

Using Deduction for Intelligent Data
Analysis

FFosca Giannotti, Giuseppe Manco
CNUCE - CNR
Via 8. Maria 36, [-56126 Pisa, ltaly

F.Glannotti@cnuce.cnr.it, G.Mancofcnuce.cnr.it

Mirco Nanni, Dino Pedreschi, Franco Turini
Dipartimento di Informatica, Universita di Pisa
Corso Italia 40, I-56125 Pisa, Italy

nnanni@di.unipi.it, pedre@di.unipi.it, turini€di.unipi.it

January 23, 1999

Abstract

A Logic-based query language with built-in data mining primitives
is presented. The aim is to have a language where knowledge
extraction and knowledge manipulation are integrated. Its
flexibility and expressiveness in supporting the process of
knowledge discovery in databases is illustrated by presenting a
market-basket analysis application. By focussing on association
rules, we show that the query language deals effectively and
uniformly with data preparation, rule extraction, analysis and
construction of business rules. The implementation of the language
is based on an architecture that allows a convenient comprormise
between tight and loose coupling of database querying and data
mining.

1 INTRODUCTION

Motivation. The process of making decisions requires the combination of two kind of
activities: knowledge acquisition and reasoning on the acquired knowledge according to the
expert rules that characterize the business.

Data mining techniques are an answer to the first issue in that they extract from row data
knowledge that is implicit and, more important, that is at a higher abstraction level. In fact, as
massive amounts of data become available everyday from every kind of organizations, the
ability to extract useful knowledge from these data is becoming a crucial need: as the said
goes, we are drowning in data, but starving for knowledge.

While it is clear which are the various steps of the knowledge discovery process, we are still
far away from an integrated methodology and support environment, which makes knowledge
extraction feasible. It is now clear that the problem is that each step in the KDD process
requires specific tools and expertise, as witnessed by the distance between the data mining
tools and the query language. There is a need to move from mining in rough data to mining in
databases. More ambitiously, there is a need for combining the inductive capabilities of the
data mining tools with reasoning, to the purpose of addressing the difficult analysis tasks
posed by key applications.

One such example is market basket analysis, which is rapidly becoming a key factor of
success in the highly competing scene of big supermarket retailers. The reason of this fact lies
in the consideration that a clear-cut knowledge of customers and their purchasing behavior
brings potentially huge added value to retail companies.

Knowledge on purchasing behavior can hardly be discovered using only traditional
aggregates or OLAP tools. Any analysis based on aggregated information on sold/delivered
goods abstracts away from the essential information contained in each basket — the cash
register transaction that represents the collection of items in a single purchase of a customer,
A more effective approach is based on association rules, which allow discovering relations
between items purchased in the same basket [3, 2, 5]. This form of information is more useful
for describing the different purchasing habits of customers. Still, however, association rules
are often too low-level to be directly used as a support of marketing decisions. Market
analysts expect answers to more general questions, such as “Is supermarket assortment
adequate for the company’s target class of customers?” “Is a promotional campaign effective
in establishing a desired purchasing habit in the target class of customers?” These are
business rules, and association rules are necessary, albeit insufficient, basic mechanisms for
their construction. Business rules require also the ability of combining association rule mining
with deduction, or reasoning: reasoning on the temporal dimension, reasoning at different
levels of granularity of products, reasoning on the spatial dimension, reasoning on association
rules themselves.

Objectives. The objective of this paper is precisely to demonstrate how a suitable integration
of deductive reasoning, such as that supported by logic database languages, and inductive
reasoning, such as that supported by association rules, provides a viable solution to many
high-level problems in many applications where a support to decision making is needed, Put
another way, we believe that the key to succeed in constructing effective decision support
systems is the ability of integrating the results of knowledge extraction with expert rules. We
then maintain that a logic database framework is the right basis for constructing such
integration.

We briefly present Datasift, a prototype system that integrates the deductive capabilities of a
logic-based database language, LDL++ [1], with the inductive capabilities of diverse data
mining algorithms and tools, notably association rules, The effectiveness of the proposed
system in dealing with knowledge extraction in general, and with the various aspects of
market basket analysis in particular, is discussed through a series of examples, covering data
preparation, rule extraction, post-processing, and business rules. The application has been
developed in collaboration with COOP Toscana Lazio, a division of one of the major Italian
supermarket companies.

