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in a large RNA-seq dataset
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Gene co-expression network analysis enables identification of biologically

meaningful clusters of co-regulated genes (modules) in an unsupervised

manner. We present here the largest study conducted thus far of co-expression

networks in white blood cells (WBC) based on RNA-seq data from 624 individuals.

We identify 41 modules, 13 of them related to specific immune-related functions

and cell types (e.g. neutrophils, B and T cells, NK cells, and plasmacytoid dendritic

cells); we highlight biologically relevant lncRNAs for each annotated module of

co-expressed genes. We further characterize with unprecedented resolution the

modules in T cell sub-types, through the availability of 95 immune phenotypes

obtained by flow cytometry in the same individuals. This study provides novel

insights into the transcriptional architecture of human leukocytes, showing how

network analysis can advance our understanding of coding and non-coding gene

interactions in immune system cells.
KEYWORDS

immune system, network analysis, WGCNA, lncRNA, RNA-seq, white blood cells
Introduction

Systems biology approaches are used to elucidate patterns of transcriptome

organization by identifying how genes function jointly to form subsystems (1). Gene co-

expression networks are commonly used and powerful analyses to interpret transcriptome

data, based on the assumption that genes which are co-expressed belong to the same
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subsystem and have a higher probability of having related functions,

because genes whose products work together must logically be

expressed together (2). It is therefore often assumed that observed

co-expression results from co-regulation (3), i.e. the coordinated

transcription of genes in a program of regulatory mechanisms

within a cell, providing the foundation for understanding

genome function.

Co-expression network analysis thus identifies gene sets, or

modules, that are potentially involved in common biological

functions, typically determined by enrichment of annotation

terms (4–7). Importantly, under this assumption enriched

functions can be assigned to poorly annotated genes within the

same co-expression module, an approach commonly referred to as

‘guilt by association’ (8). This approach allows a tentative prediction

of function of genes that are novel or less studied, taking advantage

of correlation patterns in the transcriptome expression

configurations to infer a potential biologic function of

uncharacterized genes, and also identifying new candidate

interacting partners of known genes.

In addition to classical coding mRNAs, high-throughput

sequencing (RNA-seq) discovers thousands of novel non-coding

RNAs (ncRNAs), providing compelling evidence for the function of

RNA beyond its role as messenger for protein-coding genes (9, 10).

An important group of non-coding genes is represented by long

non-coding RNAs (lncRNAs), transcripts without coding capacity

that may interact with proteins, DNA, or other RNAs to perform

structural and regulatory functions (11, 12). LncRNAs can be

important regulators of the immune response, and recent

publications have shown widespread changes in the expression of

lncRNAs during the activation of the innate immune response and

T cell development, differentiation, and activation (13). LncRNAs

control important aspects of immunity such as production of

inflammatory mediators, differentiation, cell migration. There is

also emerging evidence suggesting that lncRNAs constitute a major

subgroup of the interferon signaling target genes, and that the

interferon response is subject to regulation by a large number of

host- and pathogen-derived lncRNAs (14). However, the potential

importance of lncRNAs in the immune response is only now

emerging, and it is likely that there are many additional immune-

related lncRNAs acting via multiple different mechanisms to be

discovered. Notably, through co-expression network analysis,

lncRNAs probable functions can be predicted and linked to

biological pathways based on module sharing, i.e. by assigning

functions according to the functional enrichment of coding

transcripts in the same module (15).

We present results of a co-expression network analysis in the

largest, to our knowledge, data set to date of RNA-seq WBC

transcriptomes derived from 624 individuals from the ProgeNIA

study (16, 17). We describe the modules of co-expressed genes,

some of which reflect critical features of underlying cellular

composition. Furthermore, by leveraging the availability of

extensive immune-phenotyping of the ProgeNIA cohort of

volunteers characterized by fluorescence-activated cell sorting

(FACS) analyses (18), we are further able to associate modules to

a wide range of circulating cell subtypes, as granulocytes, circulating

dendritic cells, natural killer (NK), B cells, and T cells. In particular,
Frontiers in Immunology 02
T cells are subdivided according to their maturation and activation

status, including subsets of regulatory T cells, allowing us to

characterize T cells modules with unprecedented resolution.

We analyzed in total 15,807 gene-based transcripts, 1,798 of

which are lncRNAs, providing a comprehensive view of

transcriptome organization in human WBC and inferring possible

functions for hundreds of these lncRNAs. In providing our network

results, we also supply different tools that allow interrogation of the

networks and extraction of important information on the complex

inter-relationships identified in our analysis.
Materials and methods

The SardiNIA dataset

The 624 participants in this study are from four towns in the

Lanusei Valley in the Ogliastra region of Sardinia, and were enrolled

from the SardiNIA project (16), a longitudinal study of 6,921

general population individuals (57% females, 43% males),

comprising related and unrelated individuals, ranging from 18 to

102 years. For 606 of these samples, extensive immune-phenotyping

is available (18). Specifically, a wide range of circulating cell

subtypes were characterized by fluorescence-activated cell sorting

(FACS) analyses. The cells comprised the major leukocyte

populations in peripheral blood, including monocytes,

granulocytes, circulating dendritic cells, natural killer, B cells, and

T cells, with a more detailed characterization of T cell subsets,

subdivided according to their maturation and activation status,

including subsets of regulatory T cells, resulting in a total of 95

cell types.

Gene-level expression values have been derived as described in

(17). Briefly, RNA samples from white blood cells of the 624

individuals were enriched for PolyA(+) transcripts and processed

with RNA-seq. Gene-level read counts (computed with GENCODE

V14 annotation) were variance-stabilized with DESeq (19). Hidden

factor estimation was performed with PEER (20), a factor analysis

method that uses Bayesian approaches to infer hidden factors that

explain a large proportion of expression variability, and 30 factors

were used to compute the residuals. After excluding low expressed

transcripts, we analyzed 15,807 gene-based transcripts (GENCODE

V27), 1,798 of which are lncRNAs. We also analyzed 151 miRNA

precursors, as the RNAseq data derived from a library of RNA

fragments approximately 200 nucleotides in length, and this

selection process does not capture mature miRNAs, which are

shorter on average, around 25 nucleotides. We additionally fit a

linear model with age and sex using SWAMP (21), as these factors

were not the focus in this analysis, and derived residuals for the 621

individuals with available age information analyzed in the

downstream network analysis.
Co-expression networks

Network analysis was performed using the Weighted Gene Co-

expression Network Analysis method (22), implemented in the R
frontiersin.org
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package WGCNA (23), the most widely used package for co-

expression analysis (7), which performs best at defining the

network structure. Co-expression networks use graph theory,

where each node represents a gene and each edge represents the

strength of the co-expression relationship between two genes, to

identify co-expression modules using hierarchical clustering on a

correlation network created from expression data.

In details, network construction proceeds along subsequent

steps. In the first step the correlation matrix, constructed from

pairwise Pearson correlations between all genes, is transformed into

an adjacency matrix through a power beta (soft threshold power),

so that only strong connections are considered. Two different types

of networks can be constructed: signed or unsigned networks, based

on how negative correlations between genes are converted into

adjacencies. In a signed network, negative correlations are basically

not considered. Conversely, in unsigned networks, adjacency is

based on the absolute value of correlation, such that strong negative

correlations are treated as strong connections. A signed method

creates networks where biologically meaningful modules (such as

those representing a specific biological process) are better separated

(4). An unsigned network allows to cluster together positively and

negatively correlated genes, which may be particularly interesting

when ncRNAs are incorporated into the network, as, for instance,

miRNAs are known to exert their function mainly through down-

regulation of other genes (24), and this also holds true for some long

intergenic non-coding RNAs (lincRNAs) (25). In this study we

constructed both signed and unsigned networks using a power

transformation for correlations into adjacencies in order to

maximize scale free topology of 10 and 3, respectively. We used

lower values for the power beta compared to the suggested values of

12 and 6 for signed and unsigned networks, respectively. This is due

to the prior strong PEER correction used to remove hidden factors

before computing residuals.

