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ABSTRACT

Incubation time is the period from the onset
of HIV infection to AIDS. The distribution of the
incubation time is one of the main parameters for the
estimation of incidence of HIV infection. Because of
the long and variable incubation time, the assessment
of its distribution is uncertain and this uncertainty
affects the precision of the HIV incidence estimates.

Given the AIDS data and the incubation time
distribution, we can estimate the HIV incidence via
a deconvolution method, called backcalculation. In
the backcalculation equations the incubation time
distribution is supposed fixed, so that its variability
is not considered when assessing the precision of the
estimates.

The scope of this work is to investigate the sensi-
tivity of the estimates to variations of the incubation
times making use of a Monte Carlo method called the
bootstrap.

We compare, through an application to the
HIV epidemic in Italy, the precision of the incidence
estimates obtained via the standard backealcuiation
method and via the parametric bootstrap.

The results show that the amplification of the
uncertainty of the HIV incidence estimates resulting
from the implementation of our proposed method
tends to concentrate around the earlier periods of
the epidemic, corresponding to the right tail of the
incubation time distribution which is very sensitive
to small perturbations.

1. INTRODUCTION
Modelling HIV infection incidence gave great

improvement. to potential surveillance system in most
countries.

Backecalculation methods, originally proposed
in HIV estimation by Brookmeyer and Gail (1986,
1988), were among those most appreciated for their
simplicity and flexibility.  Reliability of estimates
obtained by backcalculation from AIDS counts and
incubation time distribution have been studied in
several countries, with reference to the quality of data
available and the completeness of AIDS notifications.
A review of sources of uncertainty affecting backeal-
culation procedures can be found in Brookmeyer and
Gail (1994},

Knowledge of incubation time was indicated
as a major problem, being an important source of
uncertainty in backcalculation estimates. Most of
the uncertainty involved in the estimation of the
incubation time distribution is due to the rather
short observation period available (usually 10-15
years) with respect to 8-12 year estimated median
times from HIV to AIDS. This uncertainty spreads
through the backcalculation method and affects the
estimation of the precision of HIV incidence.

The bootstrap, introduced by Efron in 1979,
is a computer-intensive method to obtain standard
errors, confidence Intervals, and other measures
of uncertainty in many problems where analytical
caleulations are not feasible. For a recent review
of the bootstrap methods see Davison and Hinkley
{1997}

In this work we are interested in studying the
effect of the epidemiological uncertainty of incuba-
tion time distribution to backcalculation estimates.
Starting from the parametric model illustrated by
Verdecchia and Mariotto (1995), we make use of
the parametric bootstrap to resample parameter
values from the incubation time distribution and
use them in the backcalculation equations. The
resulting estimated standard errors of the incidence
ostimates should incorporate the uncertainty due to
the estimation of the incubation distribution.
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2. BACKCALCULATION

Backealculation is a method for estimating past
HIV infection rates from AIDS incidence data. The
hasic idea is to use AIDS incidence counts and an
estimate of the incubation time distribuiion to recon-
struct the numbers of individuals who have been pre-
viously infected in order to give rise to the observed
pattern of AIDS incidence.

The fundamental relation between the expected
cumulative number of AIDS cases diagnosed by cal-
endar time £, v(£), the infection rate ©(s) at calendar
time s, and the incubation time distribution 7{t), is
given by the convolution equation

i
it = fg ()7t = s)ds. (1)

Once we assume 7 as fixed, and we know <y from the
data, we are able to estimate 4.

Let ¥ = (Y1,...,Yy), where Y, is the number of
AIDS cases diagnosed in the calendar time [Ty, T3)-
it is assumed that individuals become infected ac-
cording to a Poisson process, whose intensity function
p(s;8) is assumed to come from a parametric family
with p unknown parameters 4.

Hence (1) becomes

T

) = [ west)fr(Ti = o) = 7T = s ()
M

and we can write down the ioglikelihood function

L8, V') for 6, obtain the maximum likelihood estimate

d and an estimate of its covariance rmatrix

a‘-ha(e;m}“1

20.00; ®)

cov{8) = [— _

f=6
Since var(f(z)) = [f'(2))*var(z), from (3) we obtain
the asymptotic variance of the HIV incidence esti-
mate.

3. INCUBATION TIME DISTRIBUTION
AND THE BOOTSTRAP

The incubation time is the period between the
onset of HIV infection and the diagnosis of AIDS. In-
cubation periods are extremely variable and some are
very long. The incubation time distribution 7(t) is
the probability that an infected individual progresses
to AIDS within t years of the time of seroconversion.

