[—

April 1992

Bolognesi
/
/

Technical Report C92-18

“Tommaso
7

—

|
|
|
|
i
1

On graphical vs. algebraic representations
of process networks

T. Bolognesi

C.N.R. - CNUCE, Pisa, Italy
(bolog@fdt.cnuce.cnr.it)

Keywords
Distributed systems, formal semantics, process algebras, specification languages.

1. Introduction

In the context of specification languages and process algebras, we consider here two
fundamental ways for describing interconnection patterns for sets of interacting and
communicating components (processes, processors):

e graph-like box interconnection diagrams, used, for example, in computer-aided
software engineering;

¢ algebraic expressions involving parallel operators, typical of process algebras such as
CSP[5] or LOTOS|2, 3].

Diagrams are immediately appealing to the intuition, but often lack a formalized interpretation.
Conversely, algebraic behaviour expressions are provided with formal semantics, but, due to
their linear nature, are not as flexible as graphs in representing complex interconnection
patterns. It is clearly desirable to bridge the gap between the two representations, in order to
combine their advantages.

2. Process Interaction Nets (PIN)

We shall take the point of view of process algebras, and understand a process as an abstract
agent able to perform actions, either autonomously or jointly with other processes in its
environment. For convenience, we shall use the term action for denoting both single-process
actions and multi-process interactions. The behaviour of a process, or of a sets of interacting
processes, can be described in terms of labelled transition systems, also called action trees.
These are possibly infinite trees where arcs are labelled by actions.

In order to define process interaction nets, we shall assume the existence of the following sets:
Processes is the set of process identifiers, with typical elements P, Q, R.

Actions is the set of action identifiers, with typical elements a, b, .

Furthermore, we shall adopt the following notations:

P[A] is a process instantiation, where P is a process identifier and A is a list of
action identifiers, representing the actions that the process may perform (as
done in LOTOS).

P =(P1[A1l .., Pn[An])
is a tuple of process instantiations.

Definition 2.1 A General Process Interaction Net (GPIN) over the tuple P of process
instantiations is an undirected, bipartite graph. Its nodes are partitioned into two sets:

P = isthe set of process-nodes. These are represented by boxes, each one labelled by a
different process instantiation.

is the set of interaction-nodes. These are represented by circles, each one labelled by an
action identifier. Label duplication is admitted.

It
i

Any arc of a GPIN can only connect a process-node with an interaction-node. Some further
requirements are necessary, which will become natural in light of the GPIN semantics:

i. Any interaction-node must be connected with at least one process-node.

ii. If two interaction nodes have the same label, they cannot be connected to the same set
of process-nodes.

iii. Positive cooperation condition : a process-node Pi[Aj] can only be connected to an

interaction-node if the action that labels the latter appears in action list Aj.

Three examples of GPIN are shown in Figure 1.

@— Pla] Pla] @ Qlal| (@ Pla.b] Qlb.cl1 D

5 & 6 T

| I ® I
Qla] R[a} =@ Slal R[a,b,c] B S[a,b,c]

a. b. C.

Figure 1 - GPIN's (a, b, c¢), PIN's (b, ¢), LOTOS-expressible PIN (c).

If D € {1, ..., n} is a nonempty set of process indices, and a is an action, we shall let pair
(a, D) denote the star-shaped multi-arc rooted at some a-labelled interaction node connected
with exactly the D-indexed process nodes.

Behaviour of a GPIN

Let Np be a GPIN over the n process instantiations in P. We want now to conceive Np itself
as a process, and formally define its behaviour by deriving a global transition system from the
transition systems of the component processes. This is the usual approach for giving the
Structural Operational Semantics (SOS) [8] of process algebraic operators, and, indeed, Np
can be understood as a powerful algebraic n-ary operator, where process-nodes represent the
arguments.