From the adjacency matrix, a topological overlap matrix

(TOM), a pairwise measure of node inter-connectedness

(similarity), is calculated. The TOM transformation replaces each

adjacency by a normalized count of neighbors that are shared by

any two genes. WGCNA identifies modules of co-expressed genes

with high topological overlap, a pair-wise measure that describes

the similarity of two genes co-expression relationships with all other

genes in the network. Next, genes are hierarchically clustered using

1−TOM as the distance measure and modules (groups of co-

expressed genes) are determined by using a dynamic tree-cutting

algorithm, implemented in WGCNA (26). Hierarchical clustering

iteratively divides each cluster into sub-clusters to create a tree with

branches representing co-expression modules. The hybrid dynamic

tree-cutting algorithm was used with a minimum module size of 30

and a deepSplit parameter of 2 to identify modules.

The global gene expression of a module can be summarized

with a single representative expression profile, which is referred as

the module eigengene (ME), computed from the first principal

component of the expression values of all the genes assigned to each

module. Modules whose eigengenes had a Pearson correlation

greater than 0.8 were merged to reduce the number of highly

correlated modules. Using MEs an important WGCNA metric for

each gene can also be derived, the gene module membership (MM),
Frontiers in Immunology 03
calculated from the Pearson correlation between the specific gene

expression profile and the ME of a given module.

We also constructed two additional signed networks, one

considering only males (N=274) and one only females (N=347).

Specifically, we derived residuals for 621 individuals fitting a linear

model with age only, using SWAMP (21), and constructed two

signed networks using a power transformation for correlations into

adjacencies of 10, as in the signed network with all subjects.
Modules annotation

Modules can be interpreted using several strategies. The most

common method is functional enrichment analysis, used to identify

and rank overrepresented functional categories for the genes within

a module. Protein coding genes with absolute value of MM greater

than 0.10 were entered in g:Profiler (27, 28), ordered by decreasing

MM, for pathway enrichment based on gene ontology (GO)

functional annotation, Reactome, and Kyoto Encyclopedia of

Genes and Genomes (KEGG). In g:Profiler, gene lists may be

interpreted as ordered lists where elements are in order of

decreasing importance. The ordered query option is useful when

the genes are placed in some biologically meaningful order. g:

Profiler then performs incremental enrichment analysis with

increasingly larger numbers of genes from the top of the list. This

optimization procedure identifies specific functional terms that

characterize the gene set as a whole. g:Profiler uses multiple

testing correction algorithms for distinguishing significant results

from random matches. We used the default g:SCS method in

this study.

Modules were also annotated by measuring their enrichment

with specific marker genes lists, using the WGCNA function

userListEnrichment (29). This function measures list enrichment

between inputted lists of genes (e.g. genes within the same module)

and predefined collections of gene lists. Significant enrichment is

measured using a hypergeometric test, and p-values are corrected

for multiple testing using Bonferroni method.

More importantly, in this study, using the quantitative levels of

the 95 immune cell types obtained by flow cytometry on fresh blood

samples (FACS), available for 606 overlapping samples (18), we

validate cell specific module annotations, and, notably, identify

more specific cell sub-types, exploiting the significant correlations

obtained from FACS counts with the MEs. The Student asymptotic

p-values for correlations between the MEs and the FACS counts

were calculated with the corPvalueStudent function in WGCNA

and only significant terms after multiple testing corrections

were considered.
Identifying hub genes

Co-expression modules identified by WGCNA can include

hundreds of genes, so it is important to identify highly inter-

connected genes within a module (hub genes) that best explains

its behavior (30). Intra-modular hubs are central to specific modules

in the network, while inter-modular hubs are central to the entire
frontiersin.org
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network. Intra-modular hub genes are frequently more relevant to

the functionality of networks than other nodes (31). Highly

connected intra-modular hub genes tend to have high MM values

to the respective module. The MM also describes the extent to

which a gene conforms to the characteristic expression pattern of a

module (32). The sign of the MM encodes whether the gene has a

positive or a negative correlation with the ME. If the MM of a gene

for a given module is close to 1 (or also −1 in an unsigned network),

it means that the gene is highly correlated with the module, so it is

highly connected to the other module genes. In an unsigned

network, genes with negative MMs represent inversely expressed

genes, i.e. genes that are negatively correlated to the (majority of

the) module genes. In other words, genes that tend to be down-

regulated when genes in the module are up-regulated. If MM is

close to 0, then the gene is not reliably part of the module. We

defined hubs genes those with MMs in absolute value in the top 90th

quantiles within a module. Genes with MMs in absolute value <0.10

are considered not clearly assigned to the specific module.
Results

Network construction and
module annotation

We constructed both signed and unsigned networks using the

WGCNA method. We identify 40 modules in the signed network

and 41 modules in the unsigned network, highly overlapping

(Figure 1). We describe here the main results for the unsigned
Frontiers in Immunology 04
network, highlighting the differences, when present, for the

signed network.

We focus on 13 modules identified in the unsigned analysis

(Table 1), closely related to 15 modules identified in the signed

network (Table 2), that are closely associated with WBC or immune-

related functions. Module annotation is carried out through

enrichment analyses for immune-related functions, WBC marker

genes, and also, in this study, by taking advantage of the availability

of a broad immune characterization of specific cells subtypes

measured on the same individuals. We use MEs to relate modules

to FACS measurements by calculating Pearson correlations and

significance between MEs and FACS counts (Figures 2, 3, for the

unsigned and the signed network, respectively). In the

Supplementary Data Sheet 1 we provide all genes included in this

study with their module assignment, MM, and 1-quantile(MM),

both for the signed and the unsigned networks. In the

Supplementary Data sheet 2 we provide all enrichments results

obtained with the WGCNA predefined lists, and g:Profile analysis

for each module, both for the signed and the unsigned networks.

By analyzing 15,807 gene-based transcripts (including 1,798

lncRNAs), we assigned to annotated module, 8,543 (54%) gene-

based transcripts, of which 573 (32% of the total 1,798 lncRNAs

included in the study) were lncRNAs (Table 3).
Interferon signaling

Among the immune-related modules, two modules, the cyan

and the darkred, are significantly enriched for interferon signaling
FIGURE 1

Cross-tabulations of modules of signed (column) vs. unsigned (row) networks. Coloring of the table encodes −log(p), with p being the Fisher’s exact
test p-value for the overlap of the two modules. The stronger the red color, the more significant the overlap is.
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pathways, both in the signed and in the unsigned networks.

Specifically, the cyan module is significantly associated with “type

I interferon signaling pathway” (p=1.18E-29), whereas the darkred

module is significantly associated with “response to interferon-

gamma” (p=2.10E-16). The MEs of the cyan and darkred modules

are inversely correlated (r=-0.34, p-value=0.0290 in unsigned

network, Supplementary Table 2 in the Supplementary Material),

and the cyan module is also inversely correlated with the grey60

module (associated to NK HLA DR+ cells, see below), although not

significantly, with similar results in the signed network

(Supplementary Table 2 in the Supplementary Material). In a

signed network (where all genes in the module are positively

correlated with the ME) a positive correlation between MEs

means that most genes in the two modules follow the same
Frontiers in Immunology 05
expression patterns, whereas a negative correlation between the

MEs implies that the genes in one module show opposite expression

patterns of the genes in the other module. In an unsigned network, a

positive correlation between MEs may also imply that genes have

opposite behavior, since a module can contain genes negatively

correlated with the ME.