The approach described in this paper shares motivations and ideas with other proposals,
which are later discussed in section 4. However, the novelty of the present proposal is
twofold. At the level of the query language, the proposed fine-grained integration of induction
and deduction supports a higher degree of expressiveness, which revealed essential in tackling
the market basket application. At the level of system architecture, we propose a form of

coupling of the query language and the mining tools which is a compromise between loose
and tight coupling, aimed at minimizing the drawbacks of the two approaches and combining
their advantages.

Plan of the paper. The next section illustrates the logic-based query language and its data
mining extensions. Section 3 is devoted to put the language at work in the market basket
application, while Section 4 discusses the comparisons with relevant related work. Finally,
Section 5 sketches the architecture of our system, and some concluding remarks are presented
in Section 6.

2 A LOGIC QUERY LANGUAGE WITH DATA MINING MECHANISMS

Deductive databases are database management systems whose query languages and storage
structures are designed around a logical model of data. The underlying technology is an
extension to relational databases that increases the power of the query language. Among the
other features, the rule-based extensions support the specification of queries using recursion
and negation.

LDL++: A logic query language. We adopt the LDL++ deductive database system, which
provides, in addition to the typical deductive features, a highly expressive query language
with advanced mechanisms for non-deterministic, non-monotonic and temporal reasoning
[6,111.

In deductive databases, the extension of a relation is viewed as a set of facts, where each fact
corresponds to a tuple. For example, let us consider the predicate
assembly (Part,Subpart) containing parts and their immediate subparts. The predicate
part_cost (BasicPart,Supplier,Cost) describes the basic parts, i.e., parts bought
from external suppliers rather than assembled internally. Moreover, for each part the predicate
describes the supplier, and for each supplier the price charged for it.

assembly (bike, frame} . part cost(top_tube,reed,20).
assembly (bike,wheel) . part cost(fork,smith,10).
assembly (frame, top tube) . part_cost(top_tube,smith,25}.
assenbly(frame,fork). part cost(spoke,reed,B5).
assembly (wheel, spcoke) . part:ccst(nipple,smith,3).

assenmbly {(wheel nipple).
Rules constitute the main construct of LDL++ programs. For instance, the rule
multiple_supp(S) ¢« part cost(P,,S,),part_cost(P,, 8,), P # P;.
describes suppliers that sell more than one part. The rule corresponds to the S5QL. join query

SELECT Pl.Supplier
FROM part_cost PL, part_cosgst P2
WHERE PLl.Supplier = P2.Supplier
AND Pl.BasicPart # P2.BasicPart

In addition to the standard relational features, LDL++ provides recursion and negation. For
examnple, the rule

all_ subparts(P,8) < assembly(P,S).
all subparts(P,8) + allwsubparts(P,Sl), assembly {8, 82) .

computes the transitive closure of the relation assembly. The following rule computes the
least cost for each basic part by exploiting negation:

cheapest(P,C) < part cost(P, ,C}, — cheaper(P,C}.
cheaper (P,C) <«part cost{P,C;), C < C;.

A remarkable capability is that of expressing distributive aggregates (i.e., aggregates
computable by means of a distributive and associative operator), which are definable by the
user [15]. For example, the following rule illustrates the use of a sum aggregate, which
aggregates the values of the relation sales along the dimension Dealer:

supplier tot(Date, Place, sum<Sales>)
sales (Date,Place,Dealer, Sales) .

Such rule corresponds to the SQL statement

SELECT Date, Place, SUM{Sales)
FROM sales
GROUP BY Date, Place

Starting from tuples such as

sales(2/2/1994, new york, smith, 10000).
sales(2/2/1994, new york, reed, 15000).

the rule produces tuples such as supplier tot(2/2/1994, new york, 25000).

The typical functionalities provided by any OLAP system include the organization of data in
a multidimensional database, i.e. a data-cube that enables us to perform analysis and to
aggregate data along its dimensions. A simple way of dealing with multidimensional views in
LDL++ exploits aggregation and recursion. The various aggregations can be obtained in fact
by stratifying the construction among the various dimensions:

cuboid{0,Date,Place,Sale) «
sales (Date,Place,Dealer, Sale) .

cuboid(T+1l, D,, Dy,sum<S8>) ¢« cuboid{I, D;, D;,8),
path(Dlr D21 Dar Db) .

path{Date, Place,Date,*) <« Place # *, Date # *.
path (Date, Place,*, Place) ¢« Place # *, Date # *.
path (*,Place,*,*} « Place # *,

cube(Dl, Dz,s} — CubOid(_,Dl, Dz,s).

