑓𝑜𝑟 𝑖 = 1, … , 𝑛 

A quadratic programming solver is needed to optimize the aforementioned problem. 
The k-nearest neighbor (KNN) is a non-parametric ML method which can be used to 

solve classification problems [17]. KNN assigns a new case into the category that is most 
similar to the available categories. Given a positive integer k, KNN looks at the k obser-
vations closest to a test observation 𝑥଴ and estimates the conditional probability that it 
belongs to class 𝑗 using the formula 𝑃(𝑌 = 𝑗|𝑋 = 𝑥଴) = 1𝑘 ෍ 𝐼(𝑦௜ = 𝑗)௜ ∈ேబ  

where 𝑁଴ is the set of 𝑘 -nearest observations, and 𝐼 is the indicator function, which is 1 
if a given observation is a member of class j and 0 otherwise. Since the k nearest points are 
needed, the first step of the algorithm is calculating the distance between the input data 
points. Different distance metrics can be used; the Euclidean distance is the most used. 

A Neural Network (NN) is a set of perceptrons (artificial neurons) linked together in 
a pattern of connections. The connection between two neurons is characterized by the 
connection weight, updated during the training, which measures the degree of influence 
of the first neuron on the second one [18]. NN can be also applied in unsupervised learn-
ing. Strengths and limitations of each approach are summarized in Table 1. 

Table 1. Supervised machine learning approaches: strengths and limitations. 

Methods Strengths Limitations 

GLM 

The response variable can follow 
any distribution in the exponential 

family 
Easy to interpret  

Affected by noisy data, 
missing values, multicol-

linearity and outliers 

Ridge Overcomes multicollinearity issues Increased bias 

LASSO 
Avoids overfitting 

Effective in high dimensional set-
tings 

Selects only one feature 
from a group of correlated 

features 

EN 
Selects more than n predictors 

when n (sample size)<<p (# of vari-
ables) 

Computationally expen-
sive with respect to 
LASSO and Ridge 

RT 
Easy to implement 

Ability to work with incomplete 
information (missing values) 

Computationally expen-
sive 

RF High performance and accuracy Less interpretability 
High prediction time 

SVR Easy to implement 
Robust to outliers 

Unsuitable for large da-
tasets 

Low performance in over-
lapping situations * 
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NB Suitable for multi-class prediction 
problems 

Independence assumption 
Assigns zero probability 
to category of a categori-

cal variable in the test data 
set that was not available 

in the training dataset 

SVM Suitable for high dimensional set-
tings 

No probabilistic explana-
tion for the classification 

Low performance in over-
lapping situations * 
Sensitive to outliers 

KNN Easy to implement 
Affected by noisy data, 

missing values and outli-
ers 

NN 
Robust to outliers 

Ability to work with incomplete 
information (missing values) 

Computationally expen-
sive 

GLM: Generalized Linear Model; LASSO: Least Absolute Shrinkage and Selection Operator; EN: 
Elastic-net; RT: Regression Tree; RF: Random Forest; SVR: Support Vector Regression; NB: Naïve 
Bayes; SVM: Support Vector Machine; KNN: K-nearest Neighbor; NN: Neural Network; #: num-
ber; * overlapping can arise when samples from different classes share similar attribute values. 

2.3. Supervised Machine Learning Approaches in Pharmacogenetics 
Recent studies in pharmacogenetics aiming to predict drug response used a SML ap-

proach with satisfactory results (Table 2). In particular, a study assessing the pharmaco-
genetics of antidepressant response compared different supervised techniques such as 
NN, recursive partitioning, learning vector quantization, gradient boosted machine and 
random forests. Data involved 671 adult patients from three European studies on major 
depressive disorder. The best accuracy among the tested models was achieved by NN 
[19]. Another study on 186 patients with major depressive disorder aimed to predict re-
sponse to antidepressants and compared the performance of RT and SVM. SVM reported 
the best performance in predicting the antidepressants response. Moreover, in a second 
step of the analysis, authors applied LASSO regression for feature selection allowing the 
selection of 19 most robust SNPs. In addition, application of SML allowed to distinguish 
remitters and non-remitters to antidepressants [20]. 

A field of pharmacogenetics where SML techniques find wide application is the 
study of the response to anti-cancer drugs. In this regard, EN, SVM and RF reported ex-
cellent accuracy, generalizability and transferability [21–23].  

Studies on warfarin dosing applied different SML techniques (NN, RIDGE, RF, SVR 
and LASSO) showing a significant improvement in the prediction accuracy compared to 
standard methods [24–27]. Another study on warfarin stable dosage prediction using 
seven SML models (multiple linear regression, NN, RT, SVR and RF) showed that multi-
ple linear regression may be still the best model in the study population [28]. 