In detail, enrichments for the cyan module in the unsigned

network include “defense response to virus” (p=3.45E-37); “defense

response to other organism” (p=5.38E-28); and “innate immune

response” (p=1.39E-26). Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichments point to “Influenza A”

(p=1.81E-11), “Herpes simplex infection” (p=2.28E-09), “Measles”

(p=8.38E-09), and “Hepatitis C” (p=1.03E-06). Enrichment analysis

using the WGCNA predefined list (through the WGCNA function
TABLE 1 WBC and immune-related modules: top significant terms for the unsigned network.

Module
N

unsigned
N

signed
Description

G:Profiler (a) WGCNA(b) FACS(c)

GO/
KEGG terms

p-
value

Pre-
defined lists

p-
value

Traits r
p-

value

cyan 504 404

Interferon
signaling

Type I interferon
signaling pathway

1.18E-
29

IFN alpha/beta
2.71E-
05

– – –

darkred 766 300
Response to
interferon-gamma

2.10E-
16

Antigen
processing
and presentation

2.74E-
06

– – –

lightgreen 260 368 Leukocytes
Leukocytes
activation

6.090E-
25

– – Leukocytes 0.19
1.60E-
06

darkturquoise*

857 (tan)

270

Neutrophils
Neutrophil
mediated
immunity

2.58E-
18

Neutrophils
1.82E-
08

– – –tan 462

darkgrey* 265

royalblue 365 301

B cells

B cell activation
1.37E-
07

B cell
3.21E-
45

T/B ratio -0.49
1.51E-
38

green 414 662
B cell
mediated
immunity

3.73E-
106

B cell
6.05E-
17

T/B ratio -0.23
4.72E-
09

yellowgreen 103 115

T cells

– – CD4
1.50E-
07

CD4+ naïve 0.57
6.34E-
54

steelblue 174 190
Cytokine-cytokine
receptor
interaction

4.03E-
09

CD4
3.89E-
17

Secreting 0.52
4.97E-
44

skyblue 170 197 Receptor activity
3.47E-
07

- - CD4+ EM 0.32
3.05E-
16

darkorange2 131 -
Cellular
defense response

8.44E-
04

NK cell
7.32E-
07

NKT &
CD8+

0.26
2.40E-
11

darkgreen 445 283

NK cells

NKcell
mediated
cytotoxicity

3.09E-
07

NK cell
1.22E-
32

NK cell 0.44
2.01E-
30

grey60 433 370
Cell
communication

1.78E-
05

– –
NK HLA
DR+

0.27
3.44E-
12

sienna3 142 119 Dendritic cells - - - – Plasmacytoids 0.63
2.73E-
70
front
* Only present in the signed network.
(a) Enrichments with g:Profiler analysis, p-values are corrected for multiple testing;
(b) Enrichments with pre-made list sets included in WGCNA, p-values corrected for multiple testing. Link: https://www.rdocumentation.org/packages/WGCNA/versions/1.70-3/
topics/userListEnrichment;
(c) Pearson correlation between the ME and the FACS counts. P-values are not corrected for multiple testing, but only significant terms after taking into account multiple testing are shown.
iersin.org
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userListEnrichment that allows enrichment analysis for different

pre-made collections of marker genes) shows significance for the

“IFN alpha/beta” pathway (p= 2.71E-05). The ME of the cyan

module does not correlate significantly with any FACS count (none

of the Pearson correlations between the ME of the cyanmodule and

FACS measurements are significant). The TNFSF13B gene,

encoding the cytokine BAFF (B-cell-activating factor) (33) is a

very important gene within this module with MM is in the top 12%

of all the genes in the cyan module, indicating that TNFSF13B is
Frontiers in Immunology 06
central in this interferon type I module and highly correlated to the

other module genes.

The darkred unsigned module is significantly enriched for

numerous GO terms, in particular “innate immune response”

(p=2.21E-16); “response to cytokine” (p=7.20E-15); “cellular

response to interferon-gamma” (p=1.72E-13); and “cytokine-

mediated signaling pathway” (p=1.49E-12). The most significant

KEGG pathway enrichment is for “Antigen processing and

presentation” (p=8.80E-10). The darkred module is also enriched
TABLE 2 WBC and immune-related modules: top significant terms for the signed network.

Module
N

signed
N

unsigned
Description

G:Profiler (a) WGCNA(b) FACS(c)

GO/
KEGG terms

p-
value

Pre-
defined lists

p-
value

Traits r
p-

value

cyan 404 504

Interferon
signaling

Type I interferon
signaling pathway

2.78E-
26

IFN alpha/beta
9.29E-
06

– –

darkred 300 766
Interferon
gamma signaling

1.26E-
18

Antigen
processing
and presentation

1.06E-
17

– – –

lightgreen 368 260 Leukocytes
Leukocytes
activation

6.41E-
25

– – Leukocytes 0.19
1.60E-
06

darkturquoise 270

857 (tan) Neutrophils

Immune response
1.31E-
05

Neutrophils 0.0021 – – –

tan 462 – – – – – – –

darkgrey 265
Neutrophil
activation

1.66E-
18

– – – – –

royalblue 301 365

B cells

B cell activation
8.24E-
07

B cell
3.68E-
37

T/B ratio -0.57
5.84E-
55

skyblue3 98 - – – B cell
1.16E-
05

B cell 0.30
4.20E-
14

green 662 414
B cell
mediated
immunity

1.26E-
102

B cell
1.93E-
10

T/B ratio -0.21
2.25E-
07

yellowgreen 115 103

T cells

– – CD4
1.54E-
06

CD4+ naïve 0.55
1.80E-
50

steelblue 190 174
Cytokine-cytokine
receptor
interaction

1.56E-
08

CD4
2.12E-
14

Secreting 0.52
1.61E-
44

skyblue 197 170 Receptor activity
1.01E-
07

CD4 0.0028 CD4+ EM 0.34
1.69E-
18

darkgreen 283 445

NK cells

Natural killer cell
mediated
cytotoxicity

5.73E-
10

NK cell
1.21E-
60

NK cell 0.43
9.25E-
29

grey60 370 433 Signaling
7.00E-
07

– –
NK HLA
DR+

0.29
2.58E-
13

sienna3 119 142 Dendritic cells – – – – Plasmacytoids 0.63
1.42E-
70
front
(a) Enrichments with g:Profiler analysis, p-values are corrected for multiple testing;
(b) Enrichments with pre-made list sets included in WGCNA, p-values corrected for multiple testing. Link: https://www.rdocumentation.org/packages/WGCNA/versions/1.70-3/
topics/userListEnrichment;
(c) Pearson correlation between the ME and the FACS counts. P-values are not corrected for multiple testing, but only significant terms after taking into account multiple testing are shown.
iersin.org
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for genes associated with many infectious and autoimmune

diseases, specifically, “Influenza A” (p=1.43E-06), “Tuberculosis”

(p=2.98E-06), “Autoimmune thyroid disease” (p=1.03E-05);

“Intestinal immune network for IgA production” (p=1.17E-05);
Frontiers in Immunology 07
“Asthma” (p=3.20E-05); “Type I diabetes mellitus” (p=4.07E-05);

and “Inflammatory bowel disease (IBD)” (p=8.09E-05), as the

module contains many HLA genes. The predefined WGCNA lists

support enrichment for “Antigen processing and presentation” in
FIGURE 2

FACS analysis (selected traits) in the unsigned network. Module-trait heatmap displaying the correlation between the eigengene of a module (ME*,
columns), identified in the unsigned network, and significant FACS counts (rows). Each cell contains the Pearson correlation coefficients which
correspond to the cell color: red indicates a positive correlation, while blue indicates a negative correlation. Shading of colors encodes −log(p), with
p being the significance of the correlation. The p-values are stated in the brackets.
FIGURE 3

FACS analysis (selected traits) in the signed network. Module-trait heatmap displaying the correlation between the eigengene of a module (ME*,
columns), identified in the signed network, and significant FACS counts (rows). Each cell contains the Pearson correlation coefficients which
correspond to the cell color: red indicates a positive correlation, while blue indicates a negative correlation. Shading of colors encodes −log(p), with
p being the significance of the correlation. The p-values are stated in the brackets.
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TABLE 3 Distribution of the 15,807 gene-based transcripts used in the analysis (GENCODE V27).