Here, path computes an aggregation pattern on the basis of the last computed patterns.
Further functionalities, such as rollup, slicing and pivoting, can be easily obtained by
combining again recursion and aggregates.

It is worth noting how the SQL formalism is not powerful enough to take advantage of the
distributive nature of the sum aggregation. In fact, the data cube sum of the sales can be
computed in SQL with the following expression:

SELECT **', **', SUM(Sales)
FROM sales

UNION
SELECT Place, ‘*’, SUM(Sales)
FROM sales

GROUP BY Place

UNION
SELECT '*‘, Year, SUM(Sales)

FROM sales
GROUP BY Year
UNION

SELECT Place, Year, SUM{Sales)
FROM sales
GROUP BY Place, Year

that corresponds to the enumeration of the possible aggregates that need to be computed. This
union query is however extremely inefficient, in that it recomputes from scratch along each
dimension of the cube.

Adding a mining mechanism. A general way of dealing with data mining in a deductive
framework is to directly define queries, which implement such mining needs. Aggregates are
basic tool to start with. For example, the following program defines typical (two-dimensional)
association rules by using the predefined count aggregate.

pair(Il;,T,, count<T>) « basket(T, I,),basket(T,I,).
rules(I,,1;) < pair(I,,I:,C),C 2 2.

The first rule generates and counts all the possible pairs, and the second one selects the pairs
with sufficient support (i.¢., at least 2). As a result, predicate rules specifies associations, i.e.
rules that state that certain combinations of values occur with other combinations of values
with a certain frequency. Given the following definitions of basket,

basket(1,fish). basket(3,bread}.

basket (1 ,bread) . basket {3,orange) .
basket (3, milk) .

basket (2 ,bread) .

basket (2,milk).

basket (2, onions) .

basket {2,fish).

by querying rules(X,Y) we obtain the answers rules(milk,bread),
rules (bread,milk) and rules (fish,bread) and rules (bread,fish).

Using aggregates it is easy to define concepts of interestingness of the rules diverse from the
usual statistical parameters. Thus, other interesting measures, such as financial measures, may
be defined. For example, if we are interested in discovering the associations between the
cities and the products where the sales decreased of more than 30% w.r.t. the average, we can
define the following query:

average (avg<Sales>) < sales(City,Prcduct,Date,Sales).
avg cp(City,Product,avg<Sales>} ¢ sales(City,Product,Date,8ales).
answer {City,Product) ¢ average(a),avg_cp(City,Product,P) ,P20.70 x A,

The first rule computes the average on the whole sales. The second rule computes the
averages related to the tuples <City, Product>, and the third rule selects the relevant rules.

However, the idea of using the query language to directly implement mining algorithms is not
a novelty and it raises obvious concerns about efficiency. In our proposal, we decided to use
aggregates as the means to introduce mining primitives into the query language, and to
implement such aggregates by exploiting another characteristics of the LDL++ system,

namely, its open architecture, which supports easy connectivity with a variety of external
systems and components,

Association rules. Let T be a set of data items, and T a set of tuples with values ranging over
1. The problem of discovering association rules can be defined as finding relationships
between the occurrences of subsets of I within tuples of T [5,7]. An association rule of form
X = ¥ is described in terms of support and confidence. The support of X over the set of
tuples of T is the fraction of the tuples that contain X. The confidence of arule X = Y overa
set of tuples T is the fraction of tuples containing X that also contains Y.

In our language, association rules are computed by an aggregate, as illustrated in the
following rule:

rules (patterns<(min_supp, min_conf,¥;,. ,¥,)>) < gi{Xy . Xa) .

In this rule, the variables Y,,..,Y, are a subset of the variables X, ,.. ,X. of q. The aggregate

patterns computes the set of quadruples (L,R, S,C) where:

1. L and R are respectively the left and right side of an association rule . = R,

2. t=<1,,..,1,> and R=<r,,..,ro> where the tuple <1,,.,1;,11,.,2x> is a rearranged
subset of the values of ¥,,..,Y¥,in a tuple resulting from the evaluation of q.

