
JaTeCS, a Java library focused on automatic

text categorization

Andrea Esuli (andrea.esuli@isti.cnr.it)
Tiziano Fagni (tiziano.fagni@isti.cnr.it)

Alejandro Moreo Fernández (alejandro.moreo@isti.cnr.it)

Istituto di Scienze e Tecnologie dell’Informazione (ISTI)
Italian National Research Council (CNR)

Pisa, Italy

March 25, 2016

Abstract

JaTeCS is an open source Java library focused on automatic text
categorization. It covers all the steps of an experimental activity, from
reading the corpus to the evaluation of the results. JaTeCS focuses on
text as the central input, and its code is optimized for this type of data.
As with many other machine learning (ML) frameworks, JaTeCS pro-
vides data readers for many formats and well-known corpora, NLP tools,
feature selection and weighting methods, the implementation of many ML
algorithms as well as wrappers for well-known external software (e.g., lib-
SVM, SVMlight). JaTeCS also provides the implementation of methods
related to text classification that are rarely, if never, provided by other
ML framework (e.g., active learning, quantification, transfer learning).

1 Introduction

JaTeCS (Java Text Categorization System) is a Java framework that we devel-
oped in the past years as the main software tool to perform research on a broad
range of automatic text categorization (ATC) problems. It is similar in spirit
to other machine learning (ML) libraries like Weka [4], Scikit-learn [6] or Mallet
[5] but it is more focused on text as the central input data. JaTeCS covers
every stage required by a typical experimentation pipeline (data loading, feature
extraction, dimensionality reduction, learning, evaluation). We now publish1 it
under the LGPL v3.0 license.
JaTeCS has been designed to support single/small group’s day-to-day research
on ML methods for ATC; its deployment scenario is single server with a multiple

1https://github.com/jatecs/jatecs

1

https://github.com/jatecs/jatecs


cores CPU and an average amount of memory; it has been developed to exploit
this configuration, using multi-threaded processing and exploiting the intrin-
sic characteristics of information extracted from text (e.g., high dimensionality,
sparseness, Zipfian distribution, multiple labels, hierarchical labeling. . . ) in the
design of its data structures. The code is divided into two components: a core
library2 that implements most of the tools needed to implement ATC methods,
and a vast examples set3 that provides ready-made, customizable applications,
built on top of the core library, for a rich range of typical ATC tasks. JaTeCS
support its expansion by abstracting, through interfaces, the typical tools and
procedures used in ATC tasks, and providing a number of “template” implemen-
tations of typical ATC applications, in which components that implement the
various interfaces (corpora readers, text processors, learners. . . ) can be quickly
plugged in.

2 Main features

JaTeCS handles the most common types of classification tasks, starting from
simple binary classification, and including multi-label classification, multi-class
single-label classification, and hierarchical classification. In hierarchical tax-
onomies, the learner is able to choose the selection policy of negative examples
by choosing from Siblings, All, BestGlobal, and BestLocal(k) policies. Clas-
sification on multilingual (comparable or parallel) corpora is also supported,
including an implementation of the Multilingual Domain Models technique.
Optimization of parameters is supported by the implementation of many well
known exploration/validation methods, including K-Fold cross validation (sim-
ple or stratified), leave-one-out and grid-search.
JaTeCS is also able to handle advanced and uncommon NLP application types.
The framework provides implementations of several methods having the aim to
improve the quality of training data: Active Learning [7], Training Data Clean-
ing [2], Semi-Automated Text Classification [1], and Quantification [3]. Trans-
fer learning is also supported by the library through the implementation of
representation methods (e.g., Distributional Correspondence Indexing), or ana-
lytic tools (e.g., proxy A-distance). The library implements corpus readers for
many popular text corpora like Reuters-21578, RCV1-v2, RCV2, WipoAlpha,
etc. The library also supports datasets in the popular SVMlight and Comma
Separated Values (CSV) formats. A rich set of NLP tools (e.g., stop words
removal, word or character n-grams, stemming, POS tagging, sentiment lexica)
is included in JaTeCS. JaTeCS offers many dimensionality reduction tools
through (i) filtering methods, implementing local or global feature selection
with classic scoring functions like Information Gain, χ2, etc.; and (ii) distri-
butional semantic models, including Latent Semantic Analysis, and Random
Projections.
JaTeCS implements many ML algorithms for classification, ordinal regression,

2Located in src/main/java in GitHub project repository.
3Located in src/example/java in GitHub project repository.

2



and clustering. It covers the most popular learning methods such as the Näıve
Bayes, Rocchio, Logistic regression, k-NN, AdaBoost and boosting methods in
general, and Support Vector Machines (SVMs). For ordinal regression, the li-
brary provides wrappers for ε-SVR and ν-SVR, as well as implementations of
graph based methods, such as regression trees and D-DAGs. A highly customiz-
able implementation of k-means is implemented for clustering. Committees (en-
sembles) and bagging methods are also implemented.