Gene type N Predicted function* Hubs**

protein coding

protein coding 11864 7178 2450

IG C gene 14 14 8

IG D gene 25 7 –

IG J gene 11 9 1

IG V gene 100 98 52

TR C gene 6 5 3

TR D gene 2 1 1

TR J gene 60 6 2

TR V gene 84 16 1

Total (protein coding) 12166 7334 2518

lncRNA

3prime overlapping ncRNA 17 6 2

antisense 42 15 6

antisense RNA 825 224 44

bidirectional promoter lncRNA 1 – –

lincRNA 604 237 50

processed transcript 163 50 16

sense intronic 89 18 1

sense overlapping 57 23 4

Total (lncRNA) 1798 573 123

other non-coding RNA

misc RNA 102 13 3

Mt rRNA 2 2 –

Mt tRNA 6 2 –

miRNA 151 35 7

rRNA 19 3 1

scaRNA 8 – –

snoRNA 132 15 4

snRNA 104 7 3

TEC (To be Experimentaly Confirmed) 4 – –

Total (ncRNA) 528 77 18

pseudogenes

pseudogene 47 19 2

IG C pseudogene 3 3 1

IG J pseudogene 3 1 –

IG V pseudogene 12 7 1

TR J pseudogene 3 – –

TR V pseudogene 9 2 –

polymorphic pseudogene 4 2 –

processed pseudogene 845 412 69

transcribed processed pseudogene 70 19 1

transcribed unitary pseudogene 24 6 2

(Continued)
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the darkred module (p=2.74E-06). The darkred module does not

correlate significantly with any FACS measurement.
Leukocytes

Among the WBC-related modules, the lightgreen module is

enriched for terms indicating neutrophil and more general

leukocyte activation. GO enrichments for the lightgreen module

are highly significant for “secretory granule” (p=2.14E-38),

“secretory vesicle” (p=1.96E-36), and different specific

neutrophils-associated terms such as “neutrophil activation

involved in immune response” (p=1.04E-35), “neutrophil

degranulation” (p=1.04E-35), “neutrophil activation” (p=2.00E-

35), and “neutrophil mediated immunity” (p=2.64E-35). Different

GO terms are also associated with leukocyte functions like

“leukocyte degranulation” (p=2.71E-34), “leukocyte activation

involved in immune response” (p=1.90E-32), and “leukocyte

activation” (p=6.09E-25). No specific enrichments are observed

with the predefined WGCNA lists but the lightgreen ME and

FACS counts show significant correlations for “leukocytes”

(r=0.19, p-value=1.60E-06), “granulocytes” (r=0.19, p-

value=3.11E-06), and “monocytes” (r=0.19, p-value=1.08E-06).
Neutrophils

In the unsigned network, enrichment for the tan module is

related to “neutrophil mediated immunity” (p=2.58E-18), “myeloid

leukocyte mediated immunity” (p=3.01E-18), “leukocyte

degranulation” (p=4.47E-18), “myeloid cell activation involved in

immune response” (p=7.52E-18), and “neutrophil activation

involved in immune response” (p=1.25E-17) among the top GO

enrichment terms. The predefinedWGCNA lists identify significant

enrichment for “Neutrophils” (p=1.82E-08). The tan module does

not correlate significantly with any FACS measurement, as

expected, since neutrophils are not included in the FACS panel.

The unsigned tan module is large and corresponds to three

distinct modules in the signed network, the darkturquoise and tan

modules overlapping with genes with positive MMs, and the

darkgrey overlapping with genes with negative MMs in the

unsigned tan module. Indeed, darkgrey is inversely correlated

with the darkturquoise and tan modules, although the correlation
Frontiers in Immunology 09
is significant only with the darkturquoise module (r=-0.45,

p=0.0040) (Supplementary Table 2 in the Supplementary

Material). In the signed network the darkgrey is significantly

enriched for “neutrophil activation involved in immune response”

(p=9.39E-19), “neutrophil degranulation” (p=9.39E-19),

“neutrophil activation” (p=1.66E-18) among the top GO terms.

The darkturquoise is enriched for “response to external stimulus”

(p=3.05E-07), “secretion” (p=4.10E-06), and “immune response”

(p=1.31E-05), whereas no significant enrichments are observed for

the signed tan module. None of these modules correlate

significantly with any FACS measurement.
B cells

Two modules in the unsigned network, royalblue and green, are

significantly enriched for B cell-related functions and for B cell

marker genes. In particular, the royalblue module is associated with

B cell activation and the green module with B cell mediated

immunity. The royalblue module in the unsigned network

corresponds to two modules in the signed network, the royalblue

and the skyblue3. The MEs of the royalblue and of the skyblue3

modules in the signed network show negative correlation (r=-0.34,

p=0.0314). The unsigned royalblue module is enriched for GO

terms like “B cell activation” (p=1.37E-07), “B cell receptor

signaling pathway” (p=1.14E-05), and “B cell proliferation”

(p=1.67E-05); and similarly for “B cell receptor signaling

pathway” (p= 1.14E-05) among KEGG pathways. The predefined

WGCNA lists indicates a highly significant enrichment in the

royalblue module for genes associated with “B cell” (p=3.21E-45).

Correlation between the royalblue module and FACS counts shows

a significant negative correlation with T/B ratio (r=-0.49, p=1.51E-

38). For the signed skyblue3 module a significant negative

correlation is observed for T/B ratio (r=-0.24, p=1.26E-09) and a

positive one for B cell counts (r=0.30, p=4.20E-14).

The greenmodule contains almost all immunoglobulin genes of

the dataset, and is, as would be expected, highly significantly

enriched for “antigen binding” (p=1.02E-182); “adaptive immune

response” (p=3.14E-131); “humoral immune response mediated by

circulating immunoglobulin” (p=1.03E-126); “complement

activation” (p=2.69E-123); “protein activation cascade” (p=7.81E-

120); “immunoglobulin mediated immune response” (p=1.20E-

106); and “B cell mediated immunity” (p=3.73E-106).
TABLE 3 Continued

Gene type N Predicted function* Hubs**

transcribed unprocessed pseudogene 170 54 16

translated processed pseudogene 1 1 –

unitary pseudogene 2 1 1

unprocessed pseudogene 122 32 3

Total (pseudogenes) 1315 559 96

TOTAL 15807 8543 2755
*Predicted function: genes with MM > 0.20 in modules with defined function; ** Hubs: genes with 1 − quantile(MM) < 0.10 in modules with defined function.
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The predefined WGCNA lists also indicate a highly significant

enrichment for marker genes associated with “B cell” (p= 6.05E-17).