3. 8,C are respectively the (normalized) support and confidence of the rule L = R, such
that § > min suppandC 2 min_conf.

As an example, the following program computes the two-dimensional association rules with a
minimum 40% support:

rules (patterns<0.4,0, I,,I;>) ¢« basket(T, I,), basket(T, I,}.

Here, by querying rules (L,R, S, C), we obtain the following tuples:

rules (milk ,bread,0.66,1) rules {(bread,milk,0.66,0.66}
rules (£ish,bread,0.66,1) rules {(bread,fish,0.66,0.66}

Here an external ad hoc induction algorithm computes the patterns, while the deductive
engine has the only task of exchanging the data to the inductive engine on demand.

With the same strategy, other mining mechanisms have been integrated in the language,
including a form of bayesian clustering computed with the Autoclass algorithm, and a
classification tool based on C4.5. Tt is currently under investigation the extension with
temporal series. The discussion on such extensions is out of the scope of the paper which
concentrates on the use of association rule mining for market basket analysis.

3 A MARKET BASKET ANALYSIS APPLICATION

As an example study of the modeling capabilities of the proposed approach, we now
instantiate the proposed deductive/inductive system in the specific domain of market basket
analysis. After discussing the database schema, we concentrate on the data preparation, or
pre-processing, phase, the rule extraction phase, and the post-processing phase. We finally see
how these phases can be combined to perform more complex analysis, which we call business
rules.

Database schema. Figure [illustrates the entities involved in the domain of market basket
analysis. The main entity is the cash-register transaction, corresponding to a basket of items
(products) purchased by a customer at a given time in a given location (store). Time, location
and, if available, purchaser are dimensions which allow multiple granularities and
aggregations, Analogously, items are also organized into hierarchies: single products are
grouped into families, families are grouped into sectors, sectors are grouped into departments,
and so on,

Time Dimension

Product Dimension

Purchaser Dimension
e

Measures

Figure 1: database schema.

Data preparation. By exploiting the deductive framework, we can easily express many
useful queries that partition and group data in order to focus the analysis on a particular
subset and/or a particular view:

s Selection w.r.t. values/dimensions.
We can partition data in segments, according to some specified values or in order to
enhance/hide some particular properties of a specific dimension. For example the
following rules specify a partition w.r.i. a time oniology (where ihe interval facls
specify a predefined granularity we are interested to).

interval (label,, 2/2/1998, 2/16/1998).

interval (label,, 4/8/1998, 4/18/1988).

partition(Label, Tid, Item) <«
cash transaction(Tid, Date, .., Item},
interval (Label, Start, End),
Start < Date, Date < End.

Analogously, we can cut off from the transactions a set of uninteresting items specified
by some constraints {e.g., Ttem # plastic bag).

o [Hierarchies.
Usually, single items in a retail context are grouped into categories, that in turn can be
grouped into categories, thus forming a concept hierarchy. Hierarchies allow the creation
of abstraction of items, and consequently of the transactions built on such items. The
discovered information can be generalized/instantiated, by navigating along such
hierarchy. Additional significant knowledge can be obtained by comparing
generalizations with instantiations [9].

An abstraction can be easily modeled in a logic-based language, as the following example
shows. Suppose the relation category (X,¥) expresses the membership of X to
category Y:

category {orange, fruit).
category (banana, fruit).
category(fruit, food).
category (food, all).

items_abstraction(0, Tid, Item) ¢ basket (Tid, Item).

items_abstraction(I+l, Tid, AbsItem) «
items abstraction(I, Tid, Item),
category (Item, AbsItem).

Now, we can mine knowledge (in our context, association rules) at a given abstraction level I
by focusing on items abstraction(I, ..).

Another way of exploiting the existing hierarchy is to focus the analysis to a given category
of products. We can obtain this by simply selecting the items that fall in the category, or in a
sub-category which in turn falls in the first one. In the following example we define an is_a
relation as the transitive closure of category, and then exploit it in order to focus on the
fruit category:

ig a(X,¥) < category(X,Y).
is_a(X,¥Y) ¢« category(¥,2z), is a{(Z,Y).

focused dataset(Tid, Item) ¢ basket(Tid, Item),
is a(Item, fruit).