3 Data representation through IIndex structure

In JaTeCS, a processed textual dataset is made available to the learning al-
gorithm through a IIndex interface that offers different views of the data. The
IIndex is based on three basic entities: documents, features (extracted from
documents), and categories (on which documents are labeled). Each entity
has a corresponding database interface: IDocumentDB, IFeatureDB, and ICat-
egoryDB. The ICategoryDB also models relations between categories, enabling
the definition of hierarchical, preferential, and ordinal regression categorization
scenarios. Relations between the basic entities are handled by four databases:
IContentDB, that keeps track of how features occur in documents; IWeight-
ingDB, that stores the relative importance of features with respect to documents
(as computed by any given weighting function); IClassificationDB, that stores
the labeling assigned to documents; and IDomainDB, which accounts for the set
of valid features for each category, thus enabling category-dependent represen-
tations. These interfaces define methods that model recurrent queries in ATC
problems, like “count all documents containing feature f” or “retrieve all doc-
uments from category c which also contain feature f”. The following example
lists the features which occur more than three times in documents belonging to
a category:

// iterates on docs assigned to a category

for (int docID : index.getClassificationDB().getCategoryDocuments(cat)) {

for (int featID : index.getContentDB().getDocumentFeatures(docID)) {

// checks features satisfying the condition

if(index.getContentDB().getDocumentFeatureFrequency(docID, featID)

> 3)

print(docID+":’"+index.getFeaturesDB().getFeatureName(featID)+"’");

// prints 1:’the’ 1:’is’ 1:’said’...

}}

The IIndex can be extended with additional task-specific databases, e.g., a ILan-
guageDB is available to handle multilingual datasets information. JaTeCS
provides an in-memory implementation of all the interfaces based on the high
performance primitive collections of Trove library, as well as tools for data per-
sistence.

3



4 A text quantification example in JaTeCS

As an example of JaTeCS usage, we show a sample code of text quantification.
Quantification [3] is the problem of estimating the distribution of labels in a
collection of unlabeled documents, when its distribution may substantially differ
from the one of the training set. Though quantification processes a dataset as
a single entity, the classification of single documents is the building block on
which many quantification methods are built. JaTeCS implements the three
best performing classification-based methods of [3] as well as their probabilistic
versions. The implementation is independent from the underlying classification
method, which acts as a plug-in component:

int folds = 50; IScalingFunction scaling = new LogisticFunction();

// any other learner can be plugged in

ILearner classificationLearner = new SvmLightLearner();

// learns six different quantifiers on training data (train is an IIndex

object)

QuantificationLearner quantificationLearner = new QuantificationLearner(

folds, classificationLearner, scaling);

QuantifierPool pool = quantificationLearner.learn(train);

// quantifies on test returning the six predictions (test is an IIndex

object)

Quantification[] quantifications = pool.quantify(test);

// evaluates predictions against true quantifications

QuantificationEvaluation.Report(quantifications,test);

5 Conclusion

JaTeCS is an open source Java library specifically designed for ATC research.
The framework builds around the notion of IIndex, a data structure that ab-
stracts the text corpus and all of its components, facilitating the development of
text-focused ML algorithms and the relative experimental activities. JaTeCS
covers all the ML pipeline, from reading the corpus, to evaluating experiments.
Any step is modeled with interfaces, allowing a quick plug-in like construction
of pipelines. In addition to the typical set of text processing and ML tools that
are also provided by similar frameworks, JaTeCS provides implementations
for more complex text mining methods that are not usually supported by other
frameworks.

References

[1] G. Berardi, A. Esuli, and F. Sebastiani. A utility-theoretic ranking method
for semi-automated text classification. In Proceedings of the 35th Interna-

4



tional ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’12, pages 961–970, New York, NY, USA, 2012. ACM.

[2] A. Esuli and F. Sebastiani. Training data cleaning for text classification.
In Advances in Information Retrieval Theory: Second International Confer-
ence on the Theory of Information Retrieval, ICTIR 2009 Cambridge, UK,
September 10-12, 2009 Proceedings, pages 29–41, Berlin, Heidelberg, 2009.
Springer Berlin Heidelberg.

[3] G. Forman. Quantifying counts and costs via classification. Data Min.
Knowl. Discov., 17(2):164–206, Oct. 2008.

[4] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten. The weka data mining software: An update. SIGKDD Explor.
Newsl., 11(1):10–18, Nov. 2009.

[5] A. K. McCallum. Mallet: A machine learning for language toolkit.
http://www.cs.umass.edu/ mccallum/mallet, 2002.

[6] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[7] S. Tong and D. Koller. Support vector machine active learning with appli-
cations to text classification. J. Mach. Learn. Res., 2:45–66, Mar. 2002.

5


	Introduction
	Main features
	Data representation through IIndex structure
	A text quantification example in JaTeCS
	Conclusion