The green module is negatively correlated with T/B ratio in FACS

(r=-0.23, p=4.72E-09).
T cells

Four modules in the unsigned network are associated with T

cells through enrichment analysis, corresponding to three modules

in the signed network. For these modules FACS measurements are

especially useful in suggesting T cell sub-classification according to

their maturation and activation status. All FACS significant

correlations with the T cells modules are shown in Table 4 for the

unsigned network, and in Table 5 for the signed network.

The yellowgreen module, associated with CD4 T cells through

the WGCNA predefined lists (p=1.50E-07), shows its most

significant correlation with FACS naïve CD4+ count (r=0.57,

p=6.34E-54). Thus the FACS sub-cell types correlating with this

module indicate association with naïve CD4+ T cells.
Frontiers in Immunology 10
The steelblue module is associated with CD4 T cells through the

WGCNA predefined lists (p=3.89E-17), and is enriched for “Cytokine-

cytokine receptor interaction” (p=4.03E-09) from the KEGG pathways,

and for “C-C chemokine receptor activity” (p=5.37E-04); “cytokine-

mediated signaling pathway” (p=6.99E-04); and “positive regulation of

T cell differentiation” (p=1.66E-03) for GO terms in unsigned network.

FACS analysis shows numerous T cell subtypes correlating with the

module, with secreting count (secreting CD4+ Treg) as the top

significant term (r=0.52, p=4.97E-44), indicating association of the

steelbluemodule to regulatory CD4+ T cells. In agreement with FACS

analysis results, this module has as a hub gene FOXP3, a master

regulator in the development and function of regulatory T cells.

The skyblue module shows enrichment for “receptor activity”

(p=3.47E-07) and “signaling receptor activity” (p=1.58E-06), and

marginal enrichment for CD4 T cells from the WGCNA predefined

lists (p=7.03E-03). FACS analysis shows a top significant

correlation between skyblue and effector memory CD4+ T cells

(r=0.32, p=3.05E-16).

Finally, in the unsigned network only, we observe an additional

T cell module, the darkorangered2 module, with suggestive
TABLE 4 FACs results for T cells modules: Pearson correlation between the MEs of the T cells modules and FACs counts in the unsigned network.

FACs trait

Yellowgreen Steelblue Skyblue Darkorange2

r
p-

value*
r

p-
value*

r
p-

value*
r p-value*

naive CD4+ AC 0.57 6.34E-54 -0.35 4.30E-19

CD4+ AC 0.31 1.24E-15 0.19 1.40E-06

CD4+ not Treg AC 0.31 1.85E-15 0.18 6.65E-06

CD45RA+ CD25hi CD4+ not Treg AC 0.29 1.62E-13 -0.19 3.06E-06

resting CD4+ Treg AC 0.28 1.52E-12 -0.18 4.33E-06

naive CD8br AC 0.19 1.69E-06 -0.18 8.67E-06 -0.21 1.20E-07

secreting CD4+ Treg AC 0.52 4.97E-44

secreting & activated CD4+ Treg AC 0.51 4.12E-42

CD25hi CD4+ AC 0.51 1.10E-41

CD45RA- CD25hi CD4+ not Treg AC 0.49 2.01E-38 0.27 1.91E-11

CM CD4+ AC 0.45 1.08E-32

CD4+ Treg AC 0.18 9.54E-06 0.45 3.77E-32

Resting & Secreting CD4+ Treg AC 0.19 2.56E-06 0.45 5.37E-32

CD45RA- CD4+ AC 0.39 3.94E-24 0.23 7.07E-09

CD45RA- CD4+ not Treg AC 0.37 1.17E-21 0.24 2.40E-09

activated CD4+ Treg AC 0.35 1.43E-19

CD25hi CD8br AC -0.18 9.18E-06 0.31 1.34E-15

CD39+ secreting CD4+ Treg AC 0.26 1.01E-10

CD39+ CD4+Treg AC 0.25 4.10E-10

CM CD8br AC 0.25 4.29E-10

(Continued)
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enrichments pointing to “cellular defense response” (p=8.44E-04);

“signaling receptor activity” (p=1.14E-03); “natural killer cell

mediated immunity” (p=3.20E-03); and “antigen processing and

presentation” (p=1.91E-03). FACS analysis allows us to correlate

the module with natural killer T cells (r=0.26, p=2.40E-11) and

cytotoxic CD8+ T cells (r=0.27, p=6.73E-12).

Pearson correlation analysis among the T cell modules show a

significant negative correlation between the yellowgreen (naïve CD4

+) and skyblue (EM CD4+) modules (r=-0.46, p=0.0027), and a

significant positive correlation between the steelblue (regulatory

CD4+) and the skybluemodule (r=0.4, p=0.0090). The darkorange2

module (cytotoxic CD8+ and natural killer T cells) shows a positive

correlation with the yellowgreen module (r=0.35, p=0.0259), and

negative correlation with the skyblue module (r=-0.36, p=0.0222).
NK cells

We identify two modules associated with NK cells both in signed

and unsigned networks, namely, the darkgreen and the grey60
Frontiers in Immunology 11
modules. The darkgreen module is significantly enriched for NK

cell marker genes through the WGCNA predefined lists indicating

NK cells (p=1.22E-32), and it is also associated with NK cell counts

(r=0.44, p=2.01E-30) through FACS correlations, and CD3-

lymphocyte counts (r=0.29, p=3.38E-13). Enrichments for the

darkgreen module point to “receptor activity” (p=4.42E-09) and to

“Natural killer cell mediated cytotoxicity” (p=3.09E-07). The grey60

module shows enrichments for terms related to “cell communication”

(p=1.78E-05), “signaling” (p=3.18E-05) and “vesicle” (p=6.90E-05).

Correlation with FACS counts shows a significant correlation only for

HLA DR+ NK counts (r=0.27, p=3.44E-12).

Plasmacytoids dendritic cells

Although no significant enrichments are observed for the

sienna3 module, correlation with FACS shows highly significant

correlation with plasmacytoid cDC cells (r=0.63, p=2.73E-70).

Additional FACS counts correlated with the sienna3 module are:

CD86+ plasmacytoids (r=0.28, p=1.54E-12), CD62L plasmacytoids

(r=0.23, p=5.04E-09), and dendritic cells (r=0.20, p=8.41E-07).
TABLE 4 Continued

FACs trait

Yellowgreen Steelblue Skyblue Darkorange2

r
p-

value*
r

p-
value*

r
p-

value*
r p-value*

resting & activated CD4+ Treg AC 0.24 1.90E-09 0.24 2.47E-09

CD39+ activated CD4+ Treg AC 0.19 1.44E-06

CD4+ CD8br AC 0.19 2.02E-06

CD39+ CD4+ AC 0.18 4.64E-06

EM CD4+ AC -0.25 5.45E-10 0.19 1.08E-06 0.32 3.05E-16

CD28+ CD45RA- CD8dim AC 0.22 5.69E-08

CD28- CD8br AC -0.25 1.23E-10 0.37 2.90E-21

CD127- CD8br AC -0.22 5.97E-08 0.27 6.73E-12

CD8+ AC -0.22 2.02E-08 0.27 7.84E-12

NKT AC -0.32 2.36E-16 0.26 2.40E-11

CD8br AC -0.2 6.32E-07 0.26 2.70E-11

EM CD8br AC 0.25 2.47E-10

CD45RA- CD8br AC 0.25 4.57E-10

TD CD8br AC -0.2 3.45E-07 0.24 7.01E-10

NKT CD8+ AC -0.2 5.95E-07 0.23 4.86E-09

CD28- CD8dim AC 0.23 1.37E-08

CD28- CD4- CD8- AC 0.22 2.09E-08

TD CD4- CD8- AC -0.23 4.91E-09 0.21 1.72E-07

CD45RA+ CD4- CD8- AC -0.23 3.58E-09 0.2 3.15E-07

T lymphocyte AC 0.19 1.74E-06

TCR gd AC -0.21 9.43E-08 0.19 1.90E-06

NKT CD4- CD8- AC 0.18 3.80E-06
fr
*p-values are not corrected, but only significant terms after taking into account multiple testing are shown. Bold values indicate positive correlations.
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LncRNA hub genes

Through the construction of a co-expression network including

coding and non-coding genes, and enrichment analysis for coding

genes in each module, we used the guilt–by–association approach to

predict lncRNAs probable functions based on their co-expression

with annotated protein-coding genes, as a foundation for further

annotation and functional studies.