Rule extraction. Once the dataset is ready to be mined, we can apply the new mining
aggregation operator. We adopt a slight modification of the schema presented above, in order
to deal with itemsets of general size:

transaction_sets (Id,<Itemn>) ¢« basket(Id, Item).

rules {patterns<min_supp, min_ceonf , Tset>) «
transaction sets(Id, Tset).

The first rule collects all the baskets from the basket relation. The second rule extracts the
relevant rules from the collection of baskets, by applying the induction algorithm.

Support 2

T
2 E %
A - & @ & Right
B8) ¥ 2 g
Left 2 & 2 § o3 8¢
E g = o (o]
E E @ d f=
2 o D O
] - @ F
L Q_U)
&) o w
@
e O
£ g
Fo&

Figure 2: visualization of Association Rules

Post-processing. Since the computed association rules are tuples of a relation, we can
manipulate them in the usual ways. We can then, for example, select only the one-to-one rules
that involve items from the same category:

local rules (Left, Right, Supp, Conf) «
rules ({Left}, {Right}, Supp,Conf),
category(Left, Category), category(Right, Category).

Business rules. By a tighter coupling of the data prcparation and post-processing steps, we
can specify business high-level rules in a straightforward way. We discuss below some
interesting examples.

° Which rules survive/decay up or down the product hierarchy?
To extract the rules which are preserved in an abstraction step, we can compute rules
separately at each abstraction level, and select those which occur both at a level T and at

level I+1:

itemset abstraction(I, Tid, <Iten>) «—
items abstraction{I, Tid, Item).

rules at level(l, pattern<$,C,Itemset>)
itemset abstraction(I, Tid, Itenset).

preserved rules(Left,Right) «
rules_at level (I, Left, Right, _,),
rules_at level (I+1l, Left, Right, , .

» What happens after promoting some product?
We can give an answer by finding those rules which have been established by the
promotion, i.e. rules which did not hold before the promotion, which were raised during
the promotion and persisted after the promotion:

interval (before, -, 3/7/1598).
interval (promotion, 3/8/19%8, 3/30/1998).

interval (after, 3/31/1968, +c) .,

itemsets partition(Label, Tid, <Item>) ¢«
partition (Label, Tid, Item).

rules partition(Label, pattern<$S,C, Itemset>) «
itemsets partition(lLabel, _, Itemset).

preserved rules(Left, Right) ¢
rules partition(promotion, Left, Right, _, _},
—rules_partition(before, Left, Right, ,),
rules partition(after, Left, Right, _,).

How do rules change along time?

One way to answer is given by the rules computed separately on each time interval, as
explained in the previous subsections. Another, slightly different, consists of computing
rules valid in the whole dataset and then checking their support and confidence in the
intervals. We then obtain a description of the evolution of rules in time, which can be
used for instance to check whether a rule holds uniformly along time or has some peak in
an interval, or shows some kind of periodicity.

check support (Set, Label, count<Tid>) «
itemsets partition (Label, Tid, Itemset),
subset (Set, Itemset).

rules_evolution({Left, Right, Label, Supp, Conf) «
rules (Left, Right, _, _},
union{Left, Right, All},
check support{All, Label, Supp),
check:support(Left, Label, LSupp),
Conf = Supp/LSupp.

EfPasta => Fresh Cheese 14 ;
B Bread Subsidiaries => Fresh Cheese 28
[Biscuits => Fresh Cheese 14

D Fresh Fruit => Fresh Cheese 14 ‘
B Frozen Food => Fresh Cheese 14)

25/11/97

26/11/97
27/11/97 §
28/11/97
29/11/97
30M11/97
Ci12/97
o2/12/97
0312/97
04/12/97
0b/12/97

Figure 3: visualization of rules evolution.

10

o Which rules involve the greatest economical value?
We can compute a monetary support for each rule, defining it as the sum of the totals of
the transactions to which the rule applies.

meney support(Left, Right, sum<Total>) «
rules (Left, Right, , _),
itemsets (Tid, Itemset),
union (Left, Right, All),
subset (All, Itemset),
cash_transaction(Tid, .., Total, ..}).

1400000~

120000

(=]

1000000

Financial Value

10 1t 12 13 14 15 16 168 17 18 20 21

Rule

Figure 4: financial support of association rules.