In the recent past several studies have been set
up for estimating the incubation time distribution via

parametric or nonparametric models. The estimated
distribution is then included in the backealculation as
if it were a known variate.

Let 7(t; ) be the parametric model for the incu-
bation time distribution, which depends upon ¢ pa-

rameters ¢, and let  be the maximum likelihood
estimated vector. Equation {2) becomes

T; . N
BY) = ]T (s O)r (s — 55 ) — (i = 53 D),
’ (4)

thus representing a completely parametrised model for
the expected cumulative number of AIDS cases.

In this formulation it is evident that the HIV in-
cidence p not only depends on the parameter vector a8
of the intensity model, it also depends on the param-
eter vector 4 of the incubation time model.

Let [i{t;8) be the estimated number of HIV cases
diagnosed in year ¢ and assume that

E(ji(t; 8)l4) = plt; 6) (5)
var(fi(t; )ly) = v’ (6). {6)

Having assumed known (and therefore fixed) the con-
tribution of the incubation time in the backealculation
equations, the standard eror of the HIV incidence es-
timates, v(t;d), can be interpreted as the statistical
error due to the fitting of the model. However a fulier
formulation of var( i} should talke into account sources
of variation related to both and 7. Therefore the
following variance decomposition formula (Bickel and
Doksum, 1977, p. 36) appiies:

vary [ IB{ )} -+ Iy lvar( )]
vary (p) + IE¢(UQ), (7

following notation of {5) and (6).

An approximation to the two summands in (7)
can be found by bootstrapping the incubaiion fime
distribution.

Let % be the vector of the maximum lkelirood
estimates of the parameters of the incubation time
distribution and & its estimated covariance matrix.
The full parametric bootstrap paradigm consists of

i

var( f1)

{a) resampling a set = {t],. .t of incubation
times from the distribution 7(t; 1), whose param-
oter vector # is replaced by its maximum likeli-
hood estimate;

(b) estimating the parameter
P(t,. . . T5,) using the same estimation proce-
dure implemented to obtain ¥, appled to the
new data set T,

vector ¥ =




(c) plugging the new incubation time estimates ¢}
inte the backealculation equations (4), obtaining
the new HIV incidence estimate 7y

By repeating the resampling of T and the com-
putation of u} &3 independent times we obtain

,u,}m ;Lf(B) , and the bootstrap approximation of
vary () is
B
ver' () = 5 S0 - B2, (®)
b:

where py = (1/B) Eb lu*{b) is the average of the
B bootstrap incidences. Tlns approximates the first
summand of (7).

The second summand of (7), By (v?
proximated by

), can be ap-

B
= 57wt w(y ™), (9)

ba=1

E (v}

where v (¢*) = var(u}|1}) is the asymptotic variance

(6) conditioned on %} instead of ¥ and w(y}) are

normalised weights suitably chosen in order to give
more importance to the ¥%’s which are closer to

.12
"/"*(f) -
M exp § =g | ot
var i,
w(}) = s+ (10)

2,
S [Ty exp § ~ 5 7"—@“"—
var i,

From (7), (8) and (9) we obtain an estimate of the
overall variance of the HIV incidence

Z(H’*(b) ;} 2

gu (@ (™).

var( i) ==

(1)

Notice that if we were not to employ any boot-
strap resampling, that is ¥ 3 = 1/3 and ,uj,(b) = [
for b = , B, from (fS) we would have had
var*(p}) = 0, from (10) (w*{b } = 1/ B and therefore

(11) would have become sz L) = o2, as
expected.

From a practical point of view the implementa-
tion of the full parametric bootstrap paradigm can

be rather complicaied, because the incubation time
is usually modelled as a multi-state Markov process
and therefore the resampling should be implemented
from a Markov process and should take into account
censored data. Moreover the maximum likelihood
estimate ¥ is usually computed via a nonlinear
algorithm and it is quite time-consuming.

We propose a simplified paradigm, which con-
sists of resampling the wvector 1/) from 2 normal
dlsulbutlon with mean vector z,b and covariance
matrix C. Since the maximum likelihood estimate
P is asymp’rotzuxlly normally distributed, and so are
the wvectors ?,bf ,...,vJJ*(B) obtained from the full
paradigm, we can say that the variabitity of 1% and
¥* is of the same order. The simulation above will
remain the same, but 1 will replace ¥}

4. PRACTICAL IMPLEMENTATION

‘The bootstrap approach is now widely spread in
the statistical world for its flexibility and indepen-
dence from model assumptions. In the classical setting
of bootstrap estimation we have some known function
of the sample, let us call it h{z), such as the sam-
pie mean, median or a more complex function, and
we are interested in assessing some kind of error of
h(z), an estimate of h{z). Usually we solve the prob-
lem by Monte Carlo simulations: we repeatedly re-
sample from the original sample, obtain replicates of
h* = h{z*) and estimate the sampling error of the
replicates.