LncRNAs comprise any genes with a long non-coding gene biotype

in the GENCODE v27 (i.e. ‘‘processed transcript’’, ‘‘sense intronic’’,
Frontiers in Immunology 12
‘‘sense overlapping’’, ‘‘antisense’’, ‘‘lincRNA’’, ‘‘bidirectional promoter

lncRNA’’, ‘‘3prime overlapping ncRNA’’). Among the 573 lncRNAs

assigned to annotated modules, 123 lncRNAs are hub genes, defined as

those with MMs in absolute value in the top 90th quantiles within a

module. As a validation of the power of the guilt–by–association

approach, we searched scientific literature for the 55 hub lncRNA

genes in the WBC and immune-related modules, finding confirming

evidence from recent studies for the lncRNAs highlighted in Table 6.

By deriving for each gene its closest gene (the gene with highest

adjacency, see Materials and Methods) within the same module in
TABLE 5 FACs results for T cells modules: Pearson correlation between the MEs of the T cells modules and FACs counts in the signed network.

FACs trait
Yellowgreen Steelblue Skyblue

r p-value* r p-value* r p-value*

naive CD4+ AC 0.55 1.80E-50 -0.35 1.55E-19

CD4+ AC 0.31 1.44E-15 0.23 1.27E-08

CD4+ not Treg AC 0.31 2.04E-15 0.21 6.58E-08

CD45RA+ CD25hi CD4+ not Treg AC 0.27 5.00E-12 -0.19 1.20E-06

resting CD4+ Treg AC 0.27 1.88E-11 -0.19 3.16E-06

naive CD8br AC 0.2 3.46E-07 -0.21 1.01E-07

T lymphocyte AC 0.18 9.40E-06

secreting CD4+ Treg AC 0.52 1.61E-44

secreting & activated CD4+ Treg AC 0.51 3.88E-42

CD25hi CD4+ AC 0.51 7.53E-42

CD45RA- CD25hi CD4+ not Treg AC 0.48 3.48E-37 0.26 9.21E-11

CM CD4+ AC 0.47 6.09E-36

Resting & Secreting CD4+ Treg AC 0.46 1.42E-33

CD4+ Treg AC 0.46 3.54E-33

CD45RA- CD4+ AC 0.39 4.97E-24 0.24 1.39E-09

CD45RA- CD4+ AC 0.38 4.68E-23 0.26 2.61E-11

CD45RA- CD4+ not Treg AC 0.37 1.60E-21 0.25 4.15E-10

activated CD4+ Treg AC 0.34 9.83E-19

CD4/CD8 ratio 0.3 2.83E-14

CD25hi CD8br AC 0.28 5.26E-13

CD39+ secreting CD4+ Treg AC 0.26 5.39E-11

CD39+ CD4+Treg AC 0.25 2.46E-10

resting & activated CD4+ Treg AC 0.22 3.57E-08 0.25 4.19E-10

CM CD8br AC 0.24 2.14E-09

CD39+ activated CD4+ Treg AC 0.19 1.01E-06

CD39+ CD4+ AC 0.19 2.06E-06

CD4+ CD8br AC 0.19 3.12E-06

EM CD4+ AC -0.21 7.71E-08 0.34 1.69E-18

CD28+ CD45RA- CD8br AC -0.26 9.45E-11 0.22 4.43E-08

CD28+ CD45RA- CD8dim AC 0.21 1.47E-07
fr
p-values are not corrected, but only significant terms after taking into account multiple testing are shown. Bold values indicate positive correlations.
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the signed networks, we observe multiple connections between the

lncRNAs themselves. Supplementary Table 3 in the Supplementary

Material shows a summary by gene types (column) of their closest

gene types (row) for all genes, and for important genes (considering

a cutoff of 1-quantile(MM)<0.20) and adjacencies above the 3rd

quartile of the adjacencies for all genes (top adjacency>0.0338).

Indeed, there are 398 lncRNAs that show the highest adjacency with

other lncRNAs when considering all genes, and 15 lncRNAs

showing strong adjacency with important lncRNAs.
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Additional network modules

Additional network modules, not associated to specific WBC

cell-types or functionally related to the immune response, are

associated to other cell-types, to general cell functions, or could

not be clearly functionally characterized. In summary, we identified

two modules associated to platelets, one module associated to

reticulocytes, three modules associated to DNA metabolic

processes, five modules associated to RNA metabolic processes
TABLE 6 LncRNAs hub genes identified in WBC and immune-related modules.

Hub genes* Gene type Ref
Signed network Unsigned network

Module MM 1-q(MM) Module MM 1-q(MM)

AL445490.1 antisense RNA (34–36) cyan 0.62 0.06 cyan 0.68 0.05

AP001610.1 antisense RNA – cyan 0.55 0.1 cyan 0.58 0.07

NRIR antisense RNA (14, 37–45) cyan 0.47 0.12 cyan 0.50 0.09

AC244453.2 antisense RNA – darkred 0.5 0.12 darkred 0.49 0.05

LINC01887 lincRNA – pink 0.12 0.54 darkred -0.27 0.92

RP11-229E13.2 3prime overl. ncRNA – cyan 0.24 0.31 darkred -0.28 0.92

SCAMP1-AS1 lincRNA – red 0.13 0.68 darkred -0.30 0.94

AC002546.1 lincRNA (46) cyan 0.23 0.32 darkred -0.32 0.95

AC009948.1 antisense RNA – cyan 0.31 0.23 darkred -0.40 0.97

AC104232.1 lincRNA – lightgreen 0.79 0.04 lightgreen 0.81 0.06

LINC01765 lincRNA – tan 0.79 0 tan 0.66 0.00

AC011444.2 antisense RNA – tan 0.5 0.09 tan 0.49 0.02

ADAMTSL4-AS1 processed transcript – tan 0.46 0.1 tan 0.44 0.03

AC020916.1 lincRNA – tan 0.5 0.08 tan 0.39 0.06

AC004069.1 lincRNA – darkturquoise 0.23 0.69 tan 0.37 0.07

LINC00963 processed transcript (47) darkturquoise 0.31 0.49 tan 0.37 0.07

AL356356.1 antisense RNA – tan 0.38 0.18 tan 0.37 0.07

AL353616.2 lincRNA – tan 0.32 0.26 tan 0.35 0.09

AC002511.2 lincRNA – darkturquoise 0.24 0.67 tan 0.34 0.10

AL354719.2 antisense RNA – darkgrey 0.32 0.37 tan -0.37 0.94

LINC00671 lincRNA – darkgrey 0.46 0.13 tan -0.39 0.95

AC005035.1 lincRNA – darkgrey 0.36 0.29 tan -0.39 0.95

SLC12A5-AS1 antisense RNA – darkgrey 0.69 0.01 tan -0.59 1.00

TCL6 processed transcript (48, 49) royalblue 0.78 0.01 royalblue 0.81 0.01

AL139020.1 antisense RNA (50) royalblue 0.77 0.02 royalblue 0.79 0.02

LINC00926 lincRNA (51) royalblue 0.75 0.04 royalblue 0.74 0.04

LINC02397 lincRNA (52) royalblue 0.73 0.05 royalblue 0.70 0.05

CTA-250D10.23 lincRNA (53) royalblue 0.64 0.08 royalblue 0.61 0.08

AL158850.1 antisense RNA – skyblue3 0.61 0.1 royalblue -0.29 0.91
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(seven in the signed network), three modules associated to

mitochondria (two in the signed network) and a module

associated to the X-Y chromosomes. In the unsigned network we

additionally identified a module associated to the endoplasmic

reticulum, and two modules associated to cholesterol and lipid

metabolic processes (Supplementary Table 4 for the unsigned, and

Supplementary Table 5 for the signed network, in the

Supplementary Material).