4 COMPARISON WITH OTHER SYSTEMS

The deductive/inductive approach taken in this paper exhibits similarities with the various
proposals of integration of data mining with databases by extending SQL to support mining
operators. For instance, the query language proposed in [8] extends SQL with the new
operator MINE RULE, which allows the computation and coding in a relational format of
association rules,

As an example, by considering a relation basket {TransID, CustID, Date, Item,
Value) that contains the transactions of a sales representative, the following rule allows the
extraction of the rules with support 20% and confidence 50%:

MINE RULE Associationg AS
SELECT DISTINCT 1,.n Item AS BODY, 1..1 Item AS HEAD,
SUPPORT, CONFIDENCE
WHERE BODY.Value > 100
AND HEAD.Value > 100
FROM basket
GROUP BY CustID
HAVING COUNT (Item) > 4
CLUSTER BY Date
HAVING BODY.Date < HEAD.Date

11

EXTRACTING RULES WITH SUFPORT: 0.2, CONFIDENCE: 0.5

The above expression specifies the mining of associations of purchased items such that the
right part of the rule (consisting of only 1 item) has been purchased after the left part of the
rule (that can consist of more than one item), and related to those customers who bought more
than 4 items. Moreover, we consider only items with a value greater than 100.

Other similar approaches include the DMQL [7] proposal, which extends SQL with a
collection of operators for mining different forms of rules. A major problem with such
approaches is the limited expressive power of the underlying relational model. Defining
complex relations among entities may require set of logical expressions, containing advanced
forms of negation and recursion. Clearly, such a limitation is particularly important when the
aim is to extract high-level knowledge.

The first proposal of using a deductive database language for explorative data analysis has
been developed in [12]. The main idea is that of defining meta-rules that describe patterns.
Intuitively, a meta-rule

P: (1) A PolXz) Ao A Pu(Xn) = 0il¥1) A Q{¥3) A« A Onl¥w)

represents a high-level concept to be verified against the database. By instantiating such
concept with rules built on the relations of the databases one can then verify which patterns
hold in the database. For example, the meta-rule

P(X,¥Y) A Q(X,Z) = R{X,W)

is analyzed against the database

basket {john, sugar,20).
basket (steve, sugar,10) .
basket {john, oranges,30}.
basket (steve,oranges, 40} .
basket (john,apples,20).

purchase (X,Y) « basket(X,Y,).
avg value (X,avg<d>) < basket(X, ,A).

by instantiating all the predicate variables, and then executing the right-hand and the left-hand
of the obtained instances in order to compare the results. This allows discovering, e.g., the
rule

purchase (X, sugar) A purchase (X,oranges) = avg_value(X,20)

stating that, if a purchaser includes in his basket oranges and sugar, then usually the
average values of his purchased items is 20.

In this approach the logic language is used as a simple computational engine. By using
deductions, the system is capable of querying the right and left parts of the (instantiated)
meta-rule. However, there’s no integration between the deduced knowledge and the induced
knowledge, e.g. between the results of the analysis and user defined knowledge.

The query flocks proposal in [10] shows how the combination of association rules with the

deductive capabilities of a logic query language yields a higher degree of expressiveness and
flexibility, which is crucial in addressing problems such as those posed by market basket

12

analysis. In this approach the logic language is presented as a good specification formalism
while the computational support has to be re-defined for each mining method on the basis of
the properties of the problem to be analyzed.

Let us consider the following example:

paix (L, I;, count<®™>) ¢« basket (T, I,),basket(T,I,}.
rules(I;,I;) ¢« pair(l;, I,,C),C = 2.

Using the following property of the count aggregate:
if count{S)> T then for each §’ — 8 count({8’) > %
the program may be transformed into the following one, so yielding to an efficient execution.

temp (I, count<T>) - basket (T, I).

filter(I) ¢« temp(I,C),C = 2.

pair(l.,I,, count<T>) « filter(Z,), filter{I,),
basket (T, I,),basket(T,I,).

rules (I;,1;) ¢« pair({I;,I,,C),C = 2.

The problem of such approach is that it cannot be generalized to other aggregates. For
example, the above property does not hold for the average aggregate.