For doing this, we must associate every process instantiation in P = (P1[A1], ..., Pn[An]) with
a specific transition system. Lett = (t1, .., tn) be a tuple of labelled transition systems. We
say that tj is label-consistent with P when the set of labels of tj is included in Aj. In such case,
we can write the process definition

Pi[Ai] =14

(still following the LOTOS convention). By extension, we shall say that ¢ is label-consistent
with P, when this is the case element-wise, and write

P:=g

for the tuple (P1[A1] :=t1, ..., Pn[An] :=tn) of process definitions. We shall write Np®
when we want to refer to a specific definition P := ¢ of the process-nodes in the net Np.

As usual, the a-labelled transition by which the labelled transition system tj turns into some
new system t'j is written: tj --a--> t'j. As a further notational convention, we shall write:

t--a/D--> ¢,

where t' = (t1', ..., tp') is some n-tuple of transition systems also label-consistent with P, and
D is a subset of the process indices {1, ..., n}, for denoting the set of transitions {tj--a-->t;' |
ieD}, with the implicit assumption that tj = tj', for ie D.

N_E(L) shall be able to perform at most the actions that label its interaction-nodes. The idea is

that the group of one or more D-indexed processes interconnected by multi-arc (a, D) can
collectively perform an a-action whenever each one of these processes is individually able to
perform that action. More formally, the inference rule for transition is:

if t--a/D-->t', where (a, D) is a multi-arc of Np

then Np(t) --a/D--> Np(t).
Note that, for convenience, we retain also in the second transition label the indication of the set
D of active process indices. In light of such rule of behaviour, the adequacy of requirements i-

iii above is obvious. In particular, requirement iii excludes the existence of interaction-nodes
that would in any case be inactive.

Definition 2.2 A Process-Interaction Net (PIN) is a GPIN where no two multi-arcs (a,
D1), (a, D2) exist such that D1c D2. ®

Such restriction is justified by the results of the next section.
3. Deriving a PIN from a parallel expression
Consistently with the LOTOS approach, we adopt the following syntax for parallel behaviour

EXpressions:

B = ProcInst I (B ISIB)

where nonterminal ProclInst represents a process instantiation, as introduced above, ISl is the
parallel composition operator, and nonterminal S represents a possibly empty set of
synchronization actions on which the two argument expressions (processes) must synchronize.

Example:
B = l((I]’l[a, b] I[a]l Q[b,c])
c
§R[a, b, c] Ifa, b}l (S[a, b, c])

We shall sometimes write Bp for a parallel behaviour expression that includes one occurrence
of every process instantiation in the tuple P.

The SOS rules for the LOTOS parallel composition operator are:

(r1) if Bl--a-->Bl',andae S then B1ISIB2--a-->B1'ISIB2
(r2) if B2--a-->B2,andae¢ S then B1ISIB2 --a-->B1 ISI B2’
(r3) if Bl--a-->B1', B2--a-->B2',andae S then B1 ISIB2 --a--> B1'ISI B2'

Let Bp be a parallel expression, and Actions be the set of all action identifiers that occur in its

process instantiations or parallel operators. For the example expression above, we have
Actions = {a, b, c}. We define now a technique for deriving a GPIN Np from Bp.

For each action g in Actions, we derive a boolean expression E(Bp, a) as follows:

. Every process instantiation Pj[Aj] in Bp is replaced by the simple process identifier Pj,
understood as a boolean variable, if a is an element of the action set Aj, otherwise it is

replaced by symbol '0' (zero).
’ Every instance 'ISI' of a parallel operator in Bp is replaced by "' (understood as a

boolean product) if a is one of the synchronization actions in S, and by '+' (boolean
sum) otherwise.

For our running example, we have:

E(Bp,) = (P*0)+(R*S)
E(Bp, b) = (P+Q+(R*S))
E(Bp, ¢) = (0+Q*R+3)

Let then SOP(Bp, a) denote the Sum Of Products obtained by flattening expression E(Bp, a).
For our running example, we have (the *' symbol is omitted):

SOP(Bp,a) = RS
SOP(BE, b) =P+Q+RS
SOP(Bp,¢) = QR+QS

Furthermore, if D is a non empty index-set D € {1, ..., n}, we shall let Tp denote the product
term TG p)Pj involving the D-indexed process identifiers (their order is immaterial).
The desired net Np is obtained as follows. First, create one process-node for each process

instantiation in BE._ Then, for every a e Actions, create a multi-arc (a, D) iff Tp is a product
term in SOP(Bp, a). For our running example, Np is shown in Figure 1.c.