A comparative study on prediction of various clinical dose values from DNA gene 
expression datasets using SML, such as RTs and SVR, reported that the best prediction 
performance in nine of 11 datasets was achieved by SVR [29]. Recently, an algorithm 
“AwareDX: Analysing Women At Risk for Experiencing Drug toxicity” based on RF was 
developed for predicting sex differences in drug response, demonstrating high precision 
[30]. 
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Table 2. Summary of the study using SML approaches. 

Reference AIM 
Included Popula-

tion Methodologies Results 

Fabbri 2018 
[19] 

To predict response 
to antidepressants 671 patients NN and RF 

The best accuracy among the tested 
models was achieved by NN 

Maciukiewicz 2018 
[20] 

To predict response 
to antidepressants 

186 patients RT and SVM 
SVM reported the best performance in 

predicting the antidepressants re-
sponse. 

Kim 2019 
[21] 

To study of the re-
sponse to anti-cancer 

drugs 
1235 samples EN, SVM and RF 

Sophisticated machine 
learning algorithms allowed to de-

velop and validate a highly accurate a 
multi-study–derived predictive model 

Cramer 2019 
[22] 

To study of the re-
sponse to anti-cancer 

drugs 

1001 cancer cell 
lines and 265 drugs 

linear regression 
models 

The interaction-based approach con-
tributes to a holistic view on the deter-

mining factors of drug response. 

Su 2019 
[23] 

To study of the re-
sponse to anti-cancer 

drugs 

33,275 cancer cell 
lines and 24 drugs 

Deep learning 
and RF 

The proposed Deep-Resp-Forest has 
demonstrated the promising use of 

deep learning and deep forest 
approach on the drug response 

prediction tasks. 

Ma 2018 
[24] 

To study the warfa-
rin dosage prediction 5743 patients 

NN, Ridge, RF, 
SVR and LASSO 

Novel regression models combining 
the advantages of distinct machine 

learning algorithms and significantly 
improving the prediction accuracy 
compared to linear regression have 

been obtained. 

Liu 2015 
[25] 

To study the warfa-
rin dosage prediction

3838 patients NN, RT, SVR, RF 
and LASSO 

Machine learning-based algorithms 
tended to perform better in the low- 
and high- dose ranges than multiple 

linear regression. 

Sharabiani 
2015 
[26] 

To study the warfa-
rin dosage prediction 4237 patients SVM 

A novel methodology for predicting 
the initial dose was proposed, which 

only relies on patients’ clinical and de-
mographic data. 

Truda 2021 
[27] 

To study the warfa-
rin dosage prediction

5741 patients Ridge, NN and 
SVR 

SVR was the best performing 
traditional algorithm, whilst neural 

networks performed poorly. 

Li 2015 
[28] 

To study the warfa-
rin dosage prediction

1295 patients 
Linear regression 
model, NN, RT, 

SVR and RF 

Multiple linear regression was the best 
performing algorithm. 

LASSO: Least Absolute Shrinkage and Selection Operator; EN: Elastic-net; RT: Regression Tree; RF: Random Forest; SVR: 
Support Vector Regression; SVM: Support Vector Machine; KNN: K-nearest Neighbor; NN: Neural Network. 

3. Unsupervised Machine Learning Approaches 
Regarding UML, data-driven approaches by using clustering methods can be used 

to describe data with the aim of understanding whether observations can be stratified into 
different subgroups. Clustering methods can be divided into (i) combinatorial algorithms, 
(ii) hierarchical methods and (iii) self-organizing maps (Figure 3). 
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Figure 3. Summary representation of different UML algorithms: some examples. 

3.1. Combinatorial Algorithms 
In combinatorial algorithms, objects are partitioned in clusters trying to minimize a 

loss function, e.g., the sum of the within clusters variability. In general, the aim is to max-
imize the variability among clusters and to minimize the variability within clusters. K-
means is considered the most typical representative of this group of algorithms. Given a 
set of input variables (𝑥ଵ, 𝑥ଶ, … , 𝑥௡), k-means clustering aims to partition the n observa-
tions into k (≤ n) sets S={𝑆ଵ, 𝑆ଶ, … , 𝑆௞), minimizing the within-cluster variances. Formally, 
the objective function to be minimized is the following: 

𝐿 = ෍ ෍ |ห𝑥௝ − 𝜇௜ ห|ଶ௫ೕ∈ௌ೔
௞

௜ୀଵ  

where μ୧ is the set of centroids in S୧. The k-means algorithm starts with a first group of 
randomly selected centroids, which are used as starting points for every cluster, and then 
performs iterative calculations to optimize the positions of the centroids. In k-means clus-
tering, the centroids μ୧ are the means of the cluster 𝑆௜. The algorithm stops if there is no 
change in the centroid or if a maximum number of iterations has been reached [31]. K-
means is defined for quantitative variables and Euclidean distance metric; however, the 
algorithm can be generalized to any distance D. K-medoids clustering is a variant of K-
means that is more robust to noises and outliers [32]. K-medoids minimizes the sum of 
dissimilarities between points labeled to be in a cluster and a point designated as the cen-
ter of that cluster (medoids), instead of using the mean point as the center of a cluster. 