In our situation, however, we resample the pa-
rameters of a distribution, the incubation time dig-
tribution, and compute the variance of the HIV in-
cidence function, which is linked o this distribution
throughout the convolution equation {4). Because of
this nonstandard application of the bootstrap method
greater care must be paid to the implementation as-
pecis.

As an application of cur proposed method we
have used the parametric model suggested by Verdec-
chia and Marictto (1995). It consists of a logistic
miodel for the incidence function wp(t; ), with covari-
ates age at AIDS diagnosis, year of AIDS diagnosis
and birth cohort, and a set of two independent Weibull
distributions for the transition rates of the incubation
time distribution, with covariate age at seroconver-
sion.

The first issue is the choice of the number of boat-
strap simulations to perform. In the literature it is
suggested that for moment estimation 50-200 simula-
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tions should be enough (Efron and Tibshirani, 1993).
We performed 20 independent hootstrap experiments,
with the number of simulations varying from 50 to
1,000, and measured the distance between the orig-
inal and the bootstrap parameters. The results are
very unstable at first (between 50 t0 150 simulations)
and tend to stabilise at around 1,000 simulations, but
at 200 simulations the obscillations are much reduced.
This seems & suitable compromise between the accu-
racy of the estimates and the computational costs in-
yolved (for each simulation Wé have to resampie the
incubation time distribution, find the maximum likeli-
hood estimates and solve a nonlinear equation). More
details can be found in Gigl and Verdecchia (1997).

Another issue 10 be tackled involves the link be-
tween the simulated parameters of the incubation time
distributionn 7 and the HIV incidence estimates fs
which cannot be explicitely expressed. Formally it
is given by the backcalculation equations, which can
be considered a Kind of "black box”, and all we know
is that the relationship between r(t;9) and ult; 9) 18
continuous. However we need 1o check whether the
relationship is also monotonic, that is whether 0 &
large value of the input vector i* corresponds a large
value of the outpub variable "

Figure 1 illustrates a plot summarizing two char-
acteristics that are linked to the input and the output
values respectively: the bootstrap median incubation
time of a given age class and the bootstrap HIV preva-
lence for a given year, which is defined as the cumula-
tive HIV incidence minus the ATDS cases and deaths.
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Tigure 1: Plot of HIV prevalence for the age
group [25,34) and the year 1992 versus median
incubation times

Obviously the correspondence pbetween the two
features cannot e bijective, 28 is evident from
the fgure, because different sets of bootstrapped
parameters of the incubation time distribution can
refer to the same median incubation time. Also, with
increasing median incubation times sensitivity of the
estimates 18 enhanced and ccattering of the points
increases. 1he only purpose of this scatterplot is tO
ensure that & short incubation period corresponds
to a small HIV prevalence and a longer incubation
period corresponds to 2 larger HIV prevalence.

5. RESULTS AND PISCUSSION

We have implemented the method illustrated in
the previous sections to data related to the Italian epi-
demic. The data consist of the AIDS reported cases
from 1983 to 1904 and are grouped in 7 categories:
intravenous drug users (vDpu) males and females,
imales who have 8¢X with men (MWSM), eterosexual
contact males and females, and finally the overall male
and female ATDS cases. The data ave described in
more details DY Verdecchia and Mariotto {1995).

Here we will concentrate on discussing the be-
haviour of the HIV incidence standard errors, which
we expect to increase because of the introduction of
the extra uncertainty in the backealculation equations,
caused by the variation in the incubation time distri-
bution.

The results are illustrated in more details in Gigh
and Verdecchia (1997).

In tables 1 and 9 we describe the results corre:
sponding 10 two subgroups: the overall male ATDS
cases (excluding the blood recipients and the vertically
infected cases), and the female TYDU’s. The tables re-
port the HIV incidence estimates f, their asymptotic
standard errors s’e. obtained via the classical backeal-
culation method (Verdecchia and Mariotto, 1905%), the
bootstrap gtandard errovs s.e.* obtained from our pro-
posed method as square root of (11), and the percent-
age of the variance explained by the bootstrap, %8,
which is computed as the ratio between the bootstrap
variance given DY (8) and the gverall variance given by
(11). The latter is a useful indicator of how the extra
uncertainty added into the model through varying the
incubation times affects the averall variance estimate.
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