For instance, two modules, the violet and the darkolivegreen, are

significantly enriched for platelets-related marker genes defined in

the WGCNA predefined lists (p=9.34E-26 for the violet, and p=

9.31E-46 for the darkolivegreen module, respectively). Among the

modules associated to DNA metabolic processes, the plum1module

is significantly associated to “Cell Cycle” (p=2.90E-19), and “DNA
Frontiers in Immunology 14
Replication” (p=6.77E-16). The lightcyan1module is present only in

the unsigned network, and it is positively correlated (r=0.37,

p=0.0166) with the green module associated to “B cell mediated

immunity”, and it is highly enriched for “Protein processing in

endoplasmic reticulum” (p=5.33E-27) through the WGCNA

predefined lists. Among the three modules associated to

mitochondria in the unsigned network, the lightyellow module is

highly enriched for numerous GO terms related to mitochondria, as

“mitochondrial inner membrane” (p=1.99E-25), “mitochondrion”

(p=1.50E-19), “catalytic complex” (p=7.17E-17). Interestingly, none

of the genes in lightyellow module is located in the mitochondria

DNA, whereas the lightcyan module in the unsigned network is

constituted mainly by MT genes, pseudogenes, and non-

coding genes.
TABLE 6 Continued

Hub genes* Gene type Ref
Signed network Unsigned network

Module MM 1-q(MM) Module MM 1-q(MM)

AC008074.3 lincRNA – green 0.12 0.53 royalblue -0.32 0.93

AL928742.1 lincRNA (54) skyblue3 0.8 0.02 royalblue -0.34 0.95

LINC01857 lincRNA (55) skyblue3 0.68 0.08 royalblue -0.22 0.81

LINC02295 lincRNA – yellowgreen 0.67 0.03 yellowgreen 0.67 0.04

LEF1-AS1 processed transcript – yellowgreen 0.66 0.04 yellowgreen 0.65 0.05

WDR86-AS1 processed transcript – skyblue 0.59 0.05 skyblue 0.61 0.05

AL450992.2 antisense RNA (56) skyblue 0.6 0.05 skyblue 0.60 0.06

AL121748.1 lincRNA – steelblue 0.63 0.02 steelblue 0.63 0.02

MIR181A2HG antisense RNA (57) darkgreen 0.61 0.08 darkgreen 0.63 0.03

AC018450.1 processed transcript – darkgreen 0.53 0.13 darkgreen 0.55 0.07

AC092535.1 antisense RNA – darkgreen 0.57 0.11 darkgreen 0.51 0.09

AC017100.1 antisense RNA – darkgreen 0.51 0.14 darkgreen 0.49 0.09

MIR155HG lincRNA (58–61) sienna3 0.1 0.92 darkgreen -0.30 0.91

MIAT lincRNA – turquoise 0.09 0.5 darkgreen -0.32 0.92

LINC02446 lincRNA (62) salmon 0.2 0.35 darkgreen -0.34 0.94

LINC00943 lincRNA – green 0.08 0.72 darkgreen -0.37 0.95

LINC00944 lincRNA – green 0.11 0.59 darkgreen -0.41 0.97

LINC01871 lincRNA (63, 64) turquoise 0.1 0.45 darkgreen -0.43 0.97

AC104809.2 processed transcript – grey60 0.76 0.01 grey60 0.76 0.00

AC100803.2 sense overlapping – grey60 0.58 0.07 grey60 0.57 0.06

AL590648.3 lincRNA – grey60 0.55 0.09 grey60 0.56 0.07

AC099552.2 lincRNA – grey60 0.57 0.08 grey60 0.56 0.07

AATBC antisense RNA – grey60 0.55 0.09 grey60 0.54 0.08

LINC02345 lincRNA – grey60 0.53 0.11 grey60 0.51 0.10

AC097375.1 lincRNA – sienna3 0.77 0.07 sienna3 0.78 0.06

LINC00996 lincRNA – sienna3 0.71 0.1 sienna3 0.71 0.08
fr
* For lncRNAs genes in bold consistent functional evidence is found in published studies, cited in the Ref column.
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Sex-specific networks

We also constructed two signed networks for males and females,

separately, in order to identify sex-specific hub genes/lncRNAs. We

first looked at the modules overlap using the cross-tabulations of

modules, and observed significant overlap across modules between

the two sex-specific networks. Supplementary Figure 1 in the

Supplementary Material shows the module overlap for important

genes (genes with 1-quantile(MM)<0.20) in the signed network with

all individuals. We also looked for sex-specific hub genes/lncRNAs

by examining the MM and 1-quantile(MM) differences for the

modules that are closely associated with WBC or immune-related

functions, and we did not observe any significant difference.
Query tools

In providing our network results, we also supply different tools

through the Co-expression Network app at cenb.irgb.cnr.it. These

tools allow to interrogate the networks and to extract important

information on the complex inter-relationships identified in

our analysis.

In particular, Tool 1 allows to identify the closest genes (i.e.

genes with highest adjacency, a transformation of correlation, see

Materials and Methods) to a specific input gene, within the module

containing the input gene. It plots all the genes adjacencies (with the

input gene) on the y-axis and their chromosomal position on the x-

axis (Supplementary Figure 2 in the Supplementary Material). A

table is also created containing the list of genes in the module of the

input gene, their adjacencies, MMs, and 1-quantile(MM)s.

With Tool 2 it is possible to investigate whether a set of genes

(e.g. genes associated through a GWAS to a specific trait or disease)

are enriched in one or more modules. Significance is calculated

through the Fisher’s exact test. This tool can be used to prioritize

genes for further investigation or to validate the results.

With Tool 3 it is possible to investigate a specific genomic region

(e. g. a region identified through a GWAS) by plotting the network

genes present in the region with their MMs on the y-axis and their

chromosomal position on the x-axis. The legend indicates the

functional modules the genes are associated to (Supplementary

Figure 3 in the Supplementary Material).

The assignment of genes to modules in a given network is unique

inWGCNA: each gene is assigned to one module only (or to the gray

module when assignment is indeterminate). However, a gene may be

expressed in multiple cell-types or participate to multiple functional

pathways. With Tool 4, it is possible to visualize the extent to which

the gene conforms to the characteristic expression pattern of the

network modules by plotting the input gene MMs in other modules

(up to 10 top modules, considering only |MMs| > 0.10)

(Supplementary Figure 4 in the Supplementary Material).
Discussion

Co-expression network analysis, through the observation of

correlation of gene expression in transcriptomic data, has proven to
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provide reproducible results with biological relevance (65, 66).