3.2. Hierarchical Methods 
Hierarchical clustering produces, as output, a hierarchical tree, where leaves repre-

sent objects to be clustered, and the root represents a super cluster containing all the ob-
jects [33]. Hierarchical trees can be built by consecutive fusions of entities (objects or al-
ready formed clusters) into bigger clusters, and this procedure configures an agglomera-
tive method; alternatively, consecutive partitions of clusters into smaller and smaller clus-
ters configure a divisive method. 

Agglomerative hierarchical clustering produces a series of data partitions, 𝑃௡, 𝑃௡ିଵ, … , 𝑃ଵ, where 𝑃௡ consists of n singleton clusters, and 𝑃ଵ is a single group contain-
ing all n observations. Basically, the pseudo algorithm consists in the following steps: 

1. Compute the distance matrix D; 
2. The most similar observations are merged in a first cluster; 
3. Update D; 
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4. Steps 2 and 3 are repeated until all observations belong to a single cluster. 
One of the simplest agglomerative hierarchical clustering methods is the nearest 

neighbor technique (single linkage), in which the distance between clusters (𝑟, 𝑠) is com-
puted as follows: 𝐷(𝑟, 𝑠)  =  min௜∈௥,௝∈௦ 𝑑(𝑖, 𝑗)   

At each step of hierarchical clustering, the clusters r and s, for which D(r,s) is mini-
mum, are merged. Therefore, the method merges the two most similar clusters. 

In the farthest neighbor (complete linkage), the distance between clusters (𝑟, 𝑠) is de-
fined as follows:  𝐷(𝑟, 𝑠)  =  max௜∈௥,௝∈௦ 𝑑(𝑖, 𝑗)   

At each step of hierarchical clustering, the clusters r and s, for which 𝐷(𝑟, 𝑠) is min-
imum, are merged.  

In the average linkage clustering, the distance between two clusters is defined as the 
average of distances between all pairs of objects, where each pair is made up of one object 
from each group.  

Divisive clustering is more complex than agglomerative clustering; a flat clustering 
method as “subroutine” is needed to split each cluster until each data have its own sin-
gleton cluster [34]. Divisive clustering algorithms begin with the entire data set as a single 
cluster and recursively divide one of the existing clusters into two further clusters at each 
iteration. The pseudo algorithm consists in the following steps: 
1. All data are in one cluster; 
2. The cluster is split using a flat clustering method (K-means, K-medoids); 
3. Choose the best cluster among all the clusters to split that cluster through the flat 

clustering algorithm; 
4. Steps 2 and 3 are repeated until each data is in its own singleton cluster. 

3.3. Self Organizing Maps 
Self-Organizing Maps (SOM) is the most popular artificial neural network algorithm 

in the UML category [35]. SOM can be viewed as a constrained version of K-means clus-
tering, in which the original high-dimensional objects are constrained to map onto a two-
dimensional coordinate system. Let us consider n observations, M variables (dimensional 
space) and K neurons. Denoting by 𝑤௜, 𝑖 = 1 … 𝐾, the position of the neurons in the M-
dimensional space, the pseudo-algorithm consists in: 
1. Choose random values for the initial weights 𝑤௜; 
2. Randomly choose an object i and find the winner neuron j whose weight 𝑤௝ is the 

closest to observation 𝑥௜; 
3. Update the position of 𝑤௝ moving it towards 𝑥௜; 
4. Update the positions of the neuron weights 𝑤௛with h ℎ ∈  NN୨(t) (winner neighbor-

hood); 
5. Assign each object i to a cluster based on the distance between observations and neu-

rons. 
In more detail, the winner neuron is detected according to: 𝑤௝ = min௜ୀଵ…௄‖𝑥 − 𝑤௜‖ 

The winner weight updating rule is the following: 𝑤௝(𝑡 + 1) = w୨(𝑡) + 𝜂(𝑡)‖𝑥 − 𝑤௜‖ 

where 𝜂(𝑡) is the learning rate which decreases as iterations increases, and the NN୨(t) 
updating rule is the following: 
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𝑤௛(𝑡 + 1) = w୦(𝑡) + 𝑓(𝑁𝑁௝(𝑡), 𝑡)‖𝑥 − 𝑤௛‖ 

where the neighborhood function 𝑓(𝑁𝑁௝(𝑡), 𝑡) gives more weight to neurons closer to the 
winner i than to those further away. Strengths and limitations of each approach are re-
ported in Table 3. 