5 OVERVIEW OF DATASIFT ARCHITECTURE

Datasift is a prototype system that implements some features of the model proposed in the
previous sections. The Datasift system adopts a hierarchical client-server web-based
architecture, in which:

e the client component (User Interface) queries the knowledge base (by means of the query
engine) and builds the suitable representation metaphors (either graphical or textual);

e a first-level server component (Query Enmgine) maintains the knowledge base, by
integrating multiple heterogeneous data sources and by using the other server components
to update the local database by means of the available analysis services;

» asecond-level server component consisting of the data mining modules and the integrated
inductive-deductive query language;

o a third-level server component supporting the access to external databases (DB2
Universal Database Server and Oracle 8 Server).

User Inteface Query Engine
Data Mining
Moduies
LDLA+ Inductive
Server Modules

Figure 5: architecture of Datasift.

i3

Client agent. The main role of the client component (User Intferface) is to build suitable
representation metaphors. Two kinds of possible client interactions are provided: through a
web- browser (that provides a textual representation of the results), and through a MS-Excel
application (that is used for both textual and graphical representation). In both cases, the
interaction with the setver is realized by HTTP connections.

The interaction with the query engine is provided by means of CGI scripts, that provide the
requested data. The following classes of possible interactions are supported in the current
version of the prototype:

e Extraction of association rules from a database.

¢ Computation of time series and time evolution of association rules.

e Computation of association rules on the basis of economical relevance.

e Clustering.

We chose to develop a web-based interaction for two main reasons:

I. It is platform-independent, and allows different clients to run on different hosts.

2. It allows the use of standard components, such as the HTTP protocol for the
communication between client and server, thus making it easier to develop an interface.

An example snapshot of the current user interface is given in fig. 6. On the left side a list of
the available analyses is provided. An example of user interface for the input of parameters
for the analysis is shown in fig. 7, which is used in the computation of association rules.

However, a more accurate representation metaphor is currently implemented by means of a
MS Excel application that, in addition to the web-based interaction capabilities, allows us to
use standard representation metaphors. In this perspective, the Excel application simply
downloads the results of the analyses in some pivot tables, and builds standard visualization
metaphors on the basis of such tables.

ttp; /fhalebopp. cauce., ene. it/mdnkasifts

DataSift Project Home Page

|
|

Comgde Naiionald dodte FKivevells E

1

!

|
il
i3
i
i

{ Toprovide & Beadble framework for intelligent Dete Analysis hy combintng induction and deduction,

1 @ Peopleinvelved

| @ Carrent Pata ining Tools under Study

= Clessification
© Dedsion Trees
& Clustering
» Assoctation rules Mining
® LDl System

| * On-FEine Toals

& The DptaSii Server Hore Page.
» Wity Progrums for DataSify

Figure 6: Web interface (main page).

14

Server agent. The Query Engine is an interface to the clients via Web, whose role is to
maintain
¢ asct of relevant statistics over the main database, obtained by directly querying the data,
and
¢ the results of the rule extraction queries committed to the deductive-inductive modules.
The query engine plays a crucial role in the implementation of caching strategies, especially
when the analyses are related to massive amount of data. Notice that the maintenance of a
local database of results is very important in order to implement incremental mining
refinement techniques [4], which is planned as a future extension. In order to populate the
database of the current rules, the query engine dispatches to the relative modules the
necessary extraction queries. These include specialized data mining algorithms, which do not
need preprocessing/refinement steps, and the deductive-inductive module.

The coupling between the core language (LDL++) and the mining tool (association rules)
exploits a trade-off between the tight and the loose coupling policies. The LDL++ system
provides an open architecture, being able to interface with a variety of external systems and
components [1]. This feature reveals very useful for integrating the core language with new
functionalities. This allows the definition of user predicates whose evaluation is demanded to
external functions.

A user-defined function, representing the new aggregate, can be coded as a C++ routine that
efficiently implements special purpose algorithms for solving the given problem, by possibly
exploiting any optimized internal data structure. In our system, we implemented an enhanced
version of the Apriori algorithm for association rules, described in [3]. Moreover, we adapted
the Apriori algorithm to work directly ‘on the LDL++ objects, i.e. the special data structures
that allow to exchange information between the LDL++ system and the C++ routines. This
avoids a drawback of loosely coupled systems, ie. the translation of inputs into flat files
before the running of an external special purpose tool and then the backward conversion of
outputs, as discussed in [2]. Finally, our solution also avoids the typical drawback of tightly
coupled systems, i.e., the lack of efficiency due to inappropriate data structure in that our
implementation of Apriori algorithm runs fast enough on LDL++ objects.

tip:/ thalebopp.cnuce.cnrity ~ datesisy

Supporto: 20 %

Confidenza; 80 %

Livello gerarchico: [N

I Patterns ¥ Implicanti ¥ Implicat

Sspmc

Figure 7: Parameters input interface (association rules page).