The reader may easily check that requirements i-iii of Section 2 are satisfied by the construction
above. The importance of PIN's w.r.t. parallel behaviour expressions is captured by the
following proposition.

Proposition 3.1 The GPIN Np derived from any parallel expression Bp is a PIN.

Proof By the definition of PIN, we must prove that, for any action a, NE can not contain
two multi-arcs (a, D1), (a, D2) such that D1 € D2. By the one-to-one correspondence
between a-labelled interaction-nodes in Np and product-terms in SOP(Bp, a), we prove, by
induction on the size [Pl of expression Bp, that no two different (and nonempty) product terms

Tpj and Ty can be present in SOP(Bp, a), such that D1 € D2.

Basis. Vacuously true: when B_E consists of a single process instantiation, say P1[A1], then
Actions = A], and SOP(Bp, a) is 'P1' for all a e Actions.

Step. Let Bp = (B1 ISI B2), where B1 and B2 are parallel expressions including one or more

process instantiations. We have two cases.
If a e S, then SOP(Bp, a) can be derived from expression 'SOP(B1, a) * SOP(B2, a)'.

Assuming that Tp1 and Tp7 be present in SOP(Bp, a), we should have that Tpj =
Tp11*Tp12, and Tpy = Tp21*Tp22, where Tp11.Tp21€ SOP(BL,), and Tp12,Tp22 €
SOP(B2, a), and all the terms introduced are nonempty. For the purposes of contradiction,
assume that D1 € D2, that is: D11uD12 € D21uD?22. Since the sets of process identifiers
appearing in SOP(B1, a) and SOP(B2, a) are disjoint, it must be either D11 € D21, or D12 ¢

D22, or both, and the inductive hypothesis is contradicted.
Ifae S, then SOP(BE, a) can be derived from expression 'SOP(B1, a) + SOP(B2, a)". If

Tp1 and Tpy appear at the same side of the '+' operator, then the inductive hypothesis is

contradicted; if they appear at opposite sides, then the property is violated that the sets of
process identifiers appearing in SOP(B1, a) and SOP(B2, a) are disjoint. *

4. Equivalence of an expression with its derived PIN

In order to compare at a semantic level parallel composition patterns (be they described by
algebraic expressions or interconnection diagrams) in a way which is independent of the actual
process definitions, we introduce a new relation. Analogously to the notation Np(t) introduced

above, we shall write Bp(t) when we want to refer to a specific definition P :=t of the
processes in expression Bp.

Definition 4.1 Let Blp and B2p be two parallel expressions over the tuple P of process

instantiations. We say that B1p and B2p are universally strongly equivalent, written:
Blp~~B2p

when, for any definition P :=t (quantification refers to f), BIB(_t_) and B2B(L) are strong

bisimulation equivalent [7], written B1p(t) ~B2p(t) . ©

The relation '~~' is an equivalence, trivially, and can also be applied between two PIN's, as
well as between a PIN and a behaviour expression, as long as they are defined over the same
tuple P of process instantiations.

'Only if part By contradiction. Assume B1~~B2, and N1 # N2. Since the two PIN's have
the same process-nodes, they should differ with respect to multi-arcs. We prove that the
presence of a discriminating multi-arc (a, D) leads to contradiction, by induction on its size IDI.

Basis. Let (a, {k}) be the discriminating multi-arc of size 1, and, for fixing ideas, assume it
belong to N1. Consider now the process definitions P := t, where:

a; stop
stop fori#k

tk
b

DRy

In such case, we have that N1(¢)--a/{k}-->..., due to the presence of the (a, {k}) multi-arc,
which enables process Pk to perform action a independently of the other processes. However,
an a-action is not possible for N2(t): due to the absence of the multi-arc in N2, such an action
could only be executed by a group of processes involving at least one process different from
Pk, which is impossible, by the definition of the ti's. Hence, N1 and N2 are not universally
strongly equivalent. Thus, the B1~~B2 hypothesis is contradicted.