Table 3. Unsupervised machine learning approaches: strengths and limitations. 

Methods Strengths Limitations 

K-means Reallocation of entities is allowed 
No strict hierarchical structure  

A priori choice of the num-
ber of clusters  

Dependent on the initial 
partition  

K-medoids Reallocation of entities is allowed 
No strict hierarchical structure  

A priori choice of the num-
ber of clusters  

Dependent on the initial 
partition  

High computational bur-
den 

Agglomerative/ Divisive 
Hierarchical  

Easy to implement 
Easy interpretation 

Strict hierarchical struc-
ture 

Dependent on the updat-
ing rule 

SOM 
Reallocation of entities is allowed 

No strict hierarchical structure  

A priori choice of the num-
ber of clusters  

Dependent on the number 
of iterations and initial 

weights  
SOM: self-organizing maps. 

3.4. Unsupervised Machine Learning Approaches in Pharmacogenetics 
Since the main goal in pharmacogenetics is to predict drug response, only few studies 

have used UML techniques (Table 4). These techniques have mainly been used for data 
pre-processing to identify groups. Indeed, Tao et al., to balance the dataset of patients 
treated with warfarin and improve the predictive accuracy, proposed to solve the data-
imbalance problem using a clustering-based oversampling technique. The algorithm de-
tects the minority group, based on the association between the clinical features/genotypes 
and the warfarin dosage. A new synthetic sample, generated selecting a minority sample 
and finding k-nearest neighbors of the minority sample, was added to the dataset. Then, 
two SML techniques (RT and RF) were compared in order to predict the warfarin dose. 
Both models (RT and RF) achieve the same or higher performance in many cases [36]. A 
study aiming to combine the effects of genetic polymorphisms and clinical parameters on 
treatment outcome in treatment-resistant depression used a two-step ML approach. First, 
patients were analyzed using a RF algorithm, while in a second step, data were grouped 
through cluster analysis. Cluster analysis allowed identifying 5 clusters of patients signif-
icantly associated with treatment response [37]. 
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Table 4. Summary of the study using UML approaches. 

Reference AIM 
Included popula-

tion 
Methodolo-

gies Results 

Tao 2020 
[36] 

To balance the dataset of pa-
tients treated with warfarin 

and improve the predictive ac-
curacy. 

592 patients 
Cluster analy-

sis 

The algorithm detects the minority 
group, based on the association be-

tween the clinical features/geno-
types and the warfarin dosage. 

Kautzky 2015 
[37] 

To combine the effects of ge-
netic polymorphisms and clini-

cal parameters on treatment 
outcome in treatment-resistant 

depression. 

225 patients 
Cluster analy-

sis 

Cluster analysis allowed identifying 
5 clusters of patients significantly as-

sociated with treatment response. 

4. Conclusions 
ML techniques are sophisticated methods that allow obtaining satisfactory results in 

term of prediction and classification. In pharmacogenetics, ML showed satisfactory per-
formance in predicting drug response in several fields such as cancer, depression and an-
ticoagulant therapy. RF proved to be the most frequently applied SML technique. Indeed, 
RF creates many trees on different subsets of the data and combines the output of all the 
trees, reducing variance and the overfitting problem. Moreover, RF works well with both 
categorical and continuous variables and is usually robust to outliers.  

Unsupervised learning still appears to not be frequently used. The potential benefits 
of these methods have yet to be explored; indeed, using UML as a preliminary step for the 
analysis of drug response could provide subgroups of response that are less arbitrary and 
more balanced than the standard definition of response. 

Although ML methods have shown superior performances with respect to classical 
ones, some limitations should be considered. Firstly, ML methods are particularly effec-
tive for analyzing large complex datasets. The amount of data should be large to provide 
enough information for solid learning. Indeed, the small sample size may potentially af-
fect the stability and reliability of ML models. Moreover, due to algorithm complexity, 
other potential limitations could be overfitting, the lack of standardized procedures and 
the difficulty of interpreting data. 

The main strength of ML technique is to provide very accurate results, with a notable 
impact according to precision medicine principles. 

In order to overcome the possible limitations of ML, future directions should be fo-
cused on the creation of an open-source system to allow researchers to collaborate in shar-
ing their data.  
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