Genome-wide transcriptional network analysis is an unbiased,

unsupervised approach, allowing hypothesis-free evaluation of how

transcripts correlate with each other in a biological system of interest,

such as the immune system, and allowing identification of modules of

co-expressed genes that possess functional relevance.

We carried out the largest network analysis in human WBCs,

using RNA-seq data derived from a sample of 624 individuals, and

performed both signed and unsigned co-expression network

analysis with WGCNA (23). We showed that the WBC

transcriptome is organized into modules of co-expressed genes,

including modules that reflect the underlying cellular composition.

We were able to identify modules strongly related to specific

immune cell-types (e.g. neutrophils, B and T cells, NK cells, and

plasmacytoids dendritic cells), the interferon signaling pathways,

and more general cellular functions, such as DNA and RNA

metabolic processes and mitochondria functions. Indeed, genes

that are most specifically and consistently expressed in the same

cell-type appear highly correlated in transcriptome data, therefore

gene co-expression clustering in heterogeneous tissues can be

largely driven by cell composition effects (65, 67, 68).

Nonetheless, cell-type-specific co-expression modules can be

missed due to weak correlation in other cell-types (7).

Where the majority of network analyses assign biological

meaning to modules by evaluating functional enrichment with

specific marker genes lists and biological pathways, we have also,

notably, exploited the availability of extensive immune-

phenotyping of the cohort of volunteers characterized by FACS

analyses to validate cell-type-specific module assignment obtained

through enrichment analysis. Indeed, for a module consisting of

cell-type-specific genes the module eigengene can be interpreted as

a proxy for the relative number of relevant cells present in each

sample. We are not aware of other studies that could associate

modules to a wide range of circulating cell subtypes, as

granulocytes, circulating dendritic cells, NK cells, B cells, and T

cells (and sub-types) using this approach.

Moreover, within each module, we have identified and

prioritized specific genes by identifying module hubs. These

results lay a robust groundwork for subsequent experimental

investigations aimed at delving deeper into the mechanisms

governing gene regulation in human white blood cells.

Through RNA-seq technologies, it is now possible to

interrogate the RNA expression levels of thousands of non-coding

RNA transcripts (9, 10), like lncRNAs, for which there is emerging

evidence suggesting that they are important regulators of the

immune response (13). The identification and characterization of

gene coexpression modules represent a powerful approach for

annotating gene function of generally uncharacterized genes, like

lncRNAs, and for generating hypotheses through the principle of

guilt by association. Guilt by association implies that the expression

levels of genes with the strongest evidence of membership for the

same module are probably driven by the same underlying

factors (69).

It is important to remember that not every gene in a module

necessarily correlates with the functional annotation for which the

module is enriched. The gene MM, that measure the extent to which
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the gene is inter-connected to the other genes in the module, can be

used to relate the gene to the functional annotation of the module.

Focusing on lncRNAs identified in the WBC and immune-related

modules, and with high confidence for module assignment (we

define hub genes those at the top 90th quantiles of the MMs of all

genes in the module), we found confirming evidence of their roles in

the immune system in recent studies (Table 6). For instances,

AL445490.1 and NRIR are hub genes in a module associated with

interferon signaling, and these lncRNAs are also found as important

interferon target genes in recent studies (14, 35); The module

associated with B cells contains as hub genes TCL6 and

AL139020.1, highly interconnected with the protein coding gene

TCL1A, associated with pediatric B-cell acute lymphoblastic

leukemia (48); In the same B cells module, but with opposite

expression pattern, we highlight AL928742.1, a lincRNA closely

co-expressed with TBC1D27 and TNFRSF13B (TACI). TACI

promotes T-cell independent antibody responses and plasma cell

differentiation and counteracts BAFF driven B-cell activation (70).

In providing our network results, we also supply different tools

that allow interrogation of the networks, in particular, a tool to

identify the most connected genes to a specific gene of interest; a

tool to investigate whether a set of genes (e.g., the genes identified in

a GWAS) are enriched in one or more modules; a tool to plot all

genes (and their modules) present in the network in a specific

genomic region of interest (e. g., regions identified in a GWAS);

and, finally, since genes may be expressed in multiple cell-types or

participate in multiple functional pathways, a tool to provide a

representation of the gene MMs across the network modules.

Although cellular heterogeneity is a major organizing principle

in our gene co-expression networks study, some modules represent

functional systems that span multiple cell-types, other modules

capture variation in gene expression that is unrelated to cellular

composition. For each identified module to map unambiguously to

a specific cell-type, co-expression analysis should be performed in

each cell-type separately (71). The organization of the human WBC

transcriptome described here could not have been revealed by

standard methods, such as differential expression analysis, as co-

expression network analysis allows to identify relationships that are

completely missed using more targeted approaches. It is important

to highlight that co-expression networks are based only on

correlations, therefore they indicate which genes are active at the

same time across individuals, and thus likely in the same biological

processes, but do not normally provide information about causality

or distinguish between regulatory and regulated genes.

In conclusion, our network modules are rich sources of new

hypotheses for thousands of genes expressed in WBCs, including

lncRNAs, and provide valuable new resource for context-specific

gene function annotation as a foundation for further

mechanism studies.
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SUPPLEMENTARY FIGURE 1

Cross-tabulations of modules of males-only (column) vs. females-only (row)
networks. Only genes with 1-quantile(MM)<0.20 in the signed network with

all individuals are shown. Coloring of the table encodes −log(p), with p being
the Fisher’s exact test p-value for the overlap of the two modules. The

stronger the red color, the more significant the overlap is.

SUPPLEMENTARY FIGURE 2

Example of use of Tool 1. Tool 1 allows to plot all genes in a module (the
module of the input gene) with their adjacencies with the input gene. It plots

the genes adjacencies on the y-axis and their chromosomal position on the
x-axis, both for the signed and the unsigned networks. For example, we select

as input gene TNFSF13B, which belongs to the cyan module (both in signed
and unsigned networks), module associated with “Type I interferon signaling
Frontiers in Immunology 17
pathway”. A vertical blue line marks the position of TNFSF13B. The MM and 1-
quantile of theMM of TNFSF13B is highlighted in the title. The color shading of

the symbols is proportional with the MM of the gene in the module. We use

the following symbols for the different gene types: red circle corresponds to
mRNA; green triangle corresponds to ncRNA; blue triangle corresponds to

miRNA; orange square corresponds to pseudogene.

SUPPLEMENTARY FIGURE 3

Example of use of Tool 3. With this tool it is possible to investigate specific

genomic regions (e. g., regions identified in a GWAS). Selecting a genomic
region in hg19 (human assembly GRCh37), for example 1:161036758-

162036758, Tool 3 allows to plot all the genes in the region present in the
network, with their MMs on the y-axis and their chromosomal position on the

x-axis, both for the signed and the unsigned networks. Colors of the plotted
genes indicates the modules they belong to, and the legend indicates the

modules functional annotations.

SUPPLEMENTARY FIGURE 4

Example of use of Tool 4. The assignment of genes to modules in a given
network in WGCNA is univocal: each gene is assigned to one module only (or

to the gray module when assignment is undefined). However, a gene may be
expressed in multiple cell-types or participate in multiple functional

pathways. With this tool it is possible to visualize the extent to which the

gene conforms to the characteristic expression pattern of the network
modules. Tool 4 plots the input gene MMs in other modules (up to 10 top

modules, considering only |MMs| > 0.10). We illustrate this tool for TNFS13B as
input gene. Two bar plots are created by plotting the gene MMs in the signed

and unsigned networks, respectively. Legends indicate the modules
functional annotations.
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