Step. We show that the existence of a discriminating multi-arc (a, D) of size m 2 2 in N1
(resp. N2) implies the presence of a discriminating multi-arc strictly smaller than m in N2
(resp. N1). Consider the process definitions P := t, where:

tj = a; stop forie D
ti = stop forie D

In such case, we have that N1(t)--a/D-->... By the assumption that N1~~N2, we have that
also N2--a/D'-->..., for some index set D', where (a, D') is a multi-arc of N2. Due to the
absence of the multi-arc (a, D) in N2, and to the process definitions above, it must be D o D".
Multi-arc (a, D") cannot exist also in N1, because its co-existence with (a, D) is excluded by
Def. 2.2 and Prop. 3.1. Hence, (a, D') is a discriminating multi-arc, and its size is strictly
smaller than m. °

6. Conclusions

In the context of process algebras, multiple parallel compositions can be conveniently
represented by interconnection diagrams, called here (General) Process Interaction Nets, or
(G)PIN's, for which a formal semantics is easily provided. While every LOTOS parallel
expression B has an associated, universally strong equivalent PIN (Section 3, and Theorem
4.3), not all PIN's admit an equivalent expression. For example, the PIN in Figure 1.b cannot
be captured by a LOTOS parallel behaviour expression (the same holds for the GPIN in Figure
1.a). Thus, besides offering the advantages of canonical representations (Theorem 5.1), PIN's
(and GPIN's) are more expressive than LOTOS parallel expressions.

A subclass of PIN's, called PGN's (Process Gate Nets) has been studied in [1]. The
interaction-nodes of a PGN are called gates, and cannot have duplicated labels. Such property
is sufficient for always guaranteeing the existence of a family of parallel LOTOS expressions
equivalent to the net (see [1]). PGN's are currently considered for the standardization of the
graphical LOTOS syntax [6].

Graphical representations for process interconnection are studied also in [4]. Process
Topology Diagrams (PTD) are more complex than GPIN's, in that their interaction mechanism
is based on two types of element, called Interaction Points and Communication Indications.
Based of such flexibility, PTD's can exhibit a hierarchical structure.

References

(1]

(2]
(3]

(4]

[5]
(6]

(7]
[8]

T. Bolognesi, "A Graphical Composition Theorem for Networks of LOTOS Processes”,
Proceedings of the 10th International Conference on Distributed Computing Systems,
IEEE Computer Society Press, 1990, 88-95.

T. Bolognesi, E. Brinksma, "Introduction to the ISO Specification Language LOTOS",
Computer Networks and ISDN Systems, Vol. 14, No 1, 1987.

E. Brinksma (ed.), "ISO- Information Processing Systems- Open Systems
Interconnection- LOTOS- A Formal Description Technique Based on the Temporal
Ordering of Observational Behaviour", IS 8807, 1989.

J. Hinterplattner, H. Nirschl, H. Saria, "Process Topology Diagrams", in J. Quemada et
al. (eds.), Formal Description Techniques III, North-Holland, 1991, 443-458.

C. A. R. Hoare, Communicating Sequential Processes, Prentice Hall 1985.

E. Najm (ed.), ISO/IEC JTC 1/ SC 21 N. 4871, "G-LOTOS: DAM1 to IS8807 on
graphical representations for LOTOS", Jan. 1992.

D. M. R. Park, "Concurrency and Automata on Infinite Sequences", Lecture Notes on
Computer Science, Vol. 104, Springer, 1981, 167-183.

G. D. Plotkin, "A structural approach to operational semantics”, Tech. Rep. DAIMI FN-
19, Aarhus Univ., Computer Science Dept., Denmark, 1981.