15

6 CONCLUSIONS

In this paper we presented an integrated inductive deductive system for data analysis, and
iftustrated its functionalities in addressing high-level business rules for market basket
analysis. At the present stage, the Datasift system is a prototype, which served as a
demonstrator to validate with the end user COOP the viability of the approach. The system
revealed an effective tool for the market analysts, who, using the predefined business rules,
are able to visualize the answer according to some adequate graphical metaphors, within
standard desktop tools. Moreover, we are experiencing that an expert knowledge engineer is
generally able to translate quickly the analyst’s guestions into deductive/inductive rules.

The current version of the Datasift language supports association rules and clustering by
means of specialized aggregates; the extension with classification mechanisms and temporal
series is currently under development.

A problem in the current prototype is the extensibility of the user interface. While, in fact, it is
simple to add new analyses to the deductive-inductive component in a modular way (and to
report such additions to the query engine), there is not a uniform way of describing a
corresponding representation metaphor. Hence, each time a new analysis {e.g., & business
rule) is added, the user interface needs to be consequently extended.

Another main concern is efficiency, a typical problem with deductive database systems, such
as LDL++, and a crucial problem when analyzing massive amounts of data. For this reason, in
the planned engineering of the Datasift system, we intend to adopt suitable data reduction
techniques.

7 ACKNOWLEDGEMENTS

We are indebted with our collaborators at COOP Toscana Lazio for their support during the
Datasift project: Massimo Palla, Giuseppe Lallai and Walter Fabbri. Thanks are also owing to
Nando Gallo from Intecs Sistermi, Pisa, for his help in designing the visualization component.
The project reported in this paper has been supported by Regione Toscana under a grant "Rete
Telematica ad Alta Tecnologia”.

BIBLIOGRAPHY

1. N.Arni, K.Ong, 8.Tsur, C.Zaniolo. LDL++: A Second Generation Deductive Databases
Systems. Technical report, MCC Corporation, 1993.

2. R.Agrawal, S.Sarawagi, S.Thomas. Integrating Association Rule Mining with Relational
Database Systems: Alternatives and Implications. In Procs. of ACM-SIGMOD'98, 1998.

3. R.Agrawal, R.Srikant. Fast Algorithms for Mining Association Rules. In Procs. of 20th
Int'l Conference on Very Large Databases, 1994,

4. E.Baralis, G.Psaila. Incremental Refinement of Association Rule Mining. In Procs. of
SEBD'98, 1998.

5. M. J. A. Berry, G.Linoff. Data Mining Technigues for Marketing Sales, and Customer
Support. Wiley, 1997.

16

6.

10.

1L

12.

F. Giannotti, G. Manco, M. Nanni, D. Pedreschi. Query Answering in Nondeterministic,
Nonmonotonic, Logic Databases. In Procs. of the Workshop on Flexible Query
Answering, number 1395 in LNAI 1998,

J.Han, Y.Fu, K.Koperski, W.Wang, O.Zaiane. DMQL: A Data Mining Query Language
for Relational Databases. In SIGMOD96 Workshop on Research Issues on Data Mining
and Knowledge Discovery (DMKD96), 1996,

R.Meo, G.Psaila, S.Ceri. A Tightly-Coupled Architecture for Data Mining. In
International Conference on Data Engineering (ICDE98), pages 316-323, 1998.

R.Srikant, R.Agrawal. Mining Generalized Association Rules. In Procs. of the 21st Intl
Conference on Very Large Databases, 1995,

D.Tsur and others. Query Flocks: A Generalization of Association-Rule Mining. In Procs.

-of ACM . SIGMOD™8, pages 1-12,.1998,

C.Zaniolo, H.Wang. Logic-Based User-Defined Aggregates for the Next Generation of
Database Systems. In The Logic Programming Paradigm: Current Trends and Future
Directions. Springer Verlag, 1998.

W. Shen, K. Ong, B. Mithander, and C. Zaniolo. Metaqueries for Data Mining. In

Advances in Knowledge Discovery and Data Mining, pages 375-398. AAAI Press/The
MIT Press, 1996,